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An Attribute-Based Framework for Secure
Communications in Vehicular Ad Hoc Networks

Hui Cui , Robert H. Deng , Fellow, IEEE, and Guilin Wang

Abstract— In this paper, we introduce an attribute-based
framework to achieve secure communications in vehicular ad
hoc networks (VANETs), which enjoys several advantageous
features. The proposed framework employs attribute-based sig-
nature (ABS) to achieve message authentication and integrity
and protect vehicle privacy, which greatly mitigates the over-
head caused by pseudonym/private key change or update in
the existing solutions for VANETs based on symmetric key,
asymmetric key, and identity-based cryptography and group
signature. In addition, we extend a standard ABS scheme with
traceability and revocation mechanisms and seamlessly integrate
them into the proposed framework to support vehicle traceability
and revocation by a trusted authority, and thus, the resulting
scheme for vehicular communications does not suffer from the
anonymity misuse issue, which has been a challenge for anony-
mous credential-based vehicular protocols. Finally, we implement
the proposed ABS scheme using a rapid prototyping tool called
Charm to evaluate its performance.

Index Terms— VANET, anonymity, revocation, traceability,
ABS.

I. INTRODUCTION

VEHICULAR ad hoc networks (VANETs) are introduced
to facilitate communications among vehicles and road

side units (RSUs) and are envisioned to have a wide range
of applications (e.g., collecting and monitoring of traffic con-
ditions, vehicle-collision avoidance, vehicle diagnostics [1]).
Obviously, communication security is crucial for the success-
ful deployment and acceptance of VANETs.

Security in VANETs addresses issues related to authenti-
cation, integrity, protection of sensitive information such as
vehicle identity and location (i.e., anonymity) and sometimes
confidentiality. At the same time, authorized vehicle trace-
ability (or non-repudiation) is important in that the identity
of a vehicle can be revealed by a trusted authority (TA) if
necessary such that an endorsed message’s authorship can
never be denied by its generator. Yet another essential and
challenging problem is vehicle revocation since a vehicle’s

Manuscript received December 5, 2016; revised August 28, 2017,
February 8, 2018 and October 4, 2018; accepted January 18, 2019; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor Y. Guan. Date of
publication February 5, 2019; date of current version April 16, 2019. This
work was supported in part by the AXA Research Fund and in part by
the National Natural Science Foundation of China under Grant 61872292.
(Corresponding author: Hui Cui.)

H. Cui is with the School of Science, RMIT University, Melbourne,
VIC 3000, Australia, and also with Data61, CSIRO, Melbourne, VIC 3000,
Australia (e-mail: christi.cui.hui@gmail.com).

R. H. Deng is with the School of Information Systems, Singapore Manage-
ment University, Singapore 178902.

G. Wang is with the Shield Laboratory, Central Research Institute, Huawei
International Pte. Ltd., Singapore 238895.

Digital Object Identifier 10.1109/TNET.2019.2894625

access to the vehicular network cannot be immutable and must
be terminated when it is found to be compromised or caught
with a misconduct.

To balance the requirements of privacy protection, authen-
tication, integrity, non-repudiation (or traceability) and revo-
cation, various kinds of approaches have been proposed to
address the security and privacy issues in VANETs. In partic-
ular, pseudonym has been employed pervasively to achieve
anonymous communications to protect vehicle privacy, and
there exist a number of pseudonymity mechanisms [2] based
on cryptographic primitives. Solutions using symmetric key
cryptography (e.g., [3]) are computationally efficient, but they
are in general not suitable for sensitive vehicle-to-vehicle
communications as vehicles have to contact a base station
to decrypt/verify messages received from another vehicle.
Schemes based on asymmetric (or public) key cryptography
(e.g., [4]) use public-key certificates without identifying infor-
mation as pseudonyms, but they incur large storage and com-
munication overheads, because public-key certificates must be
sent along with messages to facilitate message verification by
recipients. To remove the requirement of public-key certifi-
cates, systems on the basis of identity-based cryptography
(e.g., [5]) are proposed, which exploit the implicit authen-
tication provided by identity-based cryptography to generate
unforgeable pseudonyms, but they depend on a single trusted
party to issue pseudonyms. Constructions built from group
signature schemes (e.g., [1]) enable a vehicle in a group
to produce a signature without revealing its identity, but
they assume the existence of a trusted group manager to
gather vehicles into a group. Anonymous credential has also
been applied for vehicular communications (e.g., [6]), but its
anonymity may be misused by a malicious vehicle who could
use a set of different anonymous credentials simultaneously
to impersonate a number of vehicles [6]. In addition, there
are protocols using attribute-based encryption (e.g., [7]–[9])
to achieve access control for vehicular communications, but
they face challenges resulted from replacing pseudonyms by
attributes to identify vehicles.

The pseudonyms in the approaches based on symmetric
key, asymmetric key and identity-based cryptography are static
in nature and need to be changed or updated frequently to
avoid the linkage among different communications. Solutions
built on group signature and anonymous credential schemes
enable anonymous communications without asking for fre-
quent pseudonym change or update, but when a vehicle
is revoked, they either require a trusted entity (e.g., group
manager) to reissue private keys to each non-revoked vehicle
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(e.g., [10]) or ask to check a revocation list to discern whether
the signer of a signature is revoked or not [2]. With this
in mind, we ask whether it is possible to further simplify
pseudonym/private key management in VANETs, and give an
affirmative answer to this question in this paper.

A. Our Contributions

In this paper, we propose an attribute-based framework for
secure communications in VANETs based on attribute-based
signature (ABS). Since ABS enjoys a similar anonymity
property as that of group signature but without requiring a
group manager to collect members into a group, the proposed
framework enjoys a salient advantage over existing approaches
in that it avoids the need to frequently update or change
vehicles’ pseudonyms/private keys. In an ABS scheme, every
signer is issued by the trusted authority (TA) a private attribute-
key associated with a set of attributes. A valid ABS signature
on a message is accompanied by a claim-predicate over a set of
attributes, and attests to the fact that “a signer whose attributes
satisfy the claim-predicate endorsed the message” [11]. Since
the same attributes might be shared by many signers in the
system, the signer’s identification information is not revealed
in the signature. For example, a vehicle, with a private
attribute-key over attributes City: Sydney and Vehicle-Type:
Bus could sign on a message associated with a claim-predicate
City: Sydney AND Vehicle-Type: Bus. Any recipient of this
signature can confirm that the signer is a bus from Sydney, but
the vehicle’s anonymity is preserved because there are many
vehicles satisfying this claim-predicate.

