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ABSTRACT
Automatically identifying rumors from online social media
especially microblogging websites is an important research
issue. Most of existing work for rumor detection focuses
on modeling features related to microblog contents, users
and propagation patterns, but ignore the importance of the
variation of these social context features during the message
propagation over time. In this study, we propose a novel ap-
proach to capture the temporal characteristics of these fea-
tures based on the time series of rumor’s lifecycle, for which
time series modeling technique is applied to incorporate var-
ious social context information. Our experiments using the
events in two microblog datasets confirm that the method
outperforms state-of-the-art rumor detection approaches by
large margins. Moreover, our model demonstrates strong
performance on detecting rumors at early stage after their
initial broadcast.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Rumor detection; temporal; time series; social context

1. INTRODUCTION
A rumor is commonly defined as a statement whose truth

value is unverifiable or deliberately false [3]. These rumors
on microblogging websites, carrying unreal or even malicious
information, can bring massive panic and social unrest to
our community. For instance, on April 23, 2013, a rumor
on Twitter about two explosions in the white house injuring
Barack Obama caused the stock market crash in the US1.

1http://www.bbc.com/news/world-us-canada-21508660
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(b) The first-person pronoun

Figure 1: The two sample features changing over
time (in hours) demonstrates different patterns in
rumors and non-rumors

Therefore, automatic rumor detection technique that can
quickly identify rumor messages and dynamically monitor
the propagation of rumors become very useful.

Existing rumor detection methods typically exploit super-
vised machine learning models based on a wide range of fea-
tures corresponding to users, contents of messages and their
propagation patterns [2, 9, 7, 8, 10, 11]. An obvious limi-
tation of these models is that they just consider the overall
statistics on the social context information of messages as
features, e.g., the total number of retweets, the time length
of propagation, etc., and ignore the variation of these fea-
tures over time.

To improve the accuracy of detection, we argue that it is
of importance not only looking at the overall properties and
the properties of individual messages, but also studying the
changes or the trends of these properties along the lifecycle
of the concerned hypothesis. For example, given two Twit-
ter events, one is about “firing squad” (a rumor) and the
other about “Hilton is arrested” (a non-rumor), Figure 1(a)
and 1(b) show the variation of proportion of tweets using
question marks and first person pronouns using time series,
respectively, which are two of the typical features used in
previous work. Figure 1(a) implies that the non-rumor tends
to use less question marks than the rumor does at the later
stage, but according to Figure 1(b), there might be more
frequent use of the first person pronoun in the rumor at the
early stage. Such variations reflect different characteristics
of rumors and non-rumors over time during diffusion.

Kwon et al. [5, 4] recently introduced a time series fit-
ting model that shows better detection result based on the
temporal properties regarding a single feature – tweet vol-
ume. However, their temporal model focuses on converting
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the continuous time series of tweet volume into only 3 fit-
ting parameters for capturing the temporal fluctuations of
features, which might result in significant information loss
given complex time series. Also, it is difficult to extend the
number of fitting parameters in their model for further im-
proving the fitting effect.

To overcome these shortcomings, we propose a novel time
series model called Dynamic Series-Time Structure (DSTS)
to capture the variation of a wide spectrum of social context
information over time far more than the tweet volume fea-
ture. We will study how well the time series of social context
features can capture the variation of these features during
the spread of event messages, which is supposed to bene-
fit the differentiation between rumors and non-rumors. We
utilize two datasets containing hundreds of events crawled
from Twitter and Sina Weibo which are the most popular
microblogging websites in English and Chinese, respectively.
We build classifiers using the DSTS-based features and the
annotated datasets. In our approach, we examine two basic
settings: (1) given the complete lifecycle of an event about
some specific topic, we decide it is a rumor or not; (2) given
the event data at the early stage of propagation, we apply
our model for early rumor detection. Experimental results
under the two settings demonstrate that our DSTS-based
model achieves promising improvements over the state-of-
the-art approaches on both datasets.

2. TIME SERIES OF MICROBLOG EVENT
An event is considered as a set of microblogs related to

some specific topic, e.g., “Hillary Clinton announces 2016
campaign for president”, “MH370 landing in Nanning”, etc..
The topics can be compiled manually from Twitter [2] or de-
rived from Sina’s community management center [10], which
include verified rumors and non-rumor events (Section 4.1).

