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Riassunto 

Il rapporto tra servizi ecosistemici e agricoltura è di cruciale importanza, sia per investigare 

il flusso bidirezionale di servizi che attraversa il sistema agricolo, sia per quantificare i beni 

e servizi da esso derivati, indispensabili alle società umane. Le zone umide rappresentano 

oggigiorno un elemento di fondamentale importanza, soprattutto se localizzate in territori 

agricoli intensivi, come ad esempio il bacino scolante della laguna di Venezia. I sistemi 

wetland, infatti, sono in grado di erogare importanti servizi ecosistemici: regolazione,  

supporto, approvvigionamento; esse sono capaci di regolare il flusso di acqua ed il ciclo di 

nutrienti, mitigare l’eccesso di fertilizzanti e pesticidi, sequestrare carbonio, migliorare la 

biodiversità. Attraverso tre sperimentazioni a scala campo il presente progetto di ricerca 

intende valutare il servizio di water purification erogato da zone umide nel mitigare 

l’inquinamento da drenaggio agricolo; un ultimo caso, invece, vuole stimare il servizio di 

approvvigionamento legato alla vegetazione presente lungo il reticolo minore, stimandone 

l’energia potenziale derivata.  

Nel primo caso di studio “a constructed wetland for water purification services from 

pesticide in an intensive cropping system” i risultati mostrano come il sistema possa ridurre 

la concentrazione di metolacloro e terbutilazina nelle acque di runoff di un fattore 45-80, 

anche in condizioni di eventi estremi. 

Nella seconda sperimentazione “vegetated ditches as water purification systems to mitigate 

contamination from pesticides runoff” i risultati mostrano come canale vegetato in alveo 

può ridurre le concentrazioni di runoff contaminato almeno del 50%, anche in condizioni di 

eventi pluviometrici estremi; in generale, un runoff di 1 mm da 5 ha di bacino agricolo 

viene mitigato al 99% in 100 metri di canale vegetato in alveo. 

Nel terzo caso “assessing phytoremediation performance of an integrated agricultural 

wetland” i risultati mostrano come le concentrazioni mediane di N totale siano state di 2.43 

ppm in entrata e 1.79 all’uscita del sistema, mentre, a seguito di un importante evento di 

precipitazione, siano passate da 6.34 ppm (inlet) a 1.29 ppm (outlet). In generale, quindi, le 

zone umide agricole hanno mostrato una grande capacità nel purificare le acque 

contaminate da drenaggio agricolo, proteggendo le acque superficiali situate a valle. La 

ricerca, inoltre, conferma che l’implementazione di wetland costruite e dispositivi di 

mitigazione off-site possono aumentare la sostenibilità della produzione agricola. 
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Summary 

Relationships between Ecosystem Services and agrosystems are extremely important both 

to understand the bidirectional flow of services from/to agriculture and to quantify goods 

and benefits for human societies. Wetland systems nowadays represent an important 

cornerstone for beneficial Ecosystem Services, especially in intensive agricultural 

landscapes characterized by shallow water and a dense minor channel network like the 

territory of the Venice Lagoon drainage system. Wetlands provide a crucial suite of 

regulating, supporting, provisioning and cultural services to regulate water flows and 

nutrient cycling, remove and detoxify excess fertilizers and pesticides, sequester carbon, 

enhance biodiversity and provide cultural benefits to local communities. By three 

experimental study cases this research present results about the assessment of the water 

purification service provided by wetlands in mitigating agricultural contamination; 

moreover, estimation of a provisioning service such as bioenergy derived from wetland 

vegetation was performed. In the study case “a constructed wetland for water purification 

services from pesticide in an intensive cropping system” results show that the system can 

reduce runoff concentration of metolachlor and terbuthylazine by a factor of 45-80 even in 

extreme flooding conditions. Herbicides retention in the constructed wetland was 

reversible, and the second and third floods mobilized 14-31% and 3.5-7.0% respectively, of 

the amount detected in the first flood. In the second experimentation “vegetated ditches as 

water purification systems to mitigate contamination from  pesticides runoff” results show 

that the ditch can immediately reduce runoff concentration of herbicides by at least 50% 

even in extreme flooding conditions; as a general rule, a runoff of 1 mm from 5 ha is 

mitigated by 99% in 100 m of vegetated ditch. In the study case “Assessing 

phytoremediation performance of an integrated agricultural wetland” results show that 

median concentrations of total nitrogen were 2.43 ppm at the inlet and 1.79 at the outlet, 

while after an extreme rainfall event, total nitrogen concentrations were 6.34 ppm at the 

inlet and 1.29 ppm at the outlet. In general, wetland systems perform a high buffer capacity 

both for nutrient and herbicides, capable to provide water purification service, protecting 

downstream surface water. Moreover, this project confirms that the implementation of 

constructed wetlands and offsite mitigation measures like vegetated ditches in agro-systems 

can improve the sustainability of agricultural production. 
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State of the art 

The Ecosystem Services (ES) concept is constantly gaining importance since 1970, 

focusing on the human-environment interactions to increase the interest of people regarding 

biodiversity conservation and the importance of ecosystems for human life, in front of 

evidences of a more and more unsustainable use of natural resources. By this concept, 

ecosystems are considered as a “natural capital” that produces a services flow useful and 

often indispensable for human well-being and subsistence, and that is influenced both 

positively either negatively by natural and anthropic factors (Balvanera et al., 2001; 

Costanza et al., 2002; MEA, 2005a; Daily and Matson, 2008; Maes et al., 2012). 

The big boost in ES evaluation, quantification and management is related to Millennium 

Ecosystem Assessment (2005), after which different studies and projects are carried out to 

try to bring this concept from the academic side to an operational one, using different 

ecosystems and their services frameworks in decision making processes, land planning, 

natural resource management and conservation projects, among others. These efforts also 

bring out the need of consistent and reliable assessment, quantification, evaluation and 

mapping methods of ecosystems, their functions, services, trade-offs and beneficiaries at 

different temporal and spatial scale that integrate biophysical, socio-cultural and 

economical aspects. Particularly, quantification methods vary widely according to the 

availability of data, temporal and spatial scale, ES types and other aspects investigated, 

involving primary data and proxies, quantitative and qualitative data, such as statistic and 

survey information, data from empirical studies and/or from remote sensing, expert 

opinions, participatory processes.  

The ES are therefore defined as the set of benefits that companies derive from ecosystems, 

whose taxonomy is divided into four classes: 1) provisioning services, namely the supply of 

services directly derived from ecosystems (eg. food, fiber, energy, biogenetic resources, 

fresh water); 2) life supporting services, ie all the essential mechanisms that govern the 

functioning of the biosphere system (eg. nutrient cycling, bio-geochemical processes, 

primary production); 3) regulating services, ie the services derived from the regulatory 

mechanisms of ecological processes (eg. climate control and the hydrological cycle, carbon 

sequestration, water purification and nutrient absorption, control of erosion, biological 

control agents and pollinators) ; 4) cultural services, ie the intangible, cultural and aesthetic 
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values associated with ecosystems (landscape, educational and recreational activities, 

ecotourism) (MEA, 2005; TEEB 2006). 

The EU, through the Action 5, established to support the Aichi biodiversity targets (CBD, 

Nagoya, 2010) combining the implementation of scientific knowledge with operative 

measurements for biodiversity conservation, by the functional restoring of at least 15% of 

degraded ecosystems by green infrastructures, and management of natural and semi natural 

areas (Target 2, European Commission, 2011a). Moreover, restoring and preserving ES are 

clearly highlighted within the six priorities identified by the EU in the platform for the rural 

development, the Common Agricultural Policy (CAP, European Commission, 2011b).  The 

research project is based on the conceptual framework and the applicative models for the 

agroecological assessment of the environmental services, defined in the last decade as 

Ecosystem Services (ES) (Balvanera et al., 2001; Costanza et al., 2002; MEA, 2005a; 

Daily and Matson, 2008; Maes et al., 2012). 

 

Water purification services from wetland systems  

The ES approach is particularly appropriate to the applied research about agricultural 

systems which are, at present, the largest ecosystems on earth and, at the same time, the one 

that has been modified and intensively transformed by anthropic activities to provide good 

and services to the societies (Scott et al., 2006). The agricultural system is, in fact, the 

dominant form of land management on a global level considering that it has presently 

converted about 40% of global surface (FAO, 2009).  

In the flow cascade of ES (De Groot, 2010), cropping systems play a crucial role, both in 

providing goods and services to human societies and in demand of ES from other natural 

ecosystems. In fact, agrosystems provide the main classes of ES – provisioning and 

regulating services, and cultural values. Restored or constructed wetlands, and vegetated 

systems represent within an agricultural basin a key issue in water purification and 

sediment retention services (MEA, 2005b). Wetland vegetation has the ability to absorb 

nutrients from soil and water bodies, acting as an ecological system "plant-soil" in the 

process of water purification. Through such processes, pollutants (including nitrates and 

phosphates) are removed by a combination of chemical, physical and biological factors, 
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among which the main ones are sedimentation, absorption of certain molecules from the 

soil, nutrient absorption and extraction of heavy metals (Borin, Bonaiti, 1997).  

