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ABSTRACT
Web search ranking models are learned from features origi-
nated from different views or perspectives of document rel-
evancy, such as query dependent or independent features.
This seems intuitively conformant to the principle of multi-
view approach that leverages distinct complementary views
to improve model learning. In this paper, we aim to obtain
optimal separation of ranking features into non-overlapping
subsets (i.e., views), and use such different views for rank
learning and adaptation. We present a novel semi-supervised
multi-view ranking model, which is then extended into an
adaptive ranker for search domains where no training data
exists. The core idea is to proactively strengthen view con-
sistency (i.e., the consistency between different rankings each
predicted by a distinct view-based ranker) especially when
training and test data follow divergent distributions. For
this purpose, we propose a unified framework based on list-
wise ranking scheme to mutually reinforce the view con-
sistency of target queries and the appropriate weighting of
source queries that act as prior knowledge. Based on LETOR
and Yahoo Learning to Rank datasets, our method signif-
icantly outperforms some strong baselines including single-
view ranking models commonly used and multi-view ranking
models that do not impose view consistency on target data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Multi-view rank learning; rank adaptation; view consistency

1. INTRODUCTION
The capability of combining a large number of features in

an optimal way is highly desirable for search engines [29].
Learning to rank or rank learning for Information Retrieval
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(IR) aims to learn how to combine the predefined relevance
features properly for better ranking search results.

Typically, ranking features consist of hundreds of rele-
vance scores derived from various retrieval relevance models,
each of which corresponds to a permutation of search results
from some particular perspective. For example, query de-
pendent features, such as frequencies of the query terms in
the document and BM25, are constructed from the perspec-
tive of query-document relevancy, while query independent
features, such as PageRank and HostRank, are provided by
link analysis algorithms depending on the connectivity of
documents only. It can be expected that these distinct views
of features, although possibly redundant sometimes, if com-
bined correctly, may afford strong complementarity to each
other and result in considerable improvement for ranking.

Such natural feature partition seems intuitively confor-
mant to the philosophy of multi-view learning [6, 1, 41].
It was found that having multiple representations instead
of combining all features into one view can improve clas-
sification performance when many unlabeled examples are
available in addition to the labeled ones. For instance, the
idea of co-training [6] is to train one learner on each view of
the labeled data, and then each learner iteratively labels the
unlabeled subsets of data where it has the highest confidence
in its prediction. Since the views are independent, the newly
labeled examples by one learner can give the other learner
novel information for improving its model parameters.

Moreover, rank learning requires large training set that
is very expensive or time-consuming to obtain. Co-training
follows semi-supervised fashion where it needs only partially
labeled data, and unlabeled data can also participate in
training. In the competitive Web search market, it would be
much desirable to quickly deploy ranking models into other
search domains to support different verticals or search in
the market of different languages where training data are
rarely available. As a result, we need to extend in-domain
ranking to rank adaptation for good out-of-domain perfor-
mance by bridging domain gap [23, 13, 39, 12, 21, 22].
The semi-supervised nature of co-training-based algorithms
makes them naturally extendible to cross-domain setting.

Although classification methods based on co-training are
common [16, 17, 7, 32], the study of multi-view rank learn-
ing is almost absent. Existing multi-view classifiers hardly
could be applied for ranking directly because (1) the con-
centration of ranking is on the order of a list of documents
rather than their absolute class labels; (2) the confidence
measure of a ranker and the consistency between rankers on
distinct views are radically different from that of classifiers,
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which may require estimating the permutation probability
of output rankings; (3) there is no explicit view boundary or
feature definition provided in most ranking benchmark data
sets. In addition, multi-view methods assume that differ-
ent view-based learners give compatible predictions on the
same instance with certain probability [6], but such view
consistency assumption is largely violated in a cross-domain
setting where training and test data are drawn from differ-
ent distributions. All these render multi-view approach for
rank learning and adaptation practically challenging.

In this paper, we investigate a novel and effective solution
to tackle these challenges based on typical listwise ranking
scheme [9, 40, 34, 36, 42], specifically ListMLE [40]. We ex-
tend an automatic feature decomposition approach for co-
training [15], by which we simultaneously obtain the optimal
feature split and exploit such multiple views for rank learn-
ing and adaptation. Different from [15] which is focused on
class conditionally independent assumption, we argue that
enhancing view consistency across domains can improve the
adaptation effectiveness for multi-view ranking algorithms.
We propose a unified ranking framework that incorporates
listwise loss, listwise view consistency on target queries and
the appropriate weighting of source queries. To deal with
the lack of view agreement in adaptation setting, our method
adopts an iterative procedure to mutually reinforce the view
consistency of ranking on target queries and the weighting of
source queries. Intuitively, since transferrable source queries
likely have better view consensus in both domains, impos-
ing view consensus on target queries may result in a stronger
model being helpful to weigh out those transferrable source
queries that can be used to further improve view consistency
in target domain. With LETOR3.0 and Yahoo Learning to
Rank datasets, experimental results show that our method
makes significant improvements over the baselines.

The rest of this paper is organized as follows: Section 2
reviews the related work; Section 3 gives the preliminaries of
using multiple views for ranking and adaptation; Section 4
presents the proposed multi-view ranking method; Section 5
descries experiments and discusses results; Section 6 draws
conclusion and looks ahead to future work.

2. RELATED WORK
In this section, we briefly review ranking, domain adapta-

tion, multi-view learning and how they were related.

