
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

12-2019

An empirical study of SMS one-time password authentication in An empirical study of SMS one-time password authentication in

Android apps Android apps

Siqi MA

Runhan FENG

Juanru LI

Yang LIU

Surya NEPAL

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
MA, Siqi; FENG, Runhan; LI, Juanru; LIU, Yang; NEPAL, Surya; BERTINO, Elisa; DENG, Robert H.; MA, Zhuo;
and JHA, Sanjay. An empirical study of SMS one-time password authentication in Android apps. (2019).
Proceedings of the 35th Annual Computer Security Applications Conference (ACSAC 2019). 339-354.
Research Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4628

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/286034937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4628&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author Author
Siqi MA, Runhan FENG, Juanru LI, Yang LIU, Surya NEPAL, Elisa BERTINO, Robert H. DENG, Zhuo MA, and
Sanjay JHA

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4628

https://ink.library.smu.edu.sg/sis_research/4628

An Empirical Study of SMS One-Time Password
Authentication in Android Apps

Siqi Ma
CSIRO

siqi.ma@csiro.au

Runhan Feng, Juanru Li
Shanghai Jiao Tong University
{fengrunhan,jarod}@sjtu.edu.cn

Yang Liu
Xidian University

xdly9491@gmail.com

Surya Nepal, Diethelm
Ostry
CSIRO

{surya.nepal,diet.ostry}@csiro.au

Elisa Bertino
Purdue University
bertino@purdue.edu

Robert H. Deng
Singapore Management University

robertdeng@smu.edu.sg

Zhuo Ma
Xidian University

mazhuo@mail.xidian.edu.cn

Sanjay Jha
University of New South Wales
sanjay.jha@unsw.edu.au

ABSTRACT

A great quantity of user passwords nowadays has been

leaked through security breaches of user accounts. To en-

hance the security of the Password Authentication Protocol

(PAP) in such circumstance, Android app developers often

implement a complementary One-Time Password (OTP) au-

thentication by utilizing the short message service (SMS).

Unfortunately, SMS is not specially designed as a secure ser-

vice and thus an SMS One-Time Password is vulnerable to

many attacks. To check whether a wide variety of currently

used SMS OTP authentication protocols in Android apps

are properly implemented, this paper presents an empiri-

cal study against them. We first derive a set of rules from

RFC documents as the guide to implement secure SMS OTP

authentication protocol. Then we implement an automated

analysis system, AUTH-EYE, to check whether a real-world

OTP authentication scheme violates any of these rules. With-

out accessing server source code, AUTH-EYE executes An-

droid apps to trigger the OTP-relevant functionalities and

then analyzes the OTP implementations including those pro-

prietary ones. By only analyzing SMS responses, AUTH-EYE

is able to assess the conformance of those implementations

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00

https://doi.org/10.1145/3359789.3359828

to our recommended rules and identify the potentially inse-

cure apps. In our empirical study, AUTH-EYE analyzed 3,303

popular Android apps and found that 544 of them adopt

SMS OTP authentication. The further analysis of AUTH-EYE

demonstrated a far-from-optimistic status: the implementa-

tions of 536 (98.5%) out of the 544 apps violate at least one

of our defined rules. The results indicate that Android app

developers should seriously consider our discussed security

rules and violations so as to implement SMS OTP properly.

CCS CONCEPTS

• Security and privacy→ Software security engineer-

ing; Multi-factor authentication; Software reverse engineer-

ing;

KEYWORDS

Authentication Protocol; Mobile Application Security; One-

Time Password Authentication; Vulnerability Detection

ACM Reference Format:

Siqi Ma, Runhan Feng, Juanru Li, Yang Liu, Surya Nepal, Diethelm

Ostry, Elisa Bertino, Robert H. Deng, ZhuoMa, and Sanjay Jha. 2019.

An Empirical Study of SMS One-Time Password Authentication

in Android Apps. In 2019 Annual Computer Security Applications

Conference (ACSAC ’19), December 9–13, 2019, San Juan, PR, USA.

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3359789.

3359828

1 INTRODUCTION

Many Android apps commonly use password authentica-

tion protocols to verify user identity (i.e., authenticating the

user with the combination of the username and a static pass-

word [29]). However, in recent years, many security breaches

339

led to large-scale password leakage1. Moreover, users usually

choose weak passwords (e.g., the infamous “123456”) because

a secure password is often too complex to remember. Because

of such issues, a single password authentication becomes

vulnerable to attacks such as brute force or dictionary based

search, and thus is not suitable for user login protection.

To address the above security issues, one-time password

(OTP, also known as dynamic password) authentication is

used. Referred to as two-factor authentication, the enhanced

validation requires the user to provide both a static password

and a dynamic OTP. The OTP here is used to protect valida-

tion systems against typical attacks because attackers must

determine and consume each OTP before the legitimate user

can do so for each authentication session. Typically, an OTP

is generated through a security token or retrieved from the

server via a secure channel. For example, Google and Apple

use both static passwords set by users and dynamic pass-

words generated by mobile authenticators (e.g., the Google

Authenticator [20]). Another case is theCITI Bank app, which

requires both the static password and an additional dynamic

password generated by a portable security token [5, 21].

Designing a secure OTP authentication protocol is, how-

ever, challenging and error-prone [22]. The security of OTP

authentication is regulated by a number of RFC documents

and a secure OTP authenticationmust satisfy several security

requirements. A crucial requirement is how to generate and

deliver the OTP securely. For an Android app, it is often too

heavyweight and inconvenient to deploy a portable security

token or a mobile authenticator. Therefore, generating and

transferring OTP through the short message service (SMS)

becomes the most prevalent implementation2.

We observed that although several techniques have been

proposed to analyze designs and implementations of tradi-

tional password authentication in Android apps [6, 30, 48],

seldom studies considered SMS OTP authentications and

barely analyzed the implementation security of them. In

this paper, we focus on security requirements of the SMS

OTP authentication protocol (hereinafter, we refer it as OTP

authentication protocol) and conduct an empirical evalu-

ation of the security of user validation systems which im-

plement OTP authentication protocols. The purpose of our

study is two-fold: (1) investigating the OTP authentication

protocol in the Android ecosystem, and (2) identifying apps

which implement vulnerable OTP authentication. We focus

on Android apps because Android is the most widely used

mobile operating system [8] and a large number of Android

apps adopt OTP authentications.

1Massive breach leaks 773 million email addresses and 21 million

passwords https://www.cnet.com/news/massive-breach-leaks-773-million-

emails-21-million-passwords/
2https://www.quora.com/Why-do-companies-use-SMS-and-OTP-to-

verify-the-mobile-number-doesnt-one-suffice

Our goal is to check how well an OTP implementation

(including the server side and the app side) complies with

a set of OTP authentication protocol rules (hereinafter, it is

referred to as OTP rules), which we derive from the best

practices outlined in a number of RFCs 3. Since these rules

are recommended as the best practices for implement se-

cure OTP protocols, we propose a novel analysis system,

AUTH-EYE, which determines whether OTP implementations

violate our defined OTP rules. AUTH-EYE locates and exe-

cutes login via an app to trigger the relevant functionalities

in server’s validation system and then examines server be-

haviours (i.e., server requests and responses). Unlike previ-

ous code-based approaches using semantic executions and

code dependencies [49, 52], AUTH-EYE only relies on limited

app code information (i.e., class names and function names).

Moreover, since source code of remote servers is often not

available, AUTH-EYE treats each remote server as a black box

and thus only checks its authentication system by analyzing

the server responses.

We applied AUTH-EYE to assess 3,303 popular Android

apps, collected from the top 2 Android app markets: Google

Play and Tencent marketplaces. We observed that there are

three types of login schemes, only password authentication,

only OTP authentication, and two-factor authentication with

both password authentication and OTP authentication. Since

we only focus on OTP authentication in this paper, AUTH-EYE

found 544 apps implemented OTP authentication protocols

in total. For the apps with two-factor authentication, weman-

ually registered an account and filled in the corresponding

username and password in each app. Surprisingly, AUTH-EYE

detected that OTP authentication protocols in 536 (98.6%) out

of the 544 apps violate at least one of our defined OTP rules,

and only eight (1.4%) apps implement their OTP authenti-

cation protocols with all OTP rules satisfied. This indicates

that developers may not be aware of the OTP security recom-

mendations outlined in the RFCs, and AUTH-EYE can be used

to help them implement more secure OTP authentication

protocols.

Contributions: Our contributions are:

• We derived a set of OTP rules that developers should
follow to implement secure OTP authentication proto-

col. Those rules are summarized from RFC documents

and then used to check implementations of OTP au-

thentication protocols in remote servers.

