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ABSTRACT
In the research of building emotion lexicons, we witness the
exploitation of crowd-sourced affective annotation given by
readers of online news articles. Such approach ignores the
relationship between topics and emotion expressions which
are often closely correlated. We build an emotion lexicon by
developing a novel joint non-negative matrix factorization
model which not only incorporates crowd-annotated emo-
tion labels of articles but also generates the lexicon using
the topic-specific matrices obtained from the factorization
process. We evaluate our lexicon via emotion classification
on both benchmark and built-in-house datasets. Results
demonstrate the high-quality of our lexicon.

Keywords
emotion lexicon; joint NMF; emotion classification

1. INTRODUCTION
A basic task in sentiment analysis is classifying the senti-

ment polarity (positive or negative) of the given subjective
text [8, 11, 13]. However, the binary scheme may be over-
simplified. Recently, emotion analysis represents a natural
evolution of sentiment analysis by modeling finer-grained
emotions, e.g., happy, sad, angry, etc. [9, 14].

Emotion lexicons are the essential resources for emotion
analysis. Compared to sentiment lexicons such as Senti-
WordNet1 [1], where each entry is typically labeled with
sentiment polarity, emotion lexicons are more complex in
the sense that each entry may convey a mixture of multiple
emotions which bear different emotion intensity2 [14].

Most of the existing lexicon construction approaches [3,
12, 15] are based upon a set of hand-coded seed words. Con-
sequently, the quality of lexicons is sensitive to the manual

1http://sentiwordnet.isti.cnr.it/
2git.io/MqyoIg
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Figure 1: The emotion distribution generated by
“mood meter” on a news article

seed selection. Today, many news websites (e.g., rappler.
com, corriere.it, etc.) allow users to express their feelings
about an article with a simple click on a given set of emoti-
cons. Figure 1 shows the emotion distribution based on
such kind of votes from the crowd regarding an article on
rappler.com via an GUI called “mood meter” which is em-
bedded in each of its web page.

Staiano and Guerini [14] proposed a compositional se-
mantics method that utilized crowd-based affective anno-
tation, where they represented words and emotions in a
high-dimensional space based on their occurrences in the
document. A deficiency is that they ignored the versatility
of affections among various contexts. It cannot distinguish
accurately the emotion of words by disregarding different
topics where words exist. Since documents and topics are
of many-to-many correspondence in a collection, it would
be more useful to consider emotions at topic level. Some
researchers tried to model topic and sentiment simultane-
ously [4, 8] for joint sentiment-topic analysis. However, no
work has considered topics when building emotion lexicons.

Intuitively, emotion expressions are pertinent to the top-
ics in which they reside. For example, “predictable” suggests
happiness for stock market, but for a movie it implies dis-
appointment or even anger. We expect that topic-assisted
workaround can produce finer-grained and more accurate en-
tries for emotion lexicons. In this paper, we develop a novel
joint non-negative matrix factorization model which asso-
ciates words with emotions in a low-dimensional semantic
space based on hidden topics. An emotion lexicon is built
from word-topic and emotion-topic factor matrices, which
result from the joint model, using matrix composition.
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2. RELATED WORK
Emotion lexicons are typically built based on a set of seed

words [3, 12, 14, 15]. Xu et al. [15] proposed a graph-based
algorithm which ranked words according to a few manually
selected seed words. Song et al. [12] and Feng et al. [3]
improved this method by supplementing seed words with
graphical emoticons or combined their effects. Differently,
Staiano and Guerini [14] proposed a compositional seman-
tics method using crowd-annotated articles crawled from the
Internet. In this paper, we also resort to crowd-annotated
articles while we incorporate topic-emotion relationship for
lexicon construction which was not considered previously.

Non-negative matrix factorization (NMF) has been widely
used in image or text representation. Lee and Seung [5] in-
vestigated the properties of the algorithm and emphasized
the clustering aspect. Xu et al. [16] applied standard NMF
to document clustering. In recent years, different exten-
sions [7, 10] have been proposed for solving sentiment analy-
sis and sentiment lexicon construction. Li et al. [7] creatively
applied orthogonal NMF, proposed by Ding et al. [2], to
sentiment classification by incorporating lexical prior knowl-
edge. Peng and Park [10] proposed a constrained symmetric
NMF method for sentiment lexicon construction, which con-
siders synonyms and antonyms simultaneously.

Lee et al. [6] used a generic semi-supervised NMF (SS-
NMF) method which jointly incorporates the data matrix
and the (partial) class label matrix into NMF. We base our
model on SSNMF for lexicon construction by incorporating
different factorization schemes for the supervision matrix,
which naturally results in a lexicon from the estimated fac-
tor matrices. To our knowledge, this is the first attempt for
building fine-grained emotion lexicon based on NMF models.

