A Click-Chemistry Linked 2'3'-cGAMP Analog

Clemens Reto Dialer, ${ }^{[a]}$ Samuele Stazzoni, ${ }^{[a]}$ David Jan Drexler, ${ }^{[b]}$ Felix Moritz Müller, ${ }^{[a]}$ Simon Veth, ${ }^{[a]}$ Alexander Pichler, ${ }^{[a]}$ Hidenori Okamura, ${ }^{[a]}$ Gregor Witte, ${ }^{[b]}$ Karl-Peter Hopfner, ${ }^{[b]}$ and Thomas Carell* ${ }^{[a]}$

[a] Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
[b] Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany *Corresponding author: thomas.carell@Imu.de, Homepage: www.carellgroup.de

Published online in Chemistry - A European Journal 10.12.2018
DOI: 10.1002 /chem . 201805409
print: Chem. Eur. J. 2019, 25, 2089-2095.

Abstract: 2'3'-cGAMP is an uncanonical cyclic dinucleotide where one A and one G base are connected via a $3^{\prime}-5^{\prime}$ and a unique $2^{\prime}-5$ ' linkage. The molecule is produced by the cyclase cGAS in response to cytosolic DNA binding. cGAMP activates STING and hence one of the most powerful pathways of innate immunity. cGAMP analogs with uncharged linkages that feature better cellular penetrability are currently highly desired. Here, we report the synthesis of a cGAMP analog with one amide and one triazole linkage. The molecule is best prepared via a first $\mathrm{Cu}(\mathrm{I})$ catalysed click reaction which establishes the triazole, while the cyclization is achieved by macrolactamization.

Introduction

Cyclic dinucleotides (CDNs) are important cellular messenger molecules in a variety of organisms. ${ }^{[1]}$ The compounds play a crucial role in a wide range of biological processes, such as signal transduction, control of biofilm formation or quorum sensing. ${ }^{[2]}$ Bacteria produce molecules in which two purine bases are linked via two 3 '-5' phosphate linkages to give symmetrical cyclophane structures. ${ }^{[3]}$ One main example for such a molecule is the c-di-GMP compound 1 shown in Fig. $1 .^{[4,5]}$ Biochemically the compound is generated from the corresponding nucleotide-5'-triphosphates. Recently, an unsymmetrical cyclic dipurine molecule (cGAMP, 2) was discovered in mammalian cells. ${ }^{[6,7]}$ In this molecule, the two purines are connected via one $3^{\prime}-5$ ' and another $2^{\prime}-5$ ' linkage. ${ }^{[8]}$ The dinucleotide 2 is assembled by the cyclase cGAS (cyclic GMP-AMP synthase). cGAS is a cytosolic DNA sensor and part of the innate immune system. ${ }^{[9,10]}$ 2'3'-cGAMP (2) binds to the transmembrane receptor STING (stimulator of interferon genes) with nanomolar affinity $\left(k_{d}=4.59 \mathrm{nM}\right),{ }^{[11]}$ which activates the type 1 interferon (IFN) pathway. ${ }^{[12-14]}$ Subsequent degradation of cGAMP 2 occurs by the specific cleavage of the $2^{\prime}-5$ ' phosphodiester bond by ENPP1 highlighting the importance of this unusual connection. ${ }^{[15,16]}$
There is currently tremendous interest to develop synthetic routes towards analogs of cGAMP 2 as potential agonists or antagonists for cGAS and STING. ${ }^{[17-19]}$ The bisphosphorothioate cGAMP derivative $3,{ }^{[20,21]}$ for example, is already in clinical trials. ${ }^{[22,23]}$ Alternative targeting of STING with small molecules is also known. ${ }^{[24-26]}$ Particularly, compounds which lack the negatively charged phosphodiester linkages are discussed as new immune-regulatory pharmaceuticals. ${ }^{[27]}$ While such derivatives are available for symmetric $3^{\prime}-5^{\prime}$ dinucleotides ${ }^{[28-32]}$, to the best of our knowledge, uncharged cGAMP 2 analogs do not exist.
In this article, we describe the modular synthesis of a neutral cGAMP analog 4 that features one triazole and one amide linkage. The triazole was generated by a $\mathrm{Cu}(\mathrm{I})$ catalysed alkyne-azide click reaction (CuAAC) that was found to be particularly efficient on nucleotides and oligonucleotides. ${ }^{[33-35]}$

Figure 1: Depiction of the symmetrical microbial c-di-GMP 1, the unsymmetrical STING activator cGAMP 2, as well as the bisphosphorothioate analog 3 , together with the molecule 4 targeted here. $\mathrm{AL}=$ amide linked, $\mathrm{TL}=$ triazole linked.

Results and Discussion

We decided to start our synthetic study by synthesizing the cGAMP analog 4 , in which the $5^{\prime}-\mathrm{G}-3^{\prime}$-A linkage is replaced by a triazole unit and the $2^{\prime}-\mathrm{G}-5^{\prime}-\mathrm{A}$ linkage is substituted by an amide bond.
Molecular modeling (Fig. 2) showed that the analog 4 is able to adopt a conformation that is similar to the natural ligand bound to STING. ${ }^{[11,36]}$

Figure 2: 3D representation showing the potential conformational similarity between compound 4 (left) and natural 2'3'-cGAMP (right, conformation of $\mathbf{2}$ bound to STING, PDB: 4LOH).

In both cases, the macrocycle is thought to force the bases into a shifted parallel orientation with the imidazole part of the nucleobases pointing towards each other. This requires anti-conformations of both glycosidic bonds. The preferred conformation of compound $\mathbf{4}$ will be governed by aromatic the triazole unit. For the conformation of the amide we assume a syn-conformation due to the small ring size.

Analysis of potential synthetic accesses of $\mathbf{4}$ shows that it can be generated by $\mathrm{Cu}(\mathrm{I})$ catalyzed azide alkyne reaction plus a preceding or following lactamization. We developed the synthesis based on the A-half 5 and the corresponding G-half $\mathbf{6}$ as depicted in Fig. 3. For the synthesis of the A-half 5 , we started with the commercially available 1,2 -acetonide protected xylofuranoside 7 (two steps from Dxylose), which we converted in three steps into the 5-TBS-1,2-acetonide protected 3-methylene xylofuranoside 8.

Figure 3: Synthetic strategy towards compound 4. $\mathrm{dpc}=$ diphenylcarbamoyl, $\mathrm{iBu}=$ isobutyryl.
After stereoselective hydroboration $\left(\mathrm{BH}_{3}\right.$.DMS, dr: 9:1) of 8 and Swern oxidation, we obtained the carbonyl compound 9 , which we subjected to a Corey-Fuchs alkinylation (CBr_{4}, BuLi). TBS deprotection and conversion of the primary hydroxyl group into the azide gave the key intermediate 10. X-ray analysis of the structure of $\mathbf{1 0}$ proved the right configuration of the compound (recrystallisation from isohexanes/ethyl acetate).

Scheme 1: Synthesis of the A-half 5 in 14 steps. a) TBSCI, Py, RT, 2h, 97%; b) $\left(\mathrm{COCl}_{2}, \mathrm{DMSO}^{2}, \mathrm{NEt}_{3}, \mathrm{DCM},-60^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{c}\right) \mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}$, BuLi, THF, RT, 6h, 81% (over two steps); d) BH_{3}.DMS, THF, RT, 12 h then $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~N} \mathrm{NaOH}, \mathrm{RT}, 2 \mathrm{~h}, 76 \%$; e) (COCl) 2 , DMSO, $\mathrm{NEt}_{3}, \mathrm{DCM},-60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 93 \%$; f) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{DCM}, 0^{\circ} \mathrm{C}$, 1 h then RT, $12 \mathrm{~h}, 85 \%$; g) BuLi, THF, $-78^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 83 \%$; h) TBAF, THF, RT, 4h, 95%; i) $\mathrm{TsCl}, \mathrm{Py}, \mathrm{RT}, 18 \mathrm{~h}, 87 \%$; j) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 94 \%$; k) $\mathrm{HOAc}^{\prime} \mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$ (cat.), RT, $5 \mathrm{~h}, 78 \%$; I) $6-\mathrm{N}$-Benzoyladenine, BSA, TMSOTf, DCE, $80^{\circ} \mathrm{C}, 4 \mathrm{~h}, 61 \%$; m) $\mathrm{PMe}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, 40^{\circ} \mathrm{C}$, then RT, $12 \mathrm{~h}, 66 \%$; n) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NEt}_{3}, \mathrm{DCM}, \mathrm{RT}, 16 \mathrm{~h}, 64 \%$. Overall yield starting from 7: 6\%

Subsequent cleavage of the isopropylidene group and acetyl protection of the hydroxyl groups provided compound 11, which was the sugar building block for the following glycosylation step. The Vorbrüggen reaction to $\mathbf{1 2}$ was found to be most efficient under BSA/TMSOTf conditions with a benzoyl protected A-heterocycle (α / β : 1:12). Finally, we converted the azide via a Staudinger reduction (PMe_{3} worked better than PPh_{3}) into the corresponding amine, which was Boc-protected afterwards to give the A-half 5 .

Scheme 2. Synthesis of the G-half 6 in 13 steps. a) $\mathrm{AcCl}, \mathrm{BnOH}, 60^{\circ} \mathrm{C}, 5 \mathrm{~h}, 80 \%$; b) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{Me} 2 \mathrm{CO}, p$-TsOH (cat.), $60^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 84%; c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{DCM},-60^{\circ} \mathrm{C}, 3 \mathrm{~h}$; d) $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Et}, \mathrm{DCM}, \mathrm{RT}, 12 \mathrm{~h}, 86 \%$ (over two steps); e) H_{2}, Raney-Ni, EtOH, RT, 20h, 90%; f) H_{2}, Pd / C, EtOH/THF, 36h, 88%; g) $80 \% \mathrm{HOAc}, \mathrm{RT}$, 24 h ; h) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (cat.), $\mathrm{MeOH}, 4^{\circ} \mathrm{C}, 3 \mathrm{~d}, 72 \%$ (over two steps); i) TsCl , Py, RT, 18h, 76%; i) NaN_{3}, DMF, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}, 75 \%$; k) $\mathrm{BnBr}, \mathrm{KOH}, \mathrm{THF}$, reflux, $5 \mathrm{~h}, 91 \%$; I) $\mathrm{HOAc} / \mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO} 4$ (cat.), RT, $3 \mathrm{~h}, 85 \%$; m) 6-O-(Diphenylcarbamoyl)-2- N-isobutyrylguanine ($G^{\text {dpciBu }}$), BSA, TMSOTf, DCE, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 72 \%$. Overall yield starting from $13: 10 \%$.

The desired G-half (Scheme 2) was synthesized starting from D-arabinose (13). 1-O-Benzyl and 3,4-acetonide protection yielded alcohol 14.
Subsequent Swern oxidation and Wittig homologation provided the intermediate 15 (E/Z: 4:1). Employing the acetonide protective group as a stereoselective directing group, compound 16 was almost exclusively obtained in R-configuration via a Raney-Ni-assisted hydrogenation (dr: 20:1).
Under these reduction conditions the $1-O$-benzyl group remained unaffected - keeping the sugar in its pyranoside configuration. Removal of the protective groups and treatment with catalytic amounts of acid furnished at $4^{\circ} \mathrm{C}$ selectively the ribofuranoside 17. This was followed by an in situ lactonization. The resulting alcohol 17 was tosylated and reacted with NaN_{3} to give azide 19. The absolute configuration of the compounds was again proven with a crystal structure of 18 (SI).
We subsequently opened the lactone ring to compound 20 via hydroxide-mediated benzyl protection and converted it into its 1 -O-acetyl derivative 21. The glycosylation reaction to the G -half $\mathbf{6}$ was performed by a so far unreported Vorbrüggen pattern in high β-selectivity ($\alpha / \beta: 1: 14$) and good yields (79%).
The assembly of nucleoside building blocks $A(5)$ and $G(6)$ was initiated by a CuAAC reaction. This reaction went smoothly and provided the dinucleotide 22 in fair yield of 80% (Scheme 3). We noticed that click-approaches with the Boc-deprotected amine compound A gave rise of several side products as monitored by thin-layer chromatography (TLC).

Scheme 3. The assembly towards cyclic dinucleotide 4 in 6 steps. a) CuSO_{4}, Na -Ascorbate, $\mathrm{THF} / \mathrm{tBuOH} / \mathrm{H}_{2} \mathrm{O}, \mathrm{RT}, 24 \mathrm{~h}, 80 \%$; b) TFA/DCM (1:1), $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 81 \%$; c) H_{2}, Pd/C, EtOH, 36h; d) HATU, DIPEA, DMF (1mM), RT, $24 \mathrm{~h}, 52 \%$ (over two steps); e) BCl ${ }_{3}$, DCM, $-40^{\circ} \mathrm{C}, 3 \mathrm{~d}$; f) $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}, 50^{\circ} \mathrm{C}, 20 \mathrm{~h}, 48 \%$ (over two steps). Overall yield starting from 5 and $\mathbf{6}$: 16%.

TFA treatment of dinucleotide $\mathbf{2 2}$ resulted in the cleavage of both the Boc and the diphenylcarbamoyl (dpc) group. Besides, this was the last step of the consecutive synthesis where purification could be easily conducted by flash column chromatography (DCM/MeOH, $10: 1$) due to the increasing polarity of the following compounds. A palladium catalyzed hydrogenation reaction deprotected the benzyl ester by leaving the secondary 3 '"' - - -benzyl ether intact. Final macrolactamization with HATU furnished the cyclized dinucleotide 24. Deprotection of the $3^{\prime \prime \prime}$ ' O-benzyl ether under $\mathrm{BCl}_{3} / \mathrm{DCM}$ conditions $\left(-40^{\circ} \mathrm{C}\right)$ proved to be the best option even though solubility in organic solvents decreased with ongoing removal of protective groups. Final ammonolysis revealed our target molecule 4 in 2% overall yield starting from the G-pathway (19 steps) and 1\% starting from the A-pathway (20 steps), respectively. Compounds 24, 25 and $\mathbf{4}$ were purified by RP-HPLC and subjected to further NMR-studies

Figure 4: NOESY spectrum of the final compound 4 in DMSO- d_{6}

Conformational Analysis and Conclusion

We performed detailed NOESY experiments in order to determine the conformation preferences of target compound 4 in respect to potential STING binding. The spectrum is shown in Fig. 4. The most informative NOE contacts together with a depiction of the modelling results of $\mathbf{4}$ in solution is shown in Fig. 5. The NMR data confirm the overall structure with two β-configured glycosidic bonds both in anti-conformation. Most interesting, however, is the large shielding of proton $\mathrm{H}-2^{\prime \prime \prime}$, which shifts from $\delta($ compound $\mathbf{2 3})=4.12 \mathrm{ppm}$ to $\delta($ compound 4$)=-0.47 \mathrm{ppm}$. This dramatic shift indicates that the proton is positioned just on top of the aromatic triazole ring.

Figure 5: Selected NOE contacts of compound 4 (in DMSO- d_{6}) and modelling of the preferred conformation based on the NOE data.
According to this low chemical shift, it is assumed that $\mathrm{H}-2$ ""' points directly to the triazole ring within the cyclized structures of compounds 24, 25 and $\mathbf{4}$. Unraveling of the conformation just based on the NOE data shows that compound 4 likely adopts a more open conformation in solution (DMSO- d_{6}) compared to cGAMP 2, with the two heterocycles being not parallel to each other.

Potential binding of compound $\mathbf{4}$ to STING was tested in vitro by nanoDSF assays and analysis of thermal unfolding of the STING constructs hSTING_L139 (human STING AA139-379) and mSTING_L138 (mouse STING AA138-378). We used the physiological ligand $2^{\prime} 3^{\prime}$-cGAMP and a ligand with lower affinity, $3^{\prime} 3^{\prime}$-cGAMP, as positive controls. As expected after the conformational analysis of compound 4, binding to hSTING or mSTING could not be detected. This result was confirmed with ITC experiments (see supporting information). Based on the more open structure of the here prepared compound 4, we believe that interaction studies with cGAS or ENPP1 may be more promising. Investigations in this direction are on the way.

