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Abstract  

The structure of urban environments is known to alter local climate, in part due to changes in land cover. A 

growing subset of research focuses specifically on the UHI in terms of land surface temperature by using data 

from remote sensing platforms. Past research has established a clear relationship between land surface 

temperature and the proportional area of land covers, but less research has specifically examined the effects 

of the spatial patterns of these covers. This research considers the rapidly growing City of Phoenix, Arizona in 

the United States. To better understand how landscape structure affects local climate, we explored the 

relationship between land surface temperature and spatial pattern for three different land uses: mesic 

residential, xeric residential, and industrial/commercial. We used high-resolution (2.4 m) land cover data and 

an ASTER temperature product to examine 90 randomly selected sample sites of 240 square-meters. We (1) 

quantify several landscape-level and class-level landscape metrics for the sample sites, (2) measure the 

Pearson correlation coefficients between land surface temperature and each landscape metric, (3) conduct an 

analysis of variance among the three land uses, and (4) model the determinants of land surface temperature 

using ordinary least squares linear regression. The Pearson’s correlation coefficients reveal significant 

relationships between several measures of spatial configuration and LST, but these relationships differ among 

the land uses. The ANOVA confirmed that mean land surface temperature and spatial patterns differed among 

the three land uses. Although a relationship was apparent between surface temperatures and spatial pattern, 

the results of the linear regression indicate that proportional land cover of grass and impervious surfaces alone 

best explains temperature in mesic residential areas. In contrast, temperatures in industrial/commercial areas 

are explained by changes in the configuration of grass and impervious surfaces. 

Keywords: ASTER Quickbird Remote sensing CAP-LTER Urban temperature 

https://doi.org/10.1007/s10980-012-9833-1
mailto:johnpconnors@asu.edu


 

2 

 

 

Introduction  

Impervious surfaces and built structures in urban areas alter local climate through the urban heat island (UHI) 

(Oke 1987; Quattrochi and Ridd 1994), whose impacts can have regional-scale consequences (Kalnay and Cai 

2003). The UHI refers to the relatively higher surface and air temperatures that occur in urban areas as a result 

of land cover changes and waste energy arising from urbanization (Oke 1995). UHIs are generally best 

observed at night, as rates of urban cooling are slower than cooling over ‘‘rural’’ or natural surfaces, due to 

greater urban thermal inertia, i.e. slower release of stored energy from the urban surface (Oke 1987). Intra-

urban variations in temperatures are a significant feature arising from the UHI, and largely result from 

modifications to (i) urban structure (e.g. height-to-width ratio of buildings and streets); (ii) urban cover (e.g. 

proportion of built-up vs. vegetated surfaces per unit area); (iii) urban fabric (e.g. physical properties of 

concrete, asphalt etc.); and (iv) urban metabolism (e.g. waste energy from human activities; Oke 2004). Apart 

from affecting UHI intensity (i.e. the difference in magnitude between urban–rural temperatures), the 

cumulative effects of these changes reduce the variance between daytime and nighttime temperatures 

(Quattrochi et al. 2000). Growing urban populations and urban sprawl probably exacerbates the UHI effect 

through feedbacks implicit in the urbanization process. For instance, conversion of rural surfaces to concrete 

or asphalt increases surface heat storage and decreases nocturnal urban cooling. The ensuing warmer 

temperatures likely results in greater air-conditioning demand, thus increasing energy use and latent 

mechanical heat output (Landsberg 1981). 

In general, the effects of the UHI have implications for the ecological footprints of urban areas and on human 

wellbeing. Heat stress, for example, poses a health hazard as temperatures rise and normal physiological 

processes can no longer regulate body temperature, as evidenced by increased hospitalizations and 

emergency calls during heat waves (Kalkstein and Smoyer 1993; Kinney et al. 2001). Vulnerability to heat stress 

depends upon a population’s sensitivity to physical exposure to local environmental conditions and its 

adaptive capacity, such as access to air conditioning; the latter presents an environmental justice issue 

whereby lower income urban residents face greater risk of heat stress (Klinenberg 2002; Harlan et al. 2006). 