In addition to anonymity, vehicle traceability and revocation
are also critical but challenging issues, which have received
equal concern in vehicular networks [2]. Unfortunately, a stan-
dard ABS scheme does not support traceability and revocation.
To address these issues, we equip a standard ABS scheme
with a tracing mechanism and a revocation mechanism, and
seamlessly integrate them into our attribute-based framework
for secure communications in VANETs. In terms of revocation,
to avoid asking a revocation list to be kept to prevent revoked
vehicles from sending messages or requiring the TA to issue
new keys to all non-revoked vehicles (i.e., the size of key
updates is linear to the number of vehicles), motivated by
the revocation mechanism in [12], we incorporate a binary
tree structure [13] into the key generation and key update
processes in ABS, reducing the size of key updates from linear
to logarithmic. Thus, in the proposed attribute-based VANET
framework, the TA issues a long-term private attribute-key
to each vehicle and publicly broadcasts key updates at the
beginning of each time period (week, month, and so on), but
only non-revoked vehicles can generate private signing keys
from their long-term private attribute-keys and the key updates
to sign messages over the current time period. Concerning
traceability, we assign each registered vehicle a pair of public
and private user-keys, and embed the public user-key in the
private attribute-key generated by the TA. We subtly make
the signature created using both the signing key and the
private user-key by combing the signing algorithm in ABS
with signature of knowledge [14] such that the TA is able to

trace the vehicle when required, but no one else can learn a
vehicle’s identity from its signature.1 It is worthwhile to note
that due to the technique employed in the signature generation
algorithm, the proposed attribute-based VANET framework
simultaneously solves the traceability problem and the key
escrow problem [2], where the latter implies that nobody,
including the TA who issues the private attribute-key, without
the private user-key of a registered vehicle, is able to create a
signature on behalf of the vehicle.

In short, the contributions in this paper can be summarized
as follows.

• We propose an attribute-based framework for secure com-
munications in VANETs based on ABS, which alleviates
the overhead caused by pseudonym/private key update in
the existing proposals built on symmetric key, asymmetric
key, identity-based cryptographic primitives and group
signature schemes.

• We present a revocable and traceable ABS scheme using
techniques including binary tree structure, key embedding
and signature of knowledge, and seamlessly integrate
them into our attribute-based framework for secure com-
munications in VANETs to support message authenti-
cation and integrity, vehicle privacy protection, vehicle
traceability and revocation by the TA.

• We implement the proposed ABS scheme using a proto-
typing tool called Charm [15] to evaluate its performance.
The experimental results indicate that the proposed ABS
scheme has the potential to be applied for secure com-
munications in VANETs in practice.

B. Related Works

Privacy must be taken into consideration for a secure
VANET [16], since a private vehicle usually carries a few
passengers, with the knowledge about the position of a vehicle,
one might ascertain the whereabouts of its passengers. With
these goals in mind, there are schemes [3], [5], [6], [9], [10],
[17]–[27] that suggest to utilize the symmetric key, public
key, identity-based cryptography, group signature, anonymous
credential, and attribute-based encryption, where the key chal-
lenge is to mitigate the cumbersome workload incurred by
pseudonym/private key update and revocation.

The systems using the public key infrastructure (PKI)
in VANETs were given in [4], [17], and [28]. Due to
the use of public key certificates in this framework, they
suffer from extra communication and storage overheads.
The identity-based schemes for VANETs were put forth
in [5], [29], and [30], which, compared to the PKI-based
approach, avoid the use of certificates for public key verifi-
cation and the change of public keys and the associated cer-
tificates. Unfortunately, these schemes heavily depend on the
infrastructure for short-term pseudonym generation and incur
high operational overhead. The constructions for VANETs
based on symmetric cryptography were presented in [3], [31],
and [32], which are very efficient in terms of computational
and communication overheads. However, such constructions

1Note that due to the traceability of the TA, the anonymity is essentially
the “all-or-none” anonymity.
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TABLE I

COMPARISON OF PROPERTIES AMONG THE PROPOSED VANET
FRAMEWORK, TAA [10] AND PUCA [27], WHERE “KEYUP” MEANS

KEY UPDATES, “ � ” DENOTES THAT IT IS NOT FULLY ACHIEVED

(I.E., IT HOLDS UNDER CERTAIN CONDITIONS)

are less flexible than asymmetric cryptography when it comes
to vehicle authentication, since they require peer vehicles
to authenticate each other via a base station. To avoid
the cost associated with pseudonym update, group signature
and anonymous credential based solutions were introduced
in VANETs [1], [6], [10], [18], [19], [24], [26], [27]. Though
group signature and anonymous credential schemes can protect
privacy and ease the inconvenience caused by pseudonym
change or update, they have disadvantages in that the vehicle
revocation is achieved by issuing the key update for each
non-revoked vehicle (i.e., the size of the key updates is
linear to the number of non-revoked vehicles) or requiring a
revocation list to check whether the sender of a message have
been revoked. There are also protocols such as [7]–[9] built
from attribute-based encryption to enable access control over
secure communications in VANETs, but they have not con-
sidered potential issues (e.g., revocation, traceability) raising
in VANETs when using attributes to preserve vehicle privacy.
In this paper, a VANET framework based on attribute-based
signature is presented to ameliorate the overheads resulted
from pseudonym/private key change or update.

We compare the proposed attribute-based VANET frame-
work with TAA [10] and PUCA [27] in Table I, which are
closely relevant to our work in that both of them attempt to
use digital signature schemes to achieve desirable properties
required by secure communications in VANETs as ours.
In TAA [10], when a vehicle is revoked, the TA communicates
with each non-revoked vehicle to update their keys and thus
the size of the key updates grows linearly. To trace the sender
of a message, TAA [10] requires a vehicle to output another
signature on this message such that it does not fully accom-
plishes traceability. PUCA [27] achieves vehicle revocation
by storing the identification information of a revoked vehicle
to a revocation list and updating the associated value of any
non-revoked vehicle (via an accumulator [27]), but it does not
consider tracing a malicious vehicle. In the proposed frame-
work, the TA publicly broadcasts the key update information
for all non-revoked vehicles such that the size of key updates is
in a logarithmic growth. In addition, the proposed framework
does not have a limitation in traceability such that it can be
applied to trace any signatures generator unless the signature
is not correctly created.

C. Organization

The remainder of this paper is organized as follows.
In Section II, we briefly review the notions and definitions

that are relevant to this paper. In Section III, after depicting the
framework for secure communications in VANETs based on
ABS, we present the security definitions for an ABS scheme
to be used for VANETs. In Section IV, we give a detailed
description of the proposed VANET framework. In Section V,
we analyze the security and performance of the proposed
VANET framework. Finally, we draw concluding remarks in
Section VI.

II. PRELIMINARIES

In this section, we review some basic cryptographic notions
and definitions that are to be used in this paper.

A. Bilinear Pairings and Complexity Assumptions

Let G be a group of a prime order p with a generator g.
We define ê : G×G → G1 to be a bilinear map if it has the
following properties [33].

• Bilinear: for all g ∈ G, a, b ∈ Zp, ê(ga, gb) = ê(g, g)ab.
• Non-degenerate: ê(g, g) �= 1.

We say that G is a bilinear group if the group operation in
G is efficiently computable and there exists a group G1 and
an efficiently computable bilinear map ê : G × G → G1 as
above.

Diffie-Hellman Exponent Problem [34]: The l-Diffie-
Hellman Exponent (l-DHE) problem is that given a tuple
(g, ga, . . . , gal

, gal+2
, . . . , ga2l

where a ∈ Zp, it is hard
to compute (gs, gal+1s) where s ∈ Zp.

B. Zero-Knowledge Proof of Knowledge

In a zero-knowledge proof protocol [35], a verifier is con-
vinced that a prover knows a certain quantity w satisfying
some kind of relation R with respect to a commonly known
string x, i.e., the prover convinces the verifier that he/she
knows some w such that (w, x) ∈ R. If a Proof-of-Knowledge
(PoK) protocol can be done in a way that the verifier learns
nothing other than the validity of the statement, this protocol
is called a Zero-Knowledge Proof of Knowledge (ZKPoK)
protocol [35].