2.1 Rank Learning and Adaptation
Rank learning is to optimize a ranking function given data

consisting of queries, the retrieved documents and their rel-
evance judgements. Given a new query, the learned func-
tion is used to predict the order of retrieved documents.
Based on input spaces, three categories of approaches have
been proposed, namely pointwise, pairwise and listwise ap-
proach. Listwise scheme [9, 40, 34, 36, 42] addresses ranking
by considering the entire list of documents associated with
the same query as instance and considers positional informa-
tion in the loss function which intuitively makes more sense
with the nature of ranking [29]. Our algorithm is listwise.
A comprehensive survey on learning to rank is in [29].

It is worth mentioning that for saving labeling cost of
ranking data, some studies explored semi-supervised rank
learning with only partially labeled data in transductive [18]
or inductive [2] manner. Multi-view approach is inherently
semi-supervised and can be practiced in either way.

Domain adaptation [5, 24, 25, 27, 43] aims to save in-
domain labeling expense by using out-of-domain training
data, and tries to bridge the dataset shift [31] between distri-
butions of two domains by using their common information.
It is difficult to directly use classifier adaptation for ranking
as rank adaptation is comparatively more challenging [23].
Therefore, rank adaptation received more and more atten-
tion recently [23, 13, 39, 12, 21, 22, 8]. In [13], the Gradient
Boosting Tree structure of ranker learned from source data
was adjusted using some target labeled data. In [23], prior
knowledge was learned from source domain and the simi-
larity of parameters between two domains was considered
when training the target ranker. Both instance-based and
feature-based adaptation were conducted for ranking with
the help of a few target training data in [12]. Rank adap-
tation was also dealt with in [39] by bridging heterogeneous
domains via some shared latent space. In [21], rankers were
learned from two domains separately and then interpolated
for a stronger model. Various instance-weighting schemes
were proposed in [22] for adaptation with a more relaxed
setting where no target ranking data is labeled. More re-
cently, active selection of target queries was studied by [8]
for improving rank adaptation performance. All these rank
adaptation methods are of single view.

2.2 Multi-view Learning
Multi-view learning is a semi-supervised framework that

utilizes the consensus among learners trained on indepen-
dent views of the same problem to improve the model’s
overall performance. It holds two basic assumptions, i.e.,
conditional independence assumption and view consistency
assumption. Early approaches include co-training [6] and
its variants [41, 16]. Then the idea was widely explored or
extended later on [1, 3, 17, 7, 32]. For example, the unnec-
essarily strong view-independence assumption was relaxed
in [1], which then suggested that the disagreement rate of
two independent hypotheses upper bounds the error rate of
either hypothesis. It was also proved that a weaker expand-
ing property called ε-expandability on the multi-view data
distribution is sufficient for co-training to work [3].

Co-training also assumes that all labels on the examples
with non-zero probability are consistent with both hypothe-
ses of each view [6]. Under this view consistency assumption,
some algorithms impose consensus constraint between the
predictors, each trained from one view of data, to improve
the learning performance [35, 19, 20, 28]. A co-regularization
approach [35] was proposed to learn a multi-view classifier
from partially labeled data using a view-consensus-based
regularization term. A supervised algorithm named SVM-
2K [19] was proposed which imposed a similarity constraint
between two distinct view-based SVMs. A two-view trans-
ductive SVM [28] was constructed by extending the work
of [19] for utilizing the large set of unlabeled data available.
A two-view learning algorithm [20] was studied by using
stochastic agreement regularization based on a constrained
EM. An automatic feature decomposition algorithm [15] was
presented for pseudo multi-view learning where the original
data has only one view.

All these methods deal with classification problem and
treat distinct domains indiscriminately. We are focused on
multi-view rank learning problem and our setting is more
general where training and test data can come from related
but different domains.

64



2.3 Hybrid Approach
The combination of multi-view learning and adaptation is

potentially powerful but not well studied. Ganchev et al. [20]
applied the proposed two-view semi-supervised learner to
cross-domain sentiment classification, but they did not con-
sider bridging domain gap explicitly in the model. Chen et
al. [14] presented a variant of co-training for domain adapta-
tion based on two logistic regression classifiers, and feature
correlation between two domains was employed for feature
selection that aimed to bridge the gap, but view consistency
factor was not considered. Zhang et al. [44] integrated multi-
view learning and transfer learning with a large margin ap-
proach, where source training data were used to learn a large
margin classifier and the data from both domains were used
to impose consistencies among multiple views. However,
they did not co-relate domain gap to view consistency in
the model which is important to adaptation. All these algo-
rithms are based on classification models.

Multi-view semi-supervised learning was explored for rank-
ing multilingual documents [37] where each view corresponds
to one language. But it was for bipartite ranking and its
feature space adopted bag-of-words representation, which is
equivalent to classification. Adaptation was not considered.

Our method combines multi-view learning, ranking and
adaptation in a unified framework to boost cross-domain
ranking performance. There are significant distinctions from
existing work: (1) we work on multi-view ranking which dif-
fers radically from classification; (2) we attempt to co-relate
the factors of domain commonality and view consistency,
and focus on mutually reinforcing the two components to
improve rank transfer. To our knowledge, there is no previ-
ous work based on multi-view approach for rank adaptation.

3. PRELIMINARIES
Let rank training set contain n queries Q = {qi}ni=1, and

each qi is associated with a list of documents represented
by feature vectors xi = {�xij}mi

j=1 and a list of rank labels

yi = {yij}mi
j=1 (each corresponds to a document), where mi

is the number of documents of qi, �xij ∈ RN is a feature
vector consisting of N pre-defined rank features of document
ij, and yij is its relevance judgement (e.g., highly relevant,
relevant or irrelevant). The goal is to optimize a ranking
function f : xi → πi that maps the input document list xi

into a permutation πi of documents given qi.
Ranking features typically can be expressed by query-

dependent and query-independent relevance scores, being
a natural split for distinct views, which inspires us to ex-
plore multi-view approach for rank learning. Nevertheless,
possible decomposition of features is not limited to such an
explicit split but can be optimized automatically, especially
when feature definitions are unknown, which is not uncom-
mon in the typical ranking dataset. Without loss of gener-
ality, we assume two views here for easy presentation.