Residential landscaping may exacerbate disparities in heat exposure, as lower income communities generally 

have less vegetation compared to wealthier neighborhoods (Chow et al. 2012). Along with the hazard of heat 

stress, the UHI also affects the diurnal concentration and vertical mixing of several urban pollutants that 

detrimentally affect respiratory health, e.g. ground-level ozone (Lee et al. 2003). Furthermore, increased UHI 

intensities may threaten the sustainability of water supplies in already water-stressed regions as urban 

residents demand more water for outdoor use (Gober et al. 2011), particularly for irrigation of non-native 

vegetation. Increased water usage, however, also serves as a method to mitigate high urban temperatures 

through evapotranspiration (Goward et al. 1985; Gober 2006). 

General investigation of the UHI is mostly focused on canopy-layer temperatures, which includes the 

atmosphere between the urban surface and mean building height (Oke 2004), but a notable research subset 

concentrates on the surface UHI phenomenon, utilizing land surface temperature (LST) data obtained from 

remote sensing platforms (e.g. Nichol 1996; Zhang et al. 2009; Jin 2012), and its relation to urban surface 

physical characteristics (Voogt and Oke 2003). Within this theme, the urban cover, or spatial composition in 

the city landscape (i.e. the relative amounts of the component land cover types, such as forest cover or 

concrete surfaces; Gustafson 1998), is important in determining intra-urban UHI intensities (Rosenzweig et al. 

2005; Zhou et al. 2011). For example, greater proportions of urban green-spaces reduce surface temperatures 

relative to areas largely consisting of manmade materials like concrete and asphalt (Jenerette et al. 2007). Less 

well known is the impact of urban structure, or spatial configuration, i.e. the spatial arrangement and 

structural characteristics of land cover patches within a city (Gustafson 1998). Though this latter topic is less 

explored, emerging research suggests that land architecture—encompassing the kind, magnitude and pattern 
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of land uses and covers (Turner 2010)—may significantly influence surface UHI, especially at micro (*100 m2 

) to local (*1 km2 ) scales. 

In examining the meteorological and climatological influence of spatial configuration on surface UHI 

morphology, a pertinent approach would be to adopt techniques from related scientific disciplines. The field 

of landscape ecology has long-been concerned with measuring spatial configuration, and has developed 

metrics to quantify the spatial characteristics of land cover patches and their relationships to one another 

(McGarigal and Marks 1995; Turner et al. 2001). Despite the pervasiveness of these methods for applications 

in other disciplines, few surface UHI studies have employed these to examine the relationship between 

configuration and LST. A possible reason for the lack of prior study of urban spatial configuration was due to 

restricted data availability, as fine resolution data are required for detailed urban land-cover mapping. 

Although coarse and medium resolution data (e.g. Landsat and MODIS) are readily available, pixels often span 

multiple land covers and create problems of mixed pixels in heterogeneous urban areas (e.g. Small 2005). 

Thermal data generally have coarser spatial resolution than shorter wavelength bands, placing further 

limitations on UHI studies. For example, the resolution of Landsat TM’s and ASTER’s thermal bands are 60 and 

90 m respectively, despite both having resolutions of 30 and 15 m for other bands. Several LST studies have 

emphasized the relationship between landscape composition/urban cover with temperatures without directly 

considering spatial configuration/urban structure (e.g. Voogt and Oke 2003; Weng 2003; Jenerette et al. 2007; 

Buyantuyev and Wu 2010), though some recent works have considered size and shape of vegetation patches 

as factors influencing urban LST. For example, Zhang et al. (2009) used Landsat ETM ? data to derive urban LST 

from Nanjing, China, and noted that the spatial characteristics and configurations of vegetation patches within 

cities have varied impacts on the distribution of LST. Cao et al. (2010) also analyzed ASTER data from park 

spaces in Nagoya, Japan, and found that park shape influences temperatures. 