We model microblog data as a set of events E = {Ei},
and each event Ei consists of relevant microblogs {mij}.
We represent each Ei as a D-dimensional vector FD

i con-
taining social context features regarding the contents, users
and diffusion patterns of the relevant microblogs. To make
the number of features tractable, we convert the continu-
ous time stream of microblogs associated with each event
into fixed time intervals. For learning our model, we extract
a rich set of features sensitive to time, where not only the
overall statistics of social context information but also the
variation of individual features based on the time intervals
can be captured.

In this section, we will first introduce an approach to
discretize time stream for generating time stamps, then a
method for capturing the variation of features.

2.1 Time Stamps Generation
For an event Ei, let timeF irsti and timeLasti be the

time when the initial and the last microblog is posted, re-
spectively. We convert the creation time of each microblog
mij to a time interval falling into the range from 0 to N ,
serving as the time stamp of mij , where N is the tunable
number of time intervals. We determine the length of time
interval for Ei and the time stamp (TS) for mij created at
time tmij as follows:

Interval(Ei) = � timeLasti − timeF irsti
N

� (1)

TS(mij) = � tmij − timeF irsti

Interval(Ei)
� (2)

where Interval(.) is the length of each time interval in the
number of time units like minutes, hours or days, and TS(.)
is the index of time stamp which mij falls into, taking the
value of 0, 1, · · · , N . We use hour as time unit in this work.

2.2 Dynamic Series-Time Structure (DSTS)
With all the time stamps of Ei, a vector of its social con-

text features V (Ei) can be naturally generated given each
time stamp. However, the temporal properties of such infor-
mation is subject to continuous change over time, which can-
not be captured effectively by just modeling features within
individual time intervals. A better approach would be to
identify the shapes of time series, which are formed by the
relative change between the consecutive intervals, as a sup-
plement of the absolute temporal properties.

For this purpose, we propose a Dynamic Series-Time Struc-
ture (DSTS), which is used to capture the variation of each
feature. In this structure, we not only consider the absolute
feature values from the initial time up to each interval, but
also incorporate the slopes of features between two consecu-
tive intervals. Therefore, the feature vector based on DSTS
is represented as:

V (Ei) = (FD
i,0,F

D
i,1, . . . ,F

D
i,N ;SD

i,1, . . .S
D
i,N−1) (3)

FD
i,t = (f̃i,t,1, f̃i,t,2, . . . , f̃i,t,D) (4)

SD
i,t =

FD
i,t+1 − FD

i,t

Interval(Ei)
(5)

where FD
i,t is the feature vector generated from social context

features for the microblogs in Ei from time 0 to the t-th
interval, and SD

i,t is the slopes of features between the t-th
and the (t+1)-th intervals.

We use Z-score to normalize feature values along the time
series. The Z-score of a feature from 0 to the t-th interval
ft,k is defined as2:

f̃t,k =
ft,k − fk

σ(fk)
(6)

where fk is the mean of the k-th feature and σ(fk) is the
standard deviation of the k-th feature over all the time in-
tervals, and ft,k is the k-th feature from time 0 to the t-th
interval which is obtained by calculating the average or other
statistics of the feature over the microblogs falling into that
time span (Section 3).

3. FEATURE ENGINEERING
In this section, we will engineer each of the social context

features corresponding to ft,k given in Equation 6. Note
that ft,k is typically obtained by averaging the original so-
cial context feature fk defined on individual microblogs,
but chances are there that some features are defined di-
rectly on all microblogs from time 0 to the interval t. We
present three types of features: content-based, user-based
and propagation-based features, some of which are derived
from prior work [2, 10, 11] and several others are newly pro-
posed. Table 1 describes all these features. For clarity, we
give more details on some of the following features.
2For the simplicity of presentation, we omit the notation of
the event index i here
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Table 1: Description of features ft,k on microblogs
from time 0 to time interval t of an event

Content-based features

LDA-based topic distribution of microblogs with 18 topics [10]
Average length of microblogs [2]
# of positive (negative) words in microblogs [2]
Average sentiment score of microblogs [2, 10]
% of microblogs with URL [2, 10, 11]
% of microblogs with smiling (frowning) emoticons [2]
% of positive (negative) microblogs [2]
% of microblogs with the first-person pronouns [2]
% of microblogs with hashtags [2, 11]
% of microblogs with @ mentions [2]
% of microblogs with question marks [2]
% of microblogs with exclamation marks [2]
% of microblogs with multiple question/exclamation marks [2]