3. PRELIMINARIES
We first introduce a compositional semantics method [14]

for building an emotion lexicon from crowd-annotated news.
Then, we review semi-supervised NMF [6] which paves the
way for developing our lexicon generation method.

3.1 Compositional Semantics Method (CS)
Let D = {d1, . . . , d|D|} be a set of documents, and W =

{w1, . . . , w|W |} be the complete vocabulary set of the whole
corpus. We define a word-document matrix MWD of size
|W | × |D|, using (w, d) as index and MWD(w,d) as entry
value based on raw frequencies f, normalized frequencies nf
or tf-idf. Given emotion set E = {e1, . . . , e|E|}, we can
represent emotion labels from crowd-annotated resources as
a document-emotion matrix MDE of size |D| × |E| whose
entry values are based on crowd-sourced affective annota-
tion (see Figure 1). Staiano and Guerini [14] built a word-
emotion matrix MWE using the compositional semantics
(CS) method by multiplying matrices MWD and MDE:

MWE = MWDMDE (1)

An emotion lexicon can be obtained by first applying column-
wise normalization to MWE and then scaling its row-wise
data that sums up to one.

3.2 Semi-Supervised NMF (SSNMF)
Non-negative Matrix Factorization (NMF) [5] is an un-

supervised algorithm widely used in image or text repre-
sentation. A generic semi-supervised NMF (SSNMF) al-
gorithm [6] was proposed to incorporate the data matrix

X = [x1, . . . , xn] ∈ R
m×n
+ , where m is the dimension of data

vectors, and the class label matrix Y = [y1, . . . , yn] ∈ R
c×n
+ ,

where c is the number of classes. The objective function,
which involves the non-negative two-factor decomposition
of X and Y sharing a common factor matrix S ∈ R

k×n
+ , is

to minimize the following:

J = ||U � (X−AS)||2 + α||V � (Y −BS)||2 (2)

where α is a tradeoff parameter adjusting the importance
of the supervised term, A ∈ R

m×k
+ and B ∈ R

c×k
+ are ba-

sis matrices for X and Y, U and V are weights matrices,
both of which can be fixed as all-ones matrices to make an
NMF that fully uses labeled data [6]. Notation ||.||2 denotes
the squared sum of all the elements in the matrix and �
represents element-wise product.

4. OUR JOINT NMF MODEL
Inspired from SSNMF, we can jointly model the hidden

topics and the explicit crowd-based emotions of articles by
customizing the factorization process. Let T = {t1, ..., t|T |}
be a set of topics in low-dimensional space with |T | �
min{|D|, |W |}. Given the word-document matrix MWD and
document-emotion matrix MDE, we decompose them based
on equation 2 by minimizing:

J = ||MWD−MWTM
�
DT ||2+α||M�

DE−METM
�
DT ||2 (3)

to learn the three topic-specific factor matrices MWT , MDT

and MET , where MET represents the strength that emo-
tions are associated with topics. Then, we can get the word
emotion distributions by using a variant of compositional
semantics approach (see equation 1) as below:

M′
WE = MWTM

�
ET (4)

A deficiency of directly applying SSNMF is that the emo-
tion modeling is still coarse-grained for lexicon construction
which is concerned about word-level emotion. We enhance
the model by modeling the emotions of subjective texts using
a weighted linear combination of emotion words, which will
result in an additional term of the 3-factor decomposition of
MDE based on formula 3 as follow:

J ′ = J + β||MDE −M�
WDMWTM

�
ET ||2 (5)

where β is a tradeoff parameter, MWD is fixed and con-
sidered as word weights, and MWT and MET are variables
whose product happens to be M′

WE . With the last term,
the joint model aims to improve the estimation of the topic-
specific factor matrices by approximating the document-
level emotionsMDE based on the word-level emotionsM′

WE .
Computation: Factor matrices MWT , MET and MDT are

first randomly initialized, and then updated iteratively by
the following updating formulas:

