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Abstract. Ranking for multilingual information retrieval (MLIR) is a
task to rank documents of different languages solely based on their rel-
evancy to the query regardless of query’s language. Existing approaches
are focused on combining relevance scores of different retrieval settings,
but do not learn the ranking function directly. We approach Web MLIR
ranking within the learning-to-rank (L2R) framework. Besides adopt-
ing popular L2R algorithms to MLIR, a joint ranking model is created
to exploit the correlations among documents, and induce the joint rele-
vance probability for all the documents. Using this method, the relevant
documents of one language can be leveraged to improve the relevance es-
timation for documents of different languages. A probabilistic graphical
model is trained for the joint relevance estimation. Especially, a hidden
layer of nodes is introduced to represent the salient topics among the re-
trieved documents, and the ranks of the relevant documents and topics
are determined collaboratively while the model approaching to its ther-
mal equilibrium. Furthermore, the model parameters are trained under
two settings: (1) optimize the accuracy of identifying relevant documents;
(2) directly optimize information retrieval evaluation measures, such as
mean average precision. Benchmarks show that our model significantly
outperforms the existing approaches for MLIR tasks.

1 Introduction

Search across multiple languages is desirable with the increase of many languages
over the Web. Multilingual information retrieval (MLIR) for web pages however
remains challenging because the documents in different languages have to be
compared and merged appropriately. It is hard to estimate the cross-lingual
relevancy due to the information loss from query translation.

Recently, machine learning approaches for ranking, known as learning-to-rank
(L2R), have received intensive attention [2,4,5,20]. The learning task is to op-
timize a ranking function given the data consisting of queries, the retrieved
documents and their relevance judgments made by human. Given a new query,
the learned function is used to predict the order of the retrieved documents.

However, there is little research to adapt the state-of-the-art ranking algo-
rithms for MLIR. Existing techniques usually combine query translation and
� This work was done while the first author visiting Microsoft Research Asia.
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monolingual retrieval to derive a relevancy score for each document. Then the
relevancy scores from different settings are normalized to be comparable for final
combination and ranking [10,15,17]. Such approaches do not directly incorporate
any feature to the MLIR relevancy, hence does not work well for multilingual
Web search where a large number of relevancy features can be utilized.

Multilingual L2R aims to optimize a unique ranking function for documents
of different languages. This can be done intuitively by representing documents
within a unified feature space and being approached as a monolingual rank-
ing task. Nevertheless, information loss and misinterpretation from translation
makes the relevancy features between query and individual documents (espe-
cially in the target language) inaccurate, rendering the multilingual ranking a
more difficult problem.

In this work, we propose to leverage the relevancy among candidate doc-
uments to enhance MLIR ranking. Because similar documents usually share
similar ranks, cross-lingual relevant documents can be leveraged to enhance the
relevancy estimation for documents of different languages, hence complement
the inaccuracies caused by query translation errors. Given a set of candidate
documents, multilingual clustering is performed to identify their salient topics.
Then a probabilistic graphical model, called Boltzmann machine (BM) [1,8], is
used to estimate the joint relevance probability of all documents based on both
of the query-document relevancy and the relevancy among the documents and
topics. Furthermore, we train our model by two means: (1) optimizing the ac-
curacy of identifying relevant documents; (2) directly optimizing IR evaluation
measures. We show significant advantages of our method for MLIR tasks.

2 Related Work

MLIR is a task to retrieve relevant documents in multiple languages. Typically,
the queries are first translated using a bilingual dictionary, machine transla-
tion software or a parallel corpus, which is followed by a monolingual retrieval.
A re-ranking process then proceeds to merge different ranked lists of different
languages appropriately. Existing work is focused on how to combine the incom-
parable scores associated with each result list. The scores are normalized with
the methods like Min-Max [3], Z-score [15], CORI [16], etc., and combined by
CombSUM [3] or logistic regression [15] to generate the final ranking score.