• We proposed a novel analysis system, AUTH-EYE, to
automatically evaluate protocol implementations. In

particular, AUTH-EYE conducts an efficient code anal-

ysis to locate login Activities in apps, requiring only

3Protocols defined in RFC: RFC 4226 [35], RFC 2289 [22], RFC 6238 [36],

RFC 1750 [14] and RFC 4086 [15]

340

limited semantic information. It also examines the re-

mote validation system by only analyzing the network

(and SMS) requests and responses rather than source

code on server sides.

• We tested 3,303 real-world Android appswith AUTH-EYE
and found 544 apps adopt OTP authentication, and

AUTH-EYE reported that a large notion of those apps

violates at least one of our defined OTP rules.

2 DEFINITIONS AND OTP RULES

In this section, we introduce the OTP authentication proto-

cols, and explain OTP rules for designing and implementing

OTP authentication protocols properly.

2.1 One-Time Password Authentication
Protocol

When a user account is created in OTP authentication pro-

tocols, the account is bound to the user by the possession

of some information specific to the user, such as a mobile

phone number or an email address. At login, an OTP is cre-

ated for the user who must correctly return it. Android apps

often use SMS OTP authentication, where the server gen-

erates a pseudo-random value as an OTP and sends it via

SMS to the mobile phone number in the user’s profile. Such a

pseudo-random value is shared only between the server and

the user owning the mobile phone. The user then submits

the received value to the server for authentication. The un-

predictable and unique nature of the pseudo-random value

prevents password replay attacks. Two algorithms (namely

HMAC-based OTP and time-based OTP) are widely used to

generate the one-time password.

2.1.1 HMAC-based One-Time Password (HOTP). The algo-

rithm of HMAC-based one-time password (HOTP) combines

an incrementing counter value (C) and a secret key (K) to
generate the one-time password. The OTP value generated

by the HOTP algorithm is defined as [35]:

value = HOTP(K ,C),

where HOTP is the function:

HOTP(K ,C) = Truncate(HMACH (K ,C)).

where H is a cryptographic hash function, and the output

of the hash function HMACH is truncated to a user-friendly

size.

An HOTP value with a short length is convenient, but

vulnerable to brute-force attacks. To address this problem,

RFC 4426 recommends two steps: 1) the maximum number of

possible attempts per login session should be set beforehand,

and 2) each failed attempt should introduce an additional

delay before a retry is permitted. RFC 4426 also suggests

that with these protective steps the length of an HOTP value

should be at least six digits.

2.1.2 Time-based One-Time Password (TOTP). The time-

based one-time password (TOTP) algorithm [36] is an exten-

sion of the HOTP algorithm, using elapsed time increments

instead of an event counter. Because of human and network

latency, the one-time password for each login session must

remain valid over a time interval (defined by the time step

parameter). Based on RFC 6238, the OTP value generated by

the TOTP algorithm is defined as:

value = HOTP(K ,CT)

where K is a secret key, and CT is an integer counting the
number of completed time steps between the initial counter

time T0 and the current Unix time. Given a time step Tx in
seconds, CT is calculated as:

CT =
(current unix time −T0)

Tx

Due to the network latency, the number of time steps (CT)
calculated by clients and servers may differ and so resulting

in different TOTP values. This problem can be addressed by

setting the OTP time stepTx to an acceptable size. The OTPs
generated anytime within a time step will be the same and

will allow the user to login successfully. However, depending

on when a login request is made, a server might reasonably

accept OTPs from earlier or later time steps. For example, if

an OTP is generated near the end of a time step, the user may

compute a counter based on the succeeding time step due to

latency. To take this into account, the servermay accept OTPs

computed from time steps +/-1 from its current time step. A

larger time step makes the OTP authentication protocol with

a TOTP value become more vulnerable because it offers an

attacker more time to guess the TOTP value and consume

the TOTP value before the valid user does. To balance the

security and the usability of this authentication scheme, RFC

6238 recommends setting the size of the time step to 30

seconds.

Furthermore, the server must ensure that sufficient time

has elapsed between generating successive TOTP values so

that the number of time steps (CT) has changed.

2.2 Best Practices and Threats for OTP

In this subsection, we first summarize six OTP rules (i.e.,

rules for secure OTP implementation) according to RFC doc-

uments, and then discuss threats against OTP authentications

if one or more rules are violated.

2.2.1 OTP Rules. Several RFC documents such as RFC

4226 [35], RFC 2289 [22], RFC 6238 [36], RFC 1750 [14], and

RFC 4086 [15] regulate how to securely implement an OTP

authentication protocol. We conclude them as six OTP rules

341

that developers are recommended to follow for a secure OTP

implementation.

R1: OTP Randomness–Use a random value as an OTP for

authentication.

The server needs a cryptographically strong pseudo-random

number generator to generate the OTP value for each lo-

gin session, as an attacker can exploit any detectable non-

randomness in the successive OTPs. Some poor pseudo-

random number generators can be identified from the se-

ries [14], or values in the sequence may appear periodically.

In the worst situation, an implementation of OTP authen-

tication may keep using a static value as the OTP for all

authentication sessions.

R2: OTP Length–Generate an OTP value with at least six

digits.

The official document RFC 4226 [35] points out that “the

value displayed on the tokenMUST be easily read and entered

by the user.”. It requires that the OTP value should also be

of reasonable length. Particularly, RFC 4226 indicates that

an OTP value of at least six digits could adequately reduce

the probability of a successful brute-force attack. In view of

both usability and security considerations, OTP values with

a length from six to eight digits achieve the required overall

performance.

R3:RetryAttempts–Set a limit on the number of validation

attempts allowed per login.

RFC 4226 [35] recommend a maximum number of possible

attempts for OTP validation. In particular, when the maxi-

mum number of attempts is reached, the server must lock

out the user’s account to defend against a brute-force attack.

R4: OTP Consumption–Only allow each OTP value to be

consumed once.

According to the definition of the OTP authentication pro-

tocol, each OTP should only be valid for one authentication

session.

R5: OTP Expiration–Reject expired OTP values generated

by the TOTP algorithm.

Referring to RFC 6238 [36], the OTP value generated in

the next time stepMUST be different. It represents that the

OTP value generated by the TOTP algorithm should only be

valid for a limited time.

R6: OTP Renewal Interval–OTP values generated by the

TOTP algorithm should be valid for at most 30 seconds.

Due to the network latency issue, RFC 6238 [36] recom-

mends that “A validation system SHOULD typically set a

policy for an acceptance OTP transmission delay window for

validation.”; thus, a renewal interval is allowed. For the re-

newal interval, the login validation system achieves a higher

usability by allowing for a longer latency, potentially caused

by human and network operations. To balance the demands

of usability and security, RFC 6238 suggests that the OTP

should be renewed every 30 seconds.

2.2.2 Threats against OTP Authentication. We determine

whether an implementation of the OTP authentication pro-

tocol is secure, in that it should at least meet the following

two requirements:

(1) The authentication protocol should not be vulnerable

to brute force attacks.

(2) The authentication protocol should be secure against

replay attacks.

We observe that if one or more defined OTP rules are

violated, the above two requirements may not be satisfied.

In the following, we discuss how the violation of our defined

OTP rules threats the security of OTP authentication.

• The violation of R1 indicates that an OTP becomes pre-
dictable, and thus the validation systems are vulnerable

to replay attacks, allowing attackers to impersonate

legitimate users.

• The violation of R2 indicates that an OTP is of limited
length, which is vulnerable to brute-force attacks and

may be cracked within a few minutes [11].

• The violation of R3 indicates that an attacker could
easily guess the OTP value through a brute-force attack

if unlimited attempts are allowed.

• The violation of R4 indicates that a validation system
allows an OTP to be used multiple times and thus is

vulnerable to replay attacks.

• The violation of R5 indicates that a validation system
accepts an expired OTP value and thus allows an un-

limited time for an attacker to discover the OTP and

consume it before the legitimate user does.

• The violation of R6 indicates that a validation system
provides a long time window for an attacker to crack

the OTP.

Moreover, we observe that even though the violation of

a single rule might not cause severe security issues, power-

ful attacks could be launched if multiple rules are violated

simultaneously:

(1) Violation of R1 and any of the other rules. A static

OTP value is always vulnerable to replay attacks.

(2) Violation of R2 and R3. For an OTP value with length

less than six, an attacker can easily crack the OTP

value if the number of validation attempts is unlimited

(i.e., vulnerable to brute force attacks).

(3) Violation of R2 and R4. The violation of R4 allows an

attack to reuse current OTP values to launch replay at-

tacks. At the same time, if R2 is also violated, attackers

can easily extract OTP values for further attacks.

342

(4) Violation of R4 and R5. The OTP validation system

is vulnerable to replay attacks by allowing an OTP to

be used multiple times. In addition, if the validation

system does not set OTP expiration, an attacker is

able to launch replay attacks by providing the same

OTP value. Even though an OTP is encrypted, the

attacker can request for verification by submitting the

encrypted format directly.