Increasing availability of fine resolution data (e.g. Quickbird at 2.4 m) and advanced image analysis methods, 

however, are supporting urban land cover mapping and UHI studies. For example, through ASTER imagery 

taken over Indianapolis, U.S.A., Weng et al. (2008) found an interesting relationship between LST in residential 

areas and its spatial configuration, with more complex residential zonal polygons resulting in greater variations 

of LST. In the same city, Liu and Weng (2009) analyzed the influence of scaling relationships for eight spatial 

scales between land-use and land cover with respect to LST for Indianapolis, U.S.A., with several landscape 

metrics commonly used in landscape ecology. In their study of the Baltimore Long Term Ecological Research 

(LTER) site, Zhou et al. (2011) used fine resolution data and object-based methods to demonstrate that 

configuration of land cover patches has a significant influence on urban LST. Lastly, Li et al. (2012) revealed a 

relationship between spatial configuration of green spaces in Beijing, China, with urban LST, as (i) increasing 

patch density resulting in significantly higher LST when urban greenspace size is unaffected and; (ii) spatial 

configuration having a significant influence in the variability of derived urban LST. 

One key geographical omission from the papers hitherto reviewed are in cities within arid climates, which are 

amongst the fastest growing in population size and where urbanization rates are projected to remain high 

(Baker et al. 2004). To this end, we thus investigate the influence of land architectures (Turner in press) on 

urban LST in the arid city of Phoenix, Arizona in this paper. Our specific objectives are to examine how (i) 

spatial variation in micro-scale composition of land cover patches, and (ii) the configuration or spatial 

arrangement of these covers through patch shape and size affect LST. We use fine spatial resolution (2.4 m) 

remote sensing imagery to characterize land cover patterns within the study area, and we also quantitatively 

investigate the relationships between landscape pattern and LST through multivariate linear modeling. 

Improved understanding of the effects of spatial patterns on LST can support land use planning and support 

development of environmental models. In the arid Southwest U.S.A., where temperatures are already high 

(frequently reaching over 38 C in Phoenix) and water resources are sparse, this information can support 

decisions about urban design and town planning that affect human wellbeing, energy use, and water use. 
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Study area  

Our study area is the Phoenix Metropolitan Area, located in the arid American Southwest at the northern 

extent of the Sonoran Desert, which extends south into Mexico. Our study is confined to geographic extent of 

the City of Phoenix (center at 33240 2000N, 11250 1700W), which has an area of *1,340 km2 . Our study area 

falls within the Central Arizona Phoenix—Long Term Ecological Research (CAP-LTER) study site, which has been 

the subject of extensive urban ecology studies (Grimm and Redman 2004) and is part of a larger network of 

ongoing environmental research. Phoenix resides in a valley at *340 m above sea level. This region 

receives\180 mm of annual precipitation and experiences mean summer temperatures of 30.8 C, although 

maximum temperatures in July regularly exceed 43.8 C. Extensive water reclamation projects and large 

groundwater reserves allowed the valley to develop into an important agricultural region. While agriculture 

continues to be a major land use in surrounding areas, most agricultural lands in Phoenix have been converted 

to residential developments, supporting rapid urbanization (Redman and Kinzig 2008). 

This expansion into agricultural and desert lands has led Phoenix to become the nation’s sixth largest city and 

one of the most rapidly growing cities in the nation, increasing by *29 % between 2000 and 2010 to over four 

million people (Knowles-Yanez et al. 1999; U.S. Census Bureau 2010). Ongoing population growth and 

urbanization in this region are also associated with increased outdoor water use, which threatens the 

sustainability of groundwater extraction (Gober et al. 2011). There is a growing shift toward desert landscaping 

(e.g. Palo Verde/Mesquite trees) in residential areas, but many areas maintain non-native vegetation that 

demand more water (e.g. Bermuda/ Rye grasses and broad-leafed trees). The term xeric landscaping is used 

to refer to the former style of landscaping and mesic landscaping refers to the ladder. These different types of 

landscaping are generally clustered into homogenous neighborhoods throughout the city. Mesic areas tend 

to be in the historic residential areas closer to central Phoenix, where residents have grandfathered water 

rights. More recent restrictions on water use in new developments have limited outdoor use and encouraged 

xeric development, as the city has grown outward. In reality the distinction between these classes is 

sometimes unclear, but we used an a priori classification, in which land cover characteristics distinguish these 

types. 