A PoK protocol for a binary relation R is a 3-round ZKPoK
protocol between a prover P and a verifier V. For every input
(w, x) ∈ R to P and x to V, the first round of the protocol
consists of P sending a commitment t to V. V then replies with
a challenge c in the second round and P concludes by sending
a response z in the last round. At the end of the protocol,
V outputs 1 meaning “accept” or 0 otherwise. A protocol
transcript (t, c, z) is valid if the output of an honest verifier V
is accepted, called the completeness property. A PoK protocol
has to satisfy the following two properties.

• Special Soundness. A cheating prover can at most answer
one of many possible challenges. Specifically, there exists
an efficient algorithm KE called knowledge extractor that
on input x, a pair of valid transcripts (t, c, z) and
(t, c′, z′) with c �= c′, outputs w such that (w, x) ∈ R.

• Honest-Verifier Zero-Knowledge. There exists an efficient
algorithm KS, called zero-knowledge simulator, that on
input x and a challenge c, outputs a pair (t, z) such that
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Fig. 1. Description of the KUNodes algorithm.

(t, c, z) is a valid transcript having the same distribution
as a real protocol transcript resulted from the interaction
between a prover P with the input (w, x) ∈ R and an
honest verifier V.

Any PoK protocol can be turned into non-interactive form,
which is called Signature of Knowledge (SoK) [14], by setting
the challenge to the hash value of the commitment together
with the message to be signed [36].

C. Binary Tree

We follow the definition about the binary tree described
in [12]. Let BT be a binary tree with N leaves corresponding
to N users. Denote root as the root node of the tree BT. If θ
is a leaf node, then Path(θ) means the set of nodes on the path
from θ to root, including both θ and root. If θ is a non-leaf
node, then θl is the left child of θ and θr is the right child of
θ. Assume that all nodes in the tree are uniquely encoded as
strings, and the tree is defined by all of its node descriptions.
The KUNodes algorithm is used to compute the minimal set of
nodes for which key update needs to be published so that only
the non-revoked users at a time period t are able to decrypt the
ciphertexts. It takes a binary tree BT, a revocation list rl and
a time period t as the input, and outputs a set of nodes which
is the minimal set of nodes in BT such that none of the nodes
in rl with the corresponding time period before or at t (users
revoked at or before t) have any ancestor (or, themselves) in
the set, and all other leaf nodes (corresponding to those non-
revoked users) have exactly one ancestor (or, themselves) in
the set. Fig. 1 is a pictorial depiction on how the KUNodes
algorithm works, where it firstly marks all ancestors of the
revoked nodes as revoked, and then it outputs all non-revoked
children of the revoked nodes. Below is a formal definition of
the KUNodes algorithm.

KUNodes(BT, rl, t)
X, Y ← ∅.
∀ (θi, ti) ∈ rl, if ti ≤ t, then add Path(θi) to X.

∀ x ∈ X, if xl /∈ X, then add xl to Y ;
if xr /∈ X, then add xr to Y.

If Y = ∅, then add root to Y.

Return Y.

D. Threshold Attribute-Based Signature

Denote A as the universe of possible attributes. Let M be the
message space. In a threshold attribute-based signature (ABS)

Fig. 2. A communication framework for VANETs.

scheme [37], every message m ∈ M is signed over a
claim-predicate Γk,S , where S is a subset over A, and k is
a threshold such that 1 ≤ k ≤ |S|. An attribute set A ⊂ A is
said to satisfy Γk,S if |A ∩ S| ≥ k.

• Setup(1λ) → (par, msk). On input the security parame-
ter λ, this setup algorithm outputs the public parameter
par and a master private key msk.

• KeyGen(par, msk, A) → skA. On input the public
parameter par, the master private key msk and an
attribute set A ⊂ A of a user, this private attribute-key
generation algorithm outputs the private attribute-key skA

for the user (assuming that the user indeed possesses these
attributes).

• Sign(par, skA, Γk,S , m) → σ. On input the public
parameter par, the signing key skA, a claim-predicate
Γk,S where S ⊂ A, 1 ≤ k ≤ |S| and a message m ∈ M,
this signing algorithm outputs a signature σ.

• Verify(par, Γk,S , m, σ)→ true/false. On input the public
parameter par, a claim-predicate Γk,S , a message m and
a signature σ, this verification algorithm outputs true or
false to denote if the signature is valid or not.

A threshold ABS scheme is correct if for any message
m ∈ M, any attribute set A ⊂ A, any claim-predicate Γk,S

(1 ≤ k ≤ |S|) such that |A ∩ S| ≥ k, (par, msk) ←
Setup(1λ), skA ← KeyGen(par, msk, A), σ ← Sign(par,
skA, Γk,S , m), then Verify(par, Γk,S , m, σ) = true.

III. SYSTEM ARCHITECTURE AND SECURITY MODEL

We describe the system architecture and security require-
ments of the attribute-based framework for secure communi-
cations in VANETs in this section.

A. System Architecture

We depict the architecture of the attribute-based VANET
framework in Fig. 2, which involves a trusted authority (TA),
vehicles equipped with on-board units (OBUs) for communica-
tions and road-side units (RSUs) installed alongside the roads
where the OBUs and RSUs communicate over the wireless
channel whereas the RSUs and the TA communicate using
the fixed secure network.

In the attribute-based framework for VANETs, attribute-
based signature (ABS) is employed to accomplish secure com-
munications. Each vehicle is identified by a set of attributes
(e.g., Vehicle-Type: Truck, Country: Australia, Expiry: 052020,
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and so on) rather than a vehicle identity (VID) or a
pseudonym. A regional TA publishes the public parameter
and keeps the master private key for the regional VANET.
When a vehicle wants to join a regional vehicular network,
it must register itself to the regional TA which we call the
home TA.

• Firstly, this vehicle creates a public and private user-key
pair, and sends the public user-key along with other iden-
tification documents to the home TA for authentication.

• Secondly, the home TA issues this vehicle a private
attribute-key over a set of attributes that it is entitled
to. For example, a car who registers to the home TA
serving for the city Melbourne could be given a private
attribute-key over the set of attributes City: Melbourne,
Expiry: 052020, Vehicle-Type: Car, et al.

• Thirdly, the home TA stores the public user-key of this
vehicle to a list of registered vehicles such that it can
trace the vehicle’s identity when necessary (e.g., the vehi-
cle may transmit a deceitful message). This traceability
guarantees that a vehicle is not able to deny a message
generated by itself, which simultaneously preserves non-
repudiation.

The home TA periodically broadcasts the key update informa-
tion at the beginning of each time period to all RSUs in its
vehicular network, and then the RSUs transmit the key update
information to all vehicles in the network, from which and the
private attribute-key a signing key for the current time period
can be extracted. In the event that a vehicle is caught with
any misconduct or found to be compromised, the home TA
revokes its privilege to the VANET by stopping providing the
key update information for this vehicle.