(5) Violation of R2,R3, andR6. Similar to situation (2), an

OTP validation with a larger renewal interval provides

an attack enough time to crack an OTP with less than

six digits. It is vulnerable to brute force attacks.

3 OTP AUTHENTICATION IN ANDROID

Analyzing OTP authentication protocols implemented in

real-world servers require addressing several challenges. Be-

low, we describe the challenges, each followed by our ap-

proach to address it.

Challenge 1: How to identify OTP authentication im-

plementations that violation the aforementionedOTP

rules without access to the source code? Static code anal-

ysis is the most popular technique to locate implementation

flaws. However, this technique does not work because server

source code is not publicly available. The other technique is

to identify functionalities supported by servers and interact

with servers. Many attack-based techniques have been pro-

posed based on this approach [25] [27]. However, we cannot

apply this approach in our case for ethical reasons.

Our approach 1: Interacting with servers.We search for

implementation violations via legitimate interactions with

servers. Executing an app triggers the validation functional-

ities of OTP authentication implemented in the app server.

Referring to the OTP rules defined in Section 2, we design ex-

periments to test the functionalities and determine whether

the implemented OTP authentication protocol obeys all the

OTP rules.

Challenge 2: How to locate the app code that triggers

the validation functionalities of OTP authentication?

We perform login by executing Android apps to explore

the functionalities of OTP authentication at remote servers.

Hence, we need to locate OTP login Activities in apps. To

find such Activities, we decompile each app and search for

functions declaring login Activities. However, developers

use a variety of names for these functions, which makes

identification more complicated. While we can recognize the

login functions by matching data- and control-dependencies

with execution patterns, such a strategy does not always

succeed because the code decompilation of an app may be

incomplete. Thus, we need a broader approach to identify

login functions that requires less code information.

Our approach 2: Recognizing OTP login functions se-

mantically. Login Activity declarations, including class in-

formation (i.e., class name and name of the extended class)

and function information (i.e., function name and argument

name) are more complete than other relevant information,

such as control-dependencies and API names. Moreover, lo-

gin Activity declarations reflect which functionalities are

included in the class. Although name recognition is chal-

lenging, we observe that developers prefer to use similar

words to name similar functionalities. This provides a way

to identify login-related functions by applying syntax and

lexical analysis.

Challenge 3: How to perform login Activities to inter-

act with each server? Once the login Activity declarations

are located, we send login requests via the login Activity

in each app, triggering the OTP validation system at the

remote server. We can manually send login requests, but it

does not scale to a large number of apps. To automate the

process, we need to design a system that follows the login

process precisely. Otherwise, irrelevant services might be

triggered, which cause unexpected errors. For example, a

button requesting a password reset might be clicked acci-

dentally, possibly switching from the current login page to a

password reset page.

Our approach 3: Extracting the position of each wid-

get. After app decompilation, there is a file describing all

the involved widgets, including their names, layouts, types,

positions, etc. The widget type information helps to identify

the widgets used for editing texts and clicking buttons. The

widget name implies its purpose, and its layout gives its po-

sition. Through this information we can locate the required

widgets precisely and execute further operations.

Challenge 4: How to parse the received server mes-

sages? Responses from a server are texts containing both

useful information (e.g., valid OTP, its expiration, etc.) and

irrelevant material. Furthermore, OTP authentication pro-

tocols implemented in different servers have different func-

tionalities, which indicates that their responses differ. To

deal with this issue, we need a mechanism to systematically

process these server messages and recognize the fields con-

taining the useful information.

Our approach 4: Examining altered fields in each mes-

sage.We identify fields that are altered by comparing multi-

ple responses. Although OTP authentication protocols with

different functionalities may give different responses, some

essential fields in these responses still follow particular for-

mats. For example, the description of OTP expiration is usu-

ally in the format of a decimal followed by a string as “sec-

ond(s)”, “minute(s)” or “hour(s)”. With some prior informa-

tion like this, we discover the used formats and furthermore

343

Login Code
Detector

AUTH-EYE

Auth Message
Analyzer

OTP List

①

Servers

Report

②

③

③ ④

⑤

OTP Rules

Apps

Figure 1: The workflow of AUTH-EYE

find what functionality is implemented by sending multiple

requests to the same server.

4 SYSTEM DESIGN: AUTH-EYE

This section describes our automated system, AUTH-EYE,

which analyzes Android apps and detects violations of the

OTP rules defined in Section 2. AUTH-EYE is built following

the approaches outlined in Section 3 to address the critical

challenges while examining OTP protocol implementations.

AUTH-EYE comprises two components: a Login Code Detec-

tor and anAuthMessageAnalyzer, and Figure 1 illustrates

the system workflow. We next describe the system in detail.

4.1 Login Code Detector

As mentioned earlier, our focus is on the SMS OTP authenti-

cation protocol. The function of the login code detector is to

analyze a set of apps and generate anOTP List of the apps that

implement SMS OTP login activities. AUTH-EYE achieves this

in two steps: app decompilation and Login Activity locating,

which are detailed as follows.

4.1.1 App Decompilation. AUTH-EYE is built on top of the

JEB Android decompiler [42]. The login code detector first

takes apps as inputs and uses JEB to decompile them into

their java source code.

4.1.2 Login Activity Locating. Since AUTH-EYE only fo-

cuses on OTP authentication, it first needs to distinguish Ac-

tivities of OTP authentication from that of password authen-

tication. However, since both Activities are named similarly

in layout files, it is hard for AUTH-EYE to distinguish OTP

authentication via the layout files only. Therefore, AUTH-EYE

examines the java source code of each app to identify those

which implement login activities. AUTH-EYE first looks for

Activities that were declared by developers (i.e., customized

classes and functions) and then identifies functions that ful-

fill login Activities. The examination steps of how AUTH-EYE

recognizes OTP login Activities in apps are detailed below.

Customized Package Selection. We observe that Activi-

ties commonly exist in customized packages (i.e., declared by

developers) and seldom exist in third-party libraries. There-

fore, AUTH-EYE needs to distinguish customized packages

from the standard packages declared in third-party libraries.

AUTH-EYE adopts a heuristic approach to achieve this target:

it ONLY collects class names of Activities in an app and ana-

lyzes the first two fields in a class name. For example, in the

class name cx.itxxx.usercenter.activity4, the first two

fields, cn.itxxx, indicate the identity of the developer, while

the last part, usercenter.activity, refers to the functions

that are related to an Activity. In one app there often exist

many Activities. AUTH-EYE defines the most frequently ap-

peared first-two-fields prefix as the developer’s information,

and then deems packages with this developer’s information

as customized packages. According to our manual inspection

on 2,210 popular Android apps, 2,153 apps follow this pat-

tern and thus AUTH-EYE could apply this approach to locate

customized packages.

Login Function Identification.Once the customized pack-

ages are identified, AUTH-EYE locates classes and functions

with login Activities. A common strategy for understanding

a function semantically is to search for specific words and

dependency patterns. However, in our case this strategy fails

to extract semantic information effectively for the following

reasons:

• Non-Uniform Representation: Developers often choose

function and variable names arbitrarily. They often use

different names for functions and variables with the

same purpose, such as the AccountLoginActivity

login functions and PhoneLogin. For a matching ap-

proach to succeed, we thus need a dataset with a large

number of potential keywords.

• Vague Explanation:Developersmay use identical words

but combine these words in different orders to name

different functions. The meanings of these functions

are significantly different. This makes a simple key-

word comparison inaccurate. For example, the func-

tion LoginPhoneAct refers to the activity of extracting

phone settings, but PhoneLoginAct specifies login via

mobile phone.

• Unclear Expression: Developers often use abbreviations

and colloquial terms (e.g., AccountAct) to declare an

Activity. Moreover, the decompilation replaces some

4We used ‘x’ to conceal the details of this developer

344

APIs by using abstract formats, e.g., UserLogin.a. Ab-

breviations and abstract formats like this are more

difficult to recognize through a simple keyword match-

ing.

• Partial Decompilation:We cannot completely decom-

pile apps with protected code snippets. Hence, the

patterns extracted through the data and control depen-

dencies may be inadequate.

To gain a further understanding of these difficulties, we

manually inspected the source code of each app. We found

that class names are usually fully decompiled, and follow

some specific formats. For example, developers use similar

words (e.g., login, auth) with similar formats to name a

login Activity. Therefore, we propose a natural language

processing [33] (NLP) based approach, which is widely used

to evaluate the semantic similarity between a pair of words,

to extract the semantic information from class and function

names and so address the second challenge.

We first manually construct a reference set for similarity

comparison. We collected the login-related class names and

function names from 4,665 repositories posted on Github5,

where open source apps display the code with loginActivities.

A context is required for measuring the semantic similarity

between an unknown name and names in the reference set.