In summary, we report the first synthesis of a 2'3'-cGAMP analog which features uncharged bridges that should provide membrane crossing properties. The synthetic strategy involved first linking of the two nucleotides by a $\mathrm{Cu}(\mathrm{I})$-catalyzed click reaction followed by a macrolactamization to close the cycle. The synthesis of medium size ring structures is always difficult. We believe that the here described strategy will open the access to a variety of derivatives of 4 . This allows systematic scanning of the conformational space of the two nucleobases relative to each other regarding the binding to the involved proteins STING, cGAS and ENPP1.

Experimental Section

Unless otherwise specified, all reactions were magnetically stirred under an N_{2} atmosphere. Reaction vessels were dried under high vacuum at $550{ }^{\circ} \mathrm{C}$ prior to use. Dry solvents and reagents were purchased from commercial suppliers, such as Sigma-Aldrich, Acros Organics, Carbosynth, TCI Europe, ABCR, VWR, stored under septum over molecular sieves and used as received. The reaction progress and fractions during column chromatography were monitored by TLC on silica gel 60-F254 plates purchased from Merck and visualized by irradiation with UV-light (254 nm or 366 nm) and p anisaldehyde staining solution (p-anisaldehyde (3.7 mL), $\mathrm{EtOH}(135 \mathrm{~mL})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$, conc. $\mathrm{AcOH}(1.5 \mathrm{~mL})$). Purification was performed using flash column chromatography with silica gel (Merck, particle size $0.063-0.200 \mathrm{~mm}$). The eluents used were determined by TLC. Purification of the crude dinucleotides 24, 25 and 4 was operated by Waters 2695 reversed phase high performance liquid chromatography (RP-HPLC) using Nucleosil columns ($250 / 4 \mathrm{~mm}, \mathrm{C} 18 \mathrm{ec}$, particle size $3 \mu \mathrm{~m}$ for analysis or $250 / 10 \mathrm{~mm}, \mathrm{C} 18 \mathrm{ec}, 5 \mu \mathrm{~m}$ for purification) from Machery-Nagel with a bufferfree $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ eluent system. Water was purified by a Milli-Q Plus system from Merck Millipore. NMR-spectra were measured on a Bruker Ascend 400 or Bruker ARX 600 at room temperature operating at 400 MHz or 600 MHz for ${ }^{1} \mathrm{H}$-nuclei and at 101 MHz or 151 MHz for ${ }^{13} \mathrm{C}$-nuclei. The chemical shift (δ) in the NMR-spectra is reported in parts per million (ppm) and referenced by the residual solvent signal. Measurements were performed in CDCl_{3} and DMSO-d ${ }^{2}$. The spectra were referenced to the residual protons and carbons of the solvent $\left(\mathrm{CHCl}_{3}: \delta\left({ }^{1} \mathrm{H}\right)=7.26 \mathrm{ppm}, \delta\left({ }^{13} \mathrm{C}\right)=77.16 \mathrm{ppm}\right.$; DMSO-d6: $\delta\left({ }^{1} \mathrm{H}\right)=2.50 \mathrm{ppm}$, $\left.\delta\left({ }^{13} \mathrm{C}\right)=39.52 \mathrm{ppm}\right)$. Proton-spectra also show the integral intensity, the multiplicity, abbreviated with s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and the coupling constant ($J \mathrm{in} \mathrm{Hz}$). Assignments of the signals were performed using 2D-NMR techniques such as homonuclear correlation spectroscopy (COSY), nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single quantum coherence (HSQC) and heteronuclear multiple bond coherence (HMBC). All spectra were analysed with the software MestReNOVA 10.0 from Mestrelab Research S. L. Atom labelling and nomenclature are not in correspondence with IUPAC. High resolution mass spectra (HRMS) were measured on a Thermo Finnigan MAT 95 (EI) and a Thermo Finnigan LTQ FTICR (ESI). IR-measurements were performed on a Perkin Elmer Spectrum BX FT-IR spectrometer with a diamond-ATR (Attenuated Total Reflection) setup. Uncorrected melting points were determined with an automated Stanford Research Systems EZ-Melt apparatus (digital image processing technology). Samples were loaded in open capillary tubes. X-ray crystallography of single crystals was performed on an Oxford XCalibur
diffractometer and further analysis by the software Ortep-3. ${ }^{[37]}$ The structure of the synthesized analog 4 in Fig. 2 was obtained using the geometry optimization tool of the open source software Avogadro and visualized by PyMol.

Nano differential scanning fluorimetry (nanoDSF): Thermal melting experiments of STING constructs were performed using a Tycho NT. 6 instrument (NanoTemper Technologies). In brief, the samples were heated up in a glass capillary and while heating, the internal fluorescence at 330 nm and 350 nm was recorded. Data analysis, data smoothing and calculation of derivatives was done using the internal evaluation features of the NT. 6 instrument. All measurements were repeated to confirm robustness of the assay.

Isothermal titration calorimetry: ITC experiments were performed using a Malvern PEAQ-ITC system with $20 \mu \mathrm{M}$ protein in ITC-buffer (20 mM HEPES $\mathrm{pH}=7.5,150 \mathrm{mM} \mathrm{NaCl}$) in the cell. The positive controls of cGAMP ligands (Biolog) were titrated in a concentration of $200 \mu \mathrm{M}$ into the cell by 19 injections of $2 \mu \mathrm{~L}$, spaced 150 s apart, at $25^{\circ} \mathrm{C}$. Compound 4 was used in a concentration of $291 \mu \mathrm{M}$ for titration. The results were analyzed using the MicroCal PEAQ-ITC analysis software provided with the instrument. All titrations were repeated to confirm robustness of the assay.

Cloning, Expression and Purification: Human STING AA139-379 and mouse STING AA138-378 constructs were cloned according to previous studies. ${ }^{[38]}$ The plasmids were used to transform E. coli Rosetta (DE3) protein expression strain cells (Novagen). The cells were grown in 1 L of Turbo Broth ${ }^{\text {TM }}$ media (Molecular Dimensions) supplemented with Kanamycin ($50 \mathrm{mg} / \mathrm{L}$) and Chloramphenicol ($34 \mathrm{mg} / \mathrm{L}$) at $37^{\circ} \mathrm{C}$ to an $\mathrm{OD}_{600}=1.3$ and expression was induced by adding IPTG to a final concentration of 0.2 mM . Purification of the STING constructs has been performed as described previously. ${ }^{[38]}$

5-O-(tert-Butyldimethylsilyl)-3,3-deoxymethylene-1,2-O-isopropylidene- α-D-xylofuranose (8): The title compound was prepared according to a modified procedure of Betkekar et al. ${ }^{[39]}$ To a solution of oxalyl chloride ($12.3 \mathrm{~mL}, 17.9 \mathrm{~g}, 141 \mathrm{mmol}, 1.10$ eq.) in dry DCM (450 mL) was slowly added DMSO ($20.0 \mathrm{~mL}, 22.0 \mathrm{~g}, 282 \mathrm{mmol}, 2.20$ eq.) under N_{2} at $-78^{\circ} \mathrm{C}$. The temperature was maintained below $-60^{\circ} \mathrm{C}$ and evolving gas was purged. After the mixture was stirred for 1 h at $-60^{\circ} \mathrm{C}$, a solution of $5-O$-(tert-butyldimethylsilyl)-1,2-O-isopropylidene- α-D-xylofuranose ${ }^{[40]}$ ($39.0 \mathrm{~g}, 128 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dry DCM (125 mL) was added to the reaction mixture over 5 min and stirred for 2 h . Triethylamine ($53.6 \mathrm{~mL}, 38.9 \mathrm{~g}, 384 \mathrm{mmol}, 3.00$ eq.) was added and the suspension was stirred for a further hour at $-60^{\circ} \mathrm{C}$. The reaction mixture was warmed to RT , quenched with saturated aqueous $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and extracted with DCM $(3 \times 200 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo to obtain $5-O$ -(tert-butyldimethylsilyl)-3-oxo-1,2-O-isopropylidene-a-D-xylofuranose ${ }^{[41]}$ as a waxy yellow solid. The compound was used in the next step without further purification.
Methyl triphenyl phosphonium bromide (86.2 g , 241 mmol , 2.00 eq.) was suspended in THF (360 mL) and cooled to $-78^{\circ} \mathrm{C}$ under N_{2}. n-Butyl lithium ($96.5 \mathrm{~mL}, 241 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes, 2.00 eq.) was carefully added dropwise and the resulting red suspension (LiBr precipitates) was stirred for 1 h at $0^{\circ} \mathrm{C}$. Subsequent addition of a solution of the crude ketone ($36.5 \mathrm{~g}, 121 \mathrm{mmol}, 1.00$ eq.) in THF (60 mL) over 10 min gave a slurry which was stirred at RT for 6 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and then extracted with ethyl acetate ($3 \times 200 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $9: 1 \rightarrow 4: 1$) to yield compound 8 as a colorless syrup ($31.1 \mathrm{~g}, 104 \mathrm{mmol}, 81 \%$ over 2 steps). $R_{f}=0.68($ silica, isohexanes/EtOAc = 4:1). IR (ATR): $\tilde{v}=2930,1463,1372,1252,1071,1018,775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}, \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-1), 5.42\left(\mathrm{dd},{ }^{4} \mathrm{~J}=2.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}^{\mathrm{a}}\right), 5.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}^{\mathrm{b}}\right.$), $4.88\left(\mathrm{dd},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.75$ (ddd, ${ }^{3} \mathrm{~J}=4.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.8$ $\left.\mathrm{Hz},{ }^{4} J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.75\left(\mathrm{dd},{ }^{2} \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.67\left(\mathrm{dd},{ }^{2} \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{CH})_{2}\right), 1.38(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.043\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.040\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}(101 \mathrm{MHz}, \mathrm{CDCl} 3): \delta=147.7(\mathrm{C}-3), 112.6$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $111.7\left(\mathrm{C}=\mathrm{CH}_{2}\right), 105.1(\mathrm{C}-1)$, $82.1(\mathrm{C}-2), 81.0(\mathrm{C}-4), 65.9(\mathrm{C}-5), 27.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.24$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $-5.31\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}+\mathrm{NH}_{4}\right]^{+}$318.2095, found: 318.2098.

5-O-(tert-Butyldimethylsilyl)-3-deoxy-3-(hydroxymethyl)-1,2-O-isopropylidene- α-D-ribofuranose (9a): The title compound was prepared according to a modified procedure of Betkekar et al. ${ }^{[39]}$ To a solution of vinyl compound $8(29.5 \mathrm{~g}, 98.2 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dry THF (300 mL) was added borane dimethyl sulfide complex ($73.6 \mathrm{~mL}, 147 \mathrm{mmol}, 2 \mathrm{M}$ in $\mathrm{THF}, 1.50$ eq.) at $0^{\circ} \mathrm{C}$. After the solution was stirred for 12 h at RT , aqueous $2 \mathrm{~N} \mathrm{NaOH}(225 \mathrm{~mL}$) was carefully added under strong gas evolution at $0^{\circ} \mathrm{C}$ to give a turbid suspension. The reaction mixture was treated slowly with 30% aqueous hydrogen peroxide (98.0 mL) at the same temperature to avoid heat development. The suspension was stirred for further 2 h at RT, quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and finally extracted with $\mathrm{EtOAc}(3 \times 300 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude product was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $4: 1 \rightarrow 2: 1 \rightarrow 1: 1$) to afford alcohol $9 a\left(23.8 \mathrm{~g}, 74.7 \mathrm{mmol}, 76 \%\right.$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.76$ (isohexanes/EtOAc $=1: 1$). IR (ATR): $\tilde{v}=$ $3456,2931,1463,1381,1253,1105,1019,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.75\left(\mathrm{dd},{ }^{3} \mathrm{~J}=4.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.08 (ddd, ${ }^{3} \mathrm{~J}=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $3.88\left(\mathrm{dd},{ }^{2} \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right.$), $3.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{OH}$), $3.66\left(\mathrm{dd},{ }^{2} \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{CH})_{2}\right), 0.90(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.091\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.087\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC $(101 \mathrm{MHz}, \mathrm{CDCl} 3): \delta=112.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 105.0(\mathrm{C}-1), 82.6$ $(\mathrm{C}-2), 80.7(\mathrm{C}-4), 64.0(\mathrm{C}-5), 59.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 50.0(\mathrm{C}-3), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-5.32\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} . \mathrm{ESI}-$ HRMS calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}+\mathrm{NH}_{4}\right]^{+}$: 336.2201, found: 336.2204.

5-O-(tert-Butyldimethylsilyl)-3-deoxy-3-formyl-1,2-O-isopropylidene- α-D-ribofuranose (9): The title compound was prepared according to a modified procedure of Parr et al. ${ }^{[41]}$ To a solution of oxalyl chloride ($6.91 \mathrm{~mL}, 10.1 \mathrm{~g}, 79.6 \mathrm{mmol}, 1.10 \mathrm{eq}$.) in dry DCM (380 mL) was slowly added DMSO $\left(11.3 \mathrm{~mL}, 12.4 \mathrm{~g}, 159 \mathrm{mmol}, 2.20\right.$ eq.) under N_{2} at $-78^{\circ} \mathrm{C}$. The temperature was maintained below $-60^{\circ} \mathrm{C}$ and evolving gas was purged. After the mixture was stirred for 1 h at $-60^{\circ} \mathrm{C}$, a solution of alcohol $9 \mathrm{a}(23.0 \mathrm{~g}, 72.2 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dry DCM (70 mL) was added to the reaction mixture over 5 min and stirred for 2 h . Triethylamine ($30.2 \mathrm{~mL}, 21.9 \mathrm{~g}, 217 \mathrm{mmol}, 3.00$ eq.) was added and the suspension was stirred for a further hour at $-60^{\circ} \mathrm{C}$. The reaction mixture was warmed to RT , quenched with saturated aqueous $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 150 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and volatile components removed under reduced pressure. Purification of the crude product was performed by flash-column chromatography (silica gel, isohexanes/EtOAc, 9:1 $\rightarrow 4: 1$) to give aldehyde $9(21.2 \mathrm{~g} 67.0 \mathrm{mmol}, 93 \%$) as a colorless oil. It was also possible to use the crude product in the next step without further purification. $R_{f}=0.61$ (isohexanes/EtOAc = 4:1). IR (ATR): $\tilde{v}=2931,1726,1472,1382$, $1253,1100,1019,778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.78\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}\right), 5.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.03\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.55\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.86\left(\mathrm{dd},{ }^{2} \mathrm{~J}=11.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.78\left(\mathrm{dd},{ }^{2} \mathrm{~J}=11.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}\right.$ $\left.=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.02\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}(\mathrm{CH})_{3}\right), 0.04$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.0(\mathrm{CHO}), 113.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 105.7(\mathrm{C}-1), 80.8(\mathrm{C}-2)$,
$78.2(\mathrm{C}-4), 62.8(\mathrm{C}-5), 56.6(\mathrm{C}-3), 26.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.0\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.31\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-5.31\left(\mathrm{Si}(\mathrm{CH})_{2}\right) \mathrm{ppm} . \mathrm{El}-\mathrm{HRMS}$ calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}-\mathrm{CH}_{3}\right]^{+}: 301.1466$, found: 301.1475.