3.1 View Consistency
Multi-view learning such as co-training [6] holds view con-

sistency assumption that encourages the models on different
views to give compatible predictions on the same instance
with certain probability. In a ranking problem, given an
input space X = {xi}ni=1 = {(x1

i ,x
2
i )}ni=1, where x1

i and
x2
i correspond to the two views of the same list of docu-

ments of qi (e.g., x1
i = {�x1

ij}mi
j=1 where �x1

ij is the first view

source 
domain

target 
domain

source-specific 
instances

cross-domain 
instances

target-specific 
instances

Figure 1: A conceptual illustration of view consis-
tency under dataset shift

of document ij), the view consistency assumption hypoth-
esizes that for each qi, all permutations of its documents
with non-zero probability on xi ∈ X agree with some tar-
get function on x1

i , i.e., f1 : x1
i → πi, and also agree with

some target function on x2
i , i.e., f2 : x2

i → πi. However,
this assumption seems too strong in most cases. In prac-
tice, some algorithms relaxed this assumption and tried to
impose consensus constraint on the two view-based models
directly with unlabeled examples [35, 19, 20, 28], which has
been shown helpful to classification.

3.2 View Consistency under Dataset Shift
View consistency assumption would be more likely vio-

lated when training and test data come from different dis-
tributions or domains which is known as dataset shift [31].
Figure 1 conceptually illustrates the problem with a high-
level representation of two related domains. In this figure, an
instance1 is represented using an hollowed circle and a filled
circle coupled together, each corresponding to one view of
the instance. The distance between the two coupled circles
indicates the degree of agreement on that instance between
the two models each learned from one view. The grey cir-
cle pairs are source domain instances and the dark pairs
are of target domain. The instances intersecting two do-
mains are called cross-domain instances that encode some
general cross-domain commonality. And the other two re-
gions that fall apart only encode specific knowledge of their
own domains, referred to as domain-specific instances. Un-
der dataset shift, the joint distribution of feature and rele-
vance varies greatly between training and test data. Suppose
we have two rankers each trained on one view using source
training data. If we blindly apply them to target documents,
their agreement on document rankings would be weakened,
which is shown by the relatively larger distance between the
coupled circles, due to the distribution gap of two domains.

Basically, the cross-domain instances from source domain
would be helpful for learning target ranking model, and also,
strengthening view consensus on target instances would be
conducive to weighing out cross-domain source instances
that are expected important to the success of adaptation,
and vice versa.

1Note that in ranking, the instances may be documents,
document pairs or queries depending on the specific scheme
used. Here an instance corresponds to a query as we use
listwise approach.
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4. MULTI-VIEW RANKING APPROACH
Two views lacking of prediction consistency are subject

to inferior ranking performance when they are combined.
Our idea is to purposefully identify those important cross-
domain instances from source data that can be used to boost
target ranking performance by improving view consistency
on target instances with a co-training-like procedure. As a
result, the enhanced view consistency of target ranker can
be expected helpful for selecting those informative cross-
domain knowledge from the rest of source training data in
a sense that the ranking of cross-domain source instances
predicted by the target ranker would be better than that of
source-specific instances. Therefore, some positive feedback
would be resulted from the enhanced view consistency.

In this section, we describe the proposed multi-view rank-
ing approach in semi-supervised as well as adaptation set-
tings. First, we will introduce ListMLE, a state-of-the-art
listwise ranking algorithm; Then, we will describe how it is
extended and optimized by a multi-view approach.

4.1 ListMLE
Although listwise approach is natural and more effective,

it is usually difficult to optimize a list-based loss directly be-
cause the performance measure on a document list is based
on the result of a sort function. ListMLE employs a likeli-
hood loss as the surrogate since it has nice properties [40].
Given the training data, it minimizes the sum of negative
likelihood with respect to the ground-truth permutation of
documents over all the training queries in {qi}ni=1:

min
�w

L(�w) =

n∑
i=1

Lqi(�w) =

n∑
i=1

− log (P (πyi |�w,xi)) (1)

where �w is the weight vector to estimate, P (πyi |�w,xi) is
the permutation probability based on the ground truth yi
of the documents of qi, which is defined by Plackett-Luce
model [30]:

P (π|�w,xi) =

mi∏
j=1

exp
(
f(�w, xπ−1(j))

)
∑mi

k=j exp
(
f(�w, xπ−1(k))

) (2)

where π−1(j) is the index of document ranked at the j-th
position of permutation π, and f(·) is the specific expression
of ranking function f .

The advantage of ListMLE also lies in its efficiency in
training where one only needs to compute the probability of
a single permutation based on ground truth but not all the
permutations, and its objective function is easy to minimize
using gradient-based optimizers.

4.2 Semi-supervised CoListMLE
Let �w1 = [w1

l ]
N
l=1 and �w2 = [w2

l ]
N
l=1 be the weight vec-

tors of the ranking model for view x1 and x2, respectively,
where N is the dimension of entire feature space, and x1

and x2 denote a non-overlapping separation of features ac-

cording to �w1 and �w2. Let QL = {qi}ni=1 and QU = {qi}n′
i=1

be the sets of (labeled) training queries and (unlabeled) test
queries, respectively. Here we present a generalized semi-
supervised framework for multi-view ranking called CoL-
istMLE, inspired by the variant of co-training-based clas-
sification in [15].