Because we compare the semantic similarity of two words

defined in programming code, text corpora such asWikipedia

and Google Book Ngram Corpus are not appropriate. Instead,

we generated our own code corpus by using all posts on Stack-

Overflow.To compare an unknown name with names in the

reference set, AUTH-EYE converts the words in code corpus

into sets of vectors by usingWord2vec [34] and computes a

cosine distance between the unknown name and each name

in the reference set. The cosine distance between two words

gives a measure of their semantic similarity, where a greater

cosine distance represents a higher semantic similarity. Us-

ing the reference set, AUTH-EYE proceeds according to the

following steps to identify functions related to login Activi-

ties:

(1) AUTH-EYE splits each name into several words based

on the occurrence of uppercase letters to improve the

accuracy of a comparison between an unknown name

and names in the reference set. We assume the stan-

dard programming practice in which the names of

classes and functions are usually a combination of sev-

eral words, capitalized at word boundaries.

(2) AUTH-EYE compares each word with the names in the

reference set and computes the corresponding simi-

larity scores. The highest score found for the word is

taken as its similarity score.

5Repositories on Github: https://github.com/search?q=Login+Android

(3) AUTH-EYE calculates the semantic similarity by taking

the average similarity of all words in the name. If the

average similarity score is higher than a threshold, the

corresponding class name is labeled as a “login”.

(4) AUTH-EYE runs steps (1) - (3) iteratively to distinguish

“login” classes and then repeats the three steps to label

“login” functions in these classes.

For example, consider the function name doLogin. The

highest semantic similarity score is 0.43 if AUTH-EYE com-

pares the entire name with each word in the reference set. If

the name is divided into single words as “do” and “Login”,

its average semantic similarity is 0.66 as the similarity scores

for two words are 0.33 and 0.98, respectively.

SMS OTP Identification. AUTH-EYE examines the identi-

fied login function to determine whether its functionality is

SMS OTP login.

Even though the java code for each app may be only par-

tially decompiled, the layout XML file can be fully extracted.

Therefore, AUTH-EYE identifies the apps implementing SMS

OTP login Activities by analyzing the layout XML files in-

stead of analyzing the login function code. For each identified

login function, AUTH-EYE uses UI Automator [1] to find the

name of the corresponding layout XML file from the “pub-

lic.xml” file. In the layout XML file, UI Automator parses all

the information describing each widget, such as type, text,

orientation, and position (i.e., its layout).

Differently from the case with function declarations, we

find that each widget is named formally. Thus, we manually

collected a set of keywords (e.g., “smscode” and “mobile-

phone”) from 13 repositories posted on Github [9]6 to con-

struct a keyword list. In order to identify whether a widget is

related to SMS OTP login, AUTH-EYE chooses the widgets for

edit text and button. For each widget, AUTH-EYE compares

the text in the field of android:text with the words in the

keyword list. If any keyword is included in the widget text

field, an SMS OTP login is identified, which indicates that

its server validates the user’s identity through the OTP au-

thentication protocol. AUTH-EYE finally generates an OTP

list containing those apps that are identified using SMS OTP

login. The widget descriptions, that are relevant to SMS OTP

login, are also included.

4.2 Auth Message Analyzer

Taking the OTP app list as an input, the Auth message

analyzer of AUTH-EYE then executes OTP login Activities

through each listed app to interact with its server. By examin-

ing server responses and checking the OTP values, AUTH-EYE

determines whether the implemented OTP authentication

protocol violates any of the OTP rules.

613 repositories onGithub: https://github.com/search?q=OTP+Login+Android

345

4.2.1 OTP Login Execution. AUTH-EYE utilizesMonkey tool,

an UI/Application Exerciser [2], which triggers SMS OTP

login Activities by generating pseudo-random streams of

user events (e.g., clicks and button touches). However, the

executions of Monkey are somewhat imprecise so that some

redundant Activities may be performed accidentally, causing

unexpected errors. To improve the efficiency and effective-

ness of the automated OTP login testing, AUTH-EYE makes

use of the orientation information parsed by UI Automator to

precisely locate the widgets (i.e., edit text and button) that

are related to SMS OTP login Activities.

To execute a login Activity, AUTH-EYE calls the function

dispatchString() to enter a valid mobile phone number

into the edit text widget. It then clicks the button to send

the mobile phone number to the server, requesting a pseudo-

random OTP value. The server response is a text message

containing the OTP value and some textual descriptions.

AUTH-EYE needs to accurately extract the OTP value in this

message (note that AUTH-EYE has been given root permission

for the tested Android phone in advance to extract the SMS

messages from database /data/data/android.providers.

telephony/databases/mmssms.db). We thus manually an-

alyzed response messages generated by executing the SMS

OTP login in 200 apps and found that the messages with

OTPs followed formal formats. Therefore, we created a list

of keywords that describe OTP values such as “password”,

“OTP”. In detail, AUTH-EYE applies a keyword matching to

parse each responsemessage. Given the keywords, AUTH-EYE

extracts the OTP value from each message in the following

steps:

(1) AUTH-EYE pre-processes a response message by apply-

ing Porter Stemmer [32, 41] to convert words to their

root forms. For example, the root form of “time” and

“times” is “time”.

(2) AUTH-EYE divides themessage into several blocks based

on the text spaces. Each block contains a numeric value

or a word.

(3) AUTH-EYE searches for the block whose word matches

any of the predefined keywords. If a match is found,

AUTH-EYE selects the content in the subsequent nu-

meric block as the OTP value.

An interesting observation is that many Android apps

nowadays ONLY use OTP authentication and do not adopt a

password authentication. In this situation AUTH-EYE could

easily conduct the test without considering the password

login issue. For those apps with a two-factor authentica-

tion (i.e., a login requires both the password and the OTP),

AUTH-EYE relies on a manual account registration and login

as the prerequisite to conduct the following evaluation.

4.2.2 Evaluating Rule Violations. AUTH-EYE executes the

following tests to check each app’s compliance with the OTP

rules.

R1: OTP Randomness. To assess the randomness of the

pseudo-random values generated by a server for each au-

thentication session, AUTH-EYE sends 30 OTP requests to

each server and parses the response messages to extract a

sequence of OTPs for each server.

AUTH-EYE proceeds in two ways to generate the value se-

quences for examination. In the first, AUTH-EYE consumes

each received OTP before sending a new login request. In the

second, AUTH-EYE sends login requests without consuming

the values for OTP authentication. From the sequence of

OTPs, AUTH-EYE evaluates the randomness from the follow-

ing two perspectives:

• Repetition: AUTH-EYE identifieswhether a subsequence
appears periodically in the sequence, or the same value

appears repeatedly in the sequence.

• Static: AUTH-EYE examines the sequence with constant
values.

We observed some apps reject repeated requests when

certain numbers of request are reached, and so prevent ac-

quisition of the 30 values required. In such cases, we wait

until the validation works again before re-starting the test.

Most apps only block the account for around 10 minutes,

and rarely for one hour. Only a few apps block the account

for as long as 24 hours.

It is important to mention that if the value sequence passes

the above checks, it can only be regarded as potentially ran-

dom. In this study, we did not test the values in the sequence

using more rigorous tests for randomness because that re-

quires a larger number of OTPs. Due to the constraints set in

each validation system, collecting a sufficiently large number

of OTPs is time-consuming, and even perhaps impossible in

practice.

R2: OTP Length. AUTH-EYE checks the length of each OTP,

which should be at least six digits. If a server generates an

OTP with length less than six digits, AUTH-EYE labels the

corresponding app as vulnerable.

R3: Retry Attempts. As the number of allowed attempts

is not suggested by RFCs, we consider apps that allow more

than five attempts to be insecure. AUTH-EYE first requests

a valid OTP from the server to test this property. It then

generates a fake OTP by using ‘0’ to replace all the digits in

the valid OTP (or using ‘1’ if the valid OTP happen to be all-

zeros). The fake OTP value is used for testing the existence of

a retry limit. AUTH-EYE then submits the incorrect value five

times and analyzes the five responses sent back from servers.

Since the error message is not shown as an SMS message,

346

AUTH-EYE relies on Burp Suite [38] to collect responses from

each server and store them in a log file for further parsing.

To identify the limitation on retry attempts, AUTH-EYE

compares the five error messages without considering the

values in the messages. If the five messages are identical, it

implies that the validation system may not limit the num-

ber of attempts. In that case AUTH-EYE sends the fake value

repeatedly to confirm whether there is any limit. AUTH-EYE

terminates this procedure under two circumstances: 1) a dif-

ferent message is received, such as “Too many errors”, or

2) AUTH-EYE has made 20 attempts7. The first circumstance

implies that there is a limitation, and the number of attempts

so far performed by AUTH-EYE is the maximum allowed at-

tempts. The second case indicates that the validation system

may allow unlimited attempts.

If the five error messages are not the same, AUTH-EYE then

identifies the word describing attempts from these messages.