5-O-(tert-Butyldimethylsilyl)-3-deoxy-3-(2,2-dibromovinyl)-1,2-O-isopropylidene- α-D-ribofuranose (10a): The title compound was prepared according to a modified procedure of Betkekar et al. ${ }^{[39]}$ A solution of tetrabromomethane ($43.0 \mathrm{~g}, 130 \mathrm{mmol}, 2.00 \mathrm{eq}$.) in DCM (350 mL) was mixed with triphenylphosphine ($68.0,259 \mathrm{mmol}, 4.00$ eq.) under N_{2} at $0^{\circ} \mathrm{C}$ and stirred for 1 h at this temperature. The resulting orange solution was treated with a solution of aldehyde $9(20.5 \mathrm{~g}, 64.8 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) in DCM (120 \mathrm{~mL})$. The dark suspension was stirred at RT for 12 h . After removal of volatile materials, the crude product was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, 9:1 $\rightarrow 4: 1$) to provide dibromo compound 10 a (26.1 g , $55.3 \mathrm{mmol}, 85 \%$) as a slightly yellow oil. $\mathrm{R}_{\mathrm{f}}=0.83$ (isohexanes/EtOAc $=4: 1$). IR (ATR): $\tilde{v}=2929,1471,1382,1252,1097,1020,777 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}^{2}$, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Br}_{2} \mathrm{CCH}\right.$), $5.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=4.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.03(\mathrm{ddd}$, $\left.{ }^{3} J=9.9 \mathrm{~Hz},{ }^{3} J=3.6 \mathrm{~Hz},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.81\left(\mathrm{dd},{ }^{2} J=11.5 \mathrm{~Hz},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.66\left(\mathrm{dd},{ }^{2} J=11.5 \mathrm{~Hz},{ }^{3} J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.00\left(\mathrm{td},{ }^{3} J=\right.$ $\left.9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH} \mathrm{H}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\right.$ NMR, HSQC, HMBC $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.2\left(\mathrm{Br}_{2} \mathrm{CCH}\right), 112.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 105.2(\mathrm{C}-1), 91.8\left(\mathrm{Br}_{2} \mathrm{CCH}\right), 81.7(\mathrm{C}-2), 80.9(\mathrm{C}-4), 62.3(\mathrm{C}-5), 49.2(\mathrm{C}-3), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.4$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.5\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $5.16\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $-5.22\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. El-HRMS calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{Si}-\mathrm{CH}_{3}\right]^{+}: 454.9884$, found: 454.9882

5-O-(tert-Butyldimethylsilyl)-3-deoxy-3-ethynyl-1,2-O-isopropylidene- α-D-ribofuranose (10b): The title compound was prepared according to a modified procedure of Betkekar et al. ${ }^{[39]}$ Dibromo compound 10 a ($25.0 \mathrm{~g}, 52.9 \mathrm{mmol}, 1.00$ eq.) was dissolved in dry THF (270 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} . n$-Butyl lithium ($48.7 \mathrm{~mL}, 122 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexanes, 2.30 eq .) was added dropwise over a period of 10 min until a red solution was formed. After stirring for 1.5 h at this temperature, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (100 mL) and extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. Purification of the residue was conducted by flash-column chromatography (silica gel, isohexane/EtOAc, 9:1 $\rightarrow 4: 1$) to afford ethynyl compound 10 b ($13.7 \mathrm{~g} 43.8 \mathrm{mmol}, 83 \%$) as a yellowish oil. $R_{f}=0.60$ (isohexanes/EtOAc, 4:1). IR (ATR): $\tilde{v}=3279,2930,1472,1373,1252,1215,1110,1017,815,777 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, COSY (400 MHz , CDCl_{3}): $\delta=5.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.72\left(\mathrm{dd},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right.$), 4.11 (ddd, $\left.{ }^{3} \mathrm{~J}=10.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.97$ (dd, $\left.{ }^{2} J=12.0,{ }^{3} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}}-5\right), 3.79\left(\mathrm{dd},{ }^{2} J=12.0,{ }^{3} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 2.97\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=10.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.21\left(\mathrm{~d},{ }^{4} \mathrm{~J}=\right.$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}(\mathrm{CH})_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}$, HSQC, $\operatorname{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=112.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 105.1(\mathrm{C}-1), 81.9(\mathrm{C}-4), 81.2(\mathrm{C}-2), 78.2(\mathrm{CCH}), 72.3(\mathrm{CCH}), 61.1(\mathrm{C}-5), 36.3(\mathrm{C}-3), 26.8\left(\mathrm{C}(\mathrm{CH} 3)_{2}\right) \text {, }}\right.$ $26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.1\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.6\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-5.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $-5.2\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. ESI-HRMS calcd. for [$\left.\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}+\mathrm{NH}_{4}\right]^{+}: 330.2095$, found: 330.2098.

3-Deoxy-3-ethynyl-1,2-O-isopropylidene- α-D-ribofuranose (10c): The title compound was prepared according to a modified procedure of Betkekar et al. ${ }^{[39]}$ To a yellow solution of ethynyl compound $\mathbf{1 0 b}(13.3 \mathrm{~g}, 42.6 \mathrm{mmol}, 1.00 \mathrm{eq}$) in THF (200 mL) was added TBAF ($55.3 \mathrm{~mL}, 55.3 \mathrm{mmol}, 1 \mathrm{M} \mathrm{in} \mathrm{THF}$, 1.30 eq.) at RT. The resulting dark solution was stirred for 4 h at this temperature. The reaction mixture was quenched with silica and the solvent was concentrated under reduced pressure. The crude product was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $2: 1 \rightarrow 1: 1 \rightarrow 2: 3$) to yield alcohol $10 \mathrm{c}\left(8.03 \mathrm{~g}, 40.5 \mathrm{mmol}, 95 \%\right.$) as colorless crystals. M.p. $=43-45^{\circ} \mathrm{C}$. $\mathrm{R}_{\mathrm{f}}=0.38$ (isohexanes/EtOAc $=1: 1$). IR (ATR): $\tilde{v}=3456,3279,2936$, $1375,1249,1215,1105,1007,871 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.75\left(\mathrm{dd},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2), 4.17$ (ddd, $\left.{ }^{3} J=10.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right),\left(4.00\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}}-5\right), 3.71\right.$ (ddd, ${ }^{2} \mathrm{~J}=12.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5$), 2.96 ($\mathrm{ddd},{ }^{3} \mathrm{~J}=10.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.23 (d, ${ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}$), $1.84\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right.$), $1.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=112.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 105.1(\mathrm{C}-1), 81.4(\mathrm{C}-4), 81.3(\mathrm{C}-2)$, $77.6(\mathrm{CCH})$, $72.6(\mathrm{CCH}), 60.6(\mathrm{C}-5), 36.3(\mathrm{C}-3), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. El-HRMS calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}-\mathrm{CH}_{3}\right]^{+}: 183.0652$, found: 183.0652. 3-Deoxy-3-ethynyl-1,2-O-isopropylidene-5-O-tosyl- α-D-ribofuranose (10d): p-Toluenesulfonyl chloride ($15.5 \mathrm{~g}, 56.8 \mathrm{mmol}, 1.50$ eq.) was dissolved in dry pyridine $(50.0 \mathrm{~mL})$ and added to a solution of alcohol $10 \mathrm{c}\left(7.5 \mathrm{~g} 37.8 \mathrm{mmol}, 1.00 \mathrm{eq}\right.$.) in pyridine $(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 18 h at RT and finally quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$. After removal of volatile components, purification of the residue by flash-column chromatography (silica gel isohexanes/EtOAc, $2: 1 \rightarrow 1: 1$) gave tosyl compound $10 \mathrm{~d}(11.7 \mathrm{~g}, 33.2 \mathrm{mmol}, 87 \%$) as colorless crystals. Crystallization from isohexanes/EtOAc (vapor diffusion) provided suitable single crystals for X-ray characterization. M.p. $=113-114^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.73$ (isohexanes/EtOAc $=1: 1$). IR (ATR): $\tilde{v}=$ $3296,2990,1598,1450,1360,1176,1097,958,813665 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, aryl-CH-CSO 3$), 7.34(\mathrm{~d}$, ${ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{aryl}-\mathrm{CH}-\mathrm{CCH}_{3}$), $5.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right.$), $4.68\left(\mathrm{dd},{ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.40-4.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 4.22-4.14(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}_{\mathrm{b}}-5\right), 2.84\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=9.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \operatorname{aryl}-\mathrm{CH}_{3}\right), 2.21\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}\right), 1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{CH})_{3}\right)$), $1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=145.1$ (aryl-C-SO 3$), 132.7$ (aryl-C-CH3), $130.0($ aryl-CH-CCH3), $128.2($ aryl-$\left.\mathrm{CH}-\mathrm{CSO}_{3}\right), 112.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 105.0(\mathrm{C}-1), 80.7(\mathrm{C}-2), 78.5(\mathrm{C}-4), 76.5(\mathrm{CCH}), 73.3(\mathrm{CCH}), 67.4(\mathrm{C}-5), 37.0(\mathrm{C}-3), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.8 ~}^{2}\right.$ (aryl- CH_{3}) ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S}+\mathrm{H}\right]: 353.1054$, found: 353.1057. ESI-HRMS calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S}+\mathrm{NH}_{4}\right]^{+}: 370.1319$, found: 370.1317 .

5-Azido-3,5-dideoxy-3-ethynyl-1,2-O-isopropylidene- α-D-ribofuranose (10): A mixture of tosyl compound $\mathbf{1 0 d}$ (10.5 g , $29.8 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and sodium azide ($8.86 \mathrm{~g}, 95.3 \mathrm{mmol}, 3.20$ eq.) was suspended in DMF (300 mL) and stirred under N_{2} at $80^{\circ} \mathrm{C}$ for 3 h . The yellow suspension was diluted with brine $(200 \mathrm{~mL})$ and extracted with EtOAc $(4 \times 300 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. Purification of the crude product by flash-column chromatography (silica gel, isohexanes/EtOAc, $9: 1 \rightarrow 4: 1$) yielded azide compound 10 (6.25 g , $28.0 \mathrm{mmol}, 94 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.67$ (isohexanes/EtOAc = 2:1). IR (ATR): $\tilde{v}=3280,2989,2100,1375,1216,1166,1105,1012,871 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.75\left(\mathrm{dd},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.24\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=10.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.76\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right.$), $3.37\left(\mathrm{dd},{ }^{2} J=13.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 2.88\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=10.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=\right.$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.25\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, $\mathrm{HMBC}(101 \mathrm{MHz}, \mathrm{CDCl} 3): \delta=112.8$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $105.1(\mathrm{C}-1), 81.0(\mathrm{C}-2), 79.7(\mathrm{C}-4), 76.9(\mathrm{CCH}), 73.2(\mathrm{CCH}), 50.7(\mathrm{C}-5), 37.9(\mathrm{C}-3), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right) 2\right) \mathrm{ppm}$. El-HRMS calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}-\mathrm{CH}_{3}\right]^{+}: 208.0717$, found: 208.0717.

1,2-di-O-Acetyl-5-azido-3,5-dideoxy-3-ethynyl-D-ribofuranose (11): A stirred solution of azide compound 10 ($6.00 \mathrm{~g}, 26.9 \mathrm{mmol}, 1.00$ eq.) in acetic acid (100 mL) and acetic anhydride (50 mL) was treated with concentrated sulfuric acid $(96 \%, 1.30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture turned dark and was stirred for 5 h at RT. After careful quenching with saturated aqueous NaHCO_{3} solution (200 mL) and solid NaHCO_{3} until CO_{2} evolution stopped, the reaction was extracted with DCM $(4 \times 200 \mathrm{~mL})$. The organic phase was washed with brine (200 mL), dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, 9:1) to afford diacetate compound $11(5.61 \mathrm{~g}, 21.0 \mathrm{mmol}, 78 \%)$ as colorless crystals. $\alpha / \beta=1: 6 . \beta$ anomer could be isolated for analysis. Crystallization from isohexanes/EtOAc (vapor
diffusion) provided suitable single crystals of the β anomer for X-ray characterization. M.p. $=81-82^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}(\alpha$ anomer $)=0.55$ (isohexanes/EtOAc $=4: 1$). $R_{f}(\beta$ anomer $)=0.46$ (isohexanes/EtOAc, 4:1). IR (ATR, β anomer): $\tilde{v}=3281,2934,2099,1743,1438,1371,1205,1097,1024,959, \mathrm{~cm}^{-1}$. Major β anomer: ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 5.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 4.38$ (ddd, ${ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 3.75$ (dd, ${ }^{2} J=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5$), 3.39 (ddd, ${ }^{3} J=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.24\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}_{\mathrm{b}}-5\right), 2.16\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-2-\mathrm{OCOCH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-1-\mathrm{OCOCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($101 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=169.5$ $\left(\mathrm{C}-2-\mathrm{OCOCH}_{3}\right), 169.2\left(\mathrm{C}-1-\mathrm{OCOCH}_{3}\right), 98.7(\mathrm{C}-1), 83.7(\mathrm{C}-4), 76.8(\mathrm{C}-2), 76.0(\mathrm{CCH}), 73.6(\mathrm{CCH}), 51.0(\mathrm{C}-5), 34.5(\mathrm{C}-3), 21.12\left(\mathrm{C}-1-\mathrm{OCOCH}_{3}\right), 20.73$ $\left(\mathrm{C}-2-\mathrm{OCOCH}_{3}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{H}\right]^{+}$: 268.0928 , found: 268.0930. ESI-HRMS calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{NH}_{4}\right]^{+}$: 285.1193, found: 285.1196.

6-Benzoylamino-9-(2-O-acetyl-5-azido-3,5-dideoxy-3-ethynyl- β-D-ribofuranosyl)-9H-purine (12): N, O-Bis(trimethylsilyl)acetamid (BSA) (3.66 mL, $3.05 \mathrm{~g}, 15.0 \mathrm{mmol}, 4.00 \mathrm{eq}$.) was added under N_{2} to a stirred suspension of diacetate compound 11 ($1.00 \mathrm{~g}, 3.74 \mathrm{mmol}, 1.00 \mathrm{eq}$) and $6-\mathrm{N}$ benzoyladenine ($1.79 \mathrm{~g}, 7.48 \mathrm{mmol}, 2.00$ eq.) in dichloroethane (40 mL) and heated to $80^{\circ} \mathrm{C}$ for 1 h until a clear solution was obtained. The reaction mixture was brought to RT and treated with trimethylsilyl triflate (TMSOTf) ($1.36 \mathrm{~mL}, 1.66 \mathrm{~g}, 7.48 \mathrm{mmol}, 2.00$ eq.). The dark red solution was stirred at $80^{\circ} \mathrm{C}$ for 4 h and additional 8 h at RT. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(4 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $2: 1 \rightarrow 1: 1 \rightarrow 1: 2 \rightarrow$ EtOAc) to provide nucleoside 12 ($1.02 \mathrm{~g}, 2.29 \mathrm{mmol}, 61 \%$) as a colorless foam. The reaction could also be performed on a 4 g scale of the diacetate starting material 11 (yield: 50%). M.p. $=110^{\circ} \mathrm{C}$ (decomp.). $\mathrm{R}_{\mathrm{f}}=0.20$ (isohexanes/EtOAc $=1: 2) . R_{f}=0.24(\mathrm{DCM} / \mathrm{MeOH}, 100: 5)$. IR (ATR): $\tilde{v}=3296,3060,2932,2103,1747,1698,1581,1218,1072,797 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{COSY}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=9.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{aryl}-\mathrm{o}-\mathrm{CH}\right), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}, \operatorname{aryl}-\mathrm{p}-\mathrm{CH}), 7.46\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}$, aryl-m-CH), $6.09\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.87\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.38$ (ddd, $\left.{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.07$ (ddd, ${ }^{3} \mathrm{~J}=10.0$ $\left.\mathrm{Hz},{ }^{3} J=5.7 \mathrm{~Hz},{ }^{4} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.79\left(\mathrm{dd},{ }^{2} J=13.6 \mathrm{~Hz},{ }^{3} J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}}-5\right.$), $3.57\left(\mathrm{dd},{ }^{2} J=13.6 \mathrm{~Hz},{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5^{\prime}\right), 2.26\left(\mathrm{~d},{ }^{4} J=2.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CCH}$), $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.6\left(\mathrm{OCOCH}_{3}\right), 164.8(\mathrm{~N}-\mathrm{CO}-\mathrm{aryl}), 152.8(\mathrm{C}-2), 151.2(\mathrm{C}-4), 149.9$ (C-6), 142.0 (C-8), 133.6 (aryl-C-CO-N), 132.9 (aryl-p-CH), 128.9 (aryl-m-CH), 128.0 (aryl-o-CH), 123.7 (C-5), 89.7 (C-1'), 83.0 (C-4'), 76.9 (C-2'), 75.7 $(\mathrm{CCH}), 74.4(\mathrm{CCH}), 51.2\left(\mathrm{C}-5^{\prime}\right), 36.2\left(\mathrm{C}-3^{\prime}\right), 20.7\left(\mathrm{OCOCH}_{3}\right)$ ppm. ESI-HRMS calcd. for [$\left.\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{4}+\mathrm{H}\right]^{+}$: 447.1524, found: 447.1529.