Our objective is to minimize the combined likelihood rank
loss of the two views on the labeled instances while maxi-
mizing the rank agreement between them on the unlabeled

instances. Meanwhile, there are two critical issues for co-
training to work: (1) the two view-based learners are trained
on different subsets of features where each feature only can
be used by one of the rankers; (2) the two view-based learn-
ers must be able to teach each other for boosting up learn-
ing performance, meaning that there should be sufficient
number of unlabeled examples, on which only one of the
learners can make confident prediction. The first condition
constrains how to split the features, and the second was
addressed by the ε-expanding rule in [3]. Our co-training-
based ListMLE model named as CoListMLE is formulated
as follows:

min
(�w1, �w2)

n∑
i=1

[Lqi (�w1) + Lqi(�w2)] + λ ·DQU (�w1, �w2) (3)

subject to:

(1) View splitting:
∑N

l=1

[
w1

l · w2
l

]2
= 0

(2) ε-expandability:

n′∑
i=1

[
c�w1

(qi)c̄�w2
(qi) + c̄�w1

(qi)c�w2
(qi)

]

≥ εmin

⎡
⎣

n′∑
i=1

[
c�w1

(qi)c�w2
(qi)

]
,

n′∑
i=1

[
c̄�w1

(qi)c̄�w2
(qi)

]
⎤
⎦

Note that different from [15, 14], the first term of Equa-
tion 3 is the sum of likelihood-based rank loss of two views
over all the labeled data, λ is a control coefficient, and the
second termDQU (·, ·) is newly introduced to capture listwise
view disagreement estimated by the difference between two
permutation probability distributions over all the unlabeled
instances:

DQU (�w1, �w2) =
n′∑
i=1

[
log

(
P (π

(k−1)
i |�w1,x

1
i )
)

(4)

− log
(
P (π

(k−1)
i |�w2,x

2
i )
)]2

where π
(k−1)
i is the permutation output by the model to the

documents of qi during the (k−1)-th round of iteration. The
reason we have to use the previous permutation is that the
permutation of current (i.e., the k-th) round is the function
of �w1 and �w2, which are yet to be computed. Though en-
hancing view consistency is straightforward in classification,
it remains challenging to do so for view-based rankers. It
is hard to optimize the correlation between two predicted
permutations directly in the objective due to the position-
based, non-continuous and non-differentiable nature of most
IR evaluation measures. Thus, we use the discrepancy be-
tween two permutation probabilities here as a surrogate.

The constraint (1) of Equation 3 controls the decomposi-
tion of features to be non-overlapping. In constraint (2) as to
ε-expandability, c�w1(qi) or c�w2(qi) is a confidence indicator
function of the corresponding view-based ranker regarding
the prediction on query qi, which is defined as:

c
(k)
�w1

(qi) =

{
1, if P (π

(k−1)
i |�w1,xi) > τ ;

0, otherwise
(5)

where probability threshold τ can be set empirically. Also,
c̄(q) = 1 − c(q) indicates that the ranker is not confident
about q. The constraint (2) ensures that the number of
queries in QU that exactly one ranker is confident about is
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larger than the the number of queries which both rankers are
confident about or both are not, so that both of the ranks
can utilize those instances they are not confident about to
learn from the other ranker that is confident on them [15].

This generalized framework allows us to use different rank-
ing models and train the model in a semi-supervised fashion
with automatically splitted views. Such objective function
is non-convex [14] and non-smooth. We smooth the con-
straints using approximation and resort to augmented La-
grangian method [4] to transform it into an unconstrained
problem2. Then locally optimal solution is obtained using
the standard conjugate gradient descent.

4.3 AdaCoListMLE for Rank Adaptation
We assume a typical unsupervised adaptation setting, where

all rank labels exist in source data, and there is no labeled
data but reasonable amount of unlabeled data in target do-
main. Rank adaptation requires finding the most informa-
tive cross-domain knowledge from source domain as training
materials to guide the transfer of ranking knowledge. As dis-
cussed in Section 3.2, the cross-domain source instances can
carry some important commonality knowledge related to the
target domain. Such kind of information will be identified
for use to train the target ranker. If identified, presumably
it can be leveraged to strengthen view consistency on tar-
get instances. Once the ranking on target domain is getting
improved, the ranker becomes more target-leaning, then it
will have more discriminant power to differentiate the cross-
domain instances from source-specific ones. Therefore, we
come up with a reinforcement process where the weighting of
source queries and the degree of view consistency on target
queries will be mutually enhanced in a unified framework,
which is referred to as AdaCoListMLE:

min
(�w1, �w2)

{
ns∑
i=1

Wqi · [Lqi(�w1) + Lqi(�w2)] + (6)

λ ·
nt∑
i=1

[
log

(
P (π

(k−1)
i |�w1,x

1
i )
)
− log

(
P (π

(k−1)
i |�w2,x

2
i )
)]2}

where Wqi is the importance weight of source query qi, and
ns and nt are the number of source and target queries, re-
spectively, and the same constraints of view splitting and
ε-expandability are imposed like in Equation 3.