Each vehicle, in order to transmit a message (e.g., the traf-
fic condition) in the VANET, is required to authenticate
this message by creating a signature on the message under
a claim-predicate over an attribute set (e.g., City: Sydney
AND Vehicle-Type: Bus AND Expiry: 052020) using the
private user-key and signing key (generated from the private
attribute-key and key update information) for the current time
period, and this message will be accepted by others if the
signature is a valid one for the given message, time period
and claim-predicate. Since the same set of attributes are
shared among multiple vehicles in the VANET, its private
information can be protected. Any recipient can verify an
endorsed message via the signature, from which it learns
nothing else but the fact that a vehicle whose attributes satisfy
the claim-predicate endorses the message. Clearly, due to the
fact that an adversary needs to forge a valid signature for a
tampered message, message integrity can be preserved from
an authenticated message.

When a vehicle travels outside the home VANET, it must be
authenticated by the foreign TA to enjoy the services provided
by the foreign VANET. Since it is out of the scope of this
paper, we omit the details here.

B. Framework

A revocable and traceable attribute-based signature (ABS)
scheme consists of the following algorithms: setup

algorithm Setup, user-key generation algorithm UserKG,
private attribute-key generation algorithm KeyGen, key update
algorithm KeyUp, signing key generation algorithm SignKG,
signing algorithm Sign, verification algorithm Verify,
tracing algorithm Trace and revocation algorithm
Revoke.

• Setup(1λ) → (par, msk, rl, st). Taking a security
parameter λ as the input, this algorithm outputs the public
parameter par, the master private key msk, an initially
empty revocation list rl and a state st.

• UserKG(par, VID) → (skvid, pkvid). Taking the public
parameter par and a vehicle identity VID as the input,
this algorithm outputs a public and private user-key pair
(skvid, pkvid) for the vehicle VID.

• KeyGen(par, msk, pkvid, A, st)→ (skvid,A, st). Taking
the public parameter par, the master private key msk,
a vehicle identity VID with a public user-key pkvid and
a set of attributes A, as well as a state st as the input,
this algorithm outputs a private attribute-key skvid,A for
the vehicle VID with an attribute set A and an updated
state st. Note that the TA keeps a vehicle identity list Lv

storing (VID, pkvid).
• KeyUp(par, msk, t, rl, st) → (kut, st). Taking the

public parameter par, the master private key msk, a time
period t, a revocation list rl and a state st as the input,
this algorithm outputs the key update information kut and
an updated state st.

• SignKG(par, VID, skvid,A, kut) → skt
vid,A. Taking

the public parameter par, a vehicle identity VID with
the corresponding private attribute-key skvid,A and the
key update information kut as the input, this algorithm
outputs a signing key skt

vid,A for the vehicle VID for the
time period t.

• Sign(par, skvid, skt
vid,A, t, Γk,S , m) → σ. Taking the

public parameter par, the private user-key skvid and the
signing key skt

vid,A of a vehicle VID, a time period t,
a claim-predicate Γk,S and a message M as the input,
this algorithm outputs a signature σ.

• Verify(par, t, Γk,S , m, σ)→ true/false. Taking the public
parameter par, a signature σ on a message m for a
time period t under a claim-predicate Γk,S as the input,
this algorithm outputs true for a valid signature or false
otherwise.

• Trace(par, msk, (t, Γk,S , m, σ), Lv) → VID. Taking
the public parameter par, the master private key msk,
a signature σ on a message m for a time period t under
a claim-predicate Γk,S and the vehicle identity list Lv as
the input, this algorithm outputs a vehicle identity VID.

• Revoke(VID, t, rl, st) → rl. Taking a vehicle identity
VID to be revoked, a time period t, a revocation list rl and
a state st as the input, this algorithm outputs an updated
revocation list rl.

We require that a revocable and traceable ABS scheme
is correct, meaning that for all attribute sets A and claim-
predicates Γk,S such that A satisfies Γk,S (i.e., |A ∧ S| ≥
k), if (par, msk, rl, st) ← Setup(1λ), (skvid, pkvid) ←
UserKG(par, VID), (skvid,A, st) ← KeyGen(par, msk,
pkvid, A, st), (kut, st) ← KeyUp(par, msk, t, rl, st),
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skt
vid,A ← SignKG(par, VID, skvid,A, kut), σ ← Sign(par,

skvid, skt
vid,A, t, Γk,S , m), then Verify(par, t, Γk,S , m, σ)

→ true, Trace(par, msk, (t, Γk,S , m, σ), Lv) → VID.

C. Security Requirements and Adversarial Model

We aim to achieve the security requirements including
message authentication and integrity, vehicle anonymity, trace-
ability and revocation in the proposed attribute-based VANET
framework. Authentication ensures that a message is sent by
a vehicle as claimed, rather than by anyone else. Message
integrity guarantees that a message has not been tampered
with after the transmission. Anonymity requires that the private
information of a vehicle such as VID is anonymous to anyone
else in the system except the TA who is able to reveal the
identity of a vehicle when required. Traceability means that
the TA can discern the generator of a message via its signature,
implying that a signer cannot disavow its endorsement of a
message, so called non-repudiation. Revocation is needed such
that a vehicle’s access to a VANET can be terminated in the
case that the vehicle is compromised.

Taking these requirements into account, we define unforge-
ability, anonymity and traceability in the adversarial model
for the underlying ABS scheme. In the adversarial model,
we assume that the adversary consists of a small num-
ber of active vehicles who may be in possession of some
legitimate black boxes (running the defined algorithms) [10].
The adversary may use the black boxes to broadcast any
messages they choose and learn the internal states (such as
the random numbers used) of the black boxes. The black
boxes are assumed to always correctly perform their internal
operations (e.g., generating random numbers, performing other
necessary operations). The aim of an adversary would be
sending messages that could be accepted by others and thereby
misleading them, or making the TA tracking wrong vehicles.
We assume that the adversary may input an invalid message
to the black box, and the black box will generate random
numbers and perform other necessary operations correctly and
return a correct signature on that invalid message. The aim of
the adversary would be to make announcements that would
be accepted by other vehicles and thereby mislead them, or to
track other vehicles. We also assume that the TA or any part of
the VANET infrastructure apart from the vehicles are “honest-
but-curious” such that they are passive and would eavesdrop
and gather information but they will honestly execute all
protocols.

• Unforgeability. Any non-registered or revoked vehicle in
a regional VANET has at most a negligible probability of
producing a valid signature on a message for the current
time period over a claim-predicate. In addition, as long
as a registered vehicle is not compromised, the TA has at
most a negligible probability to generate a signature on
behalf of this vehicle.

• Anonymity. Nobody else except the TA who has the
master private key and the list of registered vehicles has
non-negligible probability to tell which vehicle generates
a given signature or link multiple signatures to the same
vehicle that creates them.

• Traceability. Given a signature on a message for a time
period under a claim-predicate, the TA, with the master
private key and the list of registered vehicles, is able
to find the vehicle who generates it with overwhelming
probability.

D. Security Definitions

Below we describe the formal definitions of Unforgeability,
Anonymity and Traceability for the revocable and traceable
ABS scheme.

Unforgeability: Unforgeability for a revocable and trace-
able ABS scheme is defined by the following security game
between a challenger algorithm C and an adversary algorithm
A = (A1, A2), where A1 is any adversarial entity without
the master private key, and A2 is the TA having the master
private key.

1) Algorithm A is algorithm A1 without the master private
key.

• Setup. Algorithm C generates the public parameter
par and the master private key msk. Algorithm C
gives algorithm A1 the public parameter par.