AUTH-EYE searches for the format as a value followed by

the word “time”, which refers to how many more attempts

may be made. Setting a time delay is a possible additional

protection mechanism for retry attempts. Given the five

error messages, AUTH-EYE first searches for the word “delay”

and then finds the format as a value followed by a time-

related word (i.e., “second/s”, “minute/min”, or “hour/h”).

The value found is extracted as the required delay before

another attempt.

R4: OTP Consumption. To identify whether the valida-

tion system of OTP authentication accepts a re-used OTP,

AUTH-EYE first requests and consumes a valid OTP. It then

attempts the consumed OTP again. If the validation succeeds

for the second time, it indicates that the implemented OTP

authentication does not check or remember the provided

OTP for each authentication session, and permits repeated

use of OTPs across multiple sessions.

R5: OTP Expiration. Given response messages, AUTH-EYE

searches for the word “expire” and extracts the value after

this word, that is, the validation time of the received OTP. To

measure the expiration interval, we set a timer in AUTH-EYE.

Once the OTP message is received, AUTH-EYE starts the timer

and repeatedly sends the OTP to the server for validation

until it expires. If AUTH-EYE can be validated successfully,

a violation is detected (i.e., the server does not check the

expiration of the OTP adequately).

R6: OTP Renewal Interval. To identify apps that violate

this rule, AUTH-EYE provides a valid OTP at times correspond-

ing to different time intervals. Because the RFC recommends

7We choose 20 attempts after considering the potential legal issue in main-

land China. Also, we can easily add the guess times to determine which

apps are actually vulnerable.

30 sec as the optimal time interval, we set the time inter-

vals to [0, 30s], [30s, 60s], [60s, ∞]. In our test, AUTH-EYE
first uploads the OTP immediately after it was received (i.e.,

within 30 seconds). Then, AUTH-EYE requests a new OTP and

submits the value within 30 to 60 seconds. If the request

succeeds, AUTH-EYE asks for another OTP value and resub-

mits it after 60 seconds. AUTH-EYE repeats this test with the

renewal intervals of [1min, 5min], [5min, 10min], [10min,

30min], [30min, 60min], [60min, 24h], and [24h,∞] until it
is rejected by the server (or finds a still available OTP after

24 hours). If a server accepts an OTP with a lifetime more

than 30 seconds, AUTH-EYE considers it as an insecure one.

5 EVALUATION

Our evaluation has two goals. The first is to assess the ef-

fectiveness of AUTH-EYE in automatically analyzing the im-

plementations of OTP authentication protocols in Android

apps and verify that their implementations comply with the

OTP rules. The second is to use AUTH-EYE to gain insights

into the frequency of violations of OTP rules in real-world

Android apps.

5.1 Dataset

We built our app dataset by downloading 3,303 top list apps

from both Google Play and Tencent MyApp markets (986 from

Google Play and 2,317 from Tencent) between February and

April 2019. The dataset contains apps in 21 categories includ-

ing Beauty, Books & Reference, Communication, Education,

Entertainment, Finance, Health & Fitness, Lifestyle, Map &

Navigation, Medical, Music & Audio, News & Magazine, Par-

enting, Personalization, Photography, Productivity, Shopping,

Social, Tool, Travel & Local, Video Players & Editors. We se-

lected from each category the recommended apps (about 150

apps in each category, and the most active one has around 3

billion downloads).

We observed that many apps also provide the option of

login via a third party (e.g., OAuth). Note that in this paper

we only assess apps with customized OTP authentication

protocols, and those which use third-party authentication

services with open-authentication are out of the scope of

this paper.

5.2 OTP Login Activity Recognition

The first task of AUTH-EYE is to create an OTP list, i.e., a

list of apps implementing SMS OTP. Among the the 3,303

apps in our dataset, AUTH-EYE is able to analyzed 1,364 apps,

while other apps adopt app protection measures (e.g., code

packing and code obfuscation) to hinder the decompilation

and code analysis of AUTH-EYE. We manually inspected the

apps that AUTH-EYE failed to analyze to gain some insights:

347

Table 1: Top-10 login activity names in apps

Login Activity Names # of apps

Login 105

LoginSuccess 53

doLogin 37

smsLogin 18

onLoginSuccess 16

startLogin 14

requestLogin 14

startLoginActivity 13

supportSmsLogin 13

serverBindLoginRequest 13

• 648 apps are protected using code packing against de-
compilation, in which their “.class” files are encrypted.

These files will only be decrypted during app execu-

tion. Since we cannot extract the source code from

encrypted apps, AUTH-EYE is unable to locate their lo-

gin Activities and cannot execute them.

• AUTH-EYE are not able to analyze 1291 apps because 1)

695 of them use code obfuscation to prevent the code

from being analyzed and 2) 596 apps are unable to be

executed due to potential anti-debugging code.

We argue that AUTH-EYE could also adopt advanced anal-

ysis technique such as unpacking to handle these issues,

but this often involves manual efforts (e.g., patching anti-

debugging code) and is not scalable. More importantly, we ob-

serve that apps developed by large companies (e.g., Microsoft,

Alibaba, Tencent, Baidu) seldom adopt code protection due

to stability and compatibility requirements. Therefore we

leave the analysis of protected apps as a future work and

only focus on those unprotected apps.

AUTH-EYE identified 1069 (78.3%) with declared login Ac-

tivities in successfully analyzed 1,364 apps, and the top-10

commonly used login Activity names are listed in Table 1.

It is clear from the list that developers do prefer to use the

word “login” to describe a login Activity. Given the list of

apps with identified login Activities, AUTH-EYE then further

identified how many implement OTP authentication. In to-

tal, 544 (58.2%) app adopt OTP authentication. Among these

544 apps, 354 use two-factor authentication (both password

authentication and OTP authentication), while 190 apps only

contain OTP authentication. In this study, we only discuss

the validation OTP authentication and leave the evaluation

of password authentication protocols as future work. Hence,

our discussion focuses only on the apps in the OTP list, i.e.,

544 apps implementing SMS OTP authentication. Note that

for apps with password authentication involved, we manu-

ally registered an accounts in those apps and typed in the

combination of username and password.

5.3 Results

5.3.1 Rules Violations. Table 2 lists the number of apps

that violate the OTP rules (see Section 2). Only eight apps

out of the 544 apps did not violate any of the OTP rules. We

now discuss the detected violations of OTP rules in the order

of their prevalence.

Table 2: Violations of OTP rules

OTP Rules # of apps

R6: OTP Renewal Interval 536

R3: Retry Attempts 324

R2: OTP Length 209

R4: OTP Consumption 106

R1: OTP Randomness 71

R5: OTP Expiration 40

R6: OTP Renewal Interval. A large number of apps, 536

in total, violated this rule, making it the most frequently

violated OTP rule. Only eight apps follow the requirement

proposed byR6. Further inspection revealed that in 165 apps,

the OTP validation systems did not require OTP values to

be renewed. For the remaining failed apps (i.e., 371 apps),

the intervals to renew OTP values set by their validation

systems are shown in Figure 2. Most validation systems (122

apps) are set to renew OTP values at intervals between 5

minutes to 10 minutes. The validation systems of 112 apps

generate new OTP values within the time interval of one

minute to five minutes. Even worse, AUTH-EYE identified

that the validation systems in 15 apps accept OTPs that have

been delayed for 24 hours. This design results in the TOTP

authentication protocol behaving no better than a normal

OTP authentication protocol. The developers of these apps

might deliberately choose this option since accepting a large

range of delays as valid is much more user-friendly.

R3: Retry Attempts. This rule limits the number of retry

attempts allowed by validation systems. It is the second most

violated OTP rule. AUTH-EYE identified 324 (59.6%) apps out

of 544 apps violating this rule, i.e., allowing more than five

attempts.

Figure 3 shows the number of attempts allowed by valida-

tion systems. Only 220 (40.44%) apps have OTP validation

systems complying with the rule, and most of these apps

(77.2%) are from the category of Shopping and a few are from

the Social category.

For the other apps that violate R3 (i.e., 324 apps), 111

apps allow 6 to 10 retry attempts, and 31 apps allow 11 to

348

8

29

112
122

70

23
15

165

0-0.5 0.5-1 1-5 5-10 10-30 30-6060-14
40(24

h)

>144
0(24h

)
0

20

40

60

80

100

120

140

160

180

200
#
of
Ap
ps

Renewal Interval

Figure 2: OTP renewal interval (Minutes)

20 attempts. Because AUTH-EYE was set to send a fake OTP
at most 20 times for each app, it identified that the OTP
validation systems in 126 apps still work after 20 times of
retry. We surmised that these validation systems may not
implement any limitation and are thus vulnerable to brute
force attacks.

Additionally, AUTH-EYE identified the delay protection im-
plemented in the OTP validation systems of 97 apps. In these
apps, the user has to wait for a specific period if an incorrect
OTP value is entered. The waiting period set in these apps is
usually one minute.
R2: OTP Length. The thirdmost violated OTP rule is setting
the length of OTP values at fewer than six digits. As men-
tioned in Section 2, generating an OTP with short length
(i.e., length < 6) negates the security benefits of the OTP
authentication protocol.