4.3.1 Source query weighting
Now the problem is how to weigh out the cross-domain

source queries based on the ranking model obtained thus far.
The intuition is that if the retrieved documents of a source
query can be ranked well by a target ranking model, it im-
plies that the rank knowledge of this query is more suitable
for the target ranking task, thus should be deemed as more
informative. Otherwise, this source training query may be
not a good choice. Therefore, the importance of a source
query can be measured by the performance of target rank-
ing model on this query. We weigh a source training query q
by directly using Normalized Discounted Cumulative Gain
(NDCG) [26] obtained on it:

Wq =
1

Zm

m∑
j=1

2r(j) − 1

log(1 + j)
(7)

2The derivation is not difficult which is omitted here due to
space limit

Algorithm 1 AdaCoListMLE: iterative reinforcement rank
adaptation algorithm based on CoListMLE

Input:
Qs: Training queries in source domain, |Qs| > 0
Qt: Unlabeled queries in target domain, |Qt| > 0
λ, ε, τ , κ: The free parameters

Output:
Target ranking model M ;

1: Initialize the weights of queries in Qs as 1;
2: Initialize the permutation output π(0) using ListMLE

trained on Qs;
3: repeat
4: Solve optimization problem in Equation 6 and obtain

ranking model M with weight vectors �w1, �w2;
5: Use function f = (�w1 + �w2) ·x to rank the documents

of target queries in Qt;
6: Move κ most confident target queries from Qt to Qs;
7: Train a target ranking model M ′ with the predicted

target data in step 5;
8: Use M ′ to re-weigh the source queries using Equa-

tion 7;
9: until Converged (no more prediction is confident);
10: return Target ranking model M ;

where r(j) denotes the rank label of the j-th document in
the ranked list of q, m is the m-th top position in the list
and Zm is a normalization constant which is chosen so that
the perfect list gets score of 1. Here we adopt NDCG@10.

4.3.2 Reinforcement training procedure
The iterative reinforcement procedure for query weighting

and view consistency enhancement is given in Algorithm 1.
Step 1-2 initializes the weights of source training queries and
the permutation output; Step 4 optimizes the objective func-
tion to obtain the two view-based rankers; Step 5 ranks the
documents of target queries using the model learned thus
far; Step 6 moves some most confident target queries to the
source training set so that the model can be re-trained with
the expanded dataset in next iteration; Step 7 trains a dif-
ferent ranker using the predicted target data in step 6, which
is used to re-weigh the source queries using Equation 7 in
step 8. The iteration continues until convergence is reached.

Note that step 7 trains target ranking model M ′ using
the predicted target data independent of current model M
for re-weighing source queries. Actually, another seemingly
straightforward solution is to re-weigh the source queries by
letting M , which is trained using the mixture of source train-
ing queries and most-confidently predicted target queries,
rank the source documents. Both solutions have pros and
cons: M ′ uses pure target data but is trained with the ranks
predicted by M which may not be sufficiently accurate; M
is trained with more accurate ranks, but most of the train-
ing examples are from source domain, rendering its predic-
tion on source queries source-leaning, and moreover, moving
around queries from Qt to Qs in step 6 may not always lead
to improved effectiveness as the confidence of ranker depends
on how different two domains are at large. Therefore, using
M to re-weigh source queries is liable to some obvious risk.
On the other hand, the predictive power of M on target data
may directly reflect the strengthened view agreement. Us-
ing the predicted target queries to train M ′ will make sense
provided that certain target ranking accuracy by M could
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be reached. In fact, we conducted experiments using both
of the solutions and found that source query weighting us-
ing M ′ consistently outperformed using M . Therefore, we
adopted M ′ for re-weighing source queries.

5. EXPERIMENTS AND RESULTS
Since semi-supervised ranking is a special case of rank

adaptation, we put emphasis on adaptation experiments. In-
domain semi-supervised experiments are only conducted on
one of the data sets.

5.1 Data Sets
We used two data sets for experiments: LETOR3.03 and

Yahoo Learning to Ranking Challenge4 data sets.
LETOR3.0 was constructed from the collections of TREC

2003 and 2004 Web track. The raw data were preprocessed
into the standard format for learning to rank [33]. Each
query-document pair is represented as 64 features, includ-
ing both low-level features such as term frequency, inverse
document frequency and document length, and high-level
features such as BM25, language-modeling, PageRank and
HITS. The relevance judgments take binary relevance val-
ues. Three query tasks were defined, namely Home Page
Finding (HP), Named Page Finding (NP) and Topic Distil-
lation (TD) [38]. HP aims to return the homepage of the
specific organization or person. NP is required to return the
page whose name is exactly the query. TD is to return a list
of entry points of good websites that contain the contents
relevant to the topic, and its focus is to return entry pages
of good websites rather than the pages containing the rele-
vant contents themselves. We can treat each query task as
a separate domain like [12, 23, 22], which is only available
in the 3.0 edition of LETOR data.

Yahoo dataset provides two sets of rank training data of
search engines each from a different country and language.
The original data include a large set (Set1) with 29,921
queries and a small set (Set2) with 6,330 queries. Each
dataset is divided into 3 sets for training, validation and
test. There are 700 features in this data, but their defini-
tion is not provided explicitly. Some features are defined in
source or target domain only while some others are defined
in both domains. We simply expanded the feature space to
include all features of both domains where the missing fea-
tures were put as 0. The relevance judgment takes 5 different
levels from 0 (irrelevant) to 4 (perfectly relevant).

Since HP and NP are rather similar tasks but TD is dif-
ferent, we conducted experiments across TD and the other
two tasks to examine adaptation performance. For Yahoo
dataset, we use the training data of Set1 as source domain,
and the test data of Set2 as target domain. We do not use
any relevance label of target data during adaptation train-
ing. We also conducted in-domain training by using the
training part of Set2 to examine single domain ranking per-
formance. Table 1 shows statistics of the data sets used.

