
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

10-2006

Natural document clustering by clique percolation in random Natural document clustering by clique percolation in random

graphs graphs

Wei GAO
Singapore Management University, weigao@smu.edu.sg

Kam-Fai WONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
GAO, Wei and WONG, Kam-Fai. Natural document clustering by clique percolation in random graphs.
(2006). Proceedings of the 3rd Asia Information Retrieval Symposium (AIRS 2006). 119-131. Research
Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4603

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email libIR@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/286034885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4603&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Natural Document Clustering by Clique
Percolation in Random Graphs

Wei Gao and Kam-Fai Wong

Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong
{wgao, kfwong}@se.cuhk.edu.hk

Abstract. Document clustering techniques mostly depend on models
that impose explicit and/or implicit priori assumptions as to the num-
ber, size, disjunction characteristics of clusters, and/or the probability
distribution of clustered data. As a result, the clustering effects tend to be
unnatural and stray away more or less from the intrinsic grouping nature
among the documents in a corpus. We propose a novel graph-theoretic
technique called Clique Percolation Clustering (CPC). It models cluster-
ing as a process of enumerating adjacent maximal cliques in a random
graph that unveils inherent structure of the underlying data, in which we
unleash the commonly practiced constraints in order to discover natural
overlapping clusters. Experiments show that CPC can outperform some
typical algorithms on benchmark data sets, and shed light on natural
document clustering.

1 Introduction

Document clustering is an important technique that facilitates the navigation,
search and analysis of information in large unstructured text collections. It uses
an unsupervised process to identify inherent groupings of similar documents
as a set of clusters such that the intra-cluster similarity is maximized and the
inter-cluster similarity is minimized.

Generally, clustering has three fundamental issues to solve: a data presenta-
tion model, a data similarity measure, and a clustering algorithm that builds the
clusters using the data model and the similarity measure. Most existing cluster-
ing methods are based on vector space model [1,17] and represent document as a
feature vector of unique content-bearing words that occur in the document sets,
which is also known as “bag-of-words” model. Document similarity is calculated
using one of the mathematical association measures, such as Euclidean distance,
Cosine, Overlap, or Dice coefficients, etc., formulated with the feature vectors.
Many clustering models and algorithms have been proposed. From different per-
spectives, they can be categorized into agglomerative or divisive, hard or fuzzy,
deterministic or stochastic [11].

Most existing clustering algorithms optimize criterion functions with respect
to the similarity measure in use over all the documents assigned to each poten-
tial partition of the collection [11,22]. They always impose some explicit and/or

H.T. Ng et al. (Eds.): AIRS 2006, LNCS 4182, pp. 119–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

120 W. Gao and K.-F. Wong

implicit constraints with respect to the number, size, shape and/or disjoint char-
acteristics of target clusters. For example, partitional algorithms like k-means
assumes the cluster number k and does not allow one document belonging to
multiple groups. Although fuzzy clustering, such as fuzzy C-means/medoids al-
gorithm [3,13], does support overlapping clusters by the membership function
and fuzzifier parameter, they are still confined by cluster number and can find
only spherical shape clusters (due to the assumption like k-means that each
cluster can be described by a spherical Gaussian). Some algorithms, e.g. EM
(Expectation-Maximization) clustering, are model-based, assuming Naive Bayes
or Gaussian Mixture model [2,14]. They strongly presume certain probabilistic
distributions of clustered documents and try to find the model that maximizes
the likelihood of the data. When data cannot fit the hypothetical distribution,
poor cluster quality can result. k-way clustering or bisection algorithms [22]
adapt all kinds of criterion functions, but require to specify cluster number and
force clusters to be equally sized. Recently, spectral clustering [8,9] based on
graph partitioning has emerged as one of the most effective clustering tools,
whose criterion functions are based on max-flow/min-cut theorem [5]. However,
they prohibit overlapping clusters which ought to be important for document
clustering.