Though much recent development in Central Arizona took place on retired agricultural lands with historic 

water rights, a large portion also occurred over previously undeveloped desert lands (Wu et al. 2011), which 

has resulted in an expanding canopy-layer UHI noticeable at the margins of the greater metropolitan area 

(Brazel et al. 2007; Georgescu et al. 2009). Recent research by Buyantuyev and Wu (2010) on the surface UHI 

has shown that the magnitude of intraurban LSTs, which are strongly affected by non-native vegetation, can 

be equal to, or even larger than differences between the larger-scale urban core and ‘‘rural’’ (i.e. desert) LST 

in metropolitan Phoenix. They also suggest that instead of a monolithic ‘‘island’’ of higher urban LSTs, a more 

appropriate term to describe the intra-urban spatial complexity would be a UHI ‘‘archipelago’’, with multiple 

hot/cool spots scattered throughout the city. Thus, micro-scale analysis of the spatial composition and 

configuration of urban LSTs should yield several important insights into this aspect of the Phoenix UHI. 

Data and methods  

To explore the effects of configuration on LST the following steps were taken: (1) pre-existing land cover and 

land use maps were incorporated within a geographic information system (GIS), (2) LST was derived from 

thermal night time satellite image, (3) a selection of landscape metrics were calculated to provide information 

about land cover configuration, and (4) statistical analysis, specifically Pearson’s correlation, analysis of 

variance, and multiple linear regression, was applied to assess the relationship between LST and the landscape 

metrics. The following sections provide specific details about these methods. 
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Land cover data 

Land cover and land use differ in that land cover refers to the specific physical materials on the Earth’s surface, 

whereas land use describes the specific human endeavors of an area of land. We used a recently completed 

fine spatial resolution land cover map for the City of Phoenix. Land cover data were derived from Quickbird 

imagery obtained in June 2009. The Quickbird imagery has a spatial resolution of 2.4 m and contains four 

bands (Red, Green, Blue, and Near Infrared). The classified images cover the extent of the City of Phoenix, 

which has an area of *1,300 km2 . Scientists classified the Quickbird image using objectbased methods in the 

eCognition software package. Overall accuracy for the classified image was[89 % based on a stratified random 

sample of validation points. Extensive manual editing corrected for errors in classification and to improve 

object delineation. The final classified image includes seven land cover types: buildings, grass, trees, soil, 

impervious surfaces, water, and pools. Natural water features are rare in our study area, but pools are 

common. Pools were distinguished from other water bodies based on their characteristic elliptical and 

rectilinear shape, as well as their bright aqua-colored liners. 

 

 

Given the size of the study area and the resolution of the data, we chose to examine a sample set of locations 

from Quickbird-derived land cover map. We first extracted a subset of urban land uses (xeric and mesic 

residential, and industrial/commercial) from an existing land use map of the CAP-LTER study area, inclusive of 

the City of Phoenix (Stefanov et al. 2001, see Redman et al. 2005 for complete land use map used in this study), 

then used the resulting map to subset our land cover map. The resulting land cover map contained only those 

locations that were classified as mesic, xeric, or industrial/commercial in Stefanov et al.’s land use map (Fig. 

1). Using the ArcGIS software package, we selected thirty random points within each of these three land uses 

in the city, and created a square buffer (240 9 240 m) around each point (Fig. 1). The points are mainly located 

in the central area of the city, as a large park areas occupies the majority of Southern Phoenix and the Northern 

portion of the city remains largely undeveloped. The buffer size of 240 m was selected to be small enough to 
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capture micro-scale LSTs for a cohesive land use category, and to facilitate subsequent comparison to Landsat 

data at 30 m resolution—hence necessitating a buffer size that is a multiple of 30. Visual inspection ensured 

that all sampled polygons were properly classified and representative of the land use category. Points that did 

not appear to be the specified urban land use were discarded and replaced with a new random point. We 

distinguish between mesic and xeric landscaping because we assume that differences in water use will affect 

the latent heat flux. As such, we wished to avoid convoluting these effects with differences in structure (Fig. 