5.2 Setup
Our multi-view algorithms are compared with three single-

view baselines: (1) naiveList: A ListMLE trained in source

3http://research.microsoft.com/en-us/um/beijing/
projects/letor/
4http://learningtorankchallenge.yahoo.com/
datasets.php

Table 1: Statistics of the two data sets with different
domains used for experiments

Data set Domains # queries # docs/query

LETOR

NP04 75 1,000
HP04 75 1,000
TD04 75 1,000
TD03 50 1,000

Yahoo
Set1-train 19,944 27.5
Set2-train 1,266 27.5
Set2-test 3,798 27.2

domain is naively applied to target domain; (2) dsList:
ListMLE that is trained by using domain-separator-based
weighting method described in [22] for source query weight-
ing, which is state-of-the-art rank adaptation based on in-
stance weighting; (3) wList: This is a variant of dsList us-
ing our proposed query weighting technique, i.e., the weights
of source queries are updated iteratively with Equation 7 by
the ranker trained on the predicted target queries. It is also
a single-view version of AdaCoListMLE descried in Algo-
rithm 1.

The proposed multi-view algorithms are examined under
four configurations: (1) CoList (λ = 0): CoListMLE with
no view-consistency term in Equation 3, which equals to the
ranking version of [15]; (2) CoList: CoListMLE with con-
sistency term imposed in Equation 3; (3) AdaCoList (λ =
0): AdaCoListMLE with no view-consistency term in Equa-
tion 6 (but with query weighting); (4) AdaCoList: AdaCoL-
istMLE with consistency term imposed in Equation 6 (i.e.,
with both query weighting and view consistency).

The free parameter λ was tuned using the validation set of
source data. We empirically set parameters ε = 1.0, τ = 0.8,
and κ = 5%.

The performance was measured by NDCG@1,3,5,10 [26]
and Expected Reciprocal Rank (ERR) [10]. NDCG of a sin-
gle query was given by Equation 7. ERR of a query is com-
puted as ERR =

∑m
i=1

1
i
R(ri)

∏i−1
j=1(1−R(rj)), where ri is

the relevance level of document ranked at the i-th position,
R(r) = 2r−1

2rmax is a mapping from relevance level to probabil-
ity of relevance (rmax is the maximum relevance level), and
m is the length of the ranked list. We then take the average
value of the measure over all test queries.

5.3 Results and Discussions

5.3.1 Effectiveness of view decomposition
The principle of multi-view algorithms is that the redun-

dancy and complementarity between different decomposi-
tions of features help view-based learners teach each other
so as to boost up overall learning performance. Therefore,
it is necessary to show that this basic hypothesis holds for
ranking by examining how the view decomposition can exert
influence to ranking compared to a single-view baseline and
different decomposition schemes.

We use naiveList as baseline and compare to CoList

(λ = 0) using two different splitting methods: (1) natural
split (natural), which exploits explicit views, i.e., query-
dependent and query-independent features. For this, we re-
sort to the feature definition given in LETOR dataset [33],
where 52 features in the categories “Q” and “Q-D” are con-
sidered as query-dependent, and 12 features of category “D”
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Table 2: The effectiveness of different view decom-
position compared with single-view baseline: naive

– NaiveListMLE; natural – Natural split; auto – Au-
tomatic split. The best performance is bolded, and †
indicates significantly better than naive at 95% con-
fidence level based on paired two-tailed t-test

Methods TD04-HP04 TD04-NP04 TD03-HP04

NDCG1
naive 0.356 0.289 0.453

natural 0.222 0.333 0.444

auto 0.422 0.467† 0.471

NDCG3
naive 0.539 0.562 0.547
natural 0.567 0.479 0.572

auto 0.642† 0.620† 0.584†

NDCG5
naive 0.561 0.603 0.582
natural 0.601 0.519 0.606

auto 0.668† 0.630 0.622†

NDCG10
naive 0.599 0.641 0.630
natural 0.625 0.561 0.642

auto 0.692† 0.686† 0.662†

ERR
naive 0.247 0.237 0.280
natural 0.221 0.230 0.282

auto 0.292† 0.293† 0.293†

as query-independent; (2) automatic split (auto), which re-
sorts to the constraint (1) for automatic feature decomposi-
tion (see Equation 3). For fair comparisons, we just make
CoListMLE perform in an unsupervised adaptation fashion
and let two views trained with only one iteration of co-
training not allowing further model updates. This aims to
show whether feature decomposition is advantageous over
the usual single-view treatment.

As shown in Table 2, the automatic split always outper-
forms naive and in most cases auto is significantly better,
indicating that proper feature decomposition is in general
more advantageous. The explicit views based on query de-
pendency do not seem to be an effective feature decomposi-
tion scheme since the performance of natural varies greatly
and is not significantly different from that of naive. This
implies that using optimization techniques for good decom-
position is crucial. Also, this is not the only reason why we
use automatic split. Oftentimes, there is no specific feature
definition provided in ranking benchmark datasets, in which
case one has to decompose features in a principled way to
work with multi-view ranker.

5.3.2 Effectiveness of rank adaptation on LETOR
In this experiment, we compare our approach with single-

view and multi-view baselines using LETOR dataset. We
conducted cross-domain ranking in two adaptation settings:
TD04-NP04 and TD04-HP04. Figure 2 shows the perfor-
mance. Paired two-tailed t-test results are detailed in Ta-
ble 3, where we show p-values between AdaCoList and all
other methods, and also p-values between the basic multi-
view configuration CoList (λ = 0) and other multi-view
configurations.

We have the following findings and discussions based on
these results:

— Multi-view rankers generally performed better than
traditional single-view rankers, indicating that splitting rank-
ing features into views is the right direction for ranking.
What really unleash the power of different views is the ad-
dition of view consistency factor imposed in our objective.
We find that the performance clearly worsens when view
consistency term is removed, i.e., λ is set to zero in CoList

and AdaCoList. This suggests that strengthening the agree-

ment of view-based rankers on target queries is the key to
the success of rank adaptation. Such an improvement owes
to the cooperation between the ε-expandability constraint
and the view consistency term: The ε-expandability ensures
to capture those informative target instances, with which
two view-based rankers can learn from each other. As a re-
sult, their ranking consensus could be gradually improved
and explicitly captured by the view consistency term.