Although some work [15,17] involve learning, they are still focused on adjust-
ing the scores of documents from different monolingual result lists, ignoring the
direct modeling of various types of features for measuring MLIR relevancy. Re-
cently, Tsai el al. [18] presented a study of learning a merge model by learning
the unique ranking function for different features, demonstrating the advantages
of L2R for MLIR ranking. Although related to their work, our approach focuses
on a new model that can leverage the relevancy among documents of different
languages in addition to the commonly used relevancy features for the query and
individual documents.
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3 Learning for MLIR Ranking

The learning framework for MLIR ranking aims to learn a unique ranking func-
tion to estimate comparable scores for documents of different languages. An im-
portant step is to design a unified multilingual feature space for the documents.
Based on these features, existing monolingual L2R algorithms can be applied for
MLIR ranking. We will give details about constructing the multilingual feature
space in Section 5. In this section, we introduce the learning framework.

Suppose that each query q ∈ Q (Q is a given query set) is associated with
a list of retrieved documents Dq = {di} and their relevance labels Lq = {li},
where li is the rank label of di and may take one of the m rank levels in the set
R = {r1, r2, . . . , rm} (r1 � r2 � . . . � rm, where � denotes the order relation).
So the training corpus can be represented as {q ∈ Q|Dq, Lq}.

For each query-document pair (q, di), we denote Φ : f(q, di) = [fk(q, di)]Kk=1 as
the feature vector, where fk is one of the relevancy feature functions for (q, di).
The goal is to learn a ranking function F : Φ → � (� is the real value space)
to assign a relevance score for the feature vector of each retrieved document.
Specifically, a permutation of integers π(q, Dq, F ) is introduced to denote the
order among the documents in Dq ranked by F , and each integer π(di) refers
to the position of di in the result list. Then the objective of ranking is formu-
lated as searching for an optimal function: F̂ = argminF

∑
q E(π(q, Dq, F ), Lq)

which minimizes an error function E that represents the disagreement between
π(q, Dq, F ) and the desirable rank order given by Lq over all the queries.

The ranking function and error function have different forms in different rank-
ing algorithms. The standard probabilistic classification (e.g., Support Vector
Classifier) or metric regression (e.g., Support Vector Regression) can be used
for ranking by predicting rank labels or scores of the documents. Most of the
popular ranking models like Ranking SVM (large-margin ordinal regression) [5],
RankBoost [4], RankNet [2], etc., aim to optimize the pair-wise loss based on the
order preference and classify the relevance order between a pair of documents.
More recently, SVM-MAP [20] is proposed to directly optimize IR evaluation
measure – Mean Average Precision (MAP).

Under this framework, existing monolingual ranking algorithms can be applied
for multilingual ranking in a similar way as [18] using FRank.

4 Joint Ranking Model for MLIR

Although monolingual ranking algorithms can be applied for MLIR, the infor-
mation loss caused by query translation makes it a more difficult task. To com-
plement the query-document relevancy, we propose a joint ranking model to
additionally exploit the relationship among documents of different languages. If
two documents are bilingually correlated or similar, and one of them is relevant
to the query, it is very likely that the other is also relevant. By modeling the sim-
ilarity, relevant documents in one language may help the relevance estimation of
documents in a different language, and hence can improve the overall relevance
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estimation. This can be considered as a variant of pseudo relevance feedback. In
our study, Boltzmann machine (BM) [1,8] is used to estimate the joint relevance
probability distribution because it is well generalized to model any relationship
among objects.

4.1 Boltzmann Machine (BM) Learning

BM is a undirected graphical model that makes stochastic predictions about
which state values its nodes should take [1]. The global state s of the graph
is represented by a vector s = [s1s2 . . . sn], where si = ±1 is the state of the
node i and n is the total number of graph nodes. The system’s energy under a
global state is defined as E(s) = − 1

2

∑
ij wijsisj −

∑
i θisi, where wij is the edge

weight between node i and j, θi is the threshold of node i. After some enough
time of the dynamics process, the system will reach a thermal equilibrium, where
the probability to find the graph in global state depends only on the states
of each node and its neighbors, and follows the Boltzmann distribution, i.e.,
P (s) = 1

Z exp(−E(s)), where Z =
∑

s exp(−E(s)) is the normalization function
over all possible states.