6-Benzoylamino-9-(2-O-acetyl-5-amino-3,5-dideoxy-3-ethynyl- β-d-ribofuranosyl)-9H-purine (5a): Trimethylphosphine ($4.48 \mathrm{~mL}, 4.48 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF, 2.00 eq.) was added to a stirred solution of nucleoside $12(1.00 \mathrm{~g}, 2.24 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in THF (25 mL). After 5 min the reaction mixture turned turbid under N_{2} evolution and was heated to $40^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was treated with water ($0.44 \mathrm{~mL}, 24.6 \mathrm{mmol}, 11.0 \mathrm{eq}$.) and stirred for 10 h at RT. Volatile materials were removed under reduced pressure and the residue was purified by flash-column chromatography (silica gel, DCM/MeOH, 100:2 $\rightarrow 100: 5$) to give amino compound $5 \mathrm{a}(0.62 \mathrm{~g}, 1.48 \mathrm{mmol}, 66 \%)$ as a colorless foam. The reaction could also be performed on a 4 g scale of the azide starting material 12 (yield: 56%). $R_{f}=0.34$ ($D C M / M e O H=5: 1$). IR (ATR): $\tilde{v}=3366,3275,2918,1747,1640,1422,1296,1138,943$, $860 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{aryl} \mathrm{o}-\mathrm{CH}\right), 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}, \operatorname{aryl}-\mathrm{p}-$ CH), $7.49\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, aryl-m-CH), $6.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.27$ (ddd, $\left.{ }^{3} \mathrm{~J}=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, 4.02 (ddd, $\left.{ }^{3} J=9.9 \mathrm{~Hz},{ }^{3} J=5.9 \mathrm{~Hz},{ }^{4} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.24\left(\mathrm{dd},{ }^{2} J=14.0 \mathrm{~Hz},{ }^{3} J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5^{\prime}\right), 3.01\left(\mathrm{dd},{ }^{2} \mathrm{~J}=14.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5^{\prime}\right.$), $2.23\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, $\mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.8\left(\mathrm{OCOCH}_{3}\right), 164.9(\mathrm{~N}-\mathrm{CO}-\mathrm{aryl}), 152.8(\mathrm{C}-$ 2), 151.3 (C-4), 149.9 (C-6), 142.2 (C-8), 133.6 (aryl-C-CO-N), 132.9 (aryl-p-CH), 128.9 (aryl-m-CH), 128.0 (aryl-o-CH), 123.7 (C-5), 89.5 (C-1'), 85.4 (C$\left.4^{\prime}\right)$, $77.4\left(\mathrm{C}-2^{\prime}\right), 76.7(\mathrm{CCH}), 73.9(\mathrm{CCH}), 42.6\left(\mathrm{C}-5^{\prime}\right), 35.8\left(\mathrm{C}-3^{\prime}\right), 20.9\left(\mathrm{OCOCH}_{3}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{4}+\mathrm{H}^{+}\right.$: 421.1619 , found: 421.1623.

6-Benzoylamino-9-(2-O-acetyl-5-(tert-butoxycarbonyl)amino-3,5-dideoxy-3-ethynyl- β-D-ribofuranosyl)-9H-purine (5): A mixture of amine compound $5 \mathrm{a}(2.00 \mathrm{~g}, 4.76 \mathrm{mmol}, 1.00$ eq.), triethylamine ($1.99 \mathrm{~mL}, 1.44 \mathrm{~g}, 14.3 \mathrm{mmol}, 3.00$ eq.) and di-tert-butyldicarbonate ($1.53 \mathrm{~mL}, 1.56 \mathrm{~g}$, $7.14 \mathrm{mmol}, 1.50 \mathrm{eq}$.) in dry DCM (40 mL) was stirred at RT for $16 \mathrm{~h} . \mathrm{MeOH}(3 \mathrm{~mL})$ was added and volatile materials were removed in vacuo. The residue was purified by flash-column chromatography (silica gel, $\mathrm{DCM} / \mathrm{MeOH}, 100: 2 \rightarrow 100: 3$) to give the title compound 5 as a colorless foam ($1.59 \mathrm{~g}, 3.05 \mathrm{mmol}$, 64%). M.p. $=143^{\circ} \mathrm{C}$ (decomp.). $\mathrm{R}_{\mathrm{f}}=0.20$ ($\mathrm{DCM} / \mathrm{MeOH}=100: 5$). IR (ATR): $\tilde{\mathrm{v}}=3265,2977,1749,1699,1610,1516,1455,1248,1227,1086 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, COSY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.15$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NHBz}$), 8.79 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), $8.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.01$ (d, ${ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, aryl-o-CH), $7.63-7.56(\mathrm{~m}, 1 \mathrm{H}$, aryl-p-CH), $7.49\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{aryl}-\mathrm{m}-\mathrm{CH}\right), 6.26\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHBoc}\right), 5.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right.$ '), $5.66\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}\right.$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 4.43 (ddd, $\left.{ }^{3} \mathrm{~J}=9.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.03$ (ddd, $\left.{ }^{3} \mathrm{~J}=9.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 3.67\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=\right.$ $\left.14.5 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz},{ }^{3} J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5^{\prime}\right), 3.57\left(\mathrm{ddd},{ }^{2} \mathrm{~J}=14.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5^{\prime}\right), 2.28\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}\right.$), $2.18(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCOCH}_{3}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, CDCl $)$) $\delta=170.0\left(\mathrm{OCOCH}_{3}\right), 164.7(\mathrm{~N}-\mathrm{CO}-\mathrm{aryl}), 156.5(\mathrm{~N}-\mathrm{CO}-\mathrm{O}), 152.9(\mathrm{C}-$ 2), 151.1 (C-4), 150.2 (C-6), 142.4 (C-8), 133.5 (aryl-C-CO-N), 133.0 (aryl-p-CH), 129.0 (aryl-m-CH), 128.1 (aryl-o-CH), 124.2 (C-5), 90.5 (C-1'), 83.5 (C$\left.4^{\prime}\right), 79.6\left(\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 77.4\left(\mathrm{C}-2^{\prime}\right), 76.4(\mathrm{CCH}), 74.4(\mathrm{CCH}), 41.6\left(\mathrm{C}-5\right.$ '), $35.8\left(\mathrm{C}-3^{\prime}\right), 28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.8\left(\mathrm{OCOCH}_{3}\right)$ ppm. ESI-HRMS calcd. for [C26 $\mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{6}$ $+\mathrm{H}]^{+}: 521.2143$, found: 521.2150.

Benzyl 3,4-O-isopropylidene- β-D-arabinopyranoside (14): The title compound was prepared according to a modified procedure of Shing et al. ${ }^{[42]}$ Benzyl β-D-arabinopyranoside ($48.0 \mathrm{~g}, 200 \mathrm{mmol}, 1.00$ eq.) was suspended in acetone (500 mL) and 2,2-dimethoxypropane ($49.0 \mathrm{~mL}, 41.6 \mathrm{~g} ; 400 \mathrm{mmol}$, 2.00 eq.). After addition of p-toluenesulfonic acid monohydrate ($1.14 \mathrm{~g}, 5.99 \mathrm{mmol}, 0.03 \mathrm{eq}$.), the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h to obtain a clear solution. The reaction was neutralized by treatment with triethylamine ($0.84 \mathrm{~mL}, 0,61 \mathrm{~g}, 5.99 \mathrm{mmol}, 1.00 \mathrm{eq}$.). Volatile components were removed in vacuo and the residue was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $2: 1 \rightarrow 3: 2 \rightarrow 1: 1$, gradient elution) to furnish the title
 $1001,848,783,701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42-7.28(\mathrm{~m}, 5 \mathrm{H}, \operatorname{aryl}-\mathrm{H}), 4.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.79\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{PhCH}_{2} \mathrm{O}$), $4.55\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.24\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.21\left(\mathrm{q},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.01\left(\mathrm{dd},{ }^{2} \mathrm{~J}=\right.$ $\left.13.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.93\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.80\left(\mathrm{dd},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 2.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.53(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ ppm. ${ }^{13} \mathrm{C}$ NMR, HSQC, $\mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.1$ (aryl-C-CH2), 128.7 (aryl-m-CH), 128.22 (aryl-p-CH), 128.15 (aryl-o- CH), $109.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 97.0(\mathrm{C}-1), 76.1(\mathrm{C}-4), 73.1(\mathrm{C}-3), 70.1(\mathrm{C}-2), 69.9\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 59.9(\mathrm{C}-5), 28.0\left(\mathrm{CH}_{3}\right), 26.1(\mathrm{CH} 3) \mathrm{ppm}$. ESI-HRMS calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{NH}_{4}\right]^{+}: 298.1649$, found: 298.1651. El-HRMS calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}-\mathrm{CH}_{3}\right]^{+}: 265.1071$, found: 265.1084.

Benzyl 2-deoxy-2-C-[(ethoxycarbonyl)methylene]-3,4-O-isopropylidene- β-D-arabinofuranoside (15): The title compound was prepared according to a modified procedure of Kaiya et al. ${ }^{[43]}$ Oxalyl chloride ($15.3 \mathrm{~mL}, 22.4 \mathrm{~g}, 176 \mathrm{mmol}, 1.15 \mathrm{eq}$.) was dissolved in dry DCM (600 mL). After cooling to $-78^{\circ} \mathrm{C}$, dry DMSO ($25.1 \mathrm{~mL}, 27.6 \mathrm{~g}, 352 \mathrm{mmol}, 2.30 \mathrm{eq}$.) was added dropwise and the mixture was stirred at $-60^{\circ} \mathrm{C}$ for 1 h until no further gas
development was observed. Subsequently, a solution of acetonide compound 14 ($43.0 \mathrm{~g}, 153 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dry DCM (150 mL) was added slowly over 10 min and the mixture was stirred at $-60^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was treated with triethylamine ($64.1 \mathrm{~mL}, 46.6 \mathrm{~g}, 460 \mathrm{mmol}, 3.00 \mathrm{eq}$.), stirred at $-60^{\circ} \mathrm{C}$ for 1 h , quenched upon addition of saturated aqueous $\mathrm{NaHCO}_{3}(300 \mathrm{~mL})$ and extracted with DCM ($3 \times 300 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Ketone 15a was obtained as a waxy syrup which was used in the next step without further purification. El-HRMS calcd. for [$\left.\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}-\mathrm{CH}_{3}\right]^{+}$: 263.0914 , found: 263.0914.
A mixture of crude ketone $15 \mathrm{a}\left(42.0 \mathrm{~g}, 151 \mathrm{mmol}, 1.00 \mathrm{eq}\right.$.) and (carbethoxymethylene)triphenylphosphorane ${ }^{[44]}$ ($68.3 \mathrm{~g}, 196 \mathrm{mmol}, 1.30 \mathrm{eq}$.) in DCM $(400 \mathrm{~mL})$ was stirred at RT for 12 h . Volatile components were evaporated and the residue was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, 4:1) to afford the title compound 15 as a colorless oil ($46.0 \mathrm{~g}, 132 \mathrm{mmol}, 86 \%$ over 2 steps). $\mathrm{E} / \mathrm{Z}=4: 1$ (inseparable mixture by fcc). $R_{f}=0.84$ (isohexanes/EtOAc = 2:1). IR (ATR, E/Z-mixture): $\tilde{v}=2983,1718,1372,1214,1150,1020,853,736,699 \mathrm{~cm}^{-1}$. Major E-Isomer: ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.32(\mathrm{~m}, 5 \mathrm{H}, \operatorname{aryl}-\mathrm{H}), 6.41\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}\right), 6.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.44\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$, $4.86\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ph}\right), 4.62\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{Ph}\right), 4.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.20\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH} \mathrm{CH}_{3}\right)$, $3.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5\right), 1.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{HSQC}, \mathrm{HMBC}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=165.5(\mathrm{C}=\mathrm{O}), 147.9(\mathrm{C}-2), 137.6\left(\right.$ aryl- $\left.-\mathrm{CH}_{2}\right), 128.6($ aryl-m- CH$), 128.1$ (aryl-p-CH), $128.0\left(\right.$ aryl-o-CH), $124.4(\mathrm{C}=\mathrm{CH}), 110.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 95.8$ $(\mathrm{C}-1), 75.2(\mathrm{C}-4), 69.5\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 68.6(\mathrm{C}-3), 63.2(\mathrm{C}-5), 60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 26.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{NH}_{4}\right]^{+}: 366.1911$, found: 366.1911.

Benzyl 2-deoxy-2-C-[(ethoxycarbonyl)methyl]-3,4-O-isopropylidene- β-D-ribopyranoside (16): The title compound was prepared according to a modified procedure of Kaiya et al. ${ }^{[43]}$ Vinyl compound 15 ($45.0 \mathrm{~g}, 129 \mathrm{mmol}, 1.00$ eq.) was dissolved in $\mathrm{EtOH}(300 \mathrm{~mL})$ and Raney- Ni (ca. 15 mL) was added to the solution at RT. The reaction vessel was evacuated and flushed with hydrogen three times. Subsequently, the mixture was stirred under hydrogen atmosphere for 20 h . Upon completion of the reaction as monitored by TLC, the reaction mixture was filtered through celite. Volatile materials were removed in vacuo and the residue was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, 4:1) to yield reduced compound 16 $(40.8 \mathrm{~g}, 116 \mathrm{mmol}, 90 \%)$ as a colorless oil. $\mathrm{dr}=13: 1 . \mathrm{R}_{\mathrm{f}}=0.33$ (isohexanes/EtOAc = 4:1). IR (ATR): $\tilde{v}=2983,1732,1455,1370,1212,1071,1021,870$, $738,699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.25(\mathrm{~m}, 5 \mathrm{H}, \operatorname{aryl}-\mathrm{H}), 4.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}\right), 4.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right)$, $4.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}\right), 4.24\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.10\left(\mathrm{q},{ }^{3} \mathrm{~J}=\right.$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.84\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right.$), $3.63\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right.$), $2.60-2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{COO}\right), 2.28$ (ddd, $\left.{ }^{3} J=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}^{2}$, HSQC, $\operatorname{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.2(\mathrm{C}=\mathrm{O})$, 138.1 (aryl- $-\mathrm{CH}_{2}$), 128.5 (aryl-m-CH), 128.1 (aryl-p-CH), 127.8 (aryl-o-CH), $109.1\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 99.0$ (C-1), $73.2(\mathrm{C}-4), 72.6(\mathrm{C}-3), 69.7\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 62.6(\mathrm{C}-5), 60.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 37.2(\mathrm{C}-2), 33.6\left(\mathrm{CH}_{2} \mathrm{COO}\right), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ ppm. El-HRMS calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}-\mathrm{CH}_{3}\right]^{+}: 335.1489$, found: 335.1481.