In total, the validation systems in 209 apps use values with
less than six digits as OTP values. Although the OTP length
could be set at 10 digits, we discovered that all the validation
systems generate OTPs with at most six digits.
R4: OTP Consumption. This rule is violated by 106 apps
out of the 544 apps. Here, users are allowed to reuse an OTP
for identity verification. A unique value for each validation
session is essential in the OTP authentication protocol to
protect against replay attacks. Accepting a repeated OTP
value negates the benefit of using an OTP and can even make
the OTP authentication protocol weaker than a password
authentication protocol.

Apps violated this OTP rule are only from eight categories,
Shopping, Video Players & Editor, Books & Reference, Music
& Audio, Travel & Local, Entertainment and productivity.
37.7% vulnerable apps and 18.9% vulnerable apps are from
the categories of Books & Reference and Video Players &
Editor, respectively.

Figure 3: Number of retry attempts allowed in apps

R1: OTP Randomness. This rule was violated by 71 apps.
two types of errors are identified by AUTH-EYE: repeated
values and static values.

AUTH-EYE found 56 apps generating repeated OTP values.
To be specific, 21 apps generate a sequence of unique OTP
values and then repeat the same sequence. The validation
systems of 35 apps use the same OTP for n different requests,
that is, the same OTP value is repeated n times. Based on
our manual inspection, each value is repeated two or three
times (i.e., n = 2 or n = 3).
In addition, AUTH-EYE discovered that 15 apps provide

only static OTP values to users for OTP authentication. This
type of error makes the OTP authentication protocol per-
form as a simple password authentication protocol, in which
the username is the user’s mobile phone number and the
password is the fixed (short) OTP value. An attacker can then
easily access the user’s account if the mobile phone number
is leaked because the OTP value is shorter and simpler than
a static password set by the client.
The above results indicate that developers might not be

aware of the critical importance played by randomness in
authentication.
R5: OTP Expiration. AUTH-EYE identified 73 apps that use
TOTP authentication protocols, in which the OTP value may
expire. Interestingly, only 33 apps reject the OTP value if it is
expired, while the identity verification of 40 apps passed by
providing expired OTP values. This implies that the imple-
mented TOTP authentication protocols fail to work properly
in the corresponding servers.
For the remaining 471 apps, AUTH-EYE did not discover

any expiration set for OTP values by only analyzing the
responses. We might suppose that their validation systems
allow the OTP values to be valid forever.
We manually inspected those 1069 apps and found that

934 (87.4%) of them did implement login Activities. AUTH-EYE
mistakenly identified some apps because theirActivity names,
such as loginFail and thirdLogin, have higher semantic
similarity scores.

349

Table 3: Violation of multiple OTP rules

of apps multiple-rules violated

65 R2 & R4

13 R1 & (R2 or R3)

9 R4 & R5

2 R2 & R3

5.3.2 Results for Multiple-Rules Violations. We also in-

vestigated the status of multiple OTP rules violation in our

tested apps, and listed the cases that severely threat to the

security of OTP authentication in Table 3. As shown in the

table, the most frequently occurred situation is the violation

of both R2 and R4 (65 apps). In this situation, an attacker

could guess the OTP through a brute force attack, since the

number of legal OTPs is limited and the server also accept

a used OTP. Another common mistake is that 13 apps not

only used an immutable OTP, but also violate other rules

such as allowing an attack to guess the OTP, or always reuse

the immutable OTP if a legal user does not enforce a new

login request. There are also nine apps violate both R4 and

R5, and two apps violate R2 and R3 simultaneously. All

those apps that violate multiple OTP rules are considered

as highly vulnerable, and we have contacted the developers

and reported these issues.

Note that we found all “potential vulnerable” apps vio-

lated R6 (i.e., the valid time window exceeds 30 seconds).

Compared with a single rule violation, violations of both R6

and other rules will increase the risk. However, the violation

of R6 often does not directly lead to an attack. Therefore,

we do not consider this issue in our multiple rules violation

investigation.

5.4 Case Studies

This section aims to highlight insights from case studies

based on our manual inspections.

Matchless Functionality.We found some apps whose val-

idation systems do not match with the responses.

–Expiration.We investigated a game manager app with

more than 100,000 downloads. It transmits messages in se-

cure ciphertext formats and the server responses suggest that

authentication protocols (i.e., password authentication and

OTP authentication) are correctly implemented. However,

AUTH-EYE flagged this app because its validation system still

accepts “expired” OTPs. By parsing the server responses,

AUTH-EYE discovered that each OTP expired after 30 sec-

onds. However, when AUTH-EYE consumed each OTP after 1

minute and 10 minutes, it passed the validation. We agree

that remembering and validating OTP values for all login

requests consume a large amount of storage and memory

on the server side; but app security makes it essential to

implement an efficient reset method for clearing expired

values.

–Consumption. Users commonly use finance apps to man-

age their investments. It is crucial that financial information

is protected at all times. However, we found that the val-

idation systems in three financial apps accept previously

consumed OTPs. The OTP authentication of a financial app

was labeled by AUTH-EYE as vulnerable. By checking its re-

sponses, we found that this app violates almost all OTP rules

except for R1 (OTP Randomness) and R5 (Retry Attempts).

The only protection scheme implemented is that its valida-

tion system blocks the user’s account and does not generate

any OTP values if the user keeps sending requests more than

five times. While verifying user identity, this app not only

accepts consumed OTP values, but also transmits mobile

phone numbers and OTP values in plaintext. This means

that users’ private information (i.e., login information and

private data) is exposed to attackers.

Deceptive Randomness.Apps violatingR1 (OTP Random-

ness) are from the categories of Beauty, Finance, News &

Magazine, Photography and Video Players & Editors. The

percentage from each category with violations is 11%, 7%,

33%, 3%, and 46%, respectively. We investigated these apps in

details. For 6 of the 15 apps which generate static values for

OTP authentication, the OTP value is only renewed when

the previous one is consumed. The other apps keep sending

the same value to users.

Exposed Transmission. As well as analyzing server re-

sponses, AUTH-EYE monitored traffic messages to identify

whether an error occurred. From traffic messages, AUTH-EYE

identified that most messages containing OTP values are not

well-protected. The validation systems of 188 apps transmit

the OTP values in plaintext over the unsecured network. 36

apps protect OTP values by using only an MD5 hash without

salt, which is considered insecure [19]. With respect to mes-

sage transmission, we found that the most secure category is

Travel & Local, where 98.7% apps encrypt their transmitted

messages. The categories of Shopping and Social perform

the worst with only 72% and 74.6% apps being secure. We ob-

served that a Music app (10,070,000 downloads) only uses the

user’s mobile phone number as the password no matter what

user password and OTP are provided, and only the mobile

phone number is transmitted to the validation system.

5.5 Discussion

We have demonstrated through an experimental evaluation

that AUTH-EYE is effective in assessing the design and imple-

mentation of OTP authentication protocols in Android apps.

However, it has some drawbacks, outlined as follows.

350

• DiscoveringVulnerabilities. AUTH-EYE executes each

app for SMS OTP validation and points out OTP rules

violated by the validation system. However, it is diffi-

cult for AUTH-EYE to discover what vulnerabilities exist

in the implementation and where they are located Con-

sider a case that violates R1 (i.e., OTP randomness).

Themost popular way of implementing this in Android

is to invoke the function SecureRandom(.), a pseudo-

random number generator. In practice, it should not be

seeded with a constant number; otherwise, the func-

tion will produce a predictable output sequence across

all implementations. However, some developers still

use seeds as “000000” or “123456” [31]. Such details

cannot be inferred in general by only analyzing the

server responses.

• Vulnerability Certainty. Currently, all the imple-

mentations that violate any of the OTP rules are tagged

as vulnerable. There might be other protection mecha-

nisms implemented in the validation system, beyond

those known to AUTH-EYE. For example, we discovered

that some Finance apps transmittedmobile phone num-

bers and OTPs in ciphertext or over a secure connect.

These protection schemes confirm that transmissions

are under secure circumstances, as long as the crypto-

graphic primitives or secure connection are correctly

implemented. This is, however, outside the scope of

this work.

• Black Box Analysis. AUTH-EYE treats the validation

system as a black box, and only analyzes server re-

sponses. We assume that such responses reflect func-

tionalities implemented in the code. However, this as-

sumption does not always hold as our manual inspec-

tions described in Section 5 found, such as in the case

of the Finance app discussed in Section 5.4. Based on a

given response, one may conclude that the implemen-

tation complies with the implementation rules, but

nevertheless functionalities defined in the validation

system may actually not be correctly implemented.