However, since agriculture is thermodynamically an open and complex system, to optimize 

on-site crop production, agro-systems often represent a direct and indirect driver of 

environmental change off-site: soil erosion, landuse / landcover changes, run-off of 

nutrients and pesticides, degradation of the quality and availability of the  groundwater and 

surface water and, on a global scale, alteration of temperature regulating mechanisms (Ruhl 

2000. MEA, 2005; Swinton et al., 2006). Unsustainable agricultural practices can affect 

also natural ecosystems, eroding ecosystem services associated with them: loss of 

biodiversity and natural habitats, the release of nutrients and pesticides, excess 

sedimentation in the water supply, increasing the hydrogeological and greenhouse gas 

emissions (MEA, 2005; Power, 2010). 

If, on the one hand, provisioning services derived from agriculture (food, fiber, energy) - 

the so-called production - are well defined, on the other hand quantification and mapping of 

other ES are not well explored. Among the main ES that sustain the agro-systems 

Supporting Services (including genetic biodiversity for the improvement of ideotypes  and 

farmed varieties, soil structure and fertility, the nutrient cycle and the water availability) 

and Regulating Services (pollination, atmospheric setting, natural pest control and weed) 

are paramount. Among the latter, in particular, natural and seminatural ecosystems play a 

key role in water purification processes and water cycle self-regulation to agricultural 

systems. By contrast agrosystems provide, in addition to agricultural productivity  in terms 

of ton/hectars, important ecosystem services such as supporting and regulating, including 

the maintenance of soil fertility (soil organic matter), the purification capacity of surface 

and groundwater, flood control , carbon sequestration and climate regulation, (Swinton 

2007; Powell, 2010). The quality and quantity of available water are important ecosystem 

services that can be improved or degraded according to farming practices and the 

agrosystem structuring. 

An evaluation of the ES related to agro-systems can provide useful information about the 

sustainability of agricultural practices, directing them toward a greater use efficiency of 

nutrients and water resources, enhancing the buffer strips and riparian zones which, for 
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example, can be optimized for the removal of nutrients and sediment before the runoff 

reaches the neighboring water bodies. 

Wetlands and Ecosystem Services 

Wetland systems are considered among the ecosystems with the highest productivity, 

playing a crucial role in the cycle of sediments and nutrients in the environment (MEA, 

2005b). Wetland vegetation showed significant ability to absorb nutrients from soil and 

water bodies, acting as a "plant-soil"  system in the water purification processes. Through 

this processes,  pollutants (including nitrates and phosphates, and pesticides) are removed 

by a combination of chemical, physical and biological processes, among which the main 

ones are the sedimentation, the absorption of certain molecules to the soil composition, the 

absorption of nutrients and heavy metals inside the plants and the degradation of the 

organic molecules (Borin, Bonaiti, 1997). 

The natural ability of wetlands to trap nutrients and sediments can be exploited through the 

use of natural, semi-natural or Constructed Wetlands (CW) for the purpose of improving 

the quality of water and, consequently, the biodiversity of ecotones and neighboring 

ecosystems. Many wetland ecosystems (natural or constructed) which are located in 

marginal areas or in abandoned agricultural areas can be restored and exploited within a 

matrix structured agricultural landscape, in order to support and implement the water 

purification processes and recovery of biodiversity, particularly bird life and insect fauna 

(Robertson, Swinton, 2007). It was estimated that, globally, the set of ecosystem services 

provided by wetlands, is of primary importance for the societies and economies, carrying 

them an environmental service from the local to the global scale, it is around at an 

estimated value of 'order of thousands of dollars a year (Ramsar, 2006). 



Study cases 

A constructed wetland for water purification services from pesticide in 

an intensive cropping system1 

Ecosystem services provided by wetland systems presently play a pivotal role in intensive 

cropland as water purification from agricultural pollution. 

A field trial was conducted in 2014 to evaluate herbicide runoff reduction and retention 

using a 0.32 ha constructed surface flow wetland (CSFW) at the outlet of a 6 ha agricultural 

basin. To simulate an extreme pulse contamination, the CSFW was flooded with a runoff 

contaminated with metolachlor and terbuthylazine and two other subsequent floods with 

pure water were applied 21 and 65 days later. 

Results show that the CSFW can reduce runoff concentration of metolachlor and 

terbuthylazine by a factor of 45-80 even in extreme flooding conditions. Herbicides 

retention in the CSFW was reversible, and the second and third floods mobilized14-31% 

and 3.5-7.0% respectively, of the amount detected in the first flood. 

The CSFW performs a high buffer capacity for herbicides, capable to provide water 

purification service, protecting downstream surface water. Moreover, mitigation capacity of 

a CSFW for a heavy runoff from a 10 ha basin is 90% for every 50 m in length of a 15 m 

wide wetland. This confirms that the implementation of CSFWs in agro-systems can 

improve the sustainability of agricultural production. 

 

 

 

 

 

 

 

1
Pappalardo S.E., Otto S., Gasparini V., Zanin G., Borin M., (2015), “Mitigation of 

herbicide runoff as an ecosystem service from a constructed surface flow wetland”, 

Hydrobiologia. DOI: 10.1007/s10750-015-2375-1 
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Vegetated Ditches as water purification systems to mitigate 

contamination from pesticides runoff2 

In intensive agricultural systems runoff is one of the major potential diffuse pollution 

pathways for pesticides and poses a risk to surface water. 

Ditches are common in the Po Valley and can potentially provide runoff mitigation for the 

protection of watercourses. The effectiveness depends on ditch characteristics, so there is 

an urgent need for site-specific field trials. The use of a fugacity model (multimedia model) 

can allow recognition of the mitigation main processes.  

A field experiment was conducted in order to evaluate the mitigation capacity of a typical 

vegetated ditch, and results were compared with predictions by a fugacity model. To 

evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water 

containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods 

with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. 

Results show that the ditch can immediately reduce runoff concentration of herbicides by at 

least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a 

general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. 

Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 

0.03-0.2% of the previous one, with a concentration below the drinking water limit of 

0.1 g L
-1

. No herbicide was detected in the third flood, because the residual amount in the 

ditch was too low. Fugacity model results show that specific physical-chemical parameters 

may be used and a specific soil-sediment-plant compartment included for modelling 

herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or 

negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can 

thus be included in a general agri-environment scheme for the mitigation of pesticides 

runoff together with wetlands and linear buffer strips. These structures are present in the 

landscape, and their environmental role can be exploited by proper management. 

 

2
Otto S., Pappalardo S.E., Cardinali A., Masin M., Zanin G, Borin M. (2016), “Vegetated 

Ditches for the Mitigation of Pesticides Runoff in the Po Valley”, PLoS ONE 11(4): 

e0153287. doi:10.1371/journal.pone.0153287 
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Assessing phytoremediation performance of an integrated agricultural 

wetland3 

Wetlands are a cornerstone of beneficial ecosystem services, especially in intensive 

agricultural landscapes characterized by nutrient loss, and shallow and surface water 

bodies. Water purification services can trap 80-90% of sediments and eliminate 70-90% of 

entering nitrogen. An experimental wetland of 3.2 ha was created within the Venice 

drainage system to control nutrient loss from croplands and protect surface water bodies. 

The aims of this study were to assess the water purification service by monitoring nutrient 

runoff and testing the adaptability of seven macrophyte species in a floating treatment 

wetland system. Results show that median concentrations of total nitrogen were 2.43 ppm 

at the inlet and 1.79 at the outlet, while after an extreme rainfall event, total nitrogen 

concentrations were 6.34 ppm at the inlet and 1.29 ppm at the outlet. Carex spp. adapted 

best  to the floating wetlands (433.13 g m
-2

 of biomass production), followed by Lythrum 

salicaria (210.32 g m
-2

). Carex spp had the highest total N uptake (4.84 g m
-2

), mostly in 

roots (3.19 g m
-2

), followed by L. salicaria  with 2.35 g m
-2

. Constructed wetlands could 

therefore play a crucial role in integrated agro-environmental management to control 

nutrient runoff from intensive cropping systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3
Pappalardo S.E., Mohammad H., Cerinato S., Borin M., (2016), “Assessing the water 

purification service in an integrated agricultural wetland within the Venice lagoon drainage 

system”. Marine and Freshwater Research (In press). 
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Vegetated ditches as provision services systems: bioenergy potential 

from wetland plants along the minor channel network on an 

agricultural floodplain4 

 

Renewable energy sources such as biomasses are presently playing a pivotal role both to 

preserve security for energy supply and reduce greenhouse gases by the progressive 

substitution of fossil fuels. At present, bioenergy is mainly derived from cultivated crops 

which are mirroring environmental impacts from the intensification of agricultural systems 

for food production. Instead, biomass from perennial herbaceous species growing in 

wetland ecosystems and marginal lands has recently aroused interest as bioenergy for 

electricity and heat, methane and 2
nd

 generation bioethanol. 