2-Deoxy-3,4-O-isopropylidene-2-C-[(ethoxycarbonyl)methyl]-D-ribopyranose (17a): To a stirred solution of ester compound 16 ($38.0 \mathrm{~g}, 108 \mathrm{mmol}$, 1.00 eq.) in $\mathrm{EtOH}(250 \mathrm{~mL})$ and THF (100 mL) was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} . \%, 1.70 \mathrm{~g})$ under N_{2} at RT. The reaction vessel was evacuated and flushed with hydrogen three times. The mixture was stirred under hydrogen atmosphere for 24 h and then filtered through celite. The solution was concentrated to dryness under reduced pressure and the residue was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $4: 1 \rightarrow 1: 1$) to furnish anomeric alcohol 17a as a colorless oil ($24.8 \mathrm{~g}, 95.3 \mathrm{mmol}, 88 \%$). $\alpha / \beta=1: 9$ (inseparable mixture by fcc). $\mathrm{R}_{\mathrm{f}}=0.36$ (isohexanes/EtOAc $=1: 1$). IR (ATR, α / β-mixture $): \tilde{v}=2984,1731,1458,1371,1213,1109,1056,1020,868 \mathrm{~cm}^{-1}$. Major β anomer: ${ }^{1} \mathrm{H}$ NMR, COSY ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=4.88\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.3\right.$ $\mathrm{Hz},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.44\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.23\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 4.16\left(\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.88\left(\mathrm{dd},{ }^{2} J=12.6 \mathrm{~Hz},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}}-5\right), 3.60\left(\mathrm{dd},{ }^{2} J=12.6,{ }^{3} J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right), 2.66\left(\mathrm{dd},{ }^{2} \mathrm{~J}=16.9\right.$ $\mathrm{Hz},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$), $2.59\left(\mathrm{dd},{ }^{3} \mathrm{~J}=16.9 \mathrm{~Hz},{ }^{2} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right.$), 2.20 (ddd, $\left.{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 1.45(\mathrm{~s}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.26\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.8(\mathrm{C}=\mathrm{O}), 109.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $94.4(\mathrm{C}-1), 73.4(\mathrm{C}-3), 72.7(\mathrm{C}-4), 63.3(\mathrm{C}-5), 61.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 38.5(\mathrm{C}-2), 33.5\left(\mathrm{CH}_{2} \mathrm{COO}\right), 27.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 25.27\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{El}-$ HRMS calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}-\mathrm{CH}_{3}\right]^{+}: 245.1020$, found: 245.1023.

Methyl 2-C-carboxymethyl-2-deoxy-2,3-lactone-D-ribofuranoside (17): The title compound was prepared according to a modified procedure of Li et al. ${ }^{[45]}$ Anomeric alcohol 17 a ($20.7 \mathrm{~g}, 79.5 \mathrm{mmol}, 1.00$ eq.) was dissolved in $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v} 4: 1,400 \mathrm{~mL}$) and stirred at RT for 24 h . The mixture was heated to $40^{\circ} \mathrm{C}$ for additional 2 h . Volatile materials were evaporated and the crude product $\mathbf{1 7 b}$ was co-evaporated with toluene $(3 \times 300 \mathrm{~mL})$ and used in the next step without further purification. $\mathrm{R}_{\mathrm{f}}=0.05$ (isohexanes/EtOAc $=1: 1$). El-HRMS calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}-2 \times \mathrm{H}_{2} \mathrm{O}\right]^{+}$: 184.0730 , found: 184.0726 . Concentrated sulfuric acid (0.56 mL) was added to a stirred solution of triol compound $\mathbf{1 7 b}$ in dry methanol (450 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $4^{\circ} \mathrm{C}$ for 72 h and then neutralized by addition of solid sodium bicarbonate. The resulting suspension was filtered through celite and the filtrate was concentrated to dryness under reduced pressure. Purification by flash-column chromatography (silica gel, isohexanes/EtOAc, $2: 1 \rightarrow 1: 1 \rightarrow 1: 3$) yielded lactone 17 ($10.8 \mathrm{~g}, 57.4 \mathrm{mmol}, 72 \%$ over 2 steps) as colorless crystals. $\alpha / \beta=2: 3 . \beta$ anomer could be isolated for analysis. M.p. $=45-47{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}(\alpha$ anomer) $=0.44(\mathrm{DCM} / \mathrm{MeOH}=100: 5) . \mathrm{Rf}_{\mathrm{f}}(\beta$ anomer $)=0.30(\mathrm{DCM} / \mathrm{MeOH}=100: 5)$. IR (ATR, β anomer $): \tilde{\mathrm{v}}=3442,2940,1775,1172,1102,1031,1003$, $932 \mathrm{~cm}^{-1}$. Major β anomer: ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.16$ ($\mathrm{dd},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $4.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.49-$ $4.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.73\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ha}_{\mathrm{a}}-5\right), 3.68\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.8,{ }^{3} \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}$), $3.13-3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 2), 2.87 (dd, ${ }^{2} J=18.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$), 2.55 (dd, $\left.{ }^{2} \mathrm{~J}=18.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=175.6(\mathrm{C}=\mathrm{O}), 111.8(\mathrm{C}-1), 86.9(\mathrm{C}-4), 84.8(\mathrm{C}-3), 63.7(\mathrm{C}-5), 55.8\left(\mathrm{OCH}_{3}\right), 46.6(\mathrm{C}-2), 32.4\left(\mathrm{CH}_{2} \mathrm{COO}\right)$ ppm. El-HRMS calcd. for [C88 $\mathrm{H}_{12} \mathrm{OO}_{5}-$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right]^{+}$: 157.0495, found: 157.0494.

Methyl 2-C-carboxymethyl-2,5-dideoxy-2,3-lactone-5-tosyl-d-ribofuranoside (18): To a stirred solution of lactone compound $\mathbf{1 7}$ ($10.0 \mathrm{~g}, 53.1 \mathrm{mmol}$, 1.00 eq.) in dry pyridine (300 mL) was added a solution of p-toluenesulfonyl chloride ($13.2 \mathrm{~g}, 69.1 \mathrm{mmol}, 1.30$ eq.) in pyridine $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at RT for 18 h , the reaction was quenched by treatment with $\mathrm{MeOH}(20 \mathrm{~mL})$. Solvents were removed in vacuo and the residue was purified by flash-column chromatography (silica gel, hexane/EtOAc, $3: 2 \rightarrow 1: 1 \rightarrow 1: 3$) to give tosyl compound 18 as colorless crystals ($13.9 \mathrm{~g}, 40.6 \mathrm{mmol}, 76 \%$). $\alpha / \beta=$ 2:3 (inseparable mixture by fcc). Crystallization from isohexanes/EtOAc (vapor diffusion) provided suitable β single crystals for X-ray characterization. M.p. $=78-80^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.36$ (isohexanes/EtOAc $=1: 1$). IR (ATR, α / β-mixture): $\tilde{v}=2938,1781,1598,1358,1173,1111,979,815,665 \mathrm{~cm}^{-1} . ~ \beta$ anomer: ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82-7.75\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{aryl} \mathrm{H}-2-2^{\prime}\right), 7.40-7.32\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{aryl} \mathrm{H}-3,-3^{\prime}\right), 4.98\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right)$, $4.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.41-4.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}=10.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 4.06\left(\mathrm{dd},{ }^{2} \mathrm{~J}=10.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.24$ (s, 3H, OCH $\left.)_{3}, 3.13-3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.82\left(\mathrm{dd},{ }^{3} \mathrm{~J}=18.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right), 2.56-2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{COO}_{2}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{aryl} \mathrm{CH})_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.3$ (C=O), 145.5 (aryl C-4), 132.5 (aryl C-1), 130.13 (aryl C-3,-3'), 128.02 (aryl C-2,-2'), 111.6 (C-1), $83.9(\mathrm{C}-3), 82.2(\mathrm{C}-4), 68.3(\mathrm{C}-5), 55.5\left(\mathrm{OCH}_{3}\right), 45.5(\mathrm{C}-2), 31.6\left(\mathrm{CH}_{2} \mathrm{COO}\right), 21.8\left(\right.$ aryl $\left.\mathrm{CH}_{3}\right) \mathrm{ppm}$. α anomer: ${ }^{1} \mathrm{H}$ NMR, $\mathrm{COSY}(400 \mathrm{MHz}, \mathrm{CDCl} 3): \delta=7.82$
-7.75 (m, 2H, aryl H-2-2'), $7.40-7.32\left(\mathrm{~m}, 2 \mathrm{H}\right.$, aryl H-3-3'), 4.99 (d, ${ }^{3} \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.82\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.32-4.28(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4), 4.23\left(\mathrm{dd},{ }^{2} \mathrm{~J}=11.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 4.20\left(\mathrm{dd},{ }^{2} \mathrm{~J}=11.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 3.05-2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.67$ (dd, ${ }^{3} \mathrm{~J}=17.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$), $2.56-2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \operatorname{aryl} \mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (101 MHz, CDCl ${ }_{3}$): δ $=176.2(\mathrm{C}=\mathrm{O}), 145.4$ (aryl C-4), 132.4 (aryl C-1), 130.11 (aryl C-3,-3'), 128.03 (aryl C-2,-2'), 104.5 (C-1), 83.1 (C-3), $80.2(\mathrm{C}-4), 69.0(\mathrm{C}-5), 55.4(\mathrm{OCH} 3)$, 44.1 (C-2), $29.0\left(\mathrm{CH}_{2} \mathrm{COO}\right)$, 21.8 (aryl $\left.\mathrm{CH}_{3}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{6}+\mathrm{NH}_{4}\right]^{+}: 360.1111$, found: 360.1109.

Methyl 5-azido-2-C-carboxymethyl-2,5-dideoxy-2,3-lactone-D-ribofuranoside (19): A mixture of tosyl compound 18 (13.0 g, $38.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and sodium azide ($14.1 \mathrm{~g}, 152 \mathrm{mmol}, 4.00$ eq.) was suspended in DMF (300 mL) and stirred under N_{2} at $80^{\circ} \mathrm{C}$ for 3 h . The yellow suspension was diluted with brine $(200 \mathrm{~mL})$ and extracted with EtOAc $(4 \times 300 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $4: 1 \rightarrow 2: 1 \rightarrow 1: 1$) to afford azide compound 19 ($6.08 \mathrm{~g}, 28.5 \mathrm{mmol}, 75 \%$) as a colorless oil. $\alpha / \beta=2: 3$ (inseparable mixture by fcc). $\mathrm{R}_{\mathrm{f}}=0.46$ (isohexanes/EtOAc $=1: 1$). IR (ATR, α / β mixture): $\tilde{v}=2936,2100,1776,1444,1282,1160,1110,1031,920 \mathrm{~cm}^{-1} . \beta$ anomer: ${ }^{1} \mathrm{H} \operatorname{NMR}, \operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.41-4.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.53\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}), 3.38(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{b}}-5\right), 3.18-3.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.86\left(\mathrm{dd},{ }^{2} \mathrm{~J}=18.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right.$), 2.56 (dd, $\left.{ }^{2} \mathrm{~J}=18.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{COO}\right) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}$, HSQC, HMBC (101 MHz, CDCl $)_{3}$: $\delta=175.3(\mathrm{C}=\mathrm{O}), 111.9(\mathrm{C}-1), 84.7(\mathrm{C}-3), 84.0(\mathrm{C}-4), 55.7\left(\mathrm{OCH}_{3}\right), 53.1(\mathrm{C}-5), 45.8(\mathrm{C}-2), 31.8(\mathrm{CH} 2 \mathrm{COO}) \mathrm{ppm} . \alpha$ anomer: ${ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.81\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 4.37-4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, $3.68\left(\mathrm{dd},{ }^{2} J=13.2 \mathrm{~Hz},{ }^{3} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.43\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}\right.$) , $3.12-3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.73\left(\mathrm{dd},{ }^{2} \mathrm{~J}\right.$ $=17.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$), $2.54\left(\mathrm{dd},{ }^{2} \mathrm{~J}=17.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}(101 \mathrm{MHz}, \mathrm{CDCl})$: $\delta=176.3$ $(\mathrm{C}=\mathrm{O}), 104.4(\mathrm{C}-1), 83.8(\mathrm{C}-3), 81.6(\mathrm{C}-4), 55.3\left(\mathrm{OCH}_{3}\right), 52.1(\mathrm{C}-5), 44.4(\mathrm{C}-2), 29.0\left(\mathrm{CH}_{2} \mathrm{COO}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{NH}_{4}\right]^{+}: 231.1088$, found: 231.1088.

Methyl 5-azido-3-O-benzyl-2,5-dideoxy-2-C-[(benzyloxycarbonyl)methylene]-D-ribofuranoside (20): The title compound was prepared according to a modified procedure of Webber et al. ${ }^{[46]}$ Azide compound 19 ($5.05 \mathrm{~g}, 23.7 \mathrm{mmol}, 1.00$ eq.) was mixed with $\mathrm{KOH}(10.6 \mathrm{~g}, 190 \mathrm{mmol}, 8.00 \mathrm{eq}$.$) in THF$ $(250 \mathrm{~mL})$. The stirred suspension was treated with benzyl bromide ($28.1 \mathrm{~mL}, 40.5 \mathrm{~g}, 237 \mathrm{mmol}, 10.0 \mathrm{eq}$.) and refluxed for 5 h . After cooling to $0{ }^{\circ} \mathrm{C}$, the reaction was diluted with water $(250 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 300 \mathrm{~mL}$). The combined organic layers were washed with brine (500 mL), dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, 9:1 $\rightarrow 4: 1 \rightarrow 2: 1$) to furnish benzylated compound 20 as a colorless oil ($8.89 \mathrm{~g}, 21.6 \mathrm{mmol}, 91 \%$). $\alpha / \beta=2: 3$. β anomer could be isolated for analysis. $R_{f}(\alpha$ anomer $)=0.57$ (isohexanes/EtOAc $=4: 1$). $R_{f}(\beta$ anomer) $=0.48$ (isohexanes/EtOAc $=4: 1$). IR (ATR, β anomer): $\tilde{v}=2931,2100,1733$, $1455,1282,1168,1057,910,738,698 \mathrm{~cm}^{-1} . \beta$ anomer: 1 H NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.26(\mathrm{~m}, 10 \mathrm{H}, \operatorname{aryl} \mathrm{H}), 5.11\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{COOCH}_{2} \mathrm{Ph}\right), 5.06\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{Ph}\right), 4.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 4.43(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH} 2 \mathrm{Ph}), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.14-4.08(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-4), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 3.32\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.25\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 2.86-2.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.74(\mathrm{dd}$, ${ }^{2} J=16.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$), 2.43 (dd, ${ }^{2} \mathrm{~J}=16.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$) ppm. ${ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.2$ $(\mathrm{C}=\mathrm{O}), 137.5\left(\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right), 135.9\left(\mathrm{COOCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right), 128.7,128.6,128.41,128.38,128.08,127.8$ (aryl 10C), $109.4(\mathrm{C}-1), 81.4(\mathrm{C}-4), 80.3(\mathrm{C}-3), 72.6$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $66.6\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right), 55.8\left(\mathrm{OCH}_{3}\right), 54.3(\mathrm{C}-5), 44.2(\mathrm{C}-2), 30.5\left(\mathrm{CH}_{2} \mathrm{COO}\right) \mathrm{ppm}$. ESI-HRMS calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}+\mathrm{NH}_{4}\right]^{+}: 429.2132$, found: 429.2138.