The training of a machine is to resolve the weights and thresholds in such a
way that the Boltzmann distribution approximates the target distribution P̃ (s)
as close as possible. The difference between the two distributions is measured by
Kullback-Leibler (K-L) Divergence [9]: K(P̃ ||P ) =

∑
s P̃ (s) log P̃ (s)

P (s) . The objec-
tive is to minimize the divergence using gradient descent. The weight updating
rules of the following form can be obtained:

Δwij = α(< sisj >clamped − < sisj >free) (1)
Δθi = α(< si >clamped − < si >free) (2)

where α is the learning rate, and < . >clamped and < . >free denote the expecta-
tion values of the node states obtained from the “clamped” and “free-running”
stages in training respectively. In clamped stage, states are fixed to the patterns
in training data; in free-running stage, states are changed based on the model’s
stochastic decision rule. The procedure alternates between the two stages until
the model converges.

4.2 Joint Relevance Estimation Based on BM

For each query, one can intuitively represent the retrieved documents as nodes,
the correlations between them as edges, and the rank label of each document as
node state. Then each BM naturally corresponds to the instances of one query.
However, the number of edges is quadratic to the number of documents with this
representation. This is unacceptable for Web search where hundreds of candidate
documents will be returned. Our idea is to first discover the salient topics using
a clustering technique, and the direct document connections are replaced by
the edges between documents and topics. In particular, only some top largest
clusters are kept so that the size of the graph’s connectivity is linear with the
number of documents.
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For the salient topics, we perform multilingual clustering on the retrieved
documents of each query q (see Sect. 4.3). We denote q’s salient topic set as
Tq = {tj}. Then Tq and Dq correspond to different types of nodes in the graph.
The topic nodes are regarded hidden units because their states (rank labels) are
not explicitly provided, while the document nodes are output units as their rank
labels will be the output of ranking. Though a document belongs to one topic at
most, edges exist between a document node and every topic node, representing
the strength of their correlation.

For each q, we denote sdq = [sdi] and stq = [stj ] as the state vectors of the
document and topic nodes respectively, then the energy of the machine becomes:

E(s, q) = E(sdq, stq, q) = −
∑

i

Θ · f(q, di)sdi − 1
2

∑

i,j

W · g(di, tj)sdistj (3)

where f = [fx(q, di)]
X
x=1 and g = [gy(di, tj)]

Y
y=1 are the X-dimension feature

vector of query-document relevancy on document nodes and the Y -dimension
document-topic relevancy on edges respectively, and Θ and W are their cor-
responding weight vectors. Then the probability of the global state P (s, q) =
P (sdq, stq, q) follows Boltzmann distribution (see Sect. 4.1).

4.3 Multilingual Clustering for Identifying Salient Topics

For clustering and measuring the relevancy among documents, some transla-
tion mechanism has to be employed for comparing the similarity of documents
in different languages. We use the cross-lingual document similarity measure
described in [12] for its simplicity and efficiency. The measure is a cosine-like
function with an extension of TF-IDF weights for the cross-lingual case, using a
dictionary for keyword translation. The measure is defined as follows:

sim(d1, d2) =

∑
(t1,t2)∈T (d1,d2)

tf(t1, d1)idf(t1, t2)tf(t2, d2)idf(t1, t2)√
Z ′ (4)

where Z ′ is given as

Z′ =

⎡

⎣
∑

(t1,t2)∈T (d1,d2)

(tf(t1, d1)idf(t1, t2))
2 +

∑

t1∈T (d1,d2)

(tf(t1, d1)idf(t1))
2

⎤

⎦ ×
⎡

⎣
∑

(t1,t2)∈T (d1,d2)