2). 

 

Land surface temperature  

Given the preponderance of distinct nocturnal UHI phenomena in this city, we analyzed nighttime LSTs in 

Phoenix in this study. We thus obtained temperature data from an ASTER level-3 product (90-m spatial 

resolution), which was derived from five bands of thermal infrared data acquired on June 11, 2008, at 2235 h 

local time (Fig. 3). ASTER Level-3 products apply an algorithm for temperature and emissivity separation (TES). 

The TES algorithm uses the image’s spectral contrast to derive a temperature value with an error of 1.5 C 

(Gillespie et al. 1998). In order to estimate mean LST for each sampled polygon, we calculated the value of all 

ASTER pixels whose centers were within a given sampled polygon. A single mean temperature was assigned 

to each sampled polygon. The 240 m width of the sampled polygons ensured that multiple temperature points 

would intersect each plot, and the number of intersecting points varied between four and nine. 

Landscape metrics  

For all of the sampled polygons, we calculated several landscape metrics using the FRAGSTATS software 

package (McGarigal and Marks 1995), at both the class-level and landscape-level for each sampled polygon 

(Table 1). Given our interest in micro-scale differences in landscape, we chose metrics that characterized 

differences in edge, density of patches, and landscape diversity. We chose six landscape-level pattern metrics 

(PD, ED, LSI, FRAC_AM, CONTAG, and SHDI) to characterize the overall structure of each sample polygon and 

five class-level metrics (PLAND, PD, ED, LSI, FRAC_AM) to capture characteristics of specific land covers (see 

Table 1 for details on each metric). For the class-level metrics, we considered only the classes of grass, 

buildings, and other impervious surfaces because of their particular relevance to UHI effects and presence in 

all relevant land uses. Grass, for instance, is known to play an important role in mitigating the UHI by increasing 

surface latent heat fluxes through evapotranspiration, and is pervasive in mesic residential areas. Trees were 

uncommon in our random samples for xeric and industrial/commercial land uses, so we excluded these from 

our analysis. 
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Statistical analysis  

We first used a one-way analysis of variance (ANOVA) to see if the landscape metrics varied among the three 

land uses. In order to identify specifically which means were different, we used a post hoc least significant 

difference (LSD) test (a = 0.05). Next, we calculated the Pearson’s product-moment correlation coefficient to 

assess the relationship between LST and each of the landscape metrics. 
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Finally, we created several models of LST using an ordinary least squares (OLS) regression. The dependent 

variable in our analysis was mean LST for each sampled polygon on the night of June 11, 2008. The 

independent variables in our analysis were the class level and landscape level metrics listed in Table 1. Based 

on a priori knowledge, we hypothesized that large differences in water use and different building materials 

among the land uses would affect the underlying climate LST-regulating process. As such, we created a 

different set of models for each of the land use types, i.e. mesic, xeric, industrial/commercial. For each land 

use type, we created multiple models by hand selecting variables that were significantly correlated to LST. We 

then fit OLS regression models using only these hand-selected variables. For each land use type we also 

specified a model (models 2, 7, and 10) using a forward selection in SPSS to identify independent variables 

from the entire set of class and landscape metrics. To determine if spatial autocorrelation was problematic in 

our dataset, we used the Lagrange multiplier tests in the Geoda software package (Anselin 2003). This method 

tests the alternative spatial lag and spatial error models. If the results are significant, then the alternative 

models should be used. These tests did not indicate any spatial autocorrelation in our data set, thus no further 

steps were taken to account for spatial dependence. 