Acetyl 5-azido-3-O-benzyl-2,5-dideoxy-2-C-[(benzyloxycarbonyl)methylene]-D-ribofuranoside (21): To a solution of benzylated compound 20 $\left(8.02 \mathrm{~g}, 19.5 \mathrm{mmol}, 1.00\right.$ eq.) in $\mathrm{AcOH}(70 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(70 \mathrm{~mL})$, was added concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was warmed to RT and stirred for 3 h . After careful quenching with saturated NaHCO_{3} solution (150 mL) and solid NaHCO_{3} until CO_{2} evolution stopped, the reaction was extracted with DCM $(4 \times 200 \mathrm{~mL})$, washed with brine $(400 \mathrm{~mL})$, dried over anhydrous MgSO_{4} and filtered. Volatile materials were removed in vacuo and the residue was co-evaporated with toluene ($2 \times 100 \mathrm{~mL}$). The crude product was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $9: 1 \rightarrow 4: 1 \rightarrow 2: 1$) to obtain acetylated compound 21 as a colorless oil ($7.27 \mathrm{~g}, 16.5 \mathrm{mmol}, 85 \%$). $\alpha / \beta=3: 2$ (inseparable mixture by fcc). $\mathrm{Rf}_{\mathrm{f}}=0.25$ (isohexanes/EtOAc = 4:1). IR (ATR): $\tilde{v}=2101,1733,1455,1366,1230,1170,1007,899,738,698 \mathrm{~cm}^{-1} . \beta$ anomer: ${ }^{1} \mathrm{H}$ NMR, $\mathrm{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.26(\mathrm{~s}, 10 \mathrm{H}, \operatorname{aryl} \mathrm{H}), 6.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.09\left(\mathrm{~d},{ }^{2} J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{Ph}\right), 5.04\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COOCH}\right.$ 2Ph$), 4.45(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}$), $4.28-4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.16\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=9.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right), 3.43\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.23\left(\mathrm{dd},{ }^{2} \mathrm{~J}\right.$ $\left.=13.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.78\left(\mathrm{dd},{ }^{2} \mathrm{~J}=16.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{COO}\right), 2.61\left(\mathrm{dd},{ }^{2} \mathrm{~J}=16.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{COO}$), $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.8(\mathrm{COOBn}), 170.1\left(\mathrm{COOCH}_{3}\right), 137.3(\mathrm{OCH} 2 \mathrm{Ph}-\mathrm{C}-1), 135.7$ $\left(\mathrm{COOCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right), 128.71,128.64,128.51,128.47,128.20$, 127.84 (aryl 10C), $101.3(\mathrm{C}-1), 82.2(\mathrm{C}-4), 78.9(\mathrm{C}-3), 72.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 66.8(\mathrm{COOCH} 2 \mathrm{Ph})$, $52.5(\mathrm{C}-5), 43.7(\mathrm{C}-2), 30.3\left(\mathrm{CH}_{2} \mathrm{COO}\right), 21.3\left(\mathrm{CH}_{3} \mathrm{COO}\right)$ ppm. α anomer: ${ }^{1} \mathrm{H}$ NMR, $\mathrm{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.22(\mathrm{~m}, 10 \mathrm{H}, \mathrm{aryl} \mathrm{H}), 6.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COOCH} 2 \mathrm{Ph}), 4.46\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.42\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.01$ (dd, ${ }^{3} J=7.0,{ }^{3} J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.35\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.15\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 2.89-2.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 2), 2.77 (dd, ${ }^{2} \mathrm{~J}=16.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$), 2.61 ($\mathrm{dd},{ }^{2} \mathrm{~J}=16.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$), $2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{3} \mathrm{COO}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC , HMBC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0(\mathrm{COOBn}), 170.5\left(\mathrm{CH}_{3} \mathrm{COO}\right), 137.8\left(\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right), 135.8\left(\mathrm{COOCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right), 128.74,128.59,128.52,128.51,128.05$, 127.80 (aryl 10C), $98.2(\mathrm{C}-1), 84.4(\mathrm{C}-4), 79.2(\mathrm{C}-3), 72.6\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 66.7\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right), 52.7(\mathrm{C}-5), 43.1(\mathrm{C}-2), 28.5\left(\mathrm{CH}_{2} \mathrm{COO}\right) 21.3(\mathrm{CH} 3 \mathrm{COO}) \mathrm{ppm}$. ESI-HRMS calcd. for [$\left.\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}+\mathrm{NH}_{4}\right]^{+}: 457.2081$, found: 457.2082.

9-\{5-Azido-3-O-benzyl-2,5-dideoxy-2-C-[(benzyloxycarbonyl)methylene]- β-D-ribofuranosyl\}-6-O-(diphenylcarbamoyl)-2- N -isobutyrylguanine
(6): N, O-Bis(trimethylsilyl)acetamide (BSA) $\left(2.23 \mathrm{~mL}, 1.85 \mathrm{~g}, 9.10 \mathrm{mmol}, 4.00\right.$ eq.) was added under N_{2} to a stirred suspension of compound 21 (1.00 g , $2.28 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and 6 - O-(diphenylcarbamoyl)-2- N -isobutyrylguanine ${ }^{[47,48]}$ ($1.90 \mathrm{~g}, 4.55 \mathrm{mmol}, 2.00$ eq.) in dichloroethane (30 mL) and heated to $80^{\circ} \mathrm{C}$ for 30 min until a clear solution was obtained. The reaction mixture was brought to RT and treated with trimethylsilyl triflate (TMSOTf) (1.07 mL , $1.32 \mathrm{~g}, 5.92 \mathrm{mmol}, 2.60$ eq.). The dark red solution was stirred at $80^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ at RT and extracted with $\operatorname{DCM}(4 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by flash-column chromatography (silica gel, isohexanes/EtOAc, $4: 1 \rightarrow 2: 1 \rightarrow 1: 1$) to give nucleoside $6(1.31 \mathrm{~g}, 1.65 \mathrm{mmol}, 72 \%)$ as a colorless foam. The reaction could also be performed on a 5 g scale of the starting material 21 (yield: 59%). $R_{f}=0.68$ (isohexanes/EtOAc $=1: 1$). IR (ATR): $\tilde{v}=$ $3321,2933,2102,1731,1584,1492,1268,1166,1047,694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.47-$ $7.18(\mathrm{~m}, 20 \mathrm{H}$, aryl-H$), 6.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.94\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{Ph}\right), 4.88\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COOCH} 2 \mathrm{Ph}\right), 4.58\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.6\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.443\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ph}\right), 4.441\left(\mathrm{~d},{ }^{3} J=5.8 \mathrm{~Hz},{ }^{3} J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.27-4.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.80\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.0 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right), 3.74-3.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.70\left(\mathrm{dd},{ }^{2} \mathrm{~J}=13.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right), 2.85\left(\mathrm{dd},{ }^{2} \mathrm{~J}=16.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{COO}\right), 2.80$ $-2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.48\left(\mathrm{dd},{ }^{2} \mathrm{~J}=16.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}(\mathrm{CH})_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, HSQC ,

HMBC ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.7(\mathrm{CONH}), 171.3(\mathrm{COOBn}), 156.3(\mathrm{C}-2), 154.6(\mathrm{C}-4), 151.9\left(\mathrm{OCONPh}_{2}\right), 150.4(\mathrm{C}-6), 143.4(\mathrm{C}-8), 141.8(\mathrm{OCON}-\mathrm{Ph}-$ $\mathrm{C} 1)$, $137.4\left(\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right)$, $135.5\left(\mathrm{COOCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right), 129.3,128.70,128.67,128.46,128.41,128.28,128.17$ (aryl 20C), 122.0 (C-5), $89.5(\mathrm{C}-1$) $), 82.8(\mathrm{C}-$ $\left.4^{\prime}\right), 80.1\left(\mathrm{C}-3^{\prime}\right), 72.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 66.8\left(\mathrm{COOCH}_{2} \mathrm{Ph}\right)$, $52.6(\mathrm{C}-5$) $), 42.7\left(\mathrm{C}-2^{\prime}\right), 36.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 30.2\left(\mathrm{CH}_{2} \mathrm{COO}\right), 19.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$. ESI-HRMS calcd. for $\left[\mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~N}_{9} \mathrm{O}_{7}+\mathrm{H}\right]+$: 796.3202, found: 796.3214.

4-\{6'-Benzoylamino-9'-[2"-O-acetyl-5"-(tert-butoxycarbonyl)amino-3",5"-dideoxy- β-D-ribofuranosyl]-9'H-purin-3"-yl\}-1-\{9"'-\{3'"'-O-benzyl-2"",5"'"-dideoxy-2""'-C-[(benzyloxycarbonyl)methylene]- β-D-ribofuranosyl\}-6"'-O-(diphenylcarbamoyl)-2"'-N-isobutyrylguanin-5"'"-yl\}-1,2,3triazole (22): The title compound was prepared according to a modified procedure of Singh et al. ${ }^{[49]}$ A-half 5 ($1.30 \mathrm{~g}, 2.50 \mathrm{mmol}, 1.00$ eq.) and G-half 6 ($2.39 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.20$ eq.) were dissolved in $\mathrm{THF} /$ tert- $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(2: 2: 1,80 \mathrm{~mL})$ under N_{2} at RT. Subsequently, a solution of sodium ascorbate (0.41 g , $2.00 \mathrm{mmol}, 0.80 \mathrm{eq}$.) in water (3 mL) and a solution of copper(II) sulfate ($0.16 \mathrm{~g}, 1.00 \mathrm{mmol}, 0.40 \mathrm{eq}$.) in water (2 mL) was added. The mixture was stirred at RT for 12 h . Volatile components were evaporated and the residue was purified by flash-column chromatography (silica gel, $\mathrm{DCM} / \mathrm{MeOH}$, $100: 2 \rightarrow 100: 5 \rightarrow 10: 1)$ to provide dinucleotide $22\left(2.62 \mathrm{~g}, 2.00 \mathrm{mmol}, 80 \%\right.$) as a colorless foam. M.p. $=183^{\circ} \mathrm{C}$ (decomp.). $R_{f}=0.46(D C M / \mathrm{MeOH}=10: 1)$. IR (ATR): $\tilde{v}=3268,2976,2106,1738,1707,1584,1452,12161167,732 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, $\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHBz}), 8.86(\mathrm{~s}, 1 \mathrm{H}$,
 7.50 (t, ${ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bz}-\mathrm{m}-\mathrm{CH}$), $7.48-7.12(\mathrm{~m}, 20 \mathrm{H}, \operatorname{aryl}-\mathrm{H}), 6.81$ (dd, $\left.{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHBoc}\right), 6.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 5.95(\mathrm{~d}$,
 $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5^{\prime \prime \prime \prime}\right), 4.88\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{Ph}\right), 4.87-4.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4\right.$ ""'), $4.83-4.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 4.79\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{COOCH} 2 \mathrm{Ph}\right), 4.61$ (d, $\left.{ }^{2} \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right), 4.37-4.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3\right.$ ") $4.32\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}\right), 4.15-4.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $2^{\prime \prime \prime \prime}$), $3.61-3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right.$ "), $3.53-3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right.$ "), $2.80\left(\mathrm{dd},{ }^{2} \mathrm{~J}=16.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right), 2.59\left(\mathrm{hept},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{CH} 3)_{2}\right)$, $2.45\left(\mathrm{dd},{ }^{2} \mathrm{~J}=16.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}_{3}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right) 3\right), 1.25,\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH} \mathrm{H}_{3}\right)\right.$), $1.21,\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR, $\mathrm{HSQC}, \mathrm{HMBC}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.3(\mathrm{iBu}-\mathrm{CONH}), 171.0(\mathrm{COOBn}), 169.8\left(\mathrm{OCOCH}_{3}\right), 164.7(\mathrm{~N}-\mathrm{CO}-\mathrm{Ph}), 156.7$
 141.7 (OCON-Ph2-C1), 140.7 (C-4), 137.1 ($\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{C}-1$), $135.4\left(\mathrm{COOCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right), 133.5(\mathrm{Bz}-\mathrm{C}-\mathrm{CO}-\mathrm{N}), 133.0$ (Bz-p-CH), 129.3, 129.0, 128.61, 128.55, 128.42, 128.25, 128.17, 128.03, 127.98 (aryl 25C), 125.2 (C-5), 124.2 (C-5'), 122.8 (C-5""), 90.9 (C-1""'), 90.2 (C-1"), 83.3 (C-4"), 82.1 (C-4""), 79.6 (C-
 $\left(\mathrm{CH}_{2} \mathrm{COO}\right)$, $28.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $20.3\left(\mathrm{OCOCH}_{3}\right)$, $19.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.40\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{69} \mathrm{H}_{69} \mathrm{~N}_{15} \mathrm{O}_{13}+\mathrm{H}\right]^{+}$: 1316.5272, found: 1316.5330. ESI-HRMS calcd. for $\left[\mathrm{C}_{69} \mathrm{H}_{69} \mathrm{~N}_{15} \mathrm{O}_{13}+\mathrm{Na}\right]^{+}$: 1338.5091, found: 1338.5151.
 carboxymethyl- β-D-ribofuranosyl]-2"'-N-isobutyrylguanin-5""-yl\}-2"", 5 "'lactame-1,2,3-triazole (24): To a stirred solution of dinucleotide 22 (2.12 g , $1.61 \mathrm{mmol}, 1.00$ eq.) in dry DCM (40 mL) was added TFA $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred for 1 h at this temperature and then concentrated in vacuo. The brown residue was purified by flash-column chromatography (silica gel, DCM/MeOH, 100:2 \rightarrow 100:5 $\rightarrow 5: 1$) to give amino compound 23 as a colorless solid ($1.33 \mathrm{~g}, 1.30 \mathrm{mmol}, 81 \%$). M.p. $=128^{\circ} \mathrm{C}$ (decomp.). $\mathrm{R}_{\mathrm{f}}=0.39(\mathrm{DCM} / \mathrm{MeOH}=5: 1)$. ESI-HRMS calcd. for [$\mathrm{C}_{51} \mathrm{H}_{52} \mathrm{~N}_{14} \mathrm{O}_{10}$ $+\mathrm{H}]^{+}: 1021.4064$, found: 1021.4038. ESI-HRMS calcd. for [$\left.\mathrm{C}_{51} \mathrm{H}_{52} \mathrm{~N}_{14} \mathrm{O}_{10}-\mathrm{H}\right]:$: 1019.3918, found: 1019.3918.
To a solution of amino compound $23(1.08 \mathrm{~g}, 1.06 \mathrm{mmol}, 1.00 \mathrm{eq}$) in $\mathrm{EtOH}(50 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} . \%, 0.30 \mathrm{~g})$ under nitrogen stream at RT. The reaction vessel was evacuated and flushed with hydrogen three times. The mixture was stirred under hydrogen atmosphere for 36 h and then filtered through celite. The solution was concentrated to dryness under reduced pressure. The residue was used in the next step without further purification. ESIHRMS calcd. for [$\left.\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{14} \mathrm{O}_{10}+\mathrm{H}\right]^{+}: 931.3594$, found: 931.3594. ESI-HRMS calcd. for [$\left.\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{~N}_{14} \mathrm{O}_{10}-\mathrm{H}\right]:$: 929.3448, found: 929.3450.
Finally, the title compound was prepared according to a modified procedure of Horne et al. ${ }^{[50]}$ and Kinzie et al. ${ }^{[51]}$ To a yellow solution of the hydrogenated compound 23 and HATU ($0.60 \mathrm{~g}, 1.58 \mathrm{mmol}, 1.50$ eq.) in dry DMF (1000 mL) was added DIPEA ($0.72 \mathrm{~mL}, 0.54 \mathrm{~g}, 4.21 \mathrm{mmol}, 4.00 \mathrm{eq}$.) at RT. The solution turned orange and was stirred at RT for 24 h . After addition of $\mathrm{MeOH}(5 \mathrm{~mL})$, volatile materials were removed under reduced pressure and the crude product was purified by flash-column chromatography (silica gel, DCM/MeOH, 100:2 $\rightarrow 100: 5 \rightarrow 5: 1$) to yield cyclized compound 24 as a colorless solid ($506 \mathrm{mg}, 0.55 \mathrm{mmol}, 52 \%$ over 2 steps). An analytical sample was provided by RP-HPLC. M.p. $=185^{\circ} \mathrm{C}$ (decomp.). $\mathrm{R}_{\mathrm{f}}=0.57$ ($\mathrm{DCM} / \mathrm{MeOH}=5: 1$). $R_{t}=16.1 \mathrm{~min}\left(R P-H P L C, 15 \%\right.$ to 80% MeCN gradient elution). IR (ATR): $\tilde{v}=3220,1682,1608,1454,1403,1222,1049,797,708 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, COSY, NOESY ($600 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta=12.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$), $11.59\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$), $11.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$), $8.83\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 8.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~s}), 8.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.35$ (s, 1H, H-8""), $8.08-8.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Bz}-\mathrm{o}-\mathrm{CH}), 8.06-8.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Bz}-\mathrm{p}-\mathrm{CH}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Bz}-\mathrm{m}-\mathrm{CH}), 7.52-$ 7.49 (m, 2H, Bn-o-CH), $7.44-7.40(m, 2 H, B n-m-C H), 7.38-7.34(m, 1 H, B n-p-C H), 6.46\left(d,{ }^{3} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 5.92\left(d d,{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-\mathbf{2}^{\prime \prime}$), 5.66 ($\left.\mathrm{d}^{3}{ }^{3} \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime \prime \prime}\right), 4.85\left(\mathrm{dd},{ }^{2} \mathrm{~J}=15.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5^{\prime \prime \prime}\right), 4.80-4.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5^{\prime \prime \prime \prime}\right), 4.80\left(\mathrm{~d},{ }^{2} \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{OCH}_{2} \mathrm{Ph}$), 4.76 (dd, ${ }^{3} \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ "), 4.68 (d, ${ }^{2} \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ph}$), $4.68-4.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4$ '"' $), 4.57\left(\mathrm{td},{ }^{3} \mathrm{~J}=10.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.1\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 4.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3^{\prime \prime \prime}\right), 3.87-3.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right.$ "), 2.91-2.83(m,1H, $\mathrm{H}_{\mathrm{b}}-5$ "), $2.67\left(\mathrm{hept},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) 2\right), 2.11(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCOCH}_{3}$), $2.04\left(\mathrm{t},{ }^{3} \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONH}\right.$), $1.76-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.07$, ($\left.\mathrm{d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}(\mathrm{CH})_{2}\right), 1.06,\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.19--0.26$ (m, 1H, H-2""، ppm. ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC (151 MHz , DMSO- d_{6}): $\delta=180.1$ (iBu-CONH), $170.8\left(\mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right), 169.1$ $\left(\mathrm{OCOCH}_{3}\right)$, 165.7 ($\mathrm{N}-\mathrm{CO}-\mathrm{Ph}$), 154.8 (C-2""), 151.8 (C-2'), 151.5 (C-4'), 150.7 (C-6'), 149.1 (C-6""), 148.30 (C-4""), 144.0 (C-8'), 142.8 (C-4), 138.2 $\left(\mathrm{OCH}_{2} \mathrm{Ph}-\mathrm{C}-1\right), 137.9\left(\mathrm{C}-8{ }^{\prime \prime \prime}\right), 133.3(\mathrm{Bz}-\mathrm{C}-\mathrm{CO}-\mathrm{N}), 132.5(\mathrm{Bz}-\mathrm{p}-\mathrm{CH}), 128.53(\mathrm{Bz}-\mathrm{o}-\mathrm{CH}), 128.49(\mathrm{Bz}-\mathrm{m}-\mathrm{CH}), 128.47(\mathrm{Bn}-\mathrm{m}-\mathrm{CH}), 128.3(\mathrm{Bn}-\mathrm{o}-\mathrm{CH}), 127.9$ ($\mathrm{Bn}-\mathrm{p}-\mathrm{CH}$), 126.8 (C-5), 126.2 (C-5"), 119.7 (C-5""), 89.3 (C-1"), 83.3 (C-1""), 81.2 (H-4"), 79.9 (H-3""'), 79.8 (H-4""), 77.5 (C-2"), $72.0(\mathrm{OCH} 2 \mathrm{Ph}), 53.0$ (C-5""'), $46.9(\mathrm{C}-2 " "), 44.5(\mathrm{C}-3 "), 42.4(\mathrm{C}-5 ")$, $34.7\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.7\left(\mathrm{CH}_{2} \mathrm{CONH}^{\prime}\right), 20.7\left(\mathrm{OCOCH}_{3}\right), 18.81\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 18.79\left(\mathrm{CH}(\mathrm{CH})_{2}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{~N}_{14} \mathrm{O}_{9}+\mathrm{H}\right]^{+}: 913.3489$, found: 913.3495. ESI-HRMS calcd. for $\left[\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{~N}_{14} \mathrm{O}_{9}-\mathrm{H}\right]: 911.3343$, found: 911.3348.
 β-D-ribofuranosyl]-2'"- N-isobutyrylguanin-5'"'-yl\}-2'"', 5 "'-lactame-1,2,3-triazole (25): To a solution of dinucleotide 24 ($340 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dry DCM $(300 \mathrm{~mL})$ was added $\mathrm{BCl}_{3}\left(5.96 \mathrm{~mL}, 5.96 \mathrm{mmol}, 1 \mathrm{M}\right.$ in DCM, 16.0 eq.) at $-40^{\circ} \mathrm{C}$. The mixture was stirred for 3 days at this temperature, quenched by addition of $\mathrm{MeOH}(5 \mathrm{~mL})$ and extracted with saturated sodium bicarbonate $(20 \mathrm{~mL})$ and $\mathrm{DCM}(4 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The compound was used in the next step without further purification. An analytical sample was prepared by RP-HPLC to yield a colorless solid. M.p. $=258^{\circ} \mathrm{C}$ (decomp.). $\mathrm{R}_{\mathrm{t}}=12.5 \mathrm{~min}$ (RP-HPLC, 15% to 80% MeCN gradient elution). IR (ATR): $\tilde{v}=3234,1756,1677,1613,1460,1403,1220,1047,796,707 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, COSY, NOESY (600 MHz , DMSO- d_{6}): $\delta=12.07$ (s, $1 \mathrm{H}, \mathrm{NH}$), $11.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}\right.$), $8.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 8.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~s}), 8.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 8.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8 \times \prime), 8.08-8.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Bz}-\mathrm{o}-\mathrm{CH}), 7.93-$ $7.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Bz}-\mathrm{p}-\mathrm{CH}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Bz}-\mathrm{m}-\mathrm{CH}), 6.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 5.88\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}=\right.$
 $\mathrm{Hz},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), 4.68 ($\mathrm{dd},{ }^{2} \mathrm{~J}=15.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5^{\prime \prime \prime \prime}$), 4.50 ($\mathrm{td},{ }^{3} \mathrm{~J}=10.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$), $4.32-4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4$ ""'), $4.17-4.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3 \times "{ }^{\prime \prime \prime}\right), 3.82-3.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right.$ "), $2.89-2.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right.$ "), 2.73 (hept, $\left.{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCOCH}$), $2.02(\mathrm{t}$, ${ }^{3} J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONH}$), $1.67-1.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONH}\right.$), $1.11,\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.10,\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}(\mathrm{CH})_{2}\right),-0.39--0.49$ (m, 1H, H-2""") ppm. ${ }^{13} \mathrm{C}$ NMR, HSQC, HMBC ($151 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=180.1$ (iBu-CONH), $171.0\left(\mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right), 169.2(\mathrm{OCOCH} 3), 165.7(\mathrm{~N}-\mathrm{CO}-\mathrm{Ph})$, 154.8 (C-2""), 151.8 (C-2‘), 151.5 (C-4'), 150.7 (C-6‘), 149.1 (C-6""), 148.30 (C-4""), 144.0 (C-8‘), 142.6 (C-4), 138.2 (C-8""), 133.3 (Bz-C-CO-N), 132.5 (Bz-p-CH), 128.52 (Bz-o-CH), 128.49 (Bz-m-CH), 126.6 (C-5), 126.2 (C-5‘), 119.7 (C-5""), 89.3 (C-1"), 83.2 (C-1""),83.0 (C-4""), 81.0 (C-4"), 77.4 (C-
 $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. ESI-HRMS calcd. for $\left[\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~N}_{14} \mathrm{O}_{9}+\mathrm{H}\right]+: 823.3019$, found: 823.3015. ESI-HRMS calcd. for $\left[\mathrm{C}_{37} \mathrm{H}_{38} \mathrm{~N}_{14} \mathrm{O}_{9}-\mathrm{H}\right]: 821.2873$, found: 821.2873.