— Another crucial factor to adaptation is the appropriate
weighting of source queries. Our weighting scheme is simple
yet very effective, evidenced by the improvement of ranking
not only when used in multi-view case but also in the single-
view approach wList. wList always outperforms dsList in
large margin, while the latter does not appear robust and
sometimes is even worse than naiveList. Weighting scheme
used by dsList is based on the so-called domain separator
approach where the weight values are derived from the clas-
sification hyperplane of two domains, which although rep-
resenting domain relatedness in some extent, cannot reflect
the importance of source training queries in terms of ranking
performance measure like our weighting scheme.

— Clearly, the two factors, one for strengthening view
consistency on target queries and the other for appropri-
ate weighting of source queries, can mutually reinforce each
other in our proposed framework. This is reflected by the
fact that AdaCoList significantly outperforms CoList and
AdaCoList (λ = 0) in accordance with most of performance
measures. The reason is straightforward: enhanced view
agreement on target queries will lead to a better target-
leaning ranker, which in return can help weigh out those
cross-domain source queries since they receive higher rank-
ing scores (in terms of NDCG@10) predicted by model M ′.

— As shown in the left bottom part of Table 3, only im-
posing view consistency or only using source query weighting
cannot ensure significant improvement over the multi-view
baseline CoList (λ = 0). For example, on TD04-NP04, the
NDCG@3,5,10 obtained may not necessarily significantly
different. But combining the two components in the ulti-
mate model makes them effectively reinforced.

5.3.3 Effectiveness of rank adaptation on Yahoo data
We conducted adaptation experiments on Yahoo dataset.

Based on AdaCoList, we studied the sensitivity of coefficient
λ that is used to control the extent of view consistency in the
model, for which we examined different values of λ to show
how ERR changed with it. Meanwhile, we also studied the
trend of ranking performance varying with iteration. Both
results are displayed in Figure 35.

We observe that large λ typically results in poor adapta-
tion performance, and λ between 0 and 1 can give reasonably
good results, and the best is achieved when λ = 1. This im-
plies that the view consistency factor should be carefully
chosen to avoid its side effect: (1) if weak view consistency
is imposed due to very small λ, the magnitude of consistency
term would be too weak to influence the loss to lean towards
target direction; (2) if its magnitude is very large such as
when λ = 1000, the consistency part will dominate the en-
tire rank loss, making the model hard to keep certain level of
accuracy, which means the two views being frequently and
consistently wrong. Therefore, setting an appropriate value
to λ is helpful. But overall, the extent of performance vari-

5We stopped training after 10 iterations in the cases of λ > 1
due to their obviously poor performance

69



ERR NDCG@1 NDCG@3 NDCG@5 NDCG@10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 
naiveList
dsList
wList
CoList(λ=0)
CoList
AdaCoList(λ=0)
AdaCoList

(a) TD04-NP04 adaptation results

ERR NDCG@1 NDCG@3 NDCG@5 NDCG@10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 
naiveList
dsList
wList
CoList(λ=0)
CoList
AdaCoList(λ=0)
AdaCoList
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Figure 2: The comparison of different algorithms for ranking adaptation using LETOR3.0 dataset. The
source domain is Topic Distillation (TD) task in TREC-2004 (TD04) and the target domains are Named
Page finding task (NP04) and Home Page finding task (HP04). naiveList: A single-view ListMLE ranker
trained on source domain is naively applied to target domain; dsList: A single-view semi-supervised ListMLE
using domain-separator based source query weighting described in [22]; wList: A variant of dsList using our
proposed query weighting technique and equal to single-view version of AdaCoListMLE; CoList (λ = 0):
CoListMLE w/o view consistency (i.e., ranking version of [15]); CoList: CoListMLE with view consistency;
AdaCoList (λ = 0): AdaCoListMLE w/o view consistency; AdaCoList: AdaCoListMLE with view consistency

Table 3: Results of paired two-tailed t-test (p-values) between different algorithms and configurations
TD04-NP04 TD04-HP04

NDCG1 NDCG3 NDCG5 NDCG10 ERR NDCG1 NDCG3 NDCG5 NDCG10 ERR
AdaCoList

naiveList � 0.01 � 0.01 � 0.01 � 0.01 � 0.01 0.03 0.01 < 0.01 < 0.01 < 0.01
dsList � 0.01 � 0.01 � 0.01 � 0.01 � 0.01 < 0.01 � 0.01 � 0.01 < 0.01 � 0.01
wList 0.04 � 0.01 � 0.01 � 0.01 < 0.01 0.02 0.03 0.03 < 0.05 < 0.01

CoList (λ = 0) 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 � 0.01
CoList 0.09 < 0.01 < 0.01 < 0.01 0.01 0.13 0.11 0.04 0.04 < 0.05

AdaCoList (λ = 0) 0.10 < 0.01 < 0.01 < 0.01 0.02 0.07 0.09 0.05 0.05 0.04
CoList (λ = 0)

CoList 0.02 0.11 0.13 0.08 0.01 0.01 < 0.01 0.01 0.02 < 0.01
AdaCoList (λ = 0) 0.03 0.34 0.07 < 0.05 < 0.01 0.01 0.01 < 0.01 � 0.01 � 0.01

AdaCoList 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 � 0.01

2 4 6 8 10 12 14 16 18 20
0.37

0.38

0.39

0.4

0.41

0.42

0.43

Iteration

E
R

R

 

 

λ=0

λ=0.001

λ=0.01

λ=0.1

λ=1

λ=10

λ=100

λ=1000
wList

Figure 3: Rank adaptation performance of AdaCoList
varies with iterations and λ based on Yahoo dataset

ation, being within a magnitude of 0.1, can be considered
not sensitive to λ.