In this paper, we define natural document clustering as a problem of finding
unknown number of overlapping document groups with varied sizes and arbi-
trary data distributions. We try to obtain the clustering results with these free
characteristics by removing as many external restrictions as possible and leav-
ing things to the inherent grouping nature among documents. For this purpose,
we propose a document clustering technique using a novel graph-theoretic algo-
rithm, named Clique Percolation Clustering (CPC). The general idea is to iden-
tify adjacent maximal complete subgraphs (maximal cliques) in the document
similarity graph using a threshold clique. Certain adjacent maximal cliques are
then merged to form one of document clusters that can be fully explored by the
threshold clique. Although CPC does introduce an explicit parameter k, which
is the size of threshold clique, our algorithm can automatically settle the critical
point, at which the natural clustering of the collection can be achieved. We show
that CPC can outperform some representative algorithms with experiments on
benchmark data.

The rest of this paper is organized as follows: Section 2 gives related work; Sec-
tion 3 describes the proposed CPC method and its algorithmic implementation;
Section 4 presents experiments and results; Finally, we conclude this paper.

2 Related Work

2.1 Graph-Based Document Representation

Two types of graph-based representations have been proposed for modeling doc-
uments in the context of clustering. One is the graph obtained by computing
the pairwise similarities between the documents [9], and the other is obtained

Natural Document Clustering by Clique Percolation in Random Graphs 121

by viewing the documents and the terms as a bipartite graph (co-clustering) [8].
Our work use the first model.

In general, suppose V = {d1, d2, . . . , d|V |} is a collection of documents. We
represent the collection by an undirect graph G = (V, E), where V is the vertex
set and E is the edge set such that each edge {i, j} is a set of two adjacent
vertices di, dj in V . The adjacent matrix M of the graph is defined by

Mij =
{

wij if there is an edge {i, j}
0 otherwise , (1)

where each entry Mij is the edge weight, and wij is the value of similarity metric
(in what follows we assume Cosine coefficient) between di and dj . The graph can
also be unweighted where an edge exists indicating that the distance of its two
vertices is smaller than some threshold, in which case Mij is binary.

A clique in G is a subset S ⊆ V of vertices, such that {i, j} ∈ E for all distinct
{di, dj} ∈ S. Thus, any two vertices are adjacent in a clique that constitutes a
complete subgraph of G. A clique is said to be maximal if its vertices are not
a subset of the vertices of a larger clique. The maximal cliques are considered
the strictest definition of a cluster [16]. In graph theory, enumerating all max-
imal cliques (equivalently, all maximal independent sets or all minimal vertex
covers) is a fundamental combinatorial optimization problem and its worst-case
complexity is believed NP-hard [4,21].

2.2 Graph-Theoretic Clustering

Traditional hierarchical agglomerative clustering (HAC) are intrinsically graph-
based. HAC treats each data point as a singleton cluster and then successively
merges pairs of clusters until all clusters have been merged into a single cluster
that contains all documents. Single-link, complete-link and average-link are the
most popular HAC algorithms.

In single-link algorithm [19], the similarity between clusters is measured by
their most similar members (minimum dissimilarity). Generally, agglomerative
process are rather computationally intensive because the minimum of inter-
cluster distances must be found at each merging step. For single-link clustering,
an efficient implementation of Minimum Spanning Tree (MST) algorithms of a
weighted graph is often involved. Therefore, single-link produces clusters that
are subgraphs of the MST of the data and are also connected components. It
is capable of discovering clusters of varying shapes, but often suffers from the
so-called chaining effect. Complete-link [12] measures the similarity between two
clusters by their least similar members (maximum dissimilarity). From graph-
theoretic perspective, complete-link clusters are non-overlapping cliques and are
related to the node colorability of graphs. Complete-link is not vulnerable to
chaining effect, but generates excessive compact clusters and is thus very sensi-
tive to outliers. Average-link clustering [6] is a compromise between single-link
and complete-link: the similarity between one cluster and another is the averaged
similarity from any member of one cluster to any member of the other cluster;
it is less susceptible to outliers and elongated chains.