4-[6'-Amino-9'-(5"-amino-3",5"-dideoxy- β-d-ribofuranosyl)-9'H-purin-3"-yl]-1-\{9"'-[2"", $\mathbf{5}^{\prime \prime \prime \prime \prime}$-dideoxy-2"’"-C-carboxymethyl- β-d-ribofuranosyl]-guanin-5"'"-yl\}-2'", 5 "-lactame-1,2,3-triazole (4): The crude compound 25 was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$ and aqueous ammonia (25%, 15 mL) in a sealed vessel at RT. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 20 h . Volatile components were removed under reduced pressure. The residue was purified by preparative RP-HPLC to provide the final compound 4 as a colorless solid ($109 \mathrm{mg}, 0.18 \mathrm{mmol}, 48 \%$ over 2 steps). M.p. $=270{ }^{\circ} \mathrm{C}$ (decomp.). $\mathrm{R}_{t}=7.8$ $\min \left(R P-H P L C, 15 \%\right.$ to 80% MeCN gradient elution). IR (ATR): $\tilde{v}=3338,1639,1599,1477,1419,1209,1089,1047,1005,730 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR, COSY,
 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONHCH}_{2}\right), 7.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{A}-\mathrm{NH}_{2}\right), 6.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{G}-\mathrm{NH}_{2}\right), 6.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1{ }^{\prime \prime}\right), 5.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2{ }^{\prime \prime}\right), 5.64(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}$,
 $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5^{\prime \prime \prime}$), 4.43 (td, ${ }^{3} \mathrm{~J}=10.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$), $4.23-4.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime \prime \prime}\right), 4.23$ (dd, ${ }^{3} \mathrm{~J}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), $4.10-4.07$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime " \prime}$), $3.77-3.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-5\right.$ "), $2.84-2.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-5\right.$ "), $1.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.56$ (dd, $\left.{ }^{2} \mathrm{~J}=12.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2 \mathrm{CONH}\right),-$
 152.6 (C-2'), 151.7 (C-4""), 148.7 (C-4'), 143.7 (C-4), 139.81 (C-8'), 136.0 (C-8""), 126.8 (C-5), 119.5 (C-5'), 116.1 (C-5""), 91.9 (C-1"), 83.7 (C-4""'), 82.7 (C-1""), 80.8 (C-4"), 75.9 (C-2"), 70.6 (C-3"""), 52.2 (C-5"""), 46.7 (C-2"""), 45.9 (C-3"), 42.7 (C-5"), 29.3 ($\mathrm{CH}_{2} \mathrm{CONH}$) ppm. ESI-HRMS calcd. for [$\left.\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{14} \mathrm{O}_{6}+\mathrm{H}\right]+:$ 607.2233, found: 607.2231. ESI-HRMS calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{14} \mathrm{O}_{6}-\mathrm{H}\right]: 605.2087$, found: 605.2090.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgement

We thank Milda Nainyté, Dr. Tynchtyk Amatov and Dr. Markus Müller for scientific discussions, Dr. David Stephenson for NMR spectroscopy, Dr. Peter Mayer for X-ray analysis and Dr. Werner Spahl for high-resolution mass spectrometry. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support via the programs SFB1032 (TP-A5), SFB749 (TP-A4) and SPP-1784. Additional funding from the Excellence Cluster EXC117 CiPS^{M} is acknowledged. This project has received additional funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n° EPiR 741912).

Keywords: cGAMP analog, cGAS, STING, ENPP1, cyclophane, CuAAC, macrolactamization
[1] Danilchanka, O.; Mekalanos, John J. Cell 2013, 154, 962-970.
[2] Römling, U.; Gomelsky, M.; Galperin, M. Y. Mol. Microbiol. 2005, 57, 629-639.
[3] Gomelsky, M. Mol. Microbiol. 2011, 79, 562-565.
[4] Hengge, R. Nat. Rev. Microbiol. 2009, 7, 263.
[5] Shu, C.; Yi, G.; Watts, T.; Kao, C. C.; Li, P. Nat. Struct. Mol. Biol. 2012, 19, 722.
[6] Ablasser, A.; Goldeck, M.; Cavlar, T.; Deimling, T.; Witte, G.; Röhl, I.; Hopfner, K.-P.; Ludwig, J.; Hornung, V. Nature 2013, 498, 380.
[7] Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z. J. Science 2013, 339, 826-830.
[8] Gao, P.; Ascano, M.; Wu, Y.; Barchet, W.; Gaffney, Barbara L.; Zillinger, T.; Serganov, Artem A.; Liu, Y.; Jones, Roger A.;
Hartmann, G.; Tuschl, T.; Patel, Dinshaw J. Cell 2013, 153, 1094-1107.
[9] Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z. J. Science 2013, 339, 786-791.
[10] Chen, Q.; Sun, L.; Chen, Z. J. Nat. Immun. 2016, 17, 1142.
[11] Zhang, X.; Shi, H.; Wu, J.; Zhang, X.; Sun, L.; Chen, C.; Chen, Zhijian J. Mol. Cell 2013, 51, 226-235.
[12] Kato, K.; Omura, H.; Ishitani, R.; Nureki, O. Annu. Rev. Biochem. 2017, 86, 541-566.
[13]
$[14]$
$[15]$
[15]
[16]
Shu, C.; Li, X.; Li, P. Cytokine Growth Factor Rev. 2014, 25, 641-648.
Cai, X.; Chiu, Y.-H.; Chen, Zhijian J. Mol. Cell 2014, 54, 289-296.
Li, L.; Yin, Q.; Kuss, P.; Maliga, Z.; Millán, J. L.; Wu, H.; Mitchison, T. J. Nat. Chem. Biol. 2014, 10, 1043.
Kato, K.; Nishimasu, H.; Oikawa, D.; Hirano, S.; Hirano, H.; Kasuya, G.; Ishitani, R.; Tokunaga, F.; Nureki, O. Nature Communications 2018, 9, 4424.
Opoku-Temeng, C.; Zhou, J.; Zheng, Y.; Su, J.; Sintim, H. O. Chem. Commun. 2016, 52, 9327-9342.
Schwede, F.; Genieser, H.-G.; Rentsch, A. Handb. Exp. Pharmacol. 2015, 251-263.
Clivio, P.; Coantic-Castex, S.; Guillaume, D. Chem. Rev. 2013, 113, 7354-7401.
[19]
[20]
Knouse, K. W.; deGruyter, J. N.; Schmidt, M. A.; Zheng, B.; Vantourout, J. C.; Kingston, C.; Mercer, S. E.; Mcdonald, I. M.; Olson, R. E.; Zhu, Y.; Hang, C.; Zhu, J.; Yuan, C.; Wang, Q.; Park, P.; Eastgate, M. D.; Baran, P. S. Science 2018, 361, 1234-1238.
[21] Lioux, T.; Mauny, M.-A.; Lamoureux, A.; Bascoul, N.; Hays, M.; Vernejoul, F.; Baudru, A.-S.; Boularan, C.; Lopes-Vicente, J.; Qushair, G.; Tiraby, G. J. Med. Chem. 2016, 59, 10253-10267.
[22] Fu, J.; Kanne, D. B.; Leong, M.; Glickman, L. H.; McWhirter, S. M.; Lemmens, E.; Mechette, K.; Leong, J. J.; Lauer, P.; Liu, W.; Sivick, K. E.; Zeng, Q.; Soares, K. C.; Zheng, L.; Portnoy, D. A.; Woodward, J. J.; Pardoll, D. M.; Dubensky, T. W.; Kim, Y. Science Transl. Med. 2015, 7, 283ra252-283ra252.