User-based features
% of users that provide personal description [2, 10, 11]
% of users that provide personal picture in profile
% of verified users [2, 10, 11]
% of verified users of each type, e.g., celebrities [10, 11]
% of male (female) users [10, 11]
% of users located in large (small) cities
Average # of friends of users [2, 10, 11]
Average # of followers of users [2, 10, 11]
Average # of posts of users [2, 10, 11]
Average days users’ accounts exist since registration [2, 10, 11]
Average reputation score of users (i.e., followers/followees ratio)

Diffusion-based features
Average # of retweets [2, 10, 11]
Average # of comments for Weibo posts [10, 11]
# of microblogs [2]

LDA-based topic distribution: For all the microblogs
in E, we use a Latent Dirichlet Allocation (LDA) model [1]
to obtain a n-topic distribution for each post. For every post

mij of every event Ei, we have T (mij) = (p
(1)
ij , p

(2)
ij , . . . , p

(n)
ij )

where p
(z)
ij is the probability of mij belonging to topic z (z =

1, · · · , n). Then the topic distributions of all microblogs in
the concerned time span of an event are averaged to obtain
the n LDA-based topic distribution features. We set n=18
following previous work [10].

Average sentiment score: Similar feature but not the
same was used in [2, 10]. Given a sentiment lexicon and an
emoticon lexicon, the average sentiment score of microblogs
in a time span of event Ei is calculated as:

1

|mi|
|mi|∑
j=1

(|wpos|ij − |wneg |ij + |epos|ij − |eneg |ij)

where |wpos|ij and |wneg |ij is the number of positive and
negative words, respectively, |epos|ij and |eneg |ij is the num-
ber of smiling and frowning emoticons, respectively, in mi-
croblog mij , and |mi| is the number of microblogs in the
concerned time span of event Ei. For tweets, we use MPQA3

sentiment lexicon and a set of frequent emoticons collected
by ourselves; for Weibo, we used the sentiment lexicon and
emoticons described in [10].

4. EXPERIMENTAL EVALUATION

4.1 Datasets and Setup
For tweets, we used the public dataset released by Castillo

et al. [2]. They extracted 288 events using Twitter Moni-
tor [6] from tweet feeds in April-September 2010. We fil-
tered out events with less than 10 tweets and left 207 pop-

3http://mpqa.cs.pitt.edu/lexicons/

Table 2: Details of the datasets
Statistic Twitter Sina Weibo

Users 568,261 585,475
Tweets 1,207,767 473,698
Events 216 922
Rumors 101 500
Non-Rumors 115 422
AVG. time length 35.8 Hours 2,719 Hours

ular events, in which 110 of them are labeled as rumors.
We also collected an additional microblog dataset from Sina
Weibo, where the verified rumors came from Sina’s commu-
nity management center [10] that accepts reports of various
misinformation. We kept those rumor events with at least
100 posts. This left us 422 rumor events. We injected 500
normal (non-rumor) events, each with more than 100 posts.
Sina Weibo API4 provides interfaces to capture the infor-
mation of original and retweeted posts. Table 2 shows the
details for our datasets.

We resorted to linear SVM classifier for our model. We
made comparison between our DSTS-based SVM model and
several strong baselines: (1) DT: The Twitter credibility
model using Decision Tree classifier proposed in [2] with
the social context features in Table 1 without considering
time series; (2) RF: The Random Forest classifier proposed
in [5] using features consisting of the three parameters fit-
ting tweet volume curve [5] plus all static features in Table 1;
(3) RF-ext: Our extension of the RF model [5] with addi-
tional features by adding the fitting parameters of time se-
ries of all social context features in Table 1; (4) SVM-RBF:
The SVM-based model with RBF kernel proposed in [11]
using all features in Table 1 without considering time se-
ries; (5) SVMDSTS

c , SVMDSTS
u , SVMDSTS

d : Our DSTS
model using content-based, user-based and diffusion-based
features, respectively; (6) SVMDSTS

all : Our fully configured
DSTS model. We did not compare with [10] which used
specific propagation structure of Sina Weibo platform while
our method is much more general.

We implemented DT, RF and RF-ext using Weka5 and
SVM models with LibSVM6. We conducted 10-fold cross-
validation, and used accuracy, precision, recall and F-measure
for evaluation. We fixed N=50 on a development set.