• Phase 1. Algorithm A1 issues a sequence of queries
to the following oracles.
– User-Key oracle. Algorithm A1 issues a private

user-key query on a vehicle identity VID. Algo-
rithm C returns the private user-key skvid by
running the UserKG algorithm.
Note that after algorithm C runs the UserKG
algorithm, it adds (VID, pkvid, skvid) to a list
so that the same (skvid, pkvid) will be used for
all queries on the vehicle identity VID.

– Attribute-Key oracle. Algorithm A1 issues a pri-
vate attribute-key query on a vehicle identity VID
with a public user-key pkvid and an attribute set
A. Algorithm C runs the KeyGen algorithm and
returns the private attribute-key skvid,A.

– Key-Update oracle. Algorithm A1 issues a key
update query on a time period t. Algorithm B
runs the KeyUp algorithm and returns the key
update information kut.

– Signing-Key oracle. Algorithm A1 issues a sign-
ing key query on a time period t, a vehicle
identity VID and an attribute set A. Algorithm C
runs the SignKG algorithm and returns the cor-
responding signing key skt

vid,A.
– Sign oracle. Algorithm A1 issues a signing

query on a message m, a time period t and a
vehicle identity VID with attributes satisfying a
claim-predicate Γk,S . Algorithm C runs the Sign
algorithm and returns a valid signature σ.

– Revocation oracle. Algorithm A1 issues a revo-
cation query on a vehicle identity VID and a time
period t. Algorithm C runs the Revoke algorithm
and returns an updated revocation list rl.

• Output. Algorithm A1 outputs a time period t∗,
a claim-predicate Γ∗

k,S , a message m∗ and a sig-
nature σ∗. Algorithm A1 wins the game, if (1) the
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Revocation oracle has been queried on (VID, t)
on t = t∗ or any t occurs before t∗ for any
vehicle identity VID whose attributes A satisfy
Γ∗

k,S , (2) the Signing-Key oracle has never been
queried on (VID, t∗) for any vehicle identity VID
whose attributes A satisfy Γ∗

k,S , (3) (t∗, Γ∗
k,S , m∗)

has never been queried to the Sign oracle, (4)
Verify(par, t∗, Γ∗

k,S , m∗, σ∗) → true.

2) Algorithm A is algorithm A2 who is given the master
private key.

• Setup. Algorithm C generates the public parameter
par and the master private key msk. Also, algo-
rithm C generates a public and private user-key pair
(pkvid, skvid) for each vehicle VID, and adds the
corresponding (VID, pkvid) to a vehicle identity
list Lv. Algorithm C gives algorithm A2 the public
parameter par, the master private key msk and the
vehicle identity list Lv.

• Phase 1. Algorithm A2 issues the private user-key
query on a vehicle identity VID, and algorithm C
returns the private user-key.

• Output. Algorithm A2 outputs a time period t∗,
a claim-predicate Γ∗

k,S , a message m∗ and a signa-
ture σ∗. Algorithm A2 wins the game if Verify(par,
t∗, Γ∗

k,S , m∗, σ∗) → true, and Trace(par, msk,
(t∗, Γ∗

k,S , m∗, σ∗), Lv) → VID∗ with the restric-
tion that algorithm A2 has never issued a private
user-key query on the vehicle identity VID∗.

A revocable and traceable ABS scheme ABS is unforgeable
if the advantage function referring to the above security game

AdvUNF
A,ABS(λ) def= Pr[A wins]

is negligible in the security parameter λ for any probabilistic
polynomial-time (PPT) adversary algorithm A.

Anonymity: Anonymity for a revocable and traceable ABS
scheme is defined by the following security game between a
challenger algorithm C and an adversary algorithm A.

• Setup. The same as that in the Unforgeability game of
algorithm A1.

• Phase 1. The same as that in the Unforgeability game of
algorithm A1.

• Challenge. Algorithm A sends two vehicle identities
VID∗

0 and VID∗
1 with attributes A∗

0 and A∗
1 satisfying the

same claim-predicate Γ∗
k,S , a message m∗ and a time

period t∗ to algorithm C. Algorithm C randomly chooses
a bit b ∈ {0, 1}, generates a signature σ∗ on the message
m∗ for the time period t∗ under the claim-predicate Γ∗

k,S

using the private user-key skvid∗
b

and the corresponding
signing key skt∗

vid∗
b
,A∗

b
, and sends σ∗ to algorithm A.

• Phase 2. The same as that in Phase 1.
• Output. Algorithm A outputs a guess b′. If b′ = b,

algorithm A wins the game.

A revocable and traceable ABS scheme ABS achieves
anonymity if the advantage function referring to the above
security game

AdvANON
A,ABS(λ) def= |Pr[b = b′]− 1/2|

is negligible in the security parameter λ for any PPT adversary
algorithm A.

Traceability: Traceability for a revocable and traceable ABS
scheme is guaranteed by the correctness of the revocable
and traceable ABS scheme. Formally, for a vehicle identity
VID with an attribute set A satisfying a claim-predicate
Γk,S , if (par, msk, rl, st) ← Setup(1λ), (skvid, pkvid)
← UserKG(par, VID), (skvid,A, st) ← KeyGen(par, msk,
pkvid, A, st), (kut, st)← KeyUp(par, msk, t, rl, st), skt

vid,A
← SignKG(par, VID, skvid,A, kut), σ ← Sign(par, skvid,
skt

vid,A, t, Γk,S , m), Verify(par, t, Γk,S , m, σ) → true, then

Trace(par, msk, (t, Γk,S , m, σ), Lv)→ VID.

In other words, for any honestly generated signature (i.e.,
the signature is created following the protocol), the identity of
the signer is traceable with non-negligible probability.

IV. THE PROPOSED FRAMEWORK FOR VANETS

In this section, we propose a revocable and traceable
attribute-based signature scheme, and explain how to apply
it to achieve secure communications in a vehicle network.

Define ΔΥ
i (x) =

∏j �=i
j∈Υ

x−j
i−j where i ∈ Zp, and Υ is a set

of elements in Zp as the Lagrange coefficient. A polynomial
q(x) over Zp with an order d − 1 can be evaluated by using
Lagrange interpolation as q(x) =

∑
i∈Υ q(i)Δi,Υ(x) where

|Υ| = d.

A. Intuition

The proposed revocable and traceable attribute-based signa-
ture (ABS) scheme is built by equipping the threshold ABS
scheme given in [37] with tracing and revocation mecha-
nisms.2 To achieve the revocation function, the binary tree
structure [13] is combined with the key generation algorithm
in the ABS scheme [37] and an additional key update algo-
rithm, where the TA issues a long-term private attribute-key
to each vehicle and publicly broadcasts key updates at the
beginning of each time period, but only non-revoked vehi-
cles can generate private signing keys for the current time
period from their long-term private attribute-keys and the
key updates. With respect to the traceability function, each
registered vehicle is assigned a pair of public and private user-
keys, while the public user-key is embedded in the private
attribute-key generated by the TA, and the signature is created
using both the signing key and the private user-key by combing
the signing algorithm in the ABS scheme [37] with signature
of knowledge [14]. Thus, the signature is still attribute-based
without leaking the vehicle’s identity, but the TA is able to
trace the vehicle who generates the signature.

B. System Setup

The home TA setups the public parameter for a vehicle
network as follows, which are to be used by all algorithms
within the proposed ABS scheme.