122 W. Gao and K.-F. Wong

3 Clique Percolation Clustering Model

3.1 Preliminaries

Suppose |V | number of documents are given in a measure space with a similarity
metric wij . We define a binary relation ∼t between documents on G = {V, E}
with respect to parameter t: i ∼t j := wij ≤ t, which is self-reflexive, symmetric
and non-transitive. There is an edge {i, j} ∈ E connecting vertices di and dj

whenever i ∼t j with respect to threshold t. Fig. 1 illustrates that given a matrix
reflecting the distances between 7 documents and the t value, a series of graphs
for the relation i ∼t j are produced with different connectivity densities. Clearly,
if each maximal clique were considered as a cohesive form of cluster, we could
discover different number of clusters from these graphs, where t = 0.5, 2.5 and
3.5 results in 7, 5 and 3 number of clusters, respectively. Different from HAC
clusters, they are planar and overlapping rather than hierarchical and disjoint.
They also display interesting properties of natural clusters except for excessive
intra-cluster cohesiveness like complete-link clusters.

Fig. 1. Graphs with respect to the threshold level t and different cohesive clusters (in
dotted regions) resulted from the respective t value

The series of graphs parameterized by t above can be seen as random graphs
with constant set of vertices and a changing set of edges generated with some
probability p, the probability that two vertices can be connected by an edge.
Intuitively, tuning the value of t is somehow equivalent to adding or removing
some edges according to p in a monotonic manner. In order for an appropriate t,
we first try to determine pc, the critical value of p, and then derive t given pc by
making use of their interdependency relationship. The critical value pc is defined
as the probability, under which a giant k-clique percolation cluster will emerge in
the graph, and is known as the percolation threshold for a random network [7].

Natural Document Clustering by Clique Percolation in Random Graphs 123

At this threshold, the percolation transition takes place (see Section 3.2). For
clustering, the assumption behind is that no cluster can be excessively larger
than others by commanding p < pc.

3.2 k-Clique Percolation

Concepts. The concept of k-clique percolation for random networks was re-
cently studied in biological physics in [7]. Its successful applications for uncover-
ing community structure of co-authorship networks, protein networks and word
association graphs can be found in [15]. Here we briefly describe some related
notions.

Definition 1. k-clique is a complete subgraphs of k vertices.

Definition 2. k-clique adjacency: Two k-cliques are adjacent if they share k−1
vertices, i.e., if they differ only in a single vertex.

Definition 3. k-clique percolation cluster is a maximal k-clique-connected sub-
graph, i.e., it is the union of all k-cliques that are k-clique adjacent.

Definition 4. k-clique adjacency graph is a compressed transformation of the
original graph, where the vertices denote the k-cliques of the original graph and
there is an edge between two vertices if the corresponding k-cliques are adjacent.

Moving a particle from one vertex of a k-clique adjacency graph to another along
an edge is equivalent to rolling a k-clique template (threshold clique) from one
k-clique of the original graph to an adjacent one. A k-clique template can be
thought of as an object that is isomorphic to a complete graph of k vertices. It
can be placed onto any k-clique of the original graph, and rolled to an adjacent
k-clique by relocating one of its vertices and keeping its other k−1 vertices fixed.
Thus, the k-clique percolation clusters of a graph are all those subgraphs that can
be fully explored by rolling a k-clique template in them [7]. Fig. 2 illustrates the
effects of one-step rolling of a k-clique template (for k = 2, 3, 4 when t = 3.5) that
produce different topologies of clusters. Note that a k-clique percolation cluster
is equivalent with all maximal cliques adjacent by at least k − 1 vertices. Thus,
compared to the strict maximal clique clusters aforementioned (see Section 3.1),
the cohesiveness of a k-clique percolation cluster can be adjusted by the k value.
In addition, such clusters are connected components on a k-clique adjacency
graph that can be discovered with efficient algorithms. The goal of CPC is to
find all k-clique percolation clusters.