The aim of this paper is to assess, at local scale, the energy potential of wetland vegetation 

associated to the minor hydrographic network within a reclamation area of the North-East 

of Italy, by performing three different energy scenarios of combustion, methane and 2
nd

 

generation ethanol. 

The research is based on a cross-methodology that combines survey analyses in the field 

with a GIS-based approach: the former consists of direct measurements and biomass 

sampling, the latter on spatial analyses and scaling up simulations at the minor channel 

network. 

Results highlight that biomass from riparian zones could represent a significant source of 

bioenergy for combustion transformation, turning the problem of biomass waste disposal 

into an opportunity to produce sustainable renewable energy at local scale. 

 

 

 

 

4
Pappalardo S.E., Prosdocimi M., Tarolli P., Borin M. (2014), “Assessment of energy 

potential from wetland plants along the minor channel network on an agricultural 

floodplain”, Environmental Science and Pollution: June 2014. Springer-Verlag Berlin 

Heidelberg 2014. Doi: 10.1007/s11356-014-3105-3. 
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Chapter 2 

Mitigation of herbicide runoff as an ecosystem service 

from a constructed surface flow wetland 
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Introduction 

The concept of ecosystem services (ES) has recently gained attention both in environmental 

sciences and practical applications to identify, map and quantify goods and services 

provided by natural and semi-natural ecosystems to human society (MEA, 2005; Daily et 

al., 2008; Maes et al., 2012). Among these, aquatic and semi-aquatic ecosystems such as 

wetlands, riparian ecotones and vegetative buffer strips are extremely important in 

providing, at multiple scales, the full set (Provisioning, Regulating, Supporting and 

Cultural) of ES (De Groot et al., 2006; Power, 2010; Brinson & Eckles, 2011). Particularly, 

they provide a crucial ES of water purification by pollution control, retention, removal and 

detoxification of excess nutrients and pesticides (Tanner et al., 2013; Tournebize et al., 

2013). The water purification service is ensured by complex physical, chemical and 

biological interaction processes performed within the “plant-soil” system. Moreover, the 

water purification ES is of paramount importance, particularly in intensive agricultural 

landscapes that are seriously contributing to non-point source pollution mainly by soil 

erosion and surface runoff into water bodies, threatening potable water sources, non-target 

organisms and aquatic ecosystems (Vianello et al., 2005; Lazzaro et al., 2008; Otto et al., 

2012). Numerous studies have confirmed that levels of pesticide concentrations in surface 

waters are undoubtedly linked to crop and soil management practices deployed within the 

agricultural basins (Dabrowsky et al., 2002; Anderson et al., 2011). To reduce the health 

and environmental risks associated with pesticides a number of regulations and standards 

have been implemented world-wide. Recently the EU, in Annex III of Directive 

2009/128/EC, issued the Thematic Strategy on Sustainable Use of Pesticides that highlights 

the need to implement locally, through National Plans, mitigation actions to protect surface 

water and non-target organisms (Gregoire et al., 2008; Durel et al., 2014). Therefore, many 

in-field (e.g. vegetated filter strips, grassed waterways) and off-site (e.g. riparian and 

artificial wetlands) mitigation systems have been implemented and studied as management 

practices in crop production, showing significant performances in reducing pesticide loss 

(Reichenberger et al., 2007; Otto et al., 2012; Vylmazal & Brezinová, 2015). Specifically, 

Constructed Surface Flow Wetlands (CSFWs) have been tested and used extensively in the 

last decades, showing that they are effective in water pollution mitigation, by retaining 

sediments and surface runoff; however, efficiency in pesticide control is highly variable 
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according to the physical-chemical properties of the individual pesticide, soil texture and 

structure, hydraulic retention time, and wetland vegetation. It has been found that 

mitigation effects typically vary from average 35 to 97% (Gregoire et al., 2008; Vymazal & 

Brezinová, 2015). Trends in removals may be related to chemical groups and even 

physicochemical parameters of individual pesticides: highest average removals are 

performed for organochlorine (97%), organophosphate (94%) and pyrethroids (84%); 

middling values for triazine (63%), chloroacetamide (58%) and triazole (57%). The lowest 

removal efficiency has been obtained for triazinone (25%) and aryloxyalkanoic acid (35%) 

(Vymazal & Brezinová, 2015). Kay et al. (2009) reported that for a constructed wetland the 

average reduction in pesticide mass loss was 80% and varied from 25 to 100%. In a recent 

review Stehle et al. (2011) found that the majority of constructed wetlands retained at least 

70% of the entering pesticides, while for Maillard et al. (2011) removal rates varied from 

39% to 100%. 

Hence, reducing pesticide impacts by implementing off-field CSFWs is helping to face the 

challenge of a better sustainability of crop production in intensive agricultural landscapes. 

A field-scale experiment has been ongoing since 2008 on the Experimental Farm of Padova 

University (north-eastern Italy) to assess the mitigation effect of a CSFW on pollution from 

agricultural runoff. 

The aims of this study were to assess, after a simulated extreme runoff event contaminated 

with the herbicides metolachlor and terbuthylazine, (1) the mitigation effectiveness of a 

CSFW in runoff purification, (2) the herbicides and metabolites release after two 

subsequent controlled floods with pure water. 

 

Data and methods 

Site information and experimental layout 

On the Experimental Farm of Padova University, in the Po Valley at North-East of Italy 

(45° 20.951'N  11° 57.132'E), a 0.32 ha CSFW vegetated with common reed (Phragmites 

australis) is located at the outlet of a 6 ha agricultural basin (Maucieri et al., 2014). The 

CSFW has a discontinuous free flow of water: when runoff occurs from the agricultural 

basin, a depth of 5-8 cm of runoff flows through the CSFW at about 0.3-0.5 m min
-1

 from 
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inlet to outlet 200 m apart, coming into contact with plants, litter and soil. In ordinary 

conditions, only the first 50 m of the CFSW are flooded, the flow is mainly horizontal and 

residence time is 1-2 hours before full infiltration. Geographical context and experimental 

design are illustrated in Figure 1. 

In order to fully describe the CSFW and test its hydraulic performance in extreme runoff, a 

microtopography survey by DGPS and a flood with uncontaminated water had been 

conducted previously. The CSFW proved to be an enclosed system, without significant 

drainage. 

Therefore a heavy runoff simulation was performed on 8
th

 April 2014 (first flood), and the 

CSFW was flooded with 33 m
3
 of water containing 3,800 g L

-1
 of S-metolachlor (CAS 

87392-12-9) and 2,300 g L
-1

 of terbuthylazine (CAS 5915-41-3), two of the main 

herbicides applied to maize to control spring and summer weeds. These concentrations 

were planned according to the metolachlor/terbuthylazine ratio in ordinary weed control, 

and were about 1,000-fold lower with respect to an ordinary treatment, and 10,000-fold 

higher with respect to an ordinary runoff (Cardinali et al., 2013) to simulate an extreme 

runoff without phytotoxicity but with durable effects. The contaminated flow was followed 

by another 320 m
3
 of uncontaminated water applied in 4.5 hours in order to flood the whole 

CSFW under 7-10 cm of water and uniform concentration throughout the 200 m length of 

the CSFW. 

After standardization by the application rate, the calculated water concentrations in the 

fully flooded CSFW were 2,836 g L
-1 

kg
-1

 applied both for metolachlor and 

terbuthylazine. 15 geo-referenced  es of 10 l surface water were then collected proceeding 

from the CSFW inlet to outlet, a length of about 200 m. Watertable samples were also 

taken. From each 10 l sample, a 1 l sub-sample was taken and placed in an aluminium 

bottle, sealed and stored in a cooler at +4°C during sampling, then frozen at -20°C until 

analysis. All water samples were geo-referenced on the field and analysed in GIS 

environment to perform a spatial correlation analysis. 

After 21 days (second flood, 29
th

 April) and 65 days (third flood, 12
th

 June) the flooding 

was repeated with uncontaminated water, and water samples collected at the same sampling 

points in order to detect herbicides release according to a sponge-like effect (Otto et al., 

2012). 
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Figure 1 Agro-system (6 ha) and Constructed Surface Flow Wetland for phytorepuration at the 

Experimental Farm of University of Padova. Blue arrows indicate the flux direction of the agricultural water 

drainage. 
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Herbicides physico-chemical properties 

Metolachlor is about 50-fold more soluble than terbuthylazine (Table 1) according to recent 

reviews, instead lipophilia (logKOW) is similar or slightly lower for metolachlor. 