(tf(t2, d2)idf(t1, t2))
2 +

∑

t2∈T (d2,d1)

(tf(t2, d2)idf(t2))
2

⎤

⎦

T (d1, d2) denotes the sets of word pairs where t2 is the translation of t1, and t1
(t2) occurs in document d1 (d2). T (d1, d2) denotes the set of terms in d1 that
have no translation in d2 (T (d1, d2) is defined similarly). idf(t1, t2) is defined
as the extension of the standard IDF for a translation pair (t1, t2): idf(t1, t2) =
log

(
n

df(t1)+df(t2)

)
, where n denotes the total number of documents in two lan-

guages and df is the word’s document frequency. In our work, the cross-lingual
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document similarity is measured as such, and the monolingual similarity is calcu-
lated by the classical cosine function. K-means algorithm is used for clustering.
We introduce only k largest clusters into the graph as salient topics, where k
is chosen empirically (k = 6 achieves best results in our case) based on the
observation that minor clusters are usually irrelevant to the query.

Eq. (4) is also used to compute the edge features, i.e., the relevancy between
documents and salient topics. The edge features for each document-topic pair
are defined as 12 similarity values based on the following combinations consid-
ering three aspects of information: (1) language — monolingual or cross-lingual
similarity depending on the languages of two documents concerned; (2) field of
text — the similarity is computed based on title, body or title+body; and (3)
how to do the average for the value — average the similarity values with all the
documents in the cluster or compute the similarity between the document and
the cluster’s centroid.

4.4 BM Training as a Classifier

The training is to adjust the weights and thresholds in such a way that for
each query the predicted probability of document relevancy, i.e., P (sdq, q) =
∑

stq
P (sdq, stq, q), approximates to the target distribution P̃ (sdq, q) as closely

as possible, where P̃ (sdq, q) =
{

1, if sdq = Lq;
0, otherwise is obtained from the training

data. By minimizing the K-L Divergence, we obtain the updating rules

Δθx = α
∑

q,i

fx(q, di) (< sdi >clamped − < sdi >free) (5)

Δwy = α
∑

q,i,j

gy(di, tj) (< sdistj >clamped − < sdistj >free) (6)

which have the similar forms as Eq. (1)–(2).
The training procedure alternates between the clamped and the free stages,

which needs to repeat several times with different initial weight values to avoid
local optima. Unlike an output unit whose state is fixed to its human label in
the clamped phase, the state value of a hidden unit (i.e., a topic) is decided
by the model in both stages. Note that the exact estimation of the expectation
values < . >clamped and < . >free requires enumerating all the possible state
configurations. So we use Gibbs sampling [19], a Markov Chain Monte Carlo
method, to approximate their values for efficiency.

4.5 BM Inference for MLIR Ranking

For a new query q and the retrieved documents Dq, the relevance probability of
a document di ∈ Dq can be estimated by P (sdi, q) =

∑
sdq\sdi,stq

P (sdq, stq, q).

Then it is straightforward to determine l̂i = argmaxsdi
P (sdi, q) as the rank

label for ranking and use the value of P (l̂i, q) to break the tie. However, exact
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estimation of P (sdi, q) is time-consuming since an enumeration of all the possible
global states is needed again. For the efficiency of online prediction, we use mean
field approximation [6] for the inference. Mean field theory has solid foundation
based on variational principle. Here we simply present the procedure of the mean
field approximation for BM, and leave the formal justifications to [6].

In mean field approximation, the state distribution of each node only relies
on the states of its neighbors which are all fixed to their average state value. So
given the machine, we have the following:

P (sdi = r) =
exp

[∑
j W · g(di, tj) < stj > r + Θ · f(q, di)r

]

∑
r exp

[∑
j W · g(di, tj) < stj > r + Θ · f(q, di)r

] (7)

P (stj = r) =
exp [

∑
i W · g(di, tj)r < sdi >]

∑
r exp [

∑
i W · g(di, tj)r < sdi >]

(8)

< sdi >=
∑

r

P (sdi = r)r (9) < stj >=
∑

r

P (stj = r)r (10)

where Eq. (7) computes the relevance probability of a document given the av-
erage rank labels of all the topics. Similarly, Eq. (8) computes the relevance
probability of a topic given the average rank labels of all the documents. Eq.
(9) and (10) estimate the average rank labels given the probability distributions
computed by Eq. (7) and (8).