2Note that the techniques introduced here can be applied to other ABS
schemes (e.g., [11]) to build attribute-based frameworks for secure commu-
nications in VANETs.
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• Setup. On input the security parameter λ, the TA runs
as follows to generate the system public parameter. Let
d be the upper limit of the threshold of claim-predicate
allowed in the system, and N be the maximum number
of vehicles supported in the system. Let A be the attribute
space, Ω with |Ω| = d be a default attribute set. Assume
that each attribute in A ∪ Ω is an element from Zp.

1) Let ê : G × G → G1 be a bilinear pairing where
G is a group of a prime order p with a generator
g. Let rl be an empty list storing revoked vehicles
and BT be a binary tree with N leaf nodes. It sets
st = BT. For each node x of the binary tree BT,
it randomly chooses rx ∈ Zp, and stores rx to this
node.

2) The TA randomly chooses α ∈ Zp, and computes
V = ê(g, g), Z = V α. Then it randomly chooses a
vector �v = (v0, . . . , vl) ∈ Zp

l+1 where l = 2d+1,
and computes hi = gvi for i ∈ [0, l]. In addition,
it randomly chooses f0, . . . , fnt , w0, . . . , wnm ∈
G, and defines two functions F1 and F2 as

F1(t) = f0

nt∏

j=1

fj
tj , F2(m) = w0

nm∏

i=1

wi
mi ,

where tj is the j-th bit of a time period t and mi

is the i-th bit of a message m.
3) The TA keeps the master private key msk = α, and

publishes the public parameter par = (g, G, G1, ê,
p, H , V , Z , h0, . . . , hl, f0, . . . , fnt , w0, . . . , wnm),
where H is a hash function mapping elements in G1

and Zp to an element in Zp.

C. Vehicle Registration and Revocation

When a vehicle VID wants to join the home VANET,
it firstly generates a public and private user-key pair by itself,
and then sends its public user-key to the TA for registration,
thereby obtaining a private attribute-key over its eligible
attributes issued by the TA.

To get round achieving revocation by requiring all recipients
to keep a revocation list generated by the TA or asking the
TA to communicate with every non-revoked vehicle to issue
new keys to them (i.e., the key update size is linear in the
number of non-revoked vehicles), the binary tree data structure
is combined with the key generation and update algorithms
such that the TA issues every vehicle a private attribute-key at
the vehicle registration phase and publicly broadcasts the key
update information (i. e., the size of the key update information
is logarithmic in the number of non-revoked vehicles [12]) at
the beginning of each time period, but only the non-revoked
vehicles are able to create signing keys for the current time
period from their private attribute-keys and the key update
information for the current time period.

• UserKG. On input the public parameter par and a vehicle
identity VID, the vehicle randomly chooses β ← Z∗

p

as the private user-key skvid, and computes pkvid =
gβ as the public user-key. It sends pkvid along with a
zero-knowledge proof of knowledge PK{(β) : pkvid =
gβ} to the TA for registration.

• KeyGen. On input the public parameter par, the master
private key msk, a public user-key pkvid and an attribute
set A of a vehicle VID and a state st, the TA firstly adds
(VID, pkvid) to the vehicle list Lv. Then it chooses an
undefined leaf node θ from the binary tree BT, and stores
the vehicle identity VID in this node. For each node x ∈
Path(θ), it runs as follows.

1) It fetches rx from the node x, and randomly chooses
a1, . . . , ad−1 ∈ Zp. It defines a polynomial qx(w) =
∑d−1

i=1 aiw
i +α. Then for each attribute w ∈ A∪Ω,

it randomly chooses rw ∈ Zp, and computes

Px,w = (pkvid
qx(w)/grx) · h0

rw , Px,w,0 = grw ,

Px,w,i = (h1
−wi · hi+1)rw ∀ i ∈ [i, l − 1].

2) It sends the private attribute-key skvid,A = {x,
{Px,w, Px,w,0, {Px,w,i}i∈[1,l−1]}w∈A∪Ω}x∈Path(θ) to
the vehicle VID.

• KeyUp. On input the public parameter par, the master
private key msk, a time period t, a revocation list rl,
and a state st, the TA, for all x ∈ KUNodes(BT, rl, t),
it fetches rx from the node x. Then, it randomly chooses
sx ∈ Zp, and computes

Qx,1 = grx · F1(t)sx , Qx,2 = gsx .

It outputs the update key kut = {x, Qx,1,
Qx,2}x∈KUNodes(BT, rl, t).

• SignKG. Denote I as Path(θ), J as KUNodes(BT,
rl, t). On input the public parameter par, a pri-
vate attribute-key skvid,A, and the update key kut,
the vehicle VID parses skvid,A as {x, {Px,w, Px,w,0,
{Px,w,i}i∈[1,l−1]}w∈A∪Ω}x∈I , kut as {x, Qx,1, Qx,2}x∈J

for some set of nodes I , J . If I ∩ J = ∅, it returns ⊥.
Otherwise, for any node x ∈ I ∩ J , it randomly chooses
r′w ∈ Zp. For each attribute w ∈ A ∪ Ω, it computes

Kw = Px,w ·Qx,1 · F1(t)r′
w

= pkvid
qx(w) · h0

rw · F1(t)sx+r′
w ,

Kw,0 = Px,w,0 = grw ,

Kw,t = Qx,2 · gr′
w = gsx+r′

w ,

Kw,i = Px,w,i = (h1
−wi · hi+1)rw ∀ i ∈ [1, l − 1].

It outputs the signing key skt
vid,A = {Kw, Kw,0,

{Kw,i}i∈[1,l], Kw,t}w∈A∪Ω.
• Revoke. This algorithm takes a vehicle identity VID,

a time period t, a revocation list rl and a state st as
the input. For all nodes x associated with the vehicle
identity VID, it adds (x, t) to rl, and outputs the updated
revocation list rl.

D. Message Authentication

A registered vehicle VID can anonymously authenticate a
message using its private user-key and signing key for the
current time period over a claim-predicate. In practice, for
vehicles travelling in a vehicular network, the claim-predicate
Γk,S can be set as k = 3, S = {City: *, Vehicle-Type: *,
Expiry: *} (the value * of each attribute depends on the real
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situation), assuming that any signature that does not satisfy
such a claim-predicate are not accepted by others in the
VANET.

• Sign. On input the public parameter par, the private
user-key skvid, the signing key skt

vid,A for the time
period t, a claim-predicate Γk,S and a message m,
the vehicle VID runs as follows to generate a signature
σ = (σ0, σ1, σt, σ2, SoK0). Note that the message and
signature pair (m, σ) generated by a vehicle includes
five fields: (Message Type; Payload; Timestamp; TTL;
Signature) [26]. Message Type field defines the message
type, of which the length Lmessagetype is about 2 bytes,
and the Payload field may include information on the
vehicle’s position, direction, speed, traffic events, event
time and so on, of which the length Lpayload is about
100 bytes [26]. The Timestamp field, of which the length
Ltimestamp is about 4 bytes, specifies the signature gen-
eration time, which is used to prevent replay attacks [26].
The TTL field, of which the length LTTL is about 1 byte,
is to determine how long the message is allowed to
remain in the VANET. The Signature field is the vehicle’s
signature on the first four fields.