The adsorption in soil (KOC) of metolachlor is also slightly lower (215 vs 259 ml g
-1

). 

Persistence of metolachlor in soil is significantly lower than terbuthylazine in a large 

selection of soils. Recent studies performed on the Experimental Farm of Padova 

University (Vianello et al., 2005; Otto et al., 2012) fully confirm this trend, and show that 

in field conditions of north-eastern Italy metolachlor is about half as persistent as 

terbuthylazine, with half-lives of 12-14 and 20-27 days respectively. 

When two chemicals are applied at different rates, a proper comparison of detections is 

possible taking rate into account. Application rates of metolachlor and terbuthylazine in 

standard weed control in maize differed, being 1.25 and 0.75 kg ha
-1

 respectively, so 

observed concentrations in the CSFW were standardized by the application rate to ease 

comparison and better highlight the trend over time, and reported as g L
-1

 kg
-1

 applied. 

 

Parameter (units) S-Metolachlor Terbuthylazine Reference 

Appl. rate (kg ha
-1

) 1.25 0.75  

CAS 87392-12-9 5915-41-3 MacBean, 2012 

Solubility (g l
-1

) 0.480 0.009 MacBean, 2012 

LogKOW 3.13  Mackay et al., 1997 

  3.04 Di Guardo et al., 1994 

 3.00 3.20 Tomlin, 2006 

 3.05 3.40 MacBean, 2012 

 3.06 3.21 General mean 

KOC (ml g
-1

) 121-309 162-378 Tomlin, 2006 

 215 270 Tomlin, 2006 (mean) 

 61-369 162-333 MacBean, 2012 

 215 248 MacBean, 2012 (mean) 

 215 259 General mean 

t50 in field (days) 23 45 Di Guardo et al., 1994 

 14 27 Vianello et al., 2005 

 11-30 30-60 Tomlin, 2006 

 21 45 Tomlin, 2006 (mean) 

 6-49 6.5-149.8 MacBean, 2012 

 28 78 MacBean, 2012 (mean) 

 30 17 MacBean, 2012 (median) 

 12 20 Otto et al., 2012 

 21 39 General mean 

Table 1. Physico-chemical properties of the herbicides applied to the CSFW. 
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Analytical procedure 

The procedures used derived from previous studies (Dyson et al., 2002; Freitas et al., 

2004), were already applied in Otto et al. (2012) and fine-tuned in the present study. 

Metolachlor (98.0% purity) and terbuthylazine (99.5% purity) standards were obtained 

from Dr. Ehrenstorfer (Augsburg, Germany). HPLC grade methanol and water were used 

(Fluka). All other chemicals were purchased from Merck (Germany). For all analytes, stock 

solutions were prepared in methanol (MeOH). The 1 l sample was filtered at room 

temperature using cellulose nitrate membrane filters 0.45 μm pore size. After filtration an 

acetate buffer solution (2.5 M) was added to the samples in ratio 1% v/v. Samples were 

cleaned by solid phase extraction using an OASIS
®
 HLB sorbent cartridge (60 mg, Waters), 

earlier conditioned with 2 ml of MeOH followed by 2 ml of ultrapure water, and a Baker 

spe-24 G vacuum column processor. Once the samples were extracted, the cartridges were 

washed with 1 ml of MeOH-water mixture (5:95 v/v) and the excess of water removed by 

opening the valves of the manifold letting the air to pass through them. The analytes were 

eluted with 5 ml of MeOH and the aliquots reduced with a gentle nitrogen gas stream at 

45°C. The extracts (50 µl) were reconstituted with 1 ml of MeOH. 

Metolachlor and terbuthylazine and main metabolites (metolachlor ethane sulfonic acid 

(Met-ESA), metolachlor oxanilic acid (Met-OA), terbuthylazine-desethyl (TerD), 

terbuthylazine-2-hydroxy (Ter2H) analyses were performed by LC-MS using a 1100 Series 

Agilent Technologies system, equipped with binary pump, diode array detector, and MSD 

SL Trap mass spectrometer with ESI source. The optimum values of the ESI-MS 

parameters were: drying gas temperature 350°C; drying gas flow 10 l min
-1

 and nebulizing 

gas pressure 45 psi. The detection was carried out considering a mass range of 50–6000 

m/z. A Gemini® column C18 with TMS endcapping, 150×4.6 mm i.d., 3 μm, 110 Å was 

used to analyse the samples, the mobile phase was composed of water (solvent A) and 

MeOH (solvent B) both acidified with 0.1% formic acid (60:40). 

The LC gradient was: isocratic from 0 to 3 min (60% A: 40% B); from 3 to 10 min, a linear 

increase of B from 40 to 80%; isocratic 80% B from 10 to 13 min; a linear increase of B in 

5 min from 80 to 100%. Initial conditions were re-established in 5 min and re-equilibrium 

time was 5 min. 
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The flow rate was 0.6 ml/min. A 10 l sample volume was manually injected each time. 

Retention times were 11.4 min and 10.1 min for metolachlor and terbuthylazine 

respectively. 

Herbicide concentrations were quantified by comparison with a calibration curve. 

Individual stock solutions were prepared in methanol/water (60/40, v/v) with 

concentrations of 100 mg L
-1

. Mixture solutions were prepared in concentrations of 0.2, 0.5, 

1.0 mg L
-1

. Recoveries of the herbicides from extracted water samples were performed in 

triplicate at three initial concentrations. 

The limit of detection (LOD) and quantification (LOQ) under the chromatographic 

conditions were determined from the calibration line at low concentrations (eq. 1): 

 

*LOD f SD

LOQ b
    (1) 

 

where f is factor of 3.3 and 10 for LOD and LOQ respectively, SD is the standard deviation 

of the linear regression and b is the slope of the calibration curve. LOQ was 30 ng L
-1 

for 

both herbicides. LOD varied between 0.995 and 1.002 ng L
-1 

for metolachlor and 

terbuthylazine respectively. 
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Runoff mitigation calculation 

A clear definition of mitigation for CSFW has not yet been suggested. In this study the 

runoff mitigation of the CSFW was calculated taking into account the mass of herbicides in 

the floods, considering the applied mass as a reference. In general, for two values of mass 

A and B, with A>B, the percentage mitigation from A to B is: 

% 100*
A B

M
A


    (2) 

For example, if in the reference scenario (A) the chemical mass is 5 g, and after complete 

flooding (B) this amount is 2 g, the mitigation from A to B is: M%=100*(5-2)/5=60%. 

Metabolites occurrence modelling 

The aim of modelling of metabolites concentration over time was to outline the occurrence 

pattern and accumulation risk. When adsorption/desorption of parental and metabolites is 

not time dependent, then relative abundance is given only to transformation kinetics. 

Various models for metabolites occurrence are available (Rawlings et al., 1998). When one 

chemical (M) is being formed by the decay of another (P) at reaction rate A, and is itself 

decaying at reaction rate B, the simplest model of occurrence of M in time (t) is the two-

exponential model (Otto et al., 1997): 

* *( 0 0* ) *( )t A t BM P P e e     (3) 

where P0 is the initial amount of P. 

 

Statistical analysis 

Correlation between concentrations and distance or duration of flooding were tested with 

Pearson’s r. For eq. (3) the fit with the experimental data was evaluated with the coefficient 

of determination (R
2
). All analysis were performed with the software Statistica 10 (StatSoft 

Inc., 2011). 
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Results 

Concentration after first flood (contaminated runoff) 

After complete flooding, as expected, herbicides concentration was almost uniform 

throughout the CSFW, from inlet to outlet both for metolachlor (56.335.8 g L
-1 

kg
-1

) and 

terbuthylazine (37.83.77 g L
-1 

kg
-1

) (meanSD). These values were 45-80-fold lower 

than the calculated (applied) concentration in the CSFW. The total mass of herbicide 

detected in the flood was 1.49 g of metolachlor (1.19% of applied) and 1.67 g of 

terbuthylazine (2.22% of applied). Similar concentrations were found in the water table for 

both herbicides. Concentrations through the CSFW were independent of distance or 

flooding time (Fig. 2). 
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Figure 2 - Concentration of metolachlor (solid line, empty square marker) and 

terbuthylazine (dotted line, empty circle marker) in the three floods. Full markers are the 

concentrations in the water table at about 0.6 m depth. All concentrations are standardized 

by the application rate. The lower axis is the distance from the inlet (m), the upper axis is 

the time elapsed between flood start and sampling (i.e. the most distant sample was taken 

last). DAT=days after first treatment. Only samples with detections above the Limit of 

Quantification are shown. 
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Concentration after second flood 

After 21 days, the concentrations in the second flood were lower, both for metolachlor 

(8.164.26 g L
-1

 kg
-1

) and terbuthylazine (11.811.2 g L
-1

 kg
-1

) (meanSD). It is worth 

noting that the second flood mobilized a significant amount of herbicides in about 4.5 h, 

about 14-31% of the previous one. A correlation with distance and flooding duration was 

observed for terbuthylazine (r=-0.653, p=0.041), likely because in the first part of the flow 

path in the CSFW the contact time with the plant-soil complex was double and a greater 

mobilization occurred. For metolachlor this correlation was not significant, likely its higher 

solubility and slightly lower lipophilia caused a faster mobilization. 