Eq. (7)–(10) are called mean field equations, and can be solved using the
following iterative procedure for a fixed-point solution:

1. Assume an average state value for every node;
2. For each node, estimate its state value probability using Eq. (7) and (8)

given the average state values of its neighbors;
3. Update the average state values for each node using Eq. (9) and (10);
4. Go to step 2 until the average state values converge.

Each iteration requires O(|Tq|+ |Dq|) time, being linear to the number of nodes.

4.6 BM Training with MAP Optimization

In the previous sections, BM is optimized for the rank label prediction. However,
rank label prediction is just loosely related to MLIR accuracy since the exact
relevance labels are not necessary to derive the correct ranking orders. In [20],
ranking model directly optimizing IR evaluation measure reports the best rank-
ing performance. Hence, we will train our model in a similar way, i.e., optimizing
the MAP of MLIR.

MAP is the mean of average precision over all the queries. We know that the
predicted ranking order is produced by π(q, Dq, F ). Then the average precision

for q is defined as AvgPq =
∑ n(q)

i=1 pq(i)yi
∑ n(q)

i=1 yi

, where n(q) is the number of retrieved

documents, yi is assigned with 1 or 0 depending on di′ is relevant or not (di′
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is the document ranked at the i-th position, i.e., π(di′ ) = i), and pq(i) is the
precision at the rank position of i: pq(i) = 1

i

∑
j<i yj .

Instead of simply maximizing MAP, we maximize the following objective:

MAP − C
∑

y

||wy||2 − C
∑

x

||θx||2 (11)

where the last two terms are L-2 regularization terms representing the complexity
of the model. So it is a tradeoff between the model’s accuracy and complexity
controlled by C. SVM-MAP [20] used a similar function to minimize a linear
combination of the same L-2 norm with the hinge loss relaxation of MAP loss.

Because MAP is not a continuous function with the weights of the BM, Pow-
ell’s Direction Set Method [13], which does not involve derivation computa-
tions, is used for the optimization. To achieve the optimal performance, Powell’s
method is repeatedly called many times with different initial values of the BM’s
weights. One particular set of the initial values is the weights learned when the
BM is trained to optimize classification accuracy in Sect. 4.4. The mean field
approximation (Sect. 4.5) is used in model inference as well.

5 Experiments and Results

We evaluated the proposed MLIR ranking algorithms. The experiments are con-
ducted on two datasets: (1) TREC5&6 English-Chinese CLIR data; (2) Chinese
and English multilingual Web search data. The baseline is the ranking score
combination algorithm, referred to as ScoreComb below. Specifically, different
ranking algorithms including Ranking SVM and SVM-MAP are used to learn
ranking functions for Chinese and English documents separately. Then the scores
are combined by a log linear model following [15,17].

Three prevalent L2R algorithms, i.e., SVC (SVM classifier with probability
estimation), RSVM (Ranking SVM), and SVM-MAP, are used to compare the
performance of the MLIR ranking. These algorithms represent three typical cat-
egories of ranking schemes: (1) SVC is a typical classification-based ranking al-
gorithm; (2) RSVM is the state-of-the-art ranking algorithm based on pair-wise
preference order classification; (3) SVM-MAP is a ranking algorithm directly
optimizing IR relevancy measure. We used the source codes of LibSVM1, SVM-
Light2 and SVM-map3 to run SVC, RSVM and SVM-MAP, respectively.