Percolation Threshold pc. How to estimate the threshold probability pc of
k-clique percolation with respect to k? Under such pc (critical point), a giant
k-clique percolation cluster that is excessively larger than other clusters will
take place [10,7]. Intuitively, the greater the value of p (p > pc), the more likely
the giant cluster appears, and the bigger its size is (which includes most graph
nodes), as if using a k-clique can percolate the entire graph.

124 W. Gao and K.-F. Wong

Fig. 2. Effects of k-clique template rolling in a relocation step (black nodes are fixed
and bold edges are involved when rolling) with respect to different k that results in
different k-clique percolation clusters (in dotted regions)

Consider the heuristic condition of template rolling at the percolation thresh-
old: after rolling a k-clique template from a k-clique to an adjacent one by re-
locating one of its vertices, the expectation of the number of adjacent k-cliques,
where the template can roll further by relocating another of its vertices, be equal
to 1. The intuition behind is that a larger expectation value would allow an infi-
nite series of bifurcations for the rolling, ensuring that a giant cluster is present
in the graph. The expectation value can be estimated as (k−1)(|V |−k)pk−1

c = 1,
where (k−1) is the number of template vertices that can be selected for the next
relocation, (|V | − k) is the number of potential destinations for this relocation,
out of which only the fraction pk−1 is acceptable, because each of the new k − 1
edges must exist in order to reach a new k-clique after relocation. Therefore, we
get the percolation threshold function pc(k) with respect to k and |V |:

pc(k) =
1

[(k − 1) (|V | − k)]
1

k−1
. (2)

For k = 2 in particular, pc(2) = 1/(|V | − 2) gives the percolation threshold of
2-clique connectedness (edge connectedness) of the graph, i.e., most graph nodes
can be fully explored by a traversal along the edges.

Natural Document Clustering by Clique Percolation in Random Graphs 125

Generation of Random Graph. By no means, an appropriate graph for
clustering can be obtained without prior information regarding the global or local
statistics of node connectivity in terms of certain degree distribution. In order to
generate such a graph, one commonly specifies a series of hard threshold values
of edge weight t, and then determines a good value tc by trial and error. However,
its time cost is generally very expensive due to the complexity of graph-theoretic
approaches. Thus, tc is usually hard to achieve. The concept of clique percolation
provides a fundamental probabilistic formalism for determining the critical point,
with which we can estimate tc more directly without prior knowledge on statistics
of graph and save the time cost of trial and error.

We examine the co-relation between p and t. Given pc, we estimate the
bound(s) of tc so that the graph with the equivalent connectivity as that at
the percolation threshold can be generated. Because p-t are monotone, an ap-
propriate graph for clustering could be obtained using t slightly less than tc.
This is to prohibit the emergence of a giant cluster at the critical point. For
simplification, we derive the upper bound of tc by an approximation:

tc(k) = pc(k) × (wmax − wmin) , (3)

where wmax and wmin are the maximum and minimum values of document
similarity in the collection, respectively.

3.3 Algorithmic Implementation

The clustering process is turned out to be a problem of finding all maximal
cliques and then merging those with k − 1 common nodes into clusters. The
proposed CPC method includes 5 major steps:

1. Preprocessing: Eliminate words in the stop list, use Porter’s stemmer as
the stemming algorithm, build document vectors, and create a |V | × |V |
document similarity matrix A.

2. Given k as parameter, compute pc(k) using (2), and compute tc(k) using (3).
3. For each entry in matrix A, if wij < tc(k), then reassign wij = 1, otherwise

set wij = 0; Create document similarity graph G using the updated A as
adjacent matrix.