1) It randomly chooses a subset S′ ⊂ {A ∩ S} and a
default attribute subset Ω′ ∈ Ω such that |S′| = k
and |Ω′| = d−k. Then, it defines a coefficient vector
�b = (b1, . . . , bl) ∈ Zp

l from the polynomial

ϕ(y) =
∏

w∈S∪Ω′
(y − w) =

l∑

i=1

biy
i−1,

where bi is set to 0 for |S ∪ Ω′|+ 2 ≤ i ≤ l.
2) Denote Υ by S′ ∪ Ω′. It computes

K ′
w = Kw ·

l−1∏

i=1

Kw,i
bi+1

= pkvid
qx(w) · (h0

l∏

i=1

hi
bi)rw · F1(t)sx+r′

w

for each attribute w ∈ Υ, and then it computes

K ′
0 =

∏

w∈Υ

K ′
w

ΔΥ
w(0)

= pkvid
α · (h0

l∏

i=1

hi
bi)r · F1(t)r′

,

K ′
1 =

∏

w∈Υ

K
ΔΥ

w(0)
w,0 = gr,

K ′
t =

∏

w∈Υ

K
ΔΥ

w(0)
w,t = gr′

,

where r =
∑

w∈Υ ΔΥ
w(0) · rw, r′ =

∑
w∈Υ ΔΥ

w(0) ·
(sx + r′w).

3) It randomly chooses s, s0, s1, s2 ∈ Zp, and
computes B = Zβ · V s,

σ0 = gs ·K ′
0 · (h0

l∏

i=1

hi
bi)s0 · F1(t)s1 · F2(m)s2 ,

σ1 = K ′
1 · gs0 , σt = K ′

t · gs1 , σ2 = gs2 .

4) It randomly chooses u0, u1 ∈ Zp, and computes the
signature of knowledge SoK0{(s, β) : Y = Zs ∧
B = Zβ · V s}(m) = (R1, R2, Y , B, c, θ0, θ1).

R1 = Zu0 , R2 = Zu1 · V u0 ,

c = H(R1||R2||Y ||B||m),
θ0 = u0 − cs, θ1 = u1 − cβ.

Remarks: In the real world, it might need to know the
driving route of a vehicle in a short time period (e.g., half an
hour) to make judgments about the current traffic situations,
which requires messages sent by the same vehicle in a short
time period to be linkable to each other. To achieve this
goal, we can modify SoK0 as SoK1{(s, β) : Y = Zs ∧
B = Zβ · V s ∧ A = ê(H0(Time), h0)β}(m) = (R1, R2,
Y , B, c1, θ0, θ1), where H0 is a collision resistant hash
function mapping elements in {0, 1}∗ to elements in G, Time
denotes the short time period (e.g., all moments between
01:00 am to 01:29 am on 17 May, 2020 are represented by
0100012917052020),

R3 = ê(H0(Time), h0)u1 ,

c1 = H(R1||R2||R3||X ||Y ||B||A||m).

Because all signatures generated by the same vehicle VID
in the short time period Time share the a common element A,
they can be easily linked together.

E. Signature Verification and Vehicle Tracing

Each recipient can check whether a message is sent by a
vehicle as claimed, and has not been tampered with after the
transmission by verifying the correctness of the signature on
the message. Also, if a vehicle VID generates a signature on
a message which is found to be deceptive, the TA can spot
the vehicle identity VID of the vehicle from a given message
and signature pair.

• Verify. On input the public parameter par, and a sig-
nature σ on a message m for a time period t under a
claim-predicate Γk,S , the recipient computes

R′
1 = Y c · Zθ0 , R′

2 = Bc · Zθ1 · V θ0 .

If c = H(R′
1||R′

2||Y ||B||m), it chooses the default
attribute subset Ω′, and obtains the vector �b = (b1, . . . ,
bl) from the polynomial ϕ(y) as defined in the Sign
algorithm. Then, it checks whether

ê(g, σ0)

ê(h0

∏l
i=1 hi

bi , σ1) · ê(F1(t), σt) · ê(F2(m), σ2)
= B.

It outputs true if the equations holds or false otherwise.
• Trace. On input the public parameter par, the master

private key msk, a signature σ on a message m for a
time period t under a claim-predicate Γk,S and the vehicle
identity list Lv, the TA checks whether there exists a pair
(VID, pkvid) in the vehicle identity list Lv such that B =
ê(pkvid, gα) · Y 1/α. If so, it outputs the vehicle identity
VID.
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V. DISCUSSION

In this section, we analyze the security as well as the
performance of the proposed revocable and traceable ABS
scheme.

A. Security

Theorem 1: Assuming that SoK0 is a secure signature of
knowledge, then the proposed revocable and traceable ABS
scheme is secure under the l-DHE assumption.

Proof: In order to prove the security of the proposed
revocable and traceable ABS scheme, we need to prove that
it is unforgeable, anonymous and traceable. Below we sketch
the proof by showing that if there is an adversary that breaks
the unforgeability, anonymity and traceability of the proposed
ABS scheme, then we can build a simulator that solves the
l-DHE problem or breaks the security of SoK0.

Unforgeability: We consider two types of adversaries, where
the type 1 adversaries (algorithm A1 in the security game)
are defined to guarantee that a non-registered or revoked
vehicle cannot generate a valid signature for the current time
period under any claim-predicate, and the type 2 adversaries
(algorithm A2 in the security game) are defined to ensure
that anybody including the TA, without the private user-key,
is not able to create a valid signature on behalf of a registered
vehicle. In the proposed scheme, the signature σ can be divided
into two parts, where (σ0, σ1, σt, σ2) is generated using the
signing key and can prevent the type 1 adversaries, whilst
SoK0 is generated using the private user-key via a signature of
knowledge scheme [35] and can prevent the type 2 adversaries.
Thus, the unforgeability of the proposed ABS can be proved
in terms of (σ0, σ1, σt, σ2) and SoK0, respectively. Since
(σ0, σ1, σt, σ2) is generated in the same way as that in the
revocable ABS scheme [38], the proof for unforgeability for
(σ0, σ1, σt, σ2) is similar to that in [38], so we omit the details
here. Below we show that SoK0 is unforgeable by proving that
SoK0 is a secure signature of knowledge. The completeness of
SoK0 is straightforward, so it remains to prove its soundness
and zero-knowledge.

Soundness: Assume that there are two transcripts with the
same R, R1, R2 but different challenges c′, c and responses
θ′0, θ′1 and θ0, θ1. Then (s, β) can be extracted from

R1 = Y c · Zθ0 = Y c′ · Zθ′
0 ⇒ Y = Zs = Z

θ′0−θ0
c−c′ ,

R2 = Bc · Zθ1 · V θ0 = Bc′ · Zθ′
1 · V θ′

0

⇒ B = Zβ · V s = Z
θ′1−θ1
c−c′ · V

θ′0−θ0
c−c′ .

Zero-Knowledge: The simulator randomly chooses s ∈ Zp,
θ0, θ1 ∈ Zp, c ∈ Zp, computes R1 = Y c · Zθ0 , R2 = Bc ·
Zθ1 · V θ0 , and sets c = H(R1||R2||Y ||B||m) where H is a
random oracle.