Close to CSFW outlet, concentration of the two herbicides was very similar: 0.59 and 

0.37 g L
-1

 kg
-1 

for metolachlor and terbuthylazine respectively, values well below the 

drinking water limit (0.1 g L
-1

), and the content in the watertable was also very low. 

 

Concentration after third flood 

After 65 days, the concentrations in the third flood were again very low, both for 

metolachlor (0.290.16 g L
-1

 kg
-1

) and terbuthylazine (0.820.52 g L
-1

 kg
-1

) (meanSD), 

and the amount of herbicides mobilized was about 3.5-7.0% of the previous one. This 

suggests that reversibility of adsorption lasts for a very long time and is still detectable two 

months after application, even if the amount potentially removable from the CSFW was 

very low: 0.06 g of metolachlor and 0.5 g of terbuthylazine per 1,000 g applied to the 

CSFW. This clearly highlights its mitigation capacity. 

As in the second flood, a correlation with distance and flooding duration was observed for 

terbuthylazine (r=-0.950, p=0.001) but not for metolachlor. 

Close to the outlet, concentration was 0.10 and 0.34 g L
-1

 kg
-1

 for metolachlor and 

terbuthylazine respectively. 

 

Mitigation effectiveness 

The CSFW was very effective in the reduction (mitigation) of herbicide concentration in 

runoff. For the first flood reduction was (100-1.19)=98.81% for metolachlor and (100-
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2.22)=97.78% for terbuthylazine. For the second and third flood average mitigation was 

about 99.9%. 

Metabolites occurrence 

The mean concentration of metolachlor and terbuthylazine in the three floods was 

decreasing with time according to an exponential kinetic (Fig. 3), and this is consistent with 

known dissipation pattern in soil (Otto et al., 2010). For metolachlor metabolites, the Met-

ESA occurrence kinetics was not clear, instead the Met-OA was the main metabolite about 

30 days after application and with an increasing trend. 

The two terbuthylazine metabolites show similar trends and were considered together. They 

occurred with a first order kinetic and the fitting of Eq. 3 was high (R
2
=0.98). The 

metabolites concentration overtakes terbuthylazine after 35 days; however, the 

accumulation of metabolites in the CSFW is unlikely, because Eq. 3 predicts a 

concentration less than 1.0 g l
-1

 kg
-1

 130 days after treatment. 

 

 

Figure 3 - Herbicides and metabolites concentration in the three floods at 0, 21 and 65 

days after treatment (mean+SD) and fitted models (exponential for herbicides, two-

exponential for metabolites). Most of the standard deviation bars are lower than the 

markers. Met-ESA: metolachlor ethane sulfonic acid; Met-OA: metolachlor oxanilic acid; 

TerD: terbuthylazine-desethyl; Ter2H: terbuthylazine-2-hydroxy. Parameters (st. err.) of 

Eq. 3 for TerD+Ter2H: P0=37.21, A=0.016 (0.009), B=0.030 (0.008), R
2
=0.98 
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Discussion 

 

Under extreme runoff events the saturation capacity of a CSFW of 3,200 m
2
 is 353 m

3
, and 

herbicides concentration is quite uniform in both flowing water and water table. This 

highlights that in these conditions the flow in a CSFW is mainly horizontal but also 

vertical. 

Soon after application, mean concentrations of the two herbicides in surface water are 

similar, according to their similar lipophilia. A certain variability of concentration across 

the CSFW is likely as roughness and water speed vary along the flow path. The CSFW also 

has an immediate effectiveness under extreme runoff events, and reduces the concentration 

in runoff 45-80-fold, likely because adsorption by the plant-soil complex occurs promptly, 

in 3-4 hours, with a significant reduction of the amount that can by-pass the CSFW and 

potentially reach surface water. This is fast but, at least for terbuthylazine, consistent with 

other studies conducted with another triazine. Locke et al. (2011) observed a steady 

decrease in atrazine concentration over a 24 h period, and Hinman & Klaine (1992) 

observed a rapid plant-soil uptake of atrazine and a fast (2 h) equilibrium between shoots 

and water. 

Adsorption of herbicides is likely superficial and quickly reversed by a subsequent flood. 

The amount mobilized is low but surface water quality can anyway be affected (Berghahn 

et al., 2012; Bjergager et al., 2011). 

Considering the three floods, concentrations of metolachlor and terbuthylazine in the water 

were very similar and highly correlated (r=0.660, p<0.001). Trend in concentrations 

standardized by application rate show that terbuthylazine overtakes metolachlor 3-4 weeks 

after application due to its higher persistence. 

Metabolites were also detected, showing that degradation is immediate and important and 

that the flood water from the CSFW contained a mixture of chemicals. Further research 

could assess accumulation of metabolites and explore the effect of physicochemical 

properties on adsorption over time. 

Field trial results obtained on the Experimental Farm of Padova University show that 

metolachlor and terbuthylazine have a half-life in soil of 11.3 and 19.6 days respectively 

(Table 1). This suggests that 1) 3-4 months after application the residual amount in the 
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CSFW is so low that it makes further mobilization very unlikely even under a heavy flood, 

2) there is no risk of accumulation over the years in the CSFW even after repeated spring 

applications. 

In field conditions metolachlor and terbuthylazine are applied with the same timing in 

spring, mainly to maize. Agricultural runoff in north-eastern Italian plains are more likely 

in late spring and early summer (Otto el al., 2012), so the two herbicides are detected in 

similar concentration. Later events would have a higher terbuthylazine content, but this 

would probably remain unproved because of the scarcity of events and their very low 

expected concentration. 

 

Conclusions 

The CSFW is very effective in the reduction of herbicides runoff even when completely 

flooded, with a mitigation effectiveness of about 98% for metolachlor and terbuthylazine, 

two of the main herbicides applied to maize. This is in agreement with the conclusions of 

other recent European studies (Kay et al., 2009; Stehle et al., 2011; Maillard et al., 2011). 

Comparison with results from other research is possible only after a clear and simple 

definition of mitigation or removal, as proposed in this study. 

It is difficult to single out exactly which processes cause the mitigation. The observed 

dynamic suggests that in the studied CSFW the mitigation is provided by a reversible 

adsorption to the superficial organic matter complex, i.e. by plants, plant residues and soil. 

In fact, following a successive severe flood, 15-30% of the herbicides detected in the first 

flood was mobilized after 25 days, and 40 days later another flood again mobilized a lower 

but detectable amount of herbicides. In both floods a mixture of herbicides and metabolites 

was present. It is worth noting that mobilization of terbuthylazine from the CSFW is 

correlated with the contact time with water, while that of metolachlor, slightly less 

adsorbed and more soluble, is not. Given that flooding speed is quite regular throughout the 

CSFW, mitigation can be linked either to the duration or residential time of the flood. 

Results highlight that the CSFW is a dynamic system with a high buffer capacity. In 

ordinary conditions of the plain cropland in north-eastern Italy, where 3-4 runoff events of 

low volume occur (Cardinali et al., 2013), the mitigation capacity of a 0.3 ha CSFW 
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serving a 6 ha basin is likely complete, i.e. no herbicides will by-pass the CSFW and enter 

surface water outside the basin. 

According to an iterative method for mitigation calculation, hypothesizing a final 

mitigation of 99.99% for a CSFW of 200 m, the mitigation capacity for a heavy runoff of 

3.5 mm from a 10 ha basin is 90% for each 50 m in length for a 15 m wide wetland. This 

suggests that also smaller CFWS can be very useful at farm scale when other mitigation 

techniques are implemented, i.e. spray band applications, post-emergence only. 
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Chapter 3 

Vegetated Ditches for the Mitigation of Pesticides Runoff 

in the Po Valley 
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Introduction 

Risk mitigation measures for pesticides are increasingly important (European Commission. 

Directive, 2009). Previous research (Pappalardo et al., 2015) showed that a constructed 

surface flow wetland can reduce the pollution of watercourses from a watershed of 

hundreds of hectares in Northern Italy agro-systems. Indeed, in very fragmented landscapes 

such as in Po Valley there is also an urgent need for the mitigation of agricultural runoff 

from a large number of small farms in order to intercept pollutants before they enter a large 

watercourse, where mitigation is impossible. 