4. Enumerate all maximal cliques in G using Algorithm 1.
5. Create a M × M adjacent matrix B (where M is the number of maximal

cliques identified), find k-clique percolation clusters using Algorithm 2 on B.

Enumerating Maximal Cliques. Algorithms for finding maximal cliques
(step 4 above) was studied in [4,21] and achieved processing time bounded by
O(v2) and O(nmμ)1, respectively. Their algorithms are distinctive because they

1 v is the number of maximal cliques. n, m and μ are the number of the vertices,
edges and all the maximal independent sets, respectively. Note that each maximal
independent set of a graph G corresponds one-to-one to each maximal clique of the
complementary graph of G [4,21].

126 W. Gao and K.-F. Wong

can be applied to a graph of comparatively large size. We implement an efficient
counterpart of the algorithm using back-tracking method (see Algorithm 1). A
maximal click is output at each end of back-track. Thus the running time is
O(v). Because v may be exponential with the growth of the number of vertices
in worst case, our method is not a polynomial time algorithm either.

Algorithm 1. Enumerate All Maximal Cliques
input: Vertex set V and edge set E of graph G.
output: All maximal cliques of G into MC.

procedure EnumMC (MC, U , E)
1: if U = φ then
2: output MC
3: return
4: end if
5: for every vertex u ∈ U do
6: U ⇐ U − {u}
7: EnumMC (MC ∪ {u}, U ∩ {v|(v, u) ∈ E}, E)
8: end for

end procedure

MC ⇐ φ
EnumMC (MC, V, E)

Finding k-Clique Percolation Clusters. When all the maximal cliques are
enumerated, a clique-clique adjacent matrix is prepared. It is symmetric where
each row (column) represents a maximal clique and matrix values are equal to
the number of common vertices between the two cliques (the diagonal entries are
the clique sizes). Note that the intersection of two cliques is always a clique with
at least k − 1 (common) nodes. The k-clique percolation clusters are the one-to-
one correspondents to the connected components in the clique-clique adjacency
graph, which can be obtained using Algorithm 2 (step 5 above). The algorithm
first creates a clique-clique adjacent matrix B, in which every off-diagonal entry
smaller than k − 1 and every diagonal element smaller than k are erased (line
2–12), and then carrying out a depth-first-search (DFS) to find all the connected
components. The resulted connected components are used as indices of maximal
cliques for outputting k-clique percolation clusters.

4 Experimental Evaluations

4.1 Data Sets

We conduct the performance evaluations based on Reuters-215782 corpus, which
is popular for document clustering purpose. It contains 21,578 documents that
2 http://www.daviddlewis.com/resources/testcollections/reuters21578

Natural Document Clustering by Clique Percolation in Random Graphs 127

Algorithm 2. Find All k-Clique Percolation Clusters
input: A set of all maximal cliques MC and k.
output: All k-clique percolation clusters into CPC.

procedure Find-k-CPC (CPC, MC, k)
1: B ⇐ 0 {Initialize entries in B as 0}
2: for i from 1 to M do
3: for j from 1 to M do
4: B[i][j] ⇐ |MCi ∩ MCj | {Count common nodes of two maximal cliques}
5: if (i = j) ∧ (B[i][j] < k) then
6: B[i][j] ⇐ 0 {Off-diagonal element < k is replaced by 0}
7: else if (i �= j) ∧ (B[i][j] < k − 1) then
8: B[i][j] ⇐ 0 {Diagonal element < k − 1 replaced by 0}
9: end if

10: end for
11: end for
12: CC ⇐ φ {Initialize connected component set CC}
13: i ⇐ 1 {Initialize recursion counter i}
14: CC ⇐ DFS (CC, B, i) {Recursive DFS to find connected components CC in B}
15: CPC ⇐ OutputCPC (CC, MC) {CC is as index of MC for the output of CPC}
end procedure

Find-k-CPC (CPC, MC, k)

are manually grouped into 135 classes. The number of documents for different
clusters is very unbalanced, ranging from 1 to 3,945. Many documents have
multiple category labels, and documents in each cluster have a broad scope of
contents. In our experiments, we remove the clusters with less than 5 documents.
We then extract 9,459 documents with unique class labels to form one of our
data sets TS1, and rest of 11,084 documents with multiple class labels form TS2.
At last, we result in 51 classes in TS1 and 73 classes in TS2. Table 1 shows the
statistics of the original Reuters corpus (ORG) and the two resulted data sets.