Anonymity: Assume that (σ0, σ1, σt, σ2) is produced using
a signing key corresponding to some attribute set A that
has A ∩ S ≥ k. It is not difficult to see that σ1, σt, σ2

are independent of the choice of A. Also, according to the
definition of bi, 1 ≤ i ≤ l, these values do not depend
on the choice of A, and hence σ0 reveals no information
about A. That is, (σ0, σ1, σt, σ2) has a uniform distribution

TABLE II

THE STORAGE OVERHEAD OF THE PROPOSED REVOCABLE
AND TRACEABLE ABS SCHEME

TABLE III

THE COMPUTATIONAL OVERHEAD OF THE PROPOSED

REVOCABLE AND TRACEABLE ABS SCHEME

over G × G × G × G. On the other hand, due to zero-
knowledge property of signature of knowledge, SoK0 discloses
no information about the vehicle’s private user-key β. Also, Y ,
B are randomized and independent of the choice of β. Thus,
SoK0 does not link different signatures generated by the same
vehicle VID together.

Traceability: This is straightforward from the Trace algo-
rithm. Given a signature σ, the TA with the master private key
α can always discern which vehicle generates it by checking
whether there exists a tuple (VID, pkvid) in the vehicle identity
list Lv such that B = ê(pkvid, g

α) · Y 1
α .

B. Performance Evaluation and Implementation

Assume that |A| is the number of attributes associated
with a vehicle, and d is the predefined size of the default
attribute set. Let “E” and “P” represent the exponentiation
calculation and pairing calculation, respectively. Denote “R”
and “N” as the numbers of revoked and all vehicles in the
VANET, respectively. We summarize the storage overhead
and the communication cost of the proposed revocable and
traceable ABS scheme in Table II and Table III. The size of
a private attribute-key is linear to the number of the (default)
attributes possessed by a vehicle and the height of the binary
tree, and a signing key is composed of 4(d + |A|) elements
from G. To sign a message, each signer performs (7d + 14)
exponentiation operations, while to verify the correctness of
a signature, each verifier executes 4 pairing operations and
2d + 6 exponentiation operations.3 A signature on a message
is composed of 11 elements,4 of which 4 elements are from
G, 4 elements are from G1 and 3 elements are from Zp.
The size of key updates is logarithmic rather than linear if
1 ≤ R < N/2, and when N/2 ≤ R ≤ N , in order to keep
the key update efficient, the TA will empty the revocation list
and release new signing keys for the non-revoked vehicles.

3Note that the computational overheads resulted in the signing and veri-
fication algorithms can be reduced by applying the technology called “the
server-aided computation”, which has been detailed in [39] and we omit the
details here.

4To provide a security level of 112-bit, the size of the signature is about
364 bytes, while for the security level of 80-bit, the size of the signature is
about 260 bytes.
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Fig. 3. Computation time of the Sign (left), Verify (middle) and KeyUp (right)
algorithms in the proposed revocable and traceable ABS scheme. (a) Sign.
(b) Verify. (c) KeyUp.

We implement the proposed revocable and traceable ABS
scheme in the Charm [15], which is a framework developed
to facilitate rapid prototyping of cryptographic schemes and
protocols. Since all Charm routines are designed under the
asymmetric groups, the given construction is transformed to
the asymmetric setting before the implementation. That is,
three groups G, Ĝ and G1 are used and the pairing ê is
a function from G × Ĝ to G1. Notice that it has been
stated in [40] that the assumptions and the security proofs
in the symmetric groups can be converted to those under the
asymmetric setting in a generic way.

We use the Charm-0.43 and the Python 3.4 in our implemen-
tation. Along with the Charm-0.43, we install the PBC library
for the underlying cryptographic operations. Our experiments
are run on a laptop with Intel Core i5-4210U CPU @ 1.70GHz
and 8.00 GB RAM running 64-bit Ubuntu 14.04 on the
VMware Workstation Player (set with a 1GB RAM).

All of the simulations are conducted over three elliptic
curves: SS512, MNT159 and MNT224, where SS512 is a

symmetric curve with a 512-bit base field, MNT159 denotes an
asymmetric curve with a 159-bit base field, and MNT224 rep-
resents an asymmetric curve with a 224-bit base field. These
three curves provide security levels of 80-bit, 80-bit and
112-bit, respectively.

In our experiments, the number of vehicles is set to
N = 220 = 1, 048, 576, the size of the default attribute set
is set to d = 4, and the threshold claim-predicate is set to
k = 3, S = {City: *, Vehicle-Type: *, Expiry: *}. We first
test the computation time for a signer in generating 20 to
100 signatures (See Fig. 3-(a)). Then, we test the computation
time for a verifier in checking the validity of 100 to 500 sig-
natures (See Fig. 3-(b)). Thereafter, we test the computation
time of the TA in generating the key update information for
non-revoked vehicles when the number of revoked vehicles
ranges from 4 to 1024 (See Fig. 3-(c)). For the three curves
used in the implementation, it is not difficult to see that
SS512 has the best performance, while MNT224 incurs the
highest computational overhead. The computation time of the
Sign and Verify algorithms grows linearly to the number of
signatures, and the computation time of the KeyUp algorithm
is linear to R and logarithmic to N/R where R is the
number of revoked vehicles. For the three curves tested in
the experiments, the computation time of generating 20 to
100 signatures ranges from 2s to 36s, the computation time
of verifying 100 to 500 signatures ranges from 3s to 60s,
and the computation time of generating key updates in terms
of 4 to 1024 revoked vehicles varies from 0.2s to 44s. In terms
of the practical requirement for vehicular communications, the
experimental results are not desirable. However, it should be
noted that the code we use in the experiments is not tuned for
the optimal performance. We believe that the performance can
be significantly improved if the algorithms are run using the
optimized codes on a more powerful computer.

VI. CONCLUSION

In this paper, we presented a secure VANET framework
which meets the security requirements including privacy
protection, authentication, traceability, revocation, message
integrity and non-repudiation for VANETs. Unlike the existing
solutions for secure communications in VANETs using asym-
metric key, symmetric key and identity-based cryptography,
group signature, anonymous credentials and attribute-based
encryption as building blocks, the proposed framework is built
upon an ABS scheme, which provides privacy preservation for
vehicles while without the considerable overhead of managing
pseudonyms/private keys, and supports the vehicle revocation
and traceability by the trusted authority (TA). From the secu-
rity analysis, the proposed framework satisfies various crucial
security requirements. The performance of the framework can
be significantly improved by incorporating techniques such as
pre-computation, server-aided computation, code optimization
and cryptographic hardware.

APPENDIX

IMPLEMENTATION OF ATTRIBUTE-BASED ENCRYPTION

The proposed revocable and traceable ABS scheme for
vehicular communications is attribute-based which enables
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Fig. 4. Computation time of the Encrypt (left) and Decrypt (right) algorithms
in an ABE scheme. (a) Encrypt. (b) Decrypt.

access control over attributes, and thus it is similar to the proto-
cols for communications in VANETs based on attribute-based
encryption (ABE). To better show the efficiency of the pro-
posed ABS scheme, we also implement an ABE scheme
which is suitable to be applied for secure communications
in VANETs (e.g., [7], [8]) in Fig. 4, but it does not support
the functions of vehicle revocation and traceability. Similarly,
the experiments are conducted over three elliptic curves:
SS512, MNT159 and MNT224. For the three curves tested
in the experiments, the computation time of generating 20 to
100 ciphertexts ranges from 2s to 36s, the computation time
of decrypting 100 to 500 ciphertexts ranges from 4s to 62s.
It is straightforward that the proposed ABS scheme has more
or less the same efficiency as the ABE based framework for
vehicular communications.
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