The proposed BM classifier (BMC) and BM classifier with MAP optimizer
(BMC-MAP) are also performed for comparison. In order to directly assess the
contribution of the relevancy among documents, we reduced BMC and BMC-
MAP into the conventional log linear models by simply removing the hidden
units and the edges. This produces two more corresponding systems to compare,
namely LOG and LOG-MAP.
1 http://www.csie.ntu.edu.tw/∼jlin/libsvm
2 http://svmlight.joachims.org/
3 http://projects.yisongyue.com/svmmap/
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5.1 Experiments on TREC CLIR Data

We study the contribution of cross-lingual document similarity on CLIR. The
CLIR task of TREC5&6 is defined as using English queries to retrieve Chinese
documents. Although the multilingual result merge is not required, it is valuable
to study the effectiveness to improve cross-lingual relevance estimation for Chi-
nese documents by exploiting the relevant documents of English. Because the
joint ranking model requires English retrieval, we additionally index the English
TIPSTER corpus from LDC. We use query CH1-28 (TREC5 topics) for training
and CH29-54 (TREC6 topics) for testing.

Three free machine translation engines are used to translate English queries
into Chinese, and then an Okapi-BM25 (BM25) model [14] is employed for Chi-
nese document retrieval based on the combined query translations. For learning
the ranking models, we implement 25 commonly used query-document relevancy
features in the literature [11] based on the translated queries, including the scores
of TFIDF, BM25, and language modeling IR, etc.

To create BM for joint relevance ranking, 500 English documents are retrieved
from TIPSTER using the original query, and are ranked by the BM25 scores.
Since there is no relevancy annotation for English documents, we choose 20
documents and assign them one of the following two labels: 0 for the last 10
documents in the result; 1 the top 10. During both training and inference, the
states of the English document nodes are fixed to one of the above values. This
assumes that top-10 (last-10) English documents are relevant (irrelevant).

The CLIR results are given in Table 1 using average precision (AP) and 11-
point precision-recall measures. Since no multilingual result merge is involved,
the BM25 score between the translated query and the Chinese document is used
as the baseline. Obviously, all the learning algorithms outperform the BM25
baseline. Furthermore, SVM-MAP outperforms RSVM and SVC, and BMC-
MAP outperforms BMC, implying that directly optimizing IR measure is also
critical to CLIR ranking.

Table 1. TREC6 CLIR performance by 11-point precision-recall and AP measure

recall BM25 SVC RSVM SVM-MAP LOG BMC LOG-MAP BMC-MAP

0 0.658 0.736 0.788 0.798 0.715 0.796 0.797 0.815
0.1 0.495 0.476 0.531 0.598 0.475 0.583 0.592 0.591
0.2 0.411 0.393 0.427 0.486 0.391 0.469 0.480 0.502
0.3 0.345 0.354 0.385 0.414 0.349 0.412 0.411 0.423
0.4 0.289 0.324 0.346 0.368 0.324 0.367 0.366 0.376
0.5 0.251 0.282 0.299 0.316 0.281 0.312 0.315 0.323
0.6 0.203 0.222 0.241 0.245 0.214 0.247 0.241 0.269
0.7 0.164 0.174 0.200 0.185 0.175 0.183 0.182 0.220
0.8 0.074 0.099 0.101 0.086 0.099 0.088 0.084 0.107
0.9 0.010 0.020 0.027 0.016 0.018 0.017 0.016 0.030
1.0 0.002 0.007 0.012 0.006 0.004 0.007 0.006 0.008
AP 0.249 0.253 0.280 0.301 0.250 0.299 0.299 0.314
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We further conducted t-test, which shows that BMC significantly outperforms
LOG (p = 0.009) and RSVM (p = 0.011). This indicates the effectiveness of
utilizing monolingual IR results to enhance CLIR. The AP improvement from
SVM-MAP and LOG-MAP to BMC-MAP is not as large as from LOG to BMC.
This less enhancement may be caused by optimizing Eq. (11). Different from
SVM-MAP training which achieves global optimum, BMC-MAP training only
achieves a sub-optimal solution. However, although suffered from under-training,
BMC-MAP still significantly outperforms SVM-MAP by 4.15% (p = 0.032).