Results  

The analysis of variance on the landscape metrics revealed that the three land uses differed significantly from 

each other (Table 2) for the majority of landscape-level and class-level metrics. Landscape-level patch density 

(PD), edge density (ED), landscape shape index (LSI), contagion (CONTAG), and Shannon’s diversity index 

(SHDI), all differed significantly. Only area weighted fractal dimension (FRAC_AM) did not differ significantly 

among the classes at the landscape-level. In all cases where the F value for the ANOVA were significant, the 

post hoc test indicated that impervious/commercial areas differed from both residential categories, but xeric 

and mesic areas were not significantly different from each other. For nearly all landscape-level metrics 

(excluding the FRAC_AM), the commercial/industrial sites had lower values than the residential sites. The 

exception was the CONTAG, which had higher values for the commercial/industrial category. Similarly, the 

majority of class-level metrics were significantly different among the land uses. The only landscape metrics 

that were not significantly different among the categories were the ED of impervious, the area-weighted 

(FRAC_AM) mean fractal dimension of impervious, and the area-weighted fractal dimension of buildings. The 

post hoc test indicated that for all other class-level metrics (excluding the aforementioned), except the LSI of 

impervious, the mean class level metrics were significantly different between commercial/industrial areas and 

the residential areas. The PD of all land use classes was lower in commercial/industrial sites than in residential 

sites. All of the other class-level metrics for buildings and impervious were higher for the commercial/industrial 

sites, while all of the class-level metrics for grass were significantly lower for the commercial/industrial 

category. Between the residential categories, mesic and xeric, the means of six class-level metrics were not 

significantly different: PD of buildings, LSI of buildings, proportion landscape (PLAND) of impervious, ED of 

impervious, ED of grass, and LSI of grass. Table 2 provides detailed results of the ANOVA. 

The results of the ANOVA also show significant differences in mean LSTs among all land uses (Table 2). Mesic 

residential and xeric residential areas had mean LSTs of 30.18 and 30 C respectively, and industrial/commercial 

samples had the highest mean LST, 31.46 C. Industrial/commercial samples also showed a greater variation of 

LST across sampled polygons; the standard deviation for LST in industrial/commercial areas was 1.56 C. In 

contrast, xeric areas had the smallest standard deviation, 0.52 C, followed by mesic areas with a slightly larger 

standard deviation of 0.99 C 

The Pearson correlation coefficients indicate that the observed relationship between LST and the landscape 

metrics differed among the three land uses (Table 3). For the xeric sampled polygons, there was not a 

significant relationship between LST and any of the class-level or landscape-level metrics. In mesic areas, there 

was a strong positive relationship between LST and the PLAND of buildings (r 2 = 0.42, p = 0.02) and a strong 

negative relationship (r 2 = -0.63, p<0.01) between the PLAND of grass and LST. For mesic areas, class-level 
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metrics for buildings were the only other metrics that displayed a significant relationship with LST—PD of 

buildings (r 2 = 0.48, p<0.01), ED of buildings (r 2 = 0.43, p<0.01), and LSI of buildings (r 2 = 0.40, p<0.05). None 

of the landscape-level metrics were significantly correlated to LST for the residential land uses. 

 

In industrial/commercial areas, several landscape metrics displayed significant relationships to LST. Among 

the landscape-level metrics, ED, PD, LSI), and area-weighted fractal dimension (FRAC_AM) were all 

significantly positively correlated to LST. All of the class-level metrics for impervious, except PD were strongly 

positively correlated to LST. In addition, the PLAND of buildings was strongly negatively correlated to 

temperature (r 2 = -0.56, p<0.01). 

The regression results offer insights into the influence of spatial configuration on LST in Phoenix. Models 1 and 

2 used LST for all sampled polygons, including mesic, xeric and industrial/commercial land uses, and the 

dependent variable (Table 4). Model 2, derived with forward selection, provides the best estimate of LST for 

all sites. This model explained *34 % of the variation in LST. Proportion landscape of impervious (Imp_PLAND) 

and proportion landscape of grass (Grass_PLAND) were the only two variables selected. A 1 % increase in 

impervious area increased temperature by 0.32, whereas a 1 % increase in grass decreased temperatures by 

0.34. 