Vegetated agricultural drainage ditches, hereafter ditches, are common in the Po Valley 

landscape, being a traditional part of field margins (Hackett et al., 2014), and even if they 

are mainly designed for drainage purposes, they can provide two important ecosystem 

services: 1) habitats and green corridors for wildlife and wild plants (Herzon et al., 2008), 

and 2) runoff mitigation for the protection of watercourses (Vymazal & Březinová, 2015). 

According to accepted classification, the ditch is an “off-field mitigation measure” for 

runoff as it can reduce flow velocity, intercept and remove sediment, organic material, 

nutrients and chemicals carried in runoff water. This has been shown in general (Bennett et 

al., 2005), and for some studies the basic mitigation effectiveness is about 50% (Gregoire et 

al., 2009). Yet mitigation depends strictly on ditch characteristics, i.e. size, length, slope, 

vegetation cover (Bouldin et al,. 2004; Moore et al., 2008), macrophyte adsorption (Hand et 

al., 2001;Merlin et al., 2002), and a great variability exists in ditch types and effectiveness. 

As reported by (Cardinali et al., 2013) 98% of herbicide loss by runoff in the Po Valley is 

caused by a few extreme events with an estimated return period of 25-27 years, while 3-4 

runoffs of low intensity are expected each spring-summer. However, in emerging climate 

change scenarios in which frequency of extreme rainfall events is estimated to increase 
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locally (Zollo et al., 2015), heavy runoff from croplands could represent a massive and 

uncontrollable non-point source threat to surface water bodies. Therefore, for the Po Valley 

there is an urgent need to do specific field measurements and gain insights into the main 

mitigation processes. 

The fugacity model is a multi-media model that has proved to be very accurate in 

predicting concentrations of organic pesticides, both at field and watershed scale (Di 

Guardo et al., 1994; Ghiradello et al., 2014). Its application could be very helpful to 

recognize and quantify the main pathway of environmental fate of pesticides in a little 

studied environment, so its application to a ditch is of interest. 

The aim of the study was to assess in real field conditions the mitigation effect of a ditch 

for a simulated but realistic heavy runoff containing three of the main herbicides applied to 

maize in the Po Valley, and to highlight herbicides release after two subsequent floods with 

uncontaminated water. A simple fugacity model was applied to study the repartition of 

herbicides in the ditch, and predictions were compared to observations. 

 

Materials and methods 

Site information and experiment layout 

The trial was conducted on the Exp. Farm of Padova University (North-eastern Italy). 

The studied ditch was 500 m long, of trapezoidal section (1 m bed, 2 m top, 1.8 m height), 

with a low slope (0.3%) designed as an irrigation and main drainage channel from a 

network of smaller ditches on 20 hectares of cropland where maize herbicides were not 

used in the previous cropping season (Fig 1). 
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Figure 1 – The experimental site. Left: the drainage network, with indication of inlet (A) 

and outlet (B) of the ditch and the direction of the flow; this image is similar but not identical 

to the original, and is therefore for illustrative purposes only. The Centre: overview of the 

ditch next to inlet. Right: detail of the flooded bed after the simulated runoff event (Photos: S. 

Otto and S.E. Pappalardo). 

 

The banks of the ditch were completely covered by vegetation 0.8-1.2 m tall, mainly 

perennial Graminaceae. Main species were Dactylis glomerata, Convolvulus arvensis, 

Lolium multiflorum, Poa trivialis, Silene alba, Rumex crispus, Sonchus asper, Urtica 

dioica, Rubus sp., Bromus sp., Galium mollugo, Equisetum sp., Festuca arundinacea, 

Cynodon dactylon. The bed part of the ditch was partially covered (10% of surface) by 

Phragmites australis, Iris sp., Scirpus sp., Tipha sp. 

The estimated Manning's roughness coefficient of the ditch was 0.075, which is the median 

roughness coefficient for channels with dredged ditches covered by un-maintained weeds 

(Zhang & Zhang 2001). 
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In ordinary conditions the ditch is without free water, and only after a rainfall of at least 

20 mm a depth of 2-7 cm of water flows slowly to the outlet (0.2 m min
-1

). 

In order to test the hydraulic performance of the ditch in an extreme runoff, a previous 

flood with uncontaminated water was conducted. About 50-55 m
3
 were necessary for the 

flooding, velocity of the water during flooding ranged from 0.07 (inlet) to 0.01 m sec
-1

 

(outlet); after about 3 hours the flux at inlet was very low, less than 0.003 m sec
-1

 and about 

35-40 m
3
 of water slowly passed the outlet in in the subsequent 10 hours. The ditch was 

therefore an open system that returns to its standard, dry, conditions in about 1 day. 

On 24
th

 April 2015 a heavy runoff simulation was performed, and the ditch was flooded in 

20 min with 52 m
3
 of water (corresponding to a flow of 156 m

3
/hour, or 2.6 mm/hour from 

a 6 ha basin) containing 60 g of the herbicide Lumax
®
, a common product for weed control 

in maize containing 37.5, 212.5, 187.5 g L
-1

 of mesotrione (CAS 104206-82-8), S-

metolachlor (CAS 87392-12-9) and terbuthylazine (CAS 5915-41-3), respectively. 

Herbicide was regularly added to flood water in order to prevent a concentration peak 

moving through the ditch, and given that about 8 m
3
 of water were already in the ditch, the 

final concentration of the simulated runoff was 37, 213 and 188 g L
-1

 of mesotrione, S-

metolachlor and terbuthylazine, respectively. 

These concentrations were about 100-fold higher than an ordinary runoff (Cardinali et al., 

2013) to simulate an extreme runoff for both velocity and concentration of flow. The 

concentrations are similar to those observed for fungicides after exceptional rainfall in a 

study conducted in south-west Germany (7.0-83.4 g L
-1

) (Bereswill, 2012). 

The flood increased the water level by about 10 cm (mean value for the entire ditch). After 

3 hours, 50 samples of free water and 10 samples of the saturated layer on the bed (mean 

depth: 5 cm) were collected at regular intervals from inlet to outlet. The bed sample 
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included the suspended solids that precipitate within 3 hours, and hereafter called 

“sediment”. After 27 and 82 days the flooding was repeated with uncontaminated water, 

and sampling repeated in order to detect herbicides release. 

For water concentration, the distance (m) required to reduce initial herbicide concentration 

by 50% was estimated (half-distance or D50). 

 

Calculation of runoff mitigation 

The mitigation of runoff is calculated with the simple method suggested by Otto et al. 

(2015). For two values A and B of a quantitative parameter, with A greater than B, the 

percentage mitigation from A to B is: 

M%=100*(A-B)/A    (1) 

For example, if at the ditch inlet (A, reference scenario) the mean concentration of a 

chemical is 12 g L
-1

, and at the outlet (B, mitigated scenario) it is 3 g L
-1

, the percentage 

mitigation from A to B is: 

M%=100*(12-3)/12=75%   (2) 

 

Analytical procedure 

The procedures used for pesticide extraction and analysis derived from previous studies 

(Freitas et al., 2004; Barchanska et al., 2012). Details are in Supporting Information (S1 

Text). 
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The fugacity model 

The fugacity model is a multimedia model that calculates the concentration of organic 

pesticides applied to a suitably modelled multi-compartment environment (Mackay, 1982;; 

MacLeod et al., 2010). For chemicals used in agriculture a specific compartment for 

vegetation biomass was included by (Calamari et al, 1987). Repartition between 

compartments is based on partition coefficients of chemicals, fugacity capacity and volume 

of the compartments. The compartments are hypothesised as completely available, 

repartition is instantaneous, and the whole system in equilibrium. In field trials lasting 

hours, as in this study, this is the hardest condition to achieve. Nevertheless, differences 

between predicted and observed concentrations can highlight how far the system is from 

equilibrium and the main pathways and compartments involved in the repartition. 

Ditch modelling and repartition calculation 

The flooded ditch was modelled in 9 environmental compartments (Fig 2), and repartition 

of the herbicides calculated for the three floods. 

 

Figure 2 - Scheme of the ditch after the flood, and modelling of 1-m length. 
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Even if initial soil moisture content was slightly different between floods, for simplicity the 

model of the ditch was the same for all floods (Supporting Information, S2 Table). 

Therefore relative amount between compartments remained unchanged, and only 

concentration varied according to chemical load at flooding time. For the first contaminated 

flood the chemical load was the real amount applied, for the two subsequent 

uncontaminated floods the chemical load was calculated considering that after the flood the 

total amount of herbicides in the ditch decreased because: 1) part flowed out from outlet, 2) 

the rest degraded according to first-order kinetics. 