• Field Identification. AUTH-EYE identifies the required

information from the server responses through key-

words match only. Nonetheless, the formats of the re-

sponses are not always shown as the same. AUTH-EYE

might miss some responses in other format or identify

an incorrect information from the responses.

6 RELATEDWORK

This section provides a brief review of related work.

6.1 Security Analysis of One-Time
Password Authentication Protocols

Several vulnerability detection approaches and protection

schemes are proposed to defend against attacks on the steps

of protocols, e.g. transmission and password generation.

TrustOTP [44] builds a TrustZone to protect against attacks

such as Denial-of-Service (DoS). It isolates OTP code and

data from the mobile OS to ensure that the generated OTPs

and seeds are secure even if the mobile OS is compromised.

Differently, Hamdare et al. [23] and Eldefrawy et al. [16]

focused on securing the authentication during OTP trans-

mission and OTP generation, respectively. Hamdare et al.

proposed a scheme to protect the OTP mechanism used for

e-commerce transactions from Man-In-The-Middle (MITM)

attacks. Instead of transmitting a simple OTP, they combined

the OTP with a secure key and created a new transaction

password by encrypting the combination using RSA. Elde-

frawy et al. focused on securing OTP generation by generat-

ing multiple OTPs for both service providers and consumers.

The low computation cost of their scheme makes it suitable

for mobile devices.

The focus of previous work is to enhance the security of

OTP authentication protocols. However, we focused on ana-

lyzing the correctness of OTP implementations and proposed

an approach to check server responses instead of directly

performing code analysis. Mulliner et al.. [37] proposed a

similar research that conducted a survey by introducing sev-

eral attacks and weaknesses of SMS OTPs such as SIM swap

attack, wireless interception. To protect SMS OTP attacks,

the possible defense techniques are generally provided. How-

ever, details to exploit vulnerabilities and protect SMS OTP

authentication are not given. Dmitrienko et al. [12] inves-

tigated the implementation of two-factor authentication of

well-known Internet service providers (e.g., Google, Drop-

box, Twitter, and Facebook). They applied cross-platform

(i.e., PC-mobile) infection to control both PC and mobile

devices involved in the authentication protocol and identi-

fied weaknesses that could be exploited in the SMS-based

transaction authentication schemes of four large banks and

Google. Their approach determines whether an authentica-

tion implementation is secure, but cannot provide detailed

information on the causes. AUTH-EYE, however, does identify

the causes of implementation flaws.

6.2 Dynamic Vulnerability Analysis of
Mobile Apps

Several approaches have been proposed for dynamic analy-

sis of mobile apps. The approach by Zuo et al. [53] detects

vulnerabilities arising from SSL error handling in the mobile

platform. They statically identified customized error han-

dling processes rewritten by developers. For each process,

351

their system executes an event to trigger the error and checks

whether the error is processed correctly. This approach re-

quires access to the source code. In contrast, AUTH-EYE as-

sumes that the server source code is not available, and uses

only decompiled Android app code.

D’Orazio et al. [13] relied on an adversary model spec-

ifying secure and insecure states to detect vulnerabilities

that can expose users’ sensitive data in mobile devices. The

drawback of their approach is that complete code coverage

cannot be ensured through app execution. AUTH-EYE instead

achieves full code coverage because the entire login activities

in apps are examined; thus, all the authentication relevant

functionalities can all be triggered. Also relying on an at-

tack scenario, IntentDroid [24] identifies Inter-Application

Communication (IAC) vulnerabilities by executing attacks

on eight specified vulnerabilities. It analyzes activity com-

ponents of apps by implementing attacks based on effect

path coverage, with low overhead. Although IntentDroid only

uses a small set of tests to achieve high coverage analyses,

path analysis mechanisms cannot be accurately applied to

decompiled app code.

AUTH-EYE is similar to SmartGen [52], which performs in-

context analysis to expose harmful URLs through symbolic

execution in mobile apps. Since server URLs are invisible,

SmartGen triggers the appropriate execution through APIs

in app code. The main difference between SmartGen and

AUTH-EYE is, however, that AUTH-EYE does not rely on de-

pendency patterns to identify the target functions. It uses

only limited code information (i.e., class names and func-

tion names) that are extracted easily and completely. Smart-

Gen targets on detecting of hidden malicious URLs whereas

AUTH-EYE identifies violations of the OTP rules in implemen-

tations of OTP authentication protocols.

7 CONCLUSION

In this paper we defined six OTP rules based on the relevant

RFCs and proposed a novel automated system, AUTH-EYE,

to check for violations of those rules. We used AUTH-EYE to

perform an empirical study on a large number of Android

applications. Our approach treats each server as a black box

and infers the correctness of its OTP implementation code

by analyzing server responses generated after a sequence of

login requests. We assessed 3,303 Android apps and identi-

fied 544 apps implemented OTP authentication. Only eight

of these 544 apps correctly implemented the OTP authen-

tication protocols (i.e., satisfied all six OTP rules). Further

analysis revealed the surprising fact that the validation sys-

tems of apps in security-critical domains, such as Finance,

Shopping, and Social, are not as secure as one might expect.

The example cases discussed in Section 5.4 show that poor

implementations make users’ accounts vulnerable to attack

and may even expose private data directly. As future work,

we plan to extend AUTH-EYE to examine additional OTP rules

and perform a more extensive survey of real-world app OTP

security. A new dynamic analysis tool, CuriousDroid [10], is

introduced. It is a context-based technique and can achieve

higher accuracy thanMonkey. We will refer to this technique

to improve AUTH-EYE. The interested readers could also ac-

cess our Github page8 to obtain source code of AUTH-EYE and

help improve the analysis.

ACKNOWLEDGEMENT

This work was mainly supported by CSIRO Research Of-

fice. It was also partially supported by the General Program

of National Natural Science Foundation of China (Grant

No.61872237), the Key Program of National Natural Science

Foundation of China (Grant No.U1636217), and the Major

Project of Ministry of Industry and Information Technology

of China ([2018] No.36).

REFERENCES
[1] Android [n. d.]. UI Automator. https://developer.android.com/training/

testing/ui-automator.

[2] Android. [n. d.]. UI/Application Exerciser Monkey Tool. https://

developer.android.com/studio/test/monkey.

[3] Paul Ashley, Heather Hinton, and Mark Vandenwauver. 2001. Wired

versus wireless security: The Internet,WAP and iMode for e-commerce.

In In Proceedings of the 17th Annual Computer Security Applications

Conference (ACSAC). IEEE, 296–306.

[4] Zhongjie Ba and Kui Ren. 2017. Addressing smartphone-based multi-

factor authentication via hardware-rooted technologies. In In Proceed-

ings of the 37th IEEE International Conference on Distributed Computing

Systems (ICDCS). IEEE, 1910–1914.

[5] CITI Bank. [n. d.]. CITI Bank Mobile Token. https://www.citibank.

com.au/aus/banking/citi-mobile-token.htm.

[6] Antonio Bianchi, Eric Gustafson, Yanick Fratantonio, Christopher

Kruegel, and Giovanni Vigna. 2017. Exploitation and mitigation of

authentication schemes based on device-public information. In In Pro-

ceedings of the 33rd Annual Computer Security Applications Conference

(ACSAC). ACM, 16–27.

[7] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank

Stajano. 2012. The quest to replace passwords: A framework for com-

parative evaluation of web authentication schemes. In In Proceedings

of the 33rd IEEE Symposium on Security and Privacy (S & P). IEEE,

553–567.

[8] Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. 2013. Flexible

and fine-grained mandatory access control on android for diverse

security and privacy policies. In In Proceedings of the 22nd Usenix

Security Symposium (USENIX). 131–146.

[9] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2011.

Mining java class naming conventions. In In the proceedings of the 27th

IEEE International Conference on Software Maintenance (ICSM). IEEE,

93–102.

[10] Patrick Carter, Collin Mulliner, Martina Lindorfer, William Robertson,

and Engin Kirda. 2016. CuriousDroid: automated user interface in-

teraction for android application analysis sandboxes. In International

8https://github.com/GoSSIP-SJTU/auth-eye

352

Conference on Financial Cryptography and Data Security. Springer,

231–249.

[11] Joseph A Cazier and B Dawn Medlin. 2006. Password security: An

empirical investigation into e-commerce passwords and their crack

times. The Journal of Information Systems Security 15, 6 (2006), 45–55.

[12] Alexandra Dmitrienko, Christopher Liebchen, Christian Rossow, and

Ahmad-Reza Sadeghi. 2014. On the (in) security of mobile two-factor

authentication. In In Proceedings of the 18th International Conference

on Financial Cryptography and Data Security (FC). Springer, 365–383.

[13] Christian J D’Orazio, Rongxing Lu, Kim-Kwang Raymond Choo, and

Athanasios V Vasilakos. 2017. A Markov adversary model to detect

vulnerable iOS devices and vulnerabilities in iOS apps. The Journal of

Applied Mathematics and Computation 293 (2017), 523–544.