4.2 Experimental Results
Table 3(a) and 3(b) show the performance of different

methods. Overall, our system SVMDSTS
all , although a linear

model, clearly outperforms the baselines that are all based
on non-linear models. In terms of accuracy, it improves
DT, RF, RF-ext and SVM-RBF by 9.5%, 3.3%, 4.4% and
9.1% respectively on Twitter data, and improves the same
by 9.3%, 3.8%, 5.2% and 8.6% respectively on Weibo data.
This is because DSTS model could reserve much variation of
the rich social context information. DT only uses the static
social context features over the entire lifecyle of posts, and
RF uses as additional features the three parameters of a
model that fits the time series of retweets volume, which
may suffer from information loss. Surprisingly, RF-ext per-
forms worse than RF, which implies that representing the
variation of each feature with the three parameters cannot

4http://open.weibo.com/wiki/API
5http://www.cs.waikato.ac.nz/ml/weka/
6http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 3: Results of comparison with different meth-
ods (R: Rumor; N: Non-rumor)

(a) Twitter dataset
Method Class Accu. Prec. Recall F1

DT [2]
R

0.818
0.857 0.725 0.785

N 0.793 0.897 0.842

RF [5]
R

0.867
0.896 0.805 0.848

N 0.847 0.920 0.882

RF-ext
R

0.858
0.860 0.826 0.842

N 0.856 0.886 0.871

SVM-RBF [11]
R

0.821
0.96 0.638 0.766

N 0.760 0.977 0.855

SV MDSTS
c

R
0.858

0.818 0.910 0.861
N 0.905 0.810 0.855

SV MDSTS
u

R
0.858

0.828 0.894 0.859
N 0.892 0.825 0.857

SV MDSTS
d

R
0.738

0.756 0.647 0.697
N 0.725 0.816 0.768

SV MDSTS
all

R
0.896

0.880 0.909 0.894
N 0.912 0.883 0.897

(b) Sina Weibo dataset
Method Class Accu. Prec. Recall F1

DT [2]
R

0.774
0.771 0.830 0.800

N 0.779 0.709 0.742

RF [5]
R

0.815
0.791 0.894 0.839

N 0.852 0.720 0.780

RF-ext
R

0.804
0.775 0.898 0.832

N 0.851 0.692 0.763

SVM-RBF [11]
R

0.779
0.771 0.842 0.805

N 0.790 0.704 0.744

SV MDSTS
c

R
0.817

0.833 0.828 0.830
N 0.798 0.803 0.800

SV MDSTS
u

R
0.811

0.815 0.844 0.829
N 0.807 0.773 0.789

SV MDSTS
d

R
0.760

0.755 0.826 0.789
N 0.768 0.682 0.723

SV MDSTS
all

R
0.846

0.861 0.854 0.857
N 0.829 0.836 0.833
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Figure 2: Results of rumor early detection

capture complex propagation patterns and fitting more fea-
tures may accumulate even more information loss. Extend-
ing the three fitting parameters is limited by their original
model. SVM-RBF is even worse than our DSTS models just
using content-based and user-based subsets of features, in-
dicating that our time series representation is very effective.

We find that using the subsets of features alone except
diffusion-based features is already comparably good as the
best baselines. Combining all features gives the best perfor-
mance suggesting that they are complementary.

4.3 Rumor Early Detection
We examine the performance of our model on rumor early

detection task that aims to identify rumors in the early stage
of propagation. Given a detection deadline, we assume all
messages of test events after the deadline are invisible when
testing our model. When training the model, the complete
lifecyle of training events is assumed observable.

Figure 2 shows the accuracy of our model SVMDSTS
all in

comparison with the baselines DT, RF, RF-ext and SVM-
RBF at different deadlines. At the first few hours, our model
does not have obvious advantage because it lacks of sufficient

variation of social context. As time goes by, the performance
of our model climbs much more rapidly after 5-10 hours
while other models do not improve much because DSTS can
capture rich variation patterns of features from the time se-
ries. Ours model achieves the similar accuracies of baselines
at much earlier stage than they need. For example, on Twit-
ter, it takes our model around 15 hours to get the highest
accuracy of RF, the second best baseline, while RF needs
more than 25 hours; on Weibo, our model needs about 20
hours but RF needs nearly 70 hours to achieve the similar
performance. This suggests our model is very effective for
early detection.

5. CONCLUSION AND FUTURE WORK
We proposed a novel approach to automatically identify

rumors on microblogging websites. We develop a Dynamic
Series-Time Structure model which explores the variation of
various social context features over time. Experimental re-
sults show that our method with the time series of features
achieves salient improvement on rumor detection given the
complete lifecyle of events as well as at the early stage of dif-
fusion. In future work, we plan to investigate unsupervised
models using time series for identifying rumors online.
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