Typically, iteration improves adaptation when λ > 0, indi-
cating that view consistency and source query weighting are
mutually strengthened. The curve remains flat when λ = 0,
meaning that source query weighting does not work alone if

without the view consistency imposed on target data. This is
because such a case forms some pointless loop, where the al-
gorithm iterates between a purely source-trained ranker and
a target ranker trained with inaccurate rank predictions, and
there is no any boosting point. Note that unlike on LETOR
data, here we skip performing step 6 in Algorithm 1 because
it was found that the move of queries worsened performance
gradually. This may be due to the large domain gap of
Yahoo data that came from search engines of different lan-
guages [11], and inappropriately using target queries may
introduce considerable noise into source domain. Therefore,
no target queries are selected into source domain during it-
eration. And we yet did not find reliable way to select these
κ target queries. We will leave it for future work.

The comparison of rank adaptation performance on Yahoo
dataset is shown in Figure 4. We can see the similar trend
of performance gain as using LETOR data. T-test indicates
that AdaCoList is significantly better than all other methods
and configurations (p-value<0.01). This again justifies our
method is effective.

A different trend is that wList is not obviously better
than other single-view baselines. This is simply because our
weighting method has to rely on the improvement of the
predictive power of current ranking model to give a better
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Figure 4: Rank adaptation performance on Ya-
hoo dataset, where localList is the performance of
ListMLE trained locally on target domain

Table 4: The comparison of ranking performance
in single domain based on Yahoo Set2. * indicates
significantly better than baseline ListMLE at 99%
confidence level according to paired two-tailed t-test

Metric ListMLE CoList (λ=0) CoList (λ=1)
ERR 0.437 0.445∗ 0.440∗

NDCG@1 0.663 0.684∗ 0.662
NDCG@3 0.643 0.660∗ 0.646
NDCG@5 0.651 0.665∗ 0.656∗

NDCG@10 0.652 0.664∗ 0.657∗

ranking prediction on target data. As discussed previously,
because no target query was moved to source domain, there
is no any boosting point for improving the current model as
shown by the flat curve of wList also in Figure 3. Similarly,
we found that introducing target queries to source domain
based on confidence is harmful on this dataset, also probably
due to the large distribution gap between two domains as
described in [11].

Two strategies may improve the case. One is to exploit
the presented multi-view approach by incorporating view
consistency to work together with query weights which has
demonstrated salient gains as shown in Figure 4. The other
is to consider some reliable way for selecting and moving
those target queries really useful to source domain in our
future work.

5.3.4 In-domain ranking performance on Yahoo data
We also studied the performance of the proposed multi-

view approach for ranking in a single domain of Yahoo data.
We trained the model using Set2-train and tested it on the
Set2-test. The results are displayed in Table 4.

It can be observed that the two multi-view rankers both
outperform the baseline ListMLE. T-test shows that CoList
(λ = 0) is significantly better in terms of all the performance
measures (p-value<0.01), and CoList is significantly better
based on ERR and NDCG@5,10 (p-value<0.01). This ver-
ifies the effectiveness of multi-view approach for ranking in
a single domain.

It is noted that in contrast to the performance in adap-
tation setting, using view consistency term worsens the in-
domain ranking performance a little than not considering

consistency-based loss. However, there is no significant dif-
ference between these two variants of CoList. The reason
of performance drop is that when consistency-based loss on
the data from same distribution is added, it will necessar-
ily dilute the rank loss portion of the objective function,
which may result in some degradation of ranking accuracy.
Therefore, enhancing view consistency is less important for
in-domain ranking. But it seems vital for adaptation since
improving target ranking accuracy relies on effective query
weighting which can benefit from enhanced view consistency.

6. CONCLUSION AND FUTURE WORK
We present a novel and effective ranking framework based

on the principle of multi-view learning and listwise ranking
approach. Our method is motivated by the description of
ranking features from different perspectives which is confor-
mant to the nature of multi-view learning paradigm. The
idea is to strengthen the view consistency of rankings on
the unlabeled data with a co-training-like procedure where
the two view-based rankers can iteratively boost each other.
Then our method is generalized to the typical rank adap-
tation scenario where training and test data follow different
distributions and no target training data is available. To
overcome the lack of view consensus due to distribution gap,
it aims to mutually reinforce the view consistency of ranking
for target queries and the weighting of source queries. The
rationale is that imposing view consistency on target queries
improves the target ranker which in return can help weigh
out those cross-domain source queries that can be used to
further strengthen the view consistency. Our method results
in significant improvement over some strong single-view and
multi-view baselines by rank adaptation on LETOR and Ya-
hoo learning to rank datasets, and is also shown effective for
in-domain rank learning on Yahoo dataset.

Our framework is generic that can accommodate various
ranking and adaptation approaches. Existing single-view
ranking algorithms can be upgraded using our multi-view
scheme with reasonably small amount of effort. Also, for
scalability aspect, extending our method to more than two
views will be fairly straightforward, for example, by incor-
porating more pairwise consistency terms in the objective
function resulting from the additional views.

There are a few more interesting directions to follow in our
future work: we plan to investigate reliable ways of moving
useful target queries to source domain to improve adapta-
tion; we can try different ranking schemes and rank cor-
relation measures in objective function; there also remain
interesting theoretical issues regarding this topic worth of
further study.
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