 

Results 

Water concentration after first flood (contaminated runoff) 

After complete flooding, concentration of the three herbicides was decreasing almost 

throughout the ditch, from inlet to outlet 500 m apart (Fig 3, top). 
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Figure 3 - Concentration of herbicides in water in the first and second flood; all values 

in the third flood were below the detection limits. Mesotrione: empty circles; 

metolachlor: empty squares; terbuthylazine: full triangles. The lower axis is the distance 

from the inlet (m). The drinking water limit (0.1 g L
-1

) is indicated. Detection limits: 

mesotrione=0.070 g L
-1

, S-metolachlor=0.020 g L
-1

, terbuthylazine=0.014 g L
-1

. 



43 

 

For the whole ditch, mean observed concentrations were 5, 99, 39 g L
-1

 for mesotrione, S-

metolachlor and terbuthylazine, respectively. The mean observed concentrations in water 

were lower than those applied, being about 12% for mesotrione, 47% for S-metolachlor and 

19% for terbuthylazine. Sampling error was likely high because vegetation cover and water 

flow varied both along and across the ditch. Indeed, except for mesotrione, the observed 

values were very similar to that for atrazine (37%) obtained in a similar study by(Moore et 

al., 2001). 

The highest concentrations of applied herbicides were found in the first 200 m of the ditch. 

The resistance to flow due to vegetation and the relevant length of the ditch, which is 

indeed a not rectilinear farm ditch with an open outlet (see Fig 1), hinder the achievement 

of a complete hydraulic equilibrium. At the outlet concentrations were lowest and the 

mitigation was 99%, 91% and 97% for mesotrione, S-metolachlor and terbuthylazine, 

respectively. These values are close to those obtained by (Cooper et al., 2012) in similar 

conditions. 

For the three herbicides the concentration was about half of the maximum (i.e. D50) at 

about 250 m from the inlet. 

Taking into account concentrations weighted by the application rate, S-metolachlor 

concentration was on average 2.3-fold that of terbuthylazine, in accordance with S-

metolachlor lower lipophilia. The S-metolachlor concentration was also 4-fold that of 

mesotrione, likely because 1) mesotrione is much more soluble and was rapidly transferred 

to the outlet, 2) mesotrione was promptly transformed into some metabolites, according to 

its 2-5 days dissipation half-life in basic soils, as in this study. It is worth noting that using 

unweighted concentrations, the ratio S-metolachlor/mesotrione would have been about 21, 

i.e. very misleading. 
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Water concentration after second flood (first release) 

The second flood 27 days after contamination caused a release of S-metolachlor and 

terbuthylazine from the ditch, while mesotrione was not detected (Fig 3, bottom). 

Concentrations of S-metolachlor and terbuthylazine were very low, close to the detection 

limit and almost uniform throughout the entire length of the ditch. Concentrations were 

below the drinking water limit (0.1 g L
-1

), in this study used as fixed and prudent 

reference value; an adequate ecotoxicological endpoint for agricultural ditches may also be 

the predicted no effect concentration (PNEC). For the three herbicides under study the 

sensitive target in aquatic environment are Algae [26], and PNEC ranges 

from 0.1 to 350 g L
-1

 so the risk is low. Average concentrations of S-metolachlor and 

terbuthylazine were 0.03 and 0.07 g L
-1

 respectively, 3,500-fold lower for S-metolachlor 

and 500-fold lower for terbuthylazine with respect to first flood, i.e. mitigation of both 

herbicides was about 99.9% from first to second flood. Applying these same reduction 

ratios to mesotrione would result in a concentration of less than 0.01 g L
-1

, well below the 

limit of detection (LOD) and in keeping with the lack of detections. 

Concentration of S-metolachlor was regularly half or less that of terbuthylazine, and this is 

consistent with the physical-chemical characteristics: due to lower lipophilia, more S-

metolachlor passed through the ditch in the first flood, and the rest almost dissipated before 

the second flood. This is in agreement with the relatively high persistence of terbuthylazine 

found in previous lab studies (Fava et al., 2007) and a field trial showing that about 30 days 

after application environmental load of terbuthylazine surpasses that of S-metolachlor (Otto 

et al., 2008). 
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Water concentration after third flood (second release) 

Herbicides were not detected in the third flood performed 55 days after the second. This 

result is consistent with that of the previous flood, when concentrations were already close 

to the detection limit. 

 

Sediment concentration 

The content of the solid part in the saturated layer on the bed, i.e. the sediment in the ditch 

model, was on average 19% of the layer volume. 

In the first flood, mean concentration in sediment was 10 and 7 g kg
-1

 for S-metolachlor 

and terbuthylazine respectively, i.e. 5-10-fold lower than in water, and length-dependent 

(Fig 4). 

Herbicides were detected in both water and sediment in all samples. Since they were 

applied to the ditch with water, this suggests that adsorption to the solid part of sediment 

begins promptly, and is likely complete when the ditch returns to standard dry conditions. 

In the second flood, mean concentration in sediment was similar to the previous, 3 and 

6 g kg
-1

 for S-metolachlor and terbuthylazine respectively, but was 10-fold higher than in 

water. Concentration peak was shifted about 150 m nearer the outlet with respect to the first 

flood, according to the fact that in the first flood herbicides were added with water, in the 

second they were released from the bed by water. 
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Figure 4 - Concentration of herbicides in the dry sediment in the three floods. Metolachlor: 

empty squares; terbuthylazine: full triangles. The lower axis is the distance from the inlet 

(m). For mesotrione all values were below the detection limit. Detection limits: 

mesotrione=0.070 g kg
-1

, S-metolachlor=0.020 g kg
-1

, terbuthylazine=0.014 g kg
-1

 

 

This highlights, as for water, that environmental load of terbuthylazine surpasses S-

metolachlor after 1 month, and confirms that the contamination source is the bed of the 

ditch. 

In the third flood, the mean concentration in sediment was similar for both herbicides, 

about 1 g kg
-1

, while herbicides were not found in water. This shows that after 82 days the 

total environmental load is low for both S-metolachlor and terbuthylazine. 

Mesotrione was not found in any flood, in accordance with the low concentrations observed 

in water, again highlighting the reduced environmental load of this herbicide after 

application. 

 

Physical-chemical parameters selection 

The main physical-chemical parameters of the applied herbicides were selected from the 

literature. Molecular weight, solubility, vapour pressure and KOW were taken from 
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(MacBean et al., 2012), whereas, because several values of KOC were reported, a selection 

was made (Supporting Information S3 Table). 

For mesotrione a wide range of KOC sorption coefficients is available because adsorption is 

directly correlated with soil organic carbon (MacBean, 2012; Tomlin, 2006; Chaabane et 

al., 2008); since organic matter in the ditch is estimated at about 2% (Supporting 

Information, S2 Table), the highest KOC reported by (MacBean, 2012) (390 L kg
-1

) was 

selected. For S-metolachlor the value of 118 L kg
-1

 reported by (Aslam et al., 2013) was 

selected since it was obtained with vegetation organic matter and is very similar to the 

value of 123 L kg
-1

 obtained by (Laabs et al,. 2000) in a topsoil with 2.6% of organic 

carbon. For terbuthylazine the average value in the literature was selected (259 L kg
-1

). 

 

Fugacity model results 

93% of the ditch volume is air, but the studied herbicides have low vapour pressure, so 

concentration in air is negligible (Supporting Information, S4 Table). Even if the banks of 

the ditch were completely covered by vegetation, only the strip submerged by the flood is 

considered in the simulation, so the total vegetation biomass is only about 0.05% of total 

volume; repartition in this compartment occurs for 0.1% (mesotrione) to 4.0% (S-

metolachlor and terbuthylazine) of applied amount, and accumulation is negligible. As a 

consequence, the solid (soil, sediments and suspended solids) and liquid compartments 

(free flowing water, water in the fluid layer on ditch bed, water in soil) were of most 

importance for repartition. Even if the liquid is about 4-fold the solid, the model calculates 

that 44-73% of applied herbicides is adsorbed onto the solid part and 26-51% dissolved in 

water. This highlights the magnitude of adsorption for these chemicals. 
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For the first flood, the concentrations calculated in water by the fugacity model were very 

close to those observed. For the first flood, predicted vs. observed values were 7 vs. 5, 86 

vs. 99, 49 vs. 39 g L
-1

 for mesotrione, S-metolachlor and terbuthylazine respectively; the 

model was therefore very precise for water. 

Considering that 37 m
3
 of the contaminated flood passed the outlet, 10-22% of applied 

herbicides left the ditch with this. The remaining part degrades, and first order kinetics 

calculates that 4%, 32% and 51% of applied mesotrione, S-metolachlor and terbuthylazine 

respectively were in the ditch at the time of the second (uncontaminated) flood. This 

highlights the importance of degradation for these herbicides. 