5.2 MLIR Experiments on Web Search Data

Multilingual Web Search Data. Our Web search data consists of queries
and returned web pages from query logs of a commercial search engine. There
are two separate monolingual query logs for English and Chinese. The retrieved
web pages are annotated with ratings from 0 (irrelevant) to 5 (perfect) by hu-
man labelers. For each web page of a given query, query-dependent features are
extracted from the query combined with four different sources: the anchor text,
the URL, the document title and the body. Some query-independent features
are also extracted, such as PageRank. There are 352 such features in total for
each one of the two languages.

For the multilingual ranking, we manually select 1,000 queries which are in the
English query log and their translations are in the Chinese log. Based on these
queries and their labeled results, we construct a bilingual ranking corpus: Given
an English query, the corresponding Chinese and English web pages associated
with the rank labels are put together. This brings 17,791 Chinese and 32,049
English pages in total. In addition, the edge features specific to our joint model,
i.e., the 12 similarities measuring the correlations between documents and salient
topics, are also computed. All the model parameters are tuned on a development
set with 197 queries and 803 queries are used for 4-fold cross validation.

Experiments on Multilingual Ranking. The results of MAP, precision@1,
5,10 and NDCG@1,5,10 (NDCG — Normalized Discounted Cumulative Gain [7])
are presented in Fig. 1. Apparently, all the models learned using the multilingual
feature space outperform the ScoreComb baseline. The t-test shows that all
improvements are statistically significant (p < 0.05). This confirms the advantage
of the L2R approaches which directly learn a ranking function from features.

By optimizing the ranking order of document pairs, RSVM is usually believed
to perform better than SVC. This is confirmed by our MLIR results. Similar as
the TREC result, BMC achieves comparable results with RSVM, implying that
classification-based ranking algorithms, by making use of the relevancy among
individual documents, can perform equally well with the state-of-the-art ranking
models. Interestingly, SVM-MAP underperforms RSVM. This may be because
SVM-MAP cannot exploit the fine-grained 6-level relevance while RSVM can.

BMC-MAP outperforms all other models. In terms of MAP, it outperforms
the baseline by 30.22% (p = 0.003), SVC by 15.12% (p = 0.006), BMC by 5.33%
(p = 0.029), RSVM by 3.90% (p = 0.023), and SVM-MAP by 7.40% (p = 0.009).
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Fig. 1. Comparison of ranking results using multilingual Web search data

Table 2. The comparison results of using and without using clusters in BM models

MAP P@1 P@5 P@10 NDCG@1 NDCG@5 NDCG@10

LOG 0.484 0.511 0.435 0.397 0.546 0.591 0.641
BMC 0.497 0.527 0.451 0.409 0.557 0.604 0.651

LOG-MAP 0.504 0.552 0.452 0.413 0.551 0.594 0.649
BMC-MAP 0.523 0.580 0.478 0.432 0.587 0.626 0.674

Table 2 shows the enhancement from the joint ranking model by comparing
BMC (BMC-MAP) with LOG (LOG-MAP). The p-value on MAP difference is
0.04 between BMC and LOG, and is 0.027 between BMC-MAP and LOG-MAP,
implying the significant contribution of the inter-document relevancy.

6 Conclusion and Future Work

We studied to rank web pages of different languages based on their relevancy
to the query using the learning-to-rank framework. By constructing a unified
multilingual feature space, popular L2R algorithms are applied to MLIR rank-
ing, and significantly outperform the score combination baseline. For further
improvement, a joint ranking model is proposed to exploit document similarities
in addition to the commonly used query-document relevancy. This new model
first uncovers salient topics among retrieved documents, and then collabora-
tively identifies relevant documents and topics using their content similarities.
Significant ranking enhancement is achieved. Our model is a generic ranking
mechanism. Besides the content similarity, any types of relationship among web
pages from different languages, such as structural similarity, hyperlink relation,
etc., will be used to improve ranking in our future work.
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