4.2 Evaluation Metrics

We adopt two quality metrics widely used for document clustering [20], i.e., F-
measure and Entropy. The F-measure of a class i is defined as F (i) = 2PR

P+R .
The precision and recall of a cluster j with respect to a class i are defined as:
P = Precision(i, j) = Nij

Nj
and R = Recall(i, j) = Nij

Ni
, where Nij is the number

of members of class i in cluster j, Nj is the size of cluster j, and Ni is the size
of class i. The overall F-measure of the clustering result is the weighted average
of F (i):

F =
∑

i(|i| × F (i))∑
i |i| , (4)

where |i| is the number of documents in class i.

128 W. Gao and K.-F. Wong

Table 1. Statistics of data sets ORG (Reuters-21578 original corpus), TS1 and TS2

ORG TS1 TS2
of documents 21578 9459 11084

of clusters 135 51 73
max cluster size 3945 3945 3508
min cluster size 1 5 5
avg. cluster size 186 153 167

Entropy provides a measure of homogeneity of a cluster. The higher the ho-
mogeneity of a cluster, the lower the entropy, and vice versa. For every cluster
j in the clustering result, we compute pij , the probability that a member of
cluster j belongs to class i. The entropy of each cluster j is calculated using
Ej = −

∑
i pij log(pij), where the sum is taken over all classes. The total en-

tropy for a set of clusters is calculated as the sum of entropies of each cluster
weighted by the size of that cluster:

E =
m∑

j=1

(
Nj

N
× Ej) , (5)

where Nj is the size of cluster j, m is the number of clusters, and N is the size
of document collection.

4.3 Performance Evaluation

Experiment 1. Table 2 shows the performance of CPC given the different size
of threshold clique. Obviously CPC produces more clusters than the number
of categories in the benchmark. This is because Reuters corpus are manually
classified according to a set of pre-defined keywords (one for each class). Thus
the schema for the categorization is rather unifarious. One document with less
discriminative features may belong to more groups and the grouping criterion
could be more diverse. CPC is less limited by external constraints, which favors
multifarious categorization schemes, and thus has more clusters.

The results on TS2 are better than on the other two data sets in terms of
both F-measure and Entropy. Because TS2 contains documents all belonging
to multiple classes, we think the better results on it can be attributed to CPC
favoring overlapping clusters. We originally expected that the results on ORG
would be far and few between the performances on TS1 and TS2, but the worst
results of the three are observed on it. One possible reason is that we had pruned
the classes with less than 5 documents for producing TS1 and TS2, where fewer
small clusters are remained. This may indicate that CPC is disadvantageous in
identifying excessively small clusters. We can also observe that the algorithm
gives the best results when k = 4. Note that when k = 2, the performance
is significantly poorer than other choices of k. This is because at k = 2, the
procedure of CPC algorithm is degenerated to find connected components, which
is regarded as the most relaxed criterion for clustering.