MWT ←MWT � MWDMDT + βMWEMET

MWTMT
DTMDT + βMWWMWTMT

ETMET

MET ←MET � αMT
DEMDT + βMT

WEMWT

αMETMT
DTMDT + βMETMT

WTMWWMWT

MDT ←MDT � MT
WDMWT + αMDEMET

MDTMT
WTMWT + αMDTMT

ETMET

where MWW = MWDMT
WD, MWE = MWDMDE, and the

divisions are all element-wise. The update formulas can be
easily induced based on the derivatives in [6].
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Example entries afraid amused angry annoyed dont care happy inspired sad
crime#n .000 (.119) .000 (.088) .994 (.272) .000 (.104) .000 (.085) .006 (.096) .000 (.094) .000 (.142)
dead#a .000 (.218) .000 (.059) .000 (.173) .000 (.080) .000 (.075) .000 (.055) .000 (.057) 1.00 (.283)

criminal#a .001 (.145) .000 (.092) 1.00 (.233) .000 (.137) .000 (.086) .000 (.117) .000 (.059) .000 (.131)
interesting#a .000 (.034) 1.00 (.252) .000 (.046) .000 (.098) .000 (.142) .000 (.181) .000 (.206) .000 (.041)

monitor#v .511 (.238) .000 (.098) .485 (.157) .000 (.124) .000 (.078) .004 (.109) .000 (.097) .000 (.099)
funny#a .000 (.055) .977 (.278) .000 (.065) .000 (.125) .001 (.203) .022 (.110) .000 (.093) .043 (.071)

sad#a .000 (.050) .000 (.081) .000 (.112) .000 (.104) .000 (.172) .000 (.071) .000 (.109) 1.00 (.301)

Table 1: Example entries in our constructed emotion lexicon. Emotion scores higher than 20% are highlighted
for readability purposes. The brackets enclose the scores given by the CS method as a baseline

Emotion afraid amused angry annoyed
votesavg. 7.8% 10.6% 10.9% 5.9%
Emotion dont care happy inspired sad
votesavg. 5.9% 34.1% 10.3% 14.5%

Table 2: Emotion distribution over Rappler dataset

Lexicon Construction: GivenMWT andMET represented
in the |T |-dimensional topic space, we can build a word-
emotion matrix M′

WE based on equation 4. After normaliz-
ing its entries, we obtain a |E|-dimensional vector for each
word w:

M′
WE (w,.)

=
1

Zw

〈
M′

WE (w,1), · · · ,M′
WE (w,|E|)

〉
(6)

where each element M′
WE (w,e) indexed by (w, e) represents

the emotion score of word w belonging to emotion category

e ∈ E, and Zw =
∑

e∈E

M′
WE(w,e)√∑

w∈W M′
WE

2
(w,e)

is the normal-

ization term for w (column-wise normalization ensures that
different columns for all the emotions are comparable).

Our created emotion lexicon contains 31,806 entries in to-
tal. Table 1 presents several example entries. Similar to [14],
we lemmatize and Part-of-Speech (PoS) tag all the docu-
ments (PoS we considered are adjective, noun, verb and ad-
verb), and we only keep those lemma#PoS entries in the
lexicon which also appear in WordNet for eliminating noise
words. We can see that each entry has at least one main
emotion (e.g., monitor#v has two main emotions of afraid
and angry), and our lexicon differentiates the emotions bet-
ter by assigning discriminative weighting scores as compared
to the CS baseline.

5. EXPERIMENTAL EVALUATION

5.1 Data Resources
To build our lexicon, we crawled 31, 107 English news ar-

ticles published before 2015-11-06 from rappler.com. We
used Standford CoreNLP3, an integrated suite of natural
language processing tools, to tokenize, PoS tag and lemma-
tize all text data. In Table 2, we report the average percent-
age of votes for each emotion over all the documents in the
corpus. From Table 2, we find that the emotion of happy has
a lot more votes than the others, which reflects that read-
ers’ emotion preference is consistent to the general observa-
tion – positive sentiment dominates in real-world data. The
crawled resources and generated lexicons have been made
publicly available4.

To evaluate the lexicon, we applied it for emotion classifi-
cation on news headlines as [14] did. We used two datasets:

3http://nlp.stanford.edu/software/corenlp.shtml
4https://sites.google.com/site/emolexdata/

Rappler angry sad afraid happy inspired other
SemEval anger sadness fear joy surprise –

Table 3: Emotion label mapping over two test sets

(1) A benchmark dataset from SemEval-20075 on identify-
ing “Affective Text”, which contains 1k annotated headlines.
As SemEval-2007 test set consists of only six emotions, we
adopted an emotion mapping method as displayed in Ta-
ble 3 to map them to our pre-defined emotions in the lex-
icon. (2) A built-in-house dataset with total 31k headlines
of the crawled Rappler articles.

We implement the algorithms using Matlab and run them
on a high performance Linux cluster.

5.2 Experiments and Results
We evaluate the quality of the emotion lexicons in two

ways: (1) we examine the quality of lexicons created by our
method and other competitive methods using the crawled
Rappler news articles via an emotion classification task; (2)
we compare our created lexicons with publicly available state-
of-the-art lexicons in similar size.