[14] D Eastlake 3rd, Steve Crocker, and Jeff Schiller. 1994. Randomness

recommendations for security. Technical Report.

[15] D Eastlake 3rd, J Schiller, and Steve Crocker. 2005. Randomness re-

quirements for security. Technical Report.

[16] Mohamed Hamdy Eldefrawy, Khaled Alghathbar, and Muham-

mad Khurram Khan. 2011. OTP-based two-factor authentication using

mobile phones. In In Proceedings of the 8th International Conference on

Information Technology: New Generations (ITNG). IEEE, 327–331.

[17] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua

Zheng, and Ting Liu. 2018. Android malware familial classification

and representative sample selection via frequent subgraph analysis.

The Journal of IEEE Transactions on Information Forensics and Security

(TIFS) 13, 8 (2018), 1890–1905.

[18] John Franks, Phillip Hallam-Baker, Jeffrey Hostetler, Scott Lawrence,

Paul Leach, Ari Luotonen, and Lawrence Stewart. 1999. HTTP authen-

tication: Basic and digest access authentication. Technical Report.

[19] PraveenGauravaram. 2012. Security Analysis of salt|| passwordHashes.

In In Proceedings of the 1st International Conference on Advanced Com-

puter Science Applications and Technologies (ACSAT). IEEE, 25–30.

[20] Google. [n. d.]. Google Authenticator. https://play.google.com/store/

apps/details?id=com.google.android.apps.authenticator2&hl=en_AU.

[21] Nancie Gunson, Diarmid Marshall, Hazel Morton, and Mervyn Jack.

2011. User perceptions of security and usability of single-factor and

two-factor authentication in automated telephone banking. The Inter-

national Journal of Computers & Security 30, 4 (2011), 208–220.

[22] Neil Haller, Craig Metz, Phil Nesser, and Mike Straw. 1998. A one-time

password system. Technical Report.

[23] Safa Hamdare, Varsha Nagpurkar, and Jayashri Mittal. 2014. Securing

SMS based one time password technique from Man in the middle

attack. arXiv preprint arXiv:1405.4828 (2014).

[24] Roee Hay, Omer Tripp, and Marco Pistoia. 2015. Dynamic detection

of inter-application communication vulnerabilities in Android. In In

Proceedings of the 24th International Symposium on Software Testing

and Analysis (ISSTA). ACM, 118–128.

[25] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. 2006. Practical

attack graph generation for network defense. In In Proceedings of the

22nd IEEE Annual Computer Security Applications Conference (ACSAC).

IEEE, 121–130.

[26] Jongpil Jeong, Min Young Chung, and Hyunseung Choo. 2008. Inte-

grated OTP-based user authentication scheme using smart cards in

home networks. In In Proceedings of the 41st Annual Hawaii Interna-

tional Conference on System Sciences (HICSS 2008). IEEE, 294–294.

[27] Xing Jin, Xuchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gau-

tam Nagesh Peri. 2014. Code injection attacks on html5-based mobile

apps: Characterization, detection and mitigation. In In Proceedings of

the 21st ACM SIGSAC Conference on Computer and Communications

Security (CCS). ACM, 66–77.
[28] Pawel Laka and Wojciech Mazurczyk. 2018. User perspective and se-

curity of a new mobile authentication method. The Journal of Telecom-

munication Systems 69, 3 (2018), 365–379.

[29] Leslie Lamport. 1981. Password authentication with insecure com-

munication. The Journal of Communications of the ACM 24, 11 (1981),

770–772.

[30] Jaeho Lee, Ang Chen, and Dan S Wallach. 2019. Total Recall: Persis-

tence of Passwords in Android.. In In Proceedings of The Network and

Distributed System Security Symposium (NDSS).

[31] Siqi Ma, David Lo, Teng Li, and Robert H Deng. 2016. Cdrep: Au-

tomatic repair of cryptographic misuses in android applications. In

In Proceedings of the 11th ACM on Asia Conference on Computer and

Communications Security (ASIACCS). ACM, 711–722.

[32] Siqi Ma, Shaowei Wang, David Lo, Robert Huijie Deng, and Cong

Sun. 2015. Active semi-supervised approach for checking app behav-

ior against its description. In In Proceedings of the 39th IEEE Annual

Computer Software and Applications Conference (ICSAC), Vol. 2. IEEE,

179–184.

[33] Christopher DManning, Christopher DManning, and Hinrich Schütze.

1999. Foundations of statistical natural language processing. MIT press.

[34] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Effi-

cient estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781 (2013).

[35] David M’Raihi, Mihir Bellare, Frank Hoornaert, David Naccache, and

Ohad Ranen. 2005. Hotp: An hmac-based one-time password algorithm.

Technical Report.

[36] David M’Raihi, Salah Machani, Mingliang Pei, and Johan Rydell. 2011.

Totp: Time-based one-time password algorithm. Technical Report.

[37] Collin Mulliner, Ravishankar Borgaonkar, Patrick Stewin, and Jean-

Pierre Seifert. 2013. SMS-based one-time passwords: attacks and de-

fense. In In Proceedings of the 10th International Conference on Detec-

tion of Intrusions and Malware, and Vulnerability Assessment (DIMVA).

Springer, 150–159.

[38] PortSwigger. [n. d.]. Burp Suite. https://portswigger.net/burp.

[39] William K Pratt, Julius Kane, and Harry C Andrews. 1969. Hadamard

transform image coding. In Proceedings of the IEEE Journals and Mag-

azines 57, 1 (1969), 58–68.

[40] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C

Mitchell. 2005. Stronger Password Authentication Using Browser

Extensions.. In In Proceedings of the 14th Usenix Security Symposium

(USENIX). Baltimore, MD, USA, 17–32.

[41] SnowBall. [n. d.]. Porter Stemmer. http://tartarus.org/martin/

PorterStemmer/java.txt.

[42] PNF Software. [n. d.]. JEB Decompiler. https://www.pnfsoftware.com/.

[43] Avinash Sudhodanan, Roberto Carbone, Luca Compagna, Nicolas Dol-

gin, Alessandro Armando, and Umberto Morelli. 2017. Large-scale

analysis & detection of authentication cross-site request forgeries. In

In Proceedings of the 2nd IEEE European Symposium on Security and

Privacy (EuroS&P). IEEE, 350–365.

[44] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. 2015. TrustOTP: Trans-

forming smartphones into secure one-time password tokens. In In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS). ACM, 976–988.

[45] Mariano Luis T Uymatiao and William Emmanuel S Yu. 2014. Time-

based OTP authentication via secure tunnel (TOAST): A mobile TOTP

scheme using TLS seed exchange and encrypted offline keystore. In

In Proceedings of the 4th IEEE International Conference on Information

Science and Technology (ICIST). IEEE, 225–229.

[46] Ignacio Velásquez, Angélica Caro, and Alfonso Rodríguez. 2018. Au-

thentication schemes and methods: A systematic literature review. The

International Journal of Information and Software Technology 94 (2018),

30–37.

[47] DongWang, Xiaosong Zhang, Jiang Ming, Ting Chen, ChaoWang, and

Weina Niu. 2018. Resetting Your Password Is Vulnerable: A Security

353

Study of Common SMS-Based Authentication in IoT Device. The

Journal ofWireless Communications andMobile Computing 2018 (2018).

[48] Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong

Li, and Dawu Gu. 2015. Vulnerability assessment of oauth implemen-

tations in android applications. In In Proceedings of the 31st Annual

Computer Security Applications Conference (ACSAC). ACM, 61–70.

[49] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope:

A checksum-aware directed fuzzing tool for automatic software vul-

nerability detection. In In Proceedings of the 31st IEEE Symposium on

Security and Privacy (S & P). IEEE, 497–512.

[50] RWinsniewski. 2012. Android–apktool: A tool for reverse engineering

android apk files.

[51] Changsok Yoo, Byung-Tak Kang, and Huy Kang Kim. 2015. Case study

of the vulnerability of OTP implemented in internet banking systems

of South Korea. The Journal of Multimedia Tools and Applications 74,

10 (2015), 3289–3303.

[52] Chaoshun Zuo and Zhiqiang Lin. 2017. Smartgen: Exposing server urls

of mobile apps with selective symbolic execution. In In Proceedings of

the 26th International Conference on World Wide Web (WWW). Interna-

tional World Wide Web Conferences Steering Committee, 867–876.

[53] Chaoshun Zuo, Jianliang Wu, and Shanqing Guo. 2015. Automatically

detecting ssl error-handling vulnerabilities in hybrid mobile web apps.

In In Proceedings of the 10th ACM on Asia Conference on Computer and

Communications Security (ASIACCS). ACM, 591–596.

354

	An empirical study of SMS one-time password authentication in Android apps
	Citation
	Author

	Binder1.pdf