Natural Document Clustering by Clique Percolation in Random Graphs 129

Table 2. Performance of CPC with respect to different sizes of the threshold clique

of clusters F-measure Entropy
k ORG TS1 TS2 ORG TS1 TS2 ORG TS1 TS2
2 454 106 183 0.501 0.529 0.542 0.381 0.319 0.322
3 328 94 112 0.762 0.836 0.863 0.224 0.107 0.109
4 273 85 97 0.748 0.833 0.875 0.205 0.111 0.104
5 306 91 124 0.603 0.771 0.852 0.237 0.135 0.107
6 362 99 138 0.579 0.725 0.852 0.253 0.151 0.107

Experiment 2. In this experiment, we compare CPC with the other three repre-
sentative clustering algorithms, k-means, single-link and complete-link. Because
it is impossible to command CPC to produce exact number of clusters with the
benchmark, we use k = 4 for the threshold clique, which is the optimal solution
based on Table 2 and also brings about the closest number of clusters to the
benchmark. To make fair comparisons under this condition, we examine every
one of k-means, single-link and complete-link twice: one with the same number
of clusters as the benchmark, and the other with the same number of clusters
as CPC. The results are denoted by KM-b, KM-c, SL-b, SL-c, CL-b and CL-
c (suffixes b and c represent benchmark and CPC, respectively). Furthermore,
because k-means is well-known to be sensitive to local optima, we repeat the
algorithm 50 times with different initializations (initial centroids) and choose
the best outcomes achieved. In order to align with the clustering results of CPC
and the benchmark, we stop the HAC process of single-link and complete-link
when the specified number of clusters are left.

Table 3 shows that CPC outperforms other algorithms on all three test sets
irrespective of the cluster number used. When compared with KM-b, SL-b and
CL-b, CPC can only produce proximate number of clusters, but performs better
on both measurements. This indicates that CPC clustering, although multifar-
ious, is still more accurate than other clusterings with exact the same number
of clusters as benchmark. When using the same number of clusters as CPC, the
results of KM-c, SL-c and CL-c are even worse in some extent. In addition, CPC
performs better on TS2 than TS1, and all the remaining algorithms demonstrate
an opposite outcome, i.e., the results on TS1 are relatively better than TS2. This
testifies the advantages of our method over the partitional algorithms that can
only produce disjoint clusters.

k-means performs the worst among the three. Its poor performance on TS2
is very obvious because k-means can only produce spherical partitional clus-
ters of the corpus. Single-link results in clusters that are connected components
and complete-link clusterings are non-overlapping cliques. It is reasonable for
complete-link performing better than single-link. The superiority of CPC stems
from several main reasons: First, CPC aims to form natural clusters that should
be by all means overlapping for Reuters corpus; Second, the cohesiveness of
CPC clusters is moderate in comparison with relaxed single-link and restricted

130 W. Gao and K.-F. Wong

Table 3. Comparisons of CPC and the other three representative algorithms, k-means
(KM), single-link (SL) and complete-link (CL). We use k = 4

of clusters F-measure Entropy
ORG TS1 TS2 ORG TS1 TS2 ORG TS1 TS2

CPC 273 85 97 0.748 0.833 0.875 0.205 0.111 0.104
KM-b 135 51 73 0.512 0.631 0.391 0.310 0.286 0.372
KM-c 273 85 97 0.503 0.509 0.344 0.326 0.315 0.360
SL-b 135 51 73 0.547 0.572 0.466 0.307 0.290 0.325
SL-c 273 85 97 0.533 0.559 0.485 0.310 0.302 0.317
CL-b 135 51 73 0.694 0.727 0.715 0.219 0.279 0.195
CL-c 273 85 97 0.670 0.759 0.734 0.235 0.162 0.183

complete-link; Third, because CPC does not assume each cluster described by
any distribution, it tends to be more flexible and natural than model-based
approaches like spherical k-means.