Haag, S. M.; Gulen, M. F.; Reymond, L.; Gibelin, A.; Abrami, L.; Decout, A.; Heymann, M.; van der Goot, F. G.; Turcatti, G.; Behrendt, R.; Ablasser, A. Nature 2018, 559, 269-273.
Khiar, S.; Lucas-Hourani, M.; Nisole, S.; Smith, N.; Helynck, O.; Bourgine, M.; Ruffié, C.; Herbeuval, J.-P.; Munier-Lehmann, H.; Tangy, F.; Vidalain, P.-O. Sci. Rep. 2017, 7, 2561.
Adli, A. D. F.; Jahanban - Esfahlan, R.; Seidi, K.; Samandari - Rad, S.; Zarghami, N. Chem. Biol. Drug Des. 2018, 1-12.
Farkona, S.; Diamandis, E. P.; Blasutig, I. M. BMC Medicine 2016, 14, 73.
Fujino, T.; Okada, K.; Isobe, H. Tetrahedron Lett. 2014, 55, 2659-2661.
Pal, C.; Chakraborty, T. K. A. J. Org. Chem. 2017, 6, 1421-1427.
Gaffney, B. L.; Jones, R. A. Org. Lett. 2014, 16, 158-161.
Kline, T.; Jackson, S. R.; Deng, W.; Verlinde, C. L. M. J.; Miller, S. I. Nucleosides Nucleotides Nucleic Acids 2008, 27, 1282-1300
Fernicola, S.; Torquati, I.; Paiardini, A.; Giardina, G.; Rampioni, G.; Messina, M.; Leoni, L.; Del Bello, F.; Petrelli, R.; Rinaldo, S.;
Cappellacci, L.; Cutruzzolà, F. J. Med. Chem. 2015, 58, 8269-8284.
Gierlich, J.; Burley, G. A.; Gramlich, P. M. E.; Hammond, D. M.; Carell, T. Org. Lett. 2006, 8, 3639-3642.
El-Sagheer, A. H.; Brown, T. Chem. Soc. Rev. 2010, 39, 1388-1405.
El-Sagheer, A. H.; Sanzone, A. P.; Gao, R.; Tavassoli, A.; Brown, T. PNAS 2011, 108, 11338-11343.
Gao, P.; Ascano, M.; Zillinger, T.; Wang, W.; Dai, P.; Serganov, Artem A.; Gaffney, Barbara L.; Shuman, S.; Jones, Roger A.;
Deng, L.; Hartmann, G.; Barchet, W.; Tuschl, T.; Patel, Dinshaw J. Cell 2013, 154, 748-762.
Farrugia, L. J. Appl. Crystallogr. 2012, 45, 849-854.
Cavlar, T.; Deimling, T.; Ablasser, A.; Hopfner, K. P.; Hornung, V. The EMBO Journal 2013, 32, 1440-1450.
Betkekar, V. V.; Panda, S.; Kaliappan, K. P. Org. Lett. 2012, 14, 198-201.
Yoshimura, Y.; Sano, T.; Matsuda, A.; Ueda, T. Chem. Pharm. Bull. 1988, 36, 162-167.
Parr, I. B.; Horenstein, B. A. J. Org. Chem. 1997, 62, 7489-7494.
Shing, T. K. M.; Leung, Y. C.; Yeung, K. W. Tetrahedron 2003, 59, 2159-2168.
Kaiya, Y.; Hasegawa, J.-i.; Momose, T.; Sato, T.; Chida, N. Chem. Asian J. 2011, 6, 209-219.
Mondal, S.; Mohamed, R. K.; Manoharan, M.; Phan, H.; Alabugin, I. V. Org. Lett. 2013, 15, 5650-5653.
Li, N.-S.; Lu, J.; Piccirilli, J. A. Org. Lett. 2007, 9, 3009-3012.
Webber, M. J.; Warren, S. A.; Grainger, D. M.; Weston, M.; Clark, S.; Woodhead, S. J.; Powell, L.; Stokes, S.; Alanine, A.;
Stonehouse, J. P.; Frampton, C. S.; White, A. J. P.; Spivey, A. C. Org. Biomol. Chem. 2013, 11, 2514-2533.
Jenny, T. F.; Schneider, K. C.; Benner, S. A. Nucleosides and Nucleotides 1992, 11, 1257-1261.
Robins, M. J.; Zou, R.; Guo, Z.; Wnuk, S. F. J. Org. Chem. 1996, 61, 9207-9212.
K. Singh, S.; K. Sharma, V.; Bohra, K.; E. Olsen, C.; K. Prasad, A. Curr. Org. Synth. 2014, 11, 757-766.

Horne, W. S.; Olsen, C. A.; Beierle, J. M.; Montero, A.; Ghadiri, M. R. Angew. Chem. Int. Ed. 2009, 48, 4718-4724.
Kinzie, C. R.; Steele, A. D.; Pasciolla, S. M.; Wuest, W. M. Tetrahedron Lett. 2014, 55, 4966-4968.

Supporting Information

Table of Contents

1. NMR spectra of the synthesized compounds
2. RP-HPLC
3. X-ray crystallography data.
4. Binding evaluation of compound 4 to STING in vitro

1. NMR spectra of the synthesized compounds

Compound 8 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound $8\left({ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}\right.$, Chloroform-d)

Compound 9a (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 9a (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

Compound 9 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound $9\left({ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}\right.$, Chloroform-d)

Compound 10a (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 10a (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

Compound 10b (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 10b (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

Compound 10c (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 10c (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

Compound 10d (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 10d (${ }^{13} \mathrm{C}-\mathrm{NMR}, 100 \mathrm{MHz}$, Chloroform-d)

Compound 10 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound $10\left({ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}\right.$, Chloroform-d)

Compound 11 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

$-7.26 \mathrm{CDCl} 3$

$\|$

Compound 11 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform-d)

Compound 12 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 12 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform-d)

Compound 5a (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 5a (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

Compound 5 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound $5\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right.$, 101 MHz , Chloroform-d)

Compound 5 (COSY, 400 MHz , Chloroform-d)

Compound 5 (HSQC, 400 MHz , Chloroform-d)

Compound 5 (HMBC, 400 MHz , Chloroform-d)

Compound 14 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

$\underset{\sim}{ } \mathbf{7 . 3 5} \mathbf{~} 7.26 \mathrm{CDCl} 3$

Compound 14 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform-d)

Compound 15 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 15 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform-d)

Compound 16 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 16 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform-d)

$\alpha-/ \beta$-anomer:

Compound 17a (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{1}{ }$	
	\sim		

Compound 17a (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

β-anomer:

Compound 17 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 17 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

$\alpha-/ \beta$-anomer:

Compound 18 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 18 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

$\alpha-/ \beta$-anomer:

Compound 19 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 19 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

[^0]
β-anomer:

Compound 20 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound $20\left({ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}\right.$, Chloroform-d)

[^1]
$\alpha-/ \beta$-anomer:

Compound 21 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound 21 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}$, Chloroform- d)

Compound 6 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound $6\left({ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}\right.$, Chloroform-d)

Compound 6 (COSY, 400 MHz , Chloroform-d)

Compound 6 (HSQC, 400 MHz , Chloroform-d)

Compound 6 (HMBC, 400 MHz , Chloroform-d)

Compound 22 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 400 \mathrm{MHz}$, Chloroform-d)

Compound $22\left({ }^{13} \mathrm{C}-\mathrm{NMR}, 101 \mathrm{MHz}\right.$, Chloroform- d)

Compound 22 (COSY, 400 MHz , Chloroform-d)

Compound 22 (HSQC, 400 MHz , Chloroform-d)

Compound 22 (HMBC, 400 MHz , Chloroform-d)

Compound 24 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 600 \mathrm{MHz}$, DMSO- d_{6})

Compound 24 (${ }^{13} \mathrm{C}-\mathrm{NMR}, 151 \mathrm{MHz}$, DMSO-d6)

Compound 24 (COSY, 600 MHz , DMSO-d6)

Compound 24 (NOESY, 600 MHz , DMSO-d6)

Compound 24 (HSQC, 600 MHz , DMSO-d)

Compound 24 (HMBC, 600 MHz , DMSO- d_{6})

Compound 25 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 600 \mathrm{MHz}$, DMSO-d6)

Compound $25\left({ }^{13} \mathrm{C}-\mathrm{NMR}, 151 \mathrm{MHz}\right.$, DMSO-d6)

Compound 25 (COSY, 600 MHz , DMSO-d6)

Compound 25 (NOESY, 600 MHz , DMSO-d6)

Compound 25 (HSQC, 600 MHz , DMSO-d6)

Compound 25 (HMBC, 600 MHz , DMSO- d_{6})

Compound 4 (${ }^{1} \mathrm{H}-\mathrm{NMR}, 600 \mathrm{MHz}$, DMSO- d_{6})

Compound $4\left({ }^{13} \mathrm{C}-\mathrm{NMR}, 151 \mathrm{MHz}\right.$, DMSO- d_{6})

Compound 4 (COSY, 600 MHz , DMSO-d6)

Compound 4 (NOESY, 600 MHz , DMSO- d_{6})

Compound 4 (HSQC, 600 MHz , DMSO-d6)

Compound 4 (HMBC, 600 MHz , DMSO- d_{6})

Selected NOE contacts for compound 4

Temperature dependent ${ }^{1} \mathrm{H}$-NMR of compound $\mathbf{4}$ in DMSO- d_{6}

Chemical shift of H-2""،

2. RP-HPLC

The purification of compound 24, 25 and 4 was performed by reversed-phase HPLC. The crude products were dissolved in $30 \% \mathrm{MeCN}$, respectively.

Preparative RP-HPLC (flow rate: $5 \mathrm{~mL} / \mathrm{min}$)

T / \min	0	15	17	22	24	30
$\mathrm{~A}\left(\mathrm{H}_{2} \mathrm{O}\right) / \%$	85	80	20	20	85	85
$\mathrm{~B}(\mathrm{MeCN}) / \%$	15	20	80	80	15	15

Product fractions were collected from $23.0-25.0 \mathrm{~min}$ for $24,11.5$ - 13.5 min for 25 and $7.5-9.5 \mathrm{~min}$ for 4, respectively. Solvents were evaporated and the compounds were lyophilized overnight to give colorless solids.

Analytical RP-HPLC (flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$) was conducted with a stronger gradient.

T / \min	0	15	17	22	24	30
$\mathrm{~A}\left(\mathrm{H}_{2} \mathrm{O}\right) / \%$	85	20	20	20	85	85
$\mathrm{~B}(\mathrm{MeCN}) / \%$	15	80	80	80	15	15

$R_{t}($ compound 24$)=16.1 \mathrm{~min}$
$\mathrm{R}_{\mathrm{t}}($ compound 25$)=12.5 \mathrm{~min}$
$\mathrm{R}_{\mathrm{t}}($ compound 4$)=7.8 \mathrm{~min}$

Analytical RP-HPLC (15\% to 80\% MeCN gradient elution)

Compound 24:

Compound 25:
(3,

Compound 4:

3. X-ray crystallography data

Compound 10d:

net formula
$\mathrm{Mr}^{\prime} / \mathrm{g} \mathrm{mol}^{-1}$
crystal size/mm
T/K
radiation
diffractometer
crystal system
space group
$a / A ̊$
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y^{\prime}
V / A^{3}
Z
calc. density/g cm ${ }^{-3}$
μ / mm^{-1}
absorption correction
transmission factor range
refls. measured
Rint
mean $\sigma(\Lambda) / I$
θ range
observed refls.
x, y (weighting scheme)
hydrogen refinement
Flack parameter
refls in refinement
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S}$
352.39
$0.080 \times 0.050 \times 0.030$
103.(2)

MoKa
'Bruker D8 Venture TXS'
orthorombic
'P 2121 21'
5.5797(3)
16.2174(7)
18.6761(8)

90
90
90
1689.97(14)

4
1.385
0.221

Multi-Scan
0.92-0.99

17954
0.0404
0.0305
3.327-27.090

3480
$0.0355,0.4445$
constr
-0.01(3)
3706

parameters	220
restraints	0
$R\left(F_{\text {obs }}\right)$	0.0290
$R_{\mathrm{w}}\left(F^{2}\right)$	0.0724
S	1.041
shift/errormax	0.001
max electron density/e \AA^{-3}	0.236
min electron density/e \AA^{-3}	-0.366

Compound 11:

net formula
$\mathrm{Mr}^{\prime} / \mathrm{g} \mathrm{mol}^{-1}$
crystal size/mm
T/K
radiation
diffractometer
crystal system
space group
$a / A ̊$
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
V / \AA^{3}
Z
calc. density/ $\mathrm{g} \mathrm{cm}^{-3}$
μ / mm^{-1}
absorption correction
transmission factor range
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5}$
267.24
$0.080 \times 0.050 \times 0.030$
103.(2)

MoKa
'Bruker D8 Venture TXS'
monoclinic
'P 121 1'
10.1530(7)
7.0554(5)
18.1171(13)

90
101.769(2)

90
1270.51(16)

4
1.397
0.112

Multi-Scan
0.94-1.00

refls. measured	13325
$R_{\text {int }}$	0.0382
mean $\sigma(\Lambda / / I$	0.0460
θ range	$3.376-26.363$
observed refls.	4785
x, y (weighting scheme)	$0.0337,0.2537$
hydrogen refinement	constr
Flack parameter	$-0.6(5)$
refls in refinement	5174
parameters	347
restraints	1
$R\left(F_{\text {obs }}\right)$	0.0344
$R_{w}\left(F^{2}\right)$	0.0821
S	1.041
shift/errormax	0.001
max electron density/e \AA^{-3}	0.188
min electron density/e \AA^{-3}	-0.183

Correct structure derived from synthesis.

Compound 18:

net formula
$\mathrm{Mr}^{\prime} / \mathrm{g} \mathrm{mol}^{-1}$
crystal size/mm
T/K
radiation
diffractometer
crystal system
space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
V / A^{3}
Z
calc. density/g cm ${ }^{-3}$
μ / mm^{-1}
absorption correction
transmission factor range
refls. measured
$R_{\text {int }}$
mean $\sigma(I) / I$
θ range
observed refls.
x, y (weighting scheme)
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{~S}$
342.35
$0.444 \times 0.148 \times 0.141$
173(2)
MoKa
'Oxford XCalibur'
monoclinic
'P 21'
11.1971(7)
5.8612(3)
12.8844(8)

90
112.211(7)

90
782.84(9)

2
1.452
0.241
multi-scan
0.90050-1.00000

4714
0.0268
0.0502
4.541-26.367

2507
$0.0348,0.1576$

hydrogen refinement	constr
Flack parameter	$-0.04(7)$
refls in refinement	2844
parameters	210
restraints	1
$R\left(F_{\text {obs }}\right)$	0.0413
$R_{\mathrm{w}}\left(F^{2}\right)$	0.0926
S	1.029
shift/errormax	0.001
max electron density/e \AA^{-3}	0.249
min electron density/e \AA^{-3}	-0.252

4. Binding evaluation of compound 4 to STING in vitro

Figure S1: Compound $\mathbf{4}$ is not binding to STING in vitro.
(A) DSF thermal shift first derivative of $5 \mu \mathrm{M}$ hSTING_L139 (orange), $5 \mu \mathrm{M}$ hSTING_L139 + $50 \mu \mathrm{M}$ 2'3'-cGAMP (red), 3'3'-
cGAMP (blue), $50 \mu \mathrm{M} 4$ (dark green) and $150 \mu \mathrm{M} 4$ (light green).
(B) DSF thermal shift first derivative of $5 \mu \mathrm{M}$ mSTING_L138 (orange), $5 \mu \mathrm{M} \mathrm{mSTING} L 139+50 \mu \mathrm{M}$ 2'3'-cGAMP (red), 3'3'cGAMP (blue), $50 \mu \mathrm{M} 4$ (dark green) and $150 \mu \mathrm{M} 4$ (light green).
(C) ITC measurement raw data of $20 \mu \mathrm{M}$ hSTING_L139 titrated with $291 \mu \mathrm{M} 4$.
(D) ITC measurement raw data of $20 \mu \mathrm{M}$ mSTING_L138 titrated with $291 \mu \mathrm{M} 4$

[^0]:

[^1]: $\begin{array}{llllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