 

10 

 

 

 

When the data were split into three categories, the models better explained the variation in temperatures. 

Model 7 was the best model for the industrial/ commercial land use category. This model explained *62 % of 

the variation in LST in the industrial/ commercial sites. Increases in the ED of impervious cover and fractal 

dimension of grass cover both resulted in higher LST for the industrial/commercial category. Increases in the 

PD of impervious cover decreased LST. Model 10 produced the best results for estimating LST in the mesic 

land use category. This model explained about 40 % of the variation in LST. Although models 8, 9, and 10 had 

identical r 2 values, the adjusted r 2 was highest for Model 10, indicating that the additional variables in the 

prior models did not improve the fit of the models. For model 10, increases in proportion landscape of grass 

(grass_PLAND) and impervious (imp_PLAND) both decreased LST. Our model specification for xeric land use 

failed to generate any significant results. 

Discussion  

Many of the results from this analysis were expected given the known relationships between land cover and 

LST. There were, however, several findings that we found surprising and believe merit further discussion. In 

the remainder of the paper, we discuss these findings, consider the implications of these results, and suggest 
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several places for future inquiry. Initial analysis of variance and descriptive statistics revealed the anticipated 

relationship between LST and land use, with increasingly high temperatures in the mesic, xeric, and 

commercial/industrial land uses. The higher standard deviation for LST in industrial/commercial areas may 

help to explain why the subsequent analyses were able to better explain the variation in temperatures. 

Unexpectedly, all of the measures of area-weighted mean fractal dimension (FRAC_AM) were quite similar 

among all of the land uses. All of the land uses appear to have relatively low degrees of edge complexity for 

patches of different cover types. The Pearson’s correlation coefficients provided some of the more surprising 

results of this analysis 

 

(Table 3). While we assume that proportion of landscape (PLAND) would be similarly correlated to LST for all 

cover types and in all land uses, the results show that the relationship between LST and specific cover types 

varies with the different land uses. Most notably, none of the metrics, including PLAND were correlated to LST 

for xeric areas. While it is possible that other cover types, particularly soil, may reveal a relationship to LST, 

the overall landscape-level metrics also failed to show any significant relationship to LST. Most likely, the lack 

of relationship is due to a lack of variation in LST among the xeric land use sites (standard deviation of LST was 

0.51 C). Given that proportional area of grass explains much of the variation in mesic temperatures, the low 

levels of grass in xeric areas could account for lower variance in LST. 

The relationship between the proportional area of buildings is generally assumed to be positively correlated 

to LST. Although this was true for Mesic land uses, our results reveal a significant strong negative relationship 

in industrial/commercial sites. A combination of three factors is likely to explain this relationship. First, given 

the strong positive relationship between impervious surfaces, which dominate industrial/commercial sites, 

any additional building space will likely result in a reduction of impervious space, thus lowering temperatures. 
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Second, industrial/commercial buildings tend to be larger structures in this area and therefore may offer 

shading for a portion of the day. Third, many industrial/commercial building in Phoenix have been constructed 

with white roofs to increase albedo. 

The results of the OLS regression models indicate that proportional area of grass and impervious cover best 

explain variation in LST for the mesic land use category and for all sites collectively. In contrast, the measures 

of configuration, impervious ED, impervious PD, and fractal dimension of grass cover, best explain changes in 

LST for commercial/industrial sites. These results indicate that the degree of edge complexity and the 

patchiness of cover types may affect LST for this land use category. Interestingly, an increase in the fractal 

dimension of grass led to an increase LST. This result suggests that less complex shapes of grass patches may 

better regulate LST. Increases in PD of impervious cover lowered LST. Higher PD in industrial/commercial 

settings likely indicated more intervening features of grass, trees, or buildings, which likely alter the heat flux 

through their interactions. 

In order to fully evaluate the tradeoffs in environmental amenities that result from management and design 

policy, decision-makers should consider the consequences of landscape structure for multiple processes. 