5 Conclusion and Future Work

We present a novel clustering algorithm CPC by applying clique percolation
technique introduced from the area of biological physics. A more generalized
framework related to it is the so-called “small-world network” describing many
kinds of community structures in nature and society, which is extensively studied
in random networks [10]. This is the first time for the clique percolation being
applied in document clustering. The preliminary results demonstrate it is feasible
and promising for document clustering. We are confident that CPC is interesting
and worth of further studies. There are still many issues left to be studied more
deeply. One is the determination of threshold values of tc according to the per-
colation threshold probability pc. So far, the mathematical relationship between
them is not exact and clear-cut. To generate an appropriate random graph from
pc, an alternative is to make use of the degree distribution of graph vertices. For
each vertex, some nearest neighbors associated with its degree distribution are
considered to produce the connectivity instead of depending on the harsh cut
by tc (derived from pc). This will lead to the further exploration on techniques
to analyze complex networks. Furthermore, due to the NP-hardness of maxi-
mal clique enumeration algorithms, the CPC method is time-consuming. More
efficient maximal cliques enumeration algorithm is required. In the future, we
will also compare CPC to more advanced clustering algorithms, such as spectral
clustering [8,9] and Information Bottleneck method [18].

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern information retrieval. Addison-Wesley,
New York

2. Baker, L., McCallum, A.: Distributional clustering of words for text classification.
In Proc. of the 21th ACM SIGIR Conference (1998):96–103

Natural Document Clustering by Clique Percolation in Random Graphs 131

3. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum
Press, New York

4. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph. Communications
of the ACM 16 (1971):575–577

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein C.: Introduction to algorithms,
2nd Edition. McGraw-Hill

6. Cutting, D., Karger, D., Pedersen, J., Tukey, J.W.: Scatter/Gather: A cluster-
based approach to browsing large document collections. In Proc. of the 15th ACM
SIGIR Conference (1992):318–329

7. Derenyi, I., Palla, G., Vicsek T.: Clique percolation in random networks. Physics
Review Letters 95 (2005):160202

8. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral grpah
partitioning. In Proc. of the 7th ACM-KDD (2001):269–274

9. Ding, C.H.Q., He, X.F., Zha, H.Y., Gu, M., Simon, H.D.: A min-max cut algorithm
for graph partitioning and data clustering. In Proc. of IEEE ICDM (2001):107–114

10. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Oxford Press, New York
11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing

Surveys 31 (1999):264–323
12. King, B.: Step-wise clustering procedures. Journal of the American Statistical As-

sociation 69 (1967):86–101
13. Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.Y.: Low-complexity fuzzy rela-

tional clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems
9 (2001):595–607

14. Liu, X., Gong, Y.: Document clustering with clustering refinement and model se-
lection capabilitities. In Proc. of the 25th ACM SIGIR Conference (2002):191–198

15. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex netowrks in nature and society. Nature 435 (2005):814–818

16. Raghavan, V.V., Yu, C.T.: A comparison of the stability characteristics of some
graph theoretic clustering methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence 3 (1981):393–402

17. Salton, G.: Automatic text processing: the transformation, analysis, and retrieval
of information by computer. Addison-Wesley, New York

18. Slonim, N., Tishby, N.: Document clustering using word clusters via the information
bottleneck method. In Proc. of the 23th ACM SIGIR Conference (2000): 208–215

19. Sneath, P.H.A., Sokal, R.R.: Numerical taxonomy: the principles and practice of
numerical classification. Freeman, London, UK

20. Steinbach, M., Karypis, G., Kumar, V.: A comparison of doucment clustering tech-
niques. In Proc. of KDD-2000 Workshop on Text Mining (2000)

21. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing 6 (1977):505–517

22. Zhao, Y., Karypis, G.: Criterion functions for document clustering. Technical Re-
port #01-40, Department of Computer Science, University of Minnesota

	Natural document clustering by clique percolation in random graphs
	Citation

	Introduction
	Related Work
	Graph-Based Document Representation
	Graph-Theoretic Clustering

	Clique Percolation Clustering Model
	Preliminaries
	k-Clique Percolation
	Algorithmic Implementation

	Experimental Evaluations
	Data Sets
	Evaluation Metrics
	Performance Evaluation

	Conclusion and Future Work