5.2.1 Parameter Setting
We tune the number of topics |T | by performing a grid

search over all values of 10 ∗ x with x ∈ {1, 2, ..., 30}. The
tradeoff parameters α and β are tuned over all values in
{0.1, 1, 10, 100}. The tuning is based on the performance of
emotion classification on the headlines in SemEval’s trial set
and a held-out set which consists of 20% headlines randomly
selected from the Rappler articles. Finally, we set |T | = 250,
α = 1 and β = 10. We set the number of iterations as 300,
which is large enough for ensuring convergence according to
our observation on the drop of J and J ′ values.

5.2.2 Comparison of Lexicon Building Methods
For emotion classification, we use a straight-forward voting-

based algorithm [12, 14] to assign emotion labels to a test
headline h. We conduct element-wise sum over the emo-
tion words in the headline by looking up the lexicon and
then average the sums by word counts, i.e., V h = 1

Zh
<

∑
w M′

WE (w,1)
, ...,

∑
w M′

WE (w,|E|) > where Zh is the num-

ber of emotion words in h. We then normalize V h with the
min-max normalization and map each emotion element into
a binary decision with fixed thresholds. We set threshold at
0.5 for SemEval-2007 test set and 0.35 for Rappler test set,
empirically6. We use F-1 measure to assess the classification
performance on each emotion. Tables 4 and 5 show the re-

5http://nlp.cs.swarthmore.edu/semeval/tasks/
6We set a lower threshold for Rappler test set since only a
single emotion in each news receives more than 50% votes
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Method fear anger joy sadness surprise

CS
f .301 .080 .292 .349 .096
nf .329 .090 .291 .386 .081
tf-idf .338 .090 .289 .354 .094

Joint
(J )

f .288 .098 .231 .383 .099
nf .306 .087 .256 .387 .095
tf-idf .372 .091 .283 .357 .132

Joint
(J ′)

f .309 .101 .252 .350 .082
nf .349 .105 .222 .393 .058
tf-idf .361 .082 .270 .359 .133

Table 4: SemEval-2007 emotion classification (F1)

Method afraid amused angry annoyed

CS
f .304 .293 .361 .160
nf .324 .292 .375 .162
tf-idf .341 .277 .377 .145

Joint
(J )

f .331 .289 .370 .208
nf .325 .302 .360 .191
tf-idf .338 .267 .366 .138

Joint
(J ′)

f .333 .279 .371 .198
nf .351 .311 .386 .198
tf-idf .328 .274 .368 .148

Method dont care happy inspired sad

CS
f .142 .653 .297 .429
nf .143 .652 .291 .445
tf-idf .133 .654 .284 .427

Joint
(J )

f .177 .596 .270 .430
nf .172 .613 .300 .434
tf-idf .129 .624 .266 .416

Joint
(J ′)

f .191 .608 .275 .400
nf .199 .596 .298 .461
tf-idf .152 .613 .268 .419

Table 5: Rappler emotion classification (F1)

sults by averaging 20 independent runs (with random initial
matrices) on SemEval and Rappler test sets, respectively.

Our joint models perform better than CS for most emo-
tions especially under nf configuration. This indicates that
normalized frequency can prevent the bias towards long doc-
uments and our method considering topic is effective. More-
over, joint model J ′ also performs J at most cases, im-
plying the usefulness of considering word-level emotion in
decomposition. Surprisingly, the results under tf-idf config-
uration are unstable, which suggests that introducing idf is
sub-optimal. This is because frequent emotion words, e.g.,
“good”, receive low tf ∗ idf , thus are not learned well.

5.2.3 Comparison with Available Emotion Lexicons
We compare our lexicons with the original lexicons re-

leased by Staiano and Guerini [14]. We assess them via
emotion classification on the larger built-in-house Rappler
test set. Figure 2 demonstrates that our lexicon configured
as nf achieves the best results on nearly all emotions, which
suggests the high usability of our created lexicon.

6. CONCLUSIONS
We present a joint NMFmethod which incorporates crowd-

based emotion labels on articles and generates topic-specific
factor matrices for building emotion lexicons via composi-
tional semantics. Experiments conducted on the benchmark
and built-in-house datasets demonstrate our method out-
performs the competitive methods on emotion classification.
Moreover, our created lexicon outperforms the competitive
counterpart on emotion classification task. Our future work
will study emotion-specific word embeddings for lexicon con-
struction using deep learning.

Figure 2: Comparison among different lexicons
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