Urbanization within the CAP-LTER study area has increased spatial complexity through greater heterogeneity 

of land covers and fragmentation of natural land covers (Wu et al. 2011), with varying degrees of spatial 

complexity in different areas of the city (York et al. 2011). While this change in spatial structure has been well 

documented, as well as its impact on urban temperatures (e.g. Brazel et al. 2000; Buyantuyev and Wu 2010), 

it remains unclear what the implications are for many biophysical processes. The relationship between spatial 

structure and other ecosystem services requires further investigation in this rapidly changing environment, 

particularly if decision-makers are to actively manage the configuration of the urban mosaic. Optimizing the 

configuration of the landscape to reduce the detrimental impacts of the larger-scale UHI may allow land 

managers to more effectively balance the tradeoffs between water, energy, and temperature in this arid 

region. Further research is needed, but it appears that creating more complex landscapes, with more building 

edges and complex shapes of grass patches may contribute to lower micro-scale LST in industrial/commercial 

areas and possibly in mesic residential areas. This action potentially increases small-scale thermal comfort 

while implying reduced irrigation water use in this desert city. 

Limitations  

Several factors may influence our results and should be included in future analysis. First, we did not consider 

the full array of variables that influence UHI, including building materials and local climatic conditions. It is 

likely that the building materials varied across our sampled polygons, and these differences are not 

represented in our land cover typology. Furthermore, the topography surrounding the various sites also 

influences temperature, and we did not control for variation in topography among sites. As our results were 

based on temperatures for a single night, additional analysis should examine multiple dates and compare 

daytime temperatures. Lastly, as a major effect of the UHI is a reduced variation between daytime and 

nighttime temperatures, further research should examine the effects of spatial pattern on daytime 

temperature ranges. 

Accurately measuring surface temperatures can be problematic in urban environments where emissivity 

varies among heterogeneous building materials (Becker 1987). The TES algorithm used by ASTER Level 3 

temperature products provides consistently accurate LST measurements when emissivity values of materials 

are fairly high (Gillespie et al. 1998), but errors may occur when materials in the built environment are made 

of polished metal, which often has a low emissivity value. In general, these low emissivity materials are only 

of concern when they are a dominant land cover. ASTER temperatures are averaged over a 90 m pixel, which 

reduces the impact of low emissivity materials that comprise only a small amount of the pixel. 



 

13 

 

 

Finally, in our analysis, we did not control for composition when testing configuration variables because we 

wanted to test for the effects of composition also. Our results for the effects of configuration would likely be 

altered if we had controlled our samples by choosing sites that had similar compositions of land covers. Future 

analysis should build on this analysis by controlling for composition and testing additional configuration 

variables. 

Conclusions  

Alteration of land cover composition has been established as a driver of local climate change (Quattrochi and 

Ridd 1994). The resulting effects of the UHI have implications for human health and biophysical processes. The 

research presented here corroborates previous findings regarding the implications of land cover for LST, but 

also indicates that the relative impacts of land cover on LST vary among land uses. The interplay of multiple 

variables that influence temperature will differ among these categories, thus altering the importance of land 

cover for mitigating the effects of the UHI. For example, in industrial/commercial areas, which are 

predominantly covered by buildings and impervious surfaces, the presence of buildings is correlated to lower 

temperatures. In contrast buildings are positively correlated to temperature in mesic residential areas. These 

results also indicate that landscape composition influences temperature, but this relationship is not consistent 

for all areas and land uses. Context plays an important role in determining the impact of land cover on 

temperature. As with composition, the impacts of configuration are context-dependent, and no single 

configuration variable explained variability for all land uses in this study. In those examples where spatial 

configuration explains LST, edge characteristics (e.g. fractal dimensions and ED) are particularly important. For 

industrial/commercial areas in particular, ED appears particularly important for explaining variations in LST. 

The findings have important implications for land use planning and urban design. In order to reduce UHI 

effects, planners must consider the composition and configuration of the landscape. In addition, they must 

carefully consider context and the interplay of land covers. These results should inform future study of UHI 

effects, particularly for improving existing models. Future work should expand this research to consider more 

land uses. 
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