For the second flood, the concentration calculated in water by the fugacity model was 

0.25 g L
-1

 for mesotrione, while observed concentrations were below the LOD of 

0.070 g L
-1

. For S-metolachlor and terbuthylazine the fugacity model calculated 

concentrations of 24 and 21 g L
-1

, respectively, in accordance with the residual amount 

before flood. These values were 300-900-fold higher than those observed, so the model was 

very imprecise for water. 

First order kinetics calculates that 65-99% of herbicides still in the ditch after the second 

flood are degraded before third. In particular, the residual amount of mesotrione is nearly 

zero (about 0.1 mg). The chemical load in the third flood was therefore low. 

For the third flood, the concentrations calculated in water by the fugacity model were 

0.0004, 3.0 and 6.3 g L
-1

 for mesotrione, S-metolachlor and terbuthylazine, respectively. 

Observed values were all below the LOD. Considering the LOD as “observed values” for 

comparison purposes, calculated values were 150-500-fold higher than observed, so the 

model was again very imprecise for water. 
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The fugacity model calculates in the first and second flood a concentration of S-

metolachlor and terbuthylazine in sediment 2-70-fold higher than observed. This suggests 

that: 1) for the first flood full repartition is not achieved in the 3-hours sampling period; 2) 

for the second mobilisation (desorption) with flowing water is significant but incomplete, 

likely requiring days to finish. 

It is possible that this steady overestimation in both water and sediments is caused by the 

absence of a specific “soil-sediment-plant” compartment in the model. 

After the third flood, the fugacity model calculates an average concentration in the solid 

compartment of the ditch (soil and sediments) of about 0.005 g kg
-1

 for mesotrione, and 

12-54 g kg
-1

 for S-metolachlor and terbuthylazine, corresponding to about 1.5 g of total 

herbicides in the whole ditch (500 m
2
), a mass 1000-fold lower than a standard herbicide 

application on 1 ha of crop. This shows that herbicide accumulation is negligible, so debris 

from ditch maintenance is not toxic for crops. 
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Discussion 

Even after one regular and intense input of herbicides, concentrations in water in the ditch 

were lower than input and quite regularly decreasing along the ditch, showing that 

repartition begins soon and is very effective, because the mean concentration detected in 

water was only 10-45% of that applied, and at the outlet the concentration was mitigated by 

90-99% according to the calculation method suggested by (Otto et al., 2015). This 

highlights the importance of adsorption onto the sediment-soil-plant complex, and the ditch 

length or the residence time (hydraulic retention). 

According to results from specific runoff studies, 3-4 ordinary runoff events are expected 

every year in the Po Valley, each with a load of about 0.2 g ha
-1

 of metolachlor and 

terbuthylazine (Cardinali et al., 2013). 

In this study, the ditch was flooded with about 12 g of those herbicides, corresponding to 

the herbicide loss from 60-70 ha of treated cropland, and a 500 m long and 1 m bed wide 

ditch provided mitigation of 90-99%. In brief, for ordinary runoff, mitigation of at least 

90% can be achieved with 10 m
2
 of ditch/hectare of cropland. This highlights that ditches 

can be very effective for the mitigation of ordinary runoff, and that mitigation is similar to 

that obtained with vegetative filter strips (86–88% for S-metolachlor and terbuthylazine 

[33]). 

It is of interest to compare mitigation effectiveness of a ditch and wetland for heavy or 

extreme runoff events. 

According to Pappalardo et al. (2015)  the mitigation effectiveness of a constructed surface 

flow wetland for a heavy runoff of 3.5 mm from a 10 ha basin is 90% for each 50 m in 
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length for a 15 m wide wetland, corresponding to the weighted value of 75 m
2
 of 

wetland/hectare of cropland. 

In the present study, taking into account concentrations at the outlet, 500 m of ditch 1 m 

bed wide provided mitigation of about 95% for a runoff of 52 m
3
, corresponding to 3.5 mm 

runoff from 1.5 ha. For 90% mitigation (500/1.5)*90/95=318 m
2
 of ditch/hectare of 

cropland are thus necessary. This weighted value is about 4-fold that of wetland, suggesting 

that a ditch is much less efficient, but it is reasonable because a runoff of 3.5 mm is extreme 

and the residence time in the ditch much shorter than in the wetland, where the laminar 

sheet flow enhances pesticide interception (Bereswill). It is worth noting that for a realistic 

runoff of 1 mm from 5.2 ha, 99% mitigation can be achieved with 100 m of ditch/hectare of 

cropland. This result can be summarized with the mitigation rule “1 mm from 5 ha is 

mitigated by 99% (M) in 100 m of vegetated ditch 1 m bed wide”. For example, for a 

runoff containing 1 g L
-1

 of herbicide (A), application of this rule results in a 

concentration (B) at the outlet of: 

B=-((M*A/100)-A)=-((99*1/100)-1)=0.01 g L
-1

   (3) 

For pesticides, mitigation effectiveness depends on many physical and chemical processes, 

degradation, sedimentation, infiltration and adsorption onto plant surfaces, the relative 

importance of which is not completely known. The role of adsorption coefficient and 

solubility of pesticides has still to be clarified, as also reported by (Vymazal, 2015), and in 

wetlands there are even cases of great mobility of pesticide with high KOC [34]. Most 

information is still based on model simulations, i.e. with SWAT (Ghirardello), so there is a 

need for field trials. 

Sampling error is likely high in field conditions, and a recent study show that changes in 

macrophyte biomass and particulate/dissolved organic carbon levels caused concentration 
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variations of several orders of magnitude in space, especially for highly hydrophobic 

chemicals (Morselli et al., 2015). Nevertheless, the results of the present study show that 

when a contaminated runoff is convoyed to a ditch covered by semi-natural vegetation, and 

the linear flow is about 3 m min
-1

, a length of 250 m is enough for halving the initial 

concentration just by means of adsorption of the pesticide onto the sediment-soil-plant 

complex. For lower, and more realistic, flow velocity the half-length dissipation would be 

similarly lower. 

When the ditch has an open outlet, in the case of heavy runoff events there is an immediate 

risk of transferring a runoff contaminated above the drinking water limit (0.1 g L
-1

) to 

surface waters. In the Po Valley this risk can be managed in two ways: 1) by insertion of a 

sediment pond after the outlet; 2) closing the outlet of the ditch, which practically becomes 

a linear constructed surface flow wetland. Implementation of this second option is anyway 

not easy and not often suggested because during heavy rainfall the primary role of ditches 

is to quickly remove water from fields to prevent flooding. 

Adsorption onto the sediment-soil-plant complex is quickly reversible, and successive 

floods can mobilize herbicides according to their dissipation dynamics in soil and 

sediments. Observed concentrations were anyway very low, below the drinking water limit, 

showing that the ditch is an effective structure for trapping herbicides. 

The lack of detection in the third flood 82 days after contamination highlights the low 

persistence of these chemicals in ditches, where dissipation half-lives can differ from those 

in agricultural soil. For example, (Barra Caracciolo, 2005) reported for S-metolachlor a 

half-life of 12 days for microbiologically active soils, while the mean generic value 

reported by (MacBean) is 28 days. The vegetation and the periphyton (Otto et al., 2012) 

could play a relevant role in stimulating biological degradation, and the inclusion of 
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experimental dissipation values for ditches would improve precision of dissipation dynamic 

modelling, but further research is needed for this. 

The results of the fugacity model depend on some inevitable assumptions. Comparison of 

the model’s outcome with observations for subsequent simulations can test the goodness of 

choices because the model should always succeed or fail, and provide information about 

relative magnitude of pathways. For a ditch the model highlights the importance of KOC 

sorption coefficient and half-life of pesticides in flood concentration and mid-term release. 

When the calculation aims to estimate predicted environmental concentrations, there is a 

need for specific values of pesticides adsorption onto the sediment-soil-plant complex since 

1) sorption depends on type and age of organic matter (Aslam et al., 2013), 2) the KOC 

likely varies in time, as recently observed in studies conducted on a river (Boithias et al., 

2014). When KOC is about 200-400 L kg
-1

 the pesticide is mainly adsorbed and release from 

ditches is low. When the half-life is 3-5 weeks, accumulation is very unlikely. A runoff 

with 100-200 g L
-1

 convoyed to a ditch can be practically decontaminated in 3-4 months. 

Furthermore, the model results suggest that when contaminated runoff enters a ditch, two 

subsequent stages occur: 1) solubilisation stage, when risk to surface water depends mainly 

on chemicals solubility and flow velocity; 2) repartition stage, when environmental load is 

driven by sorption and dissipation from the sediment-soil-plant complex. The inclusion of 

this compartment in the model would improve general precision of repartition calculation. 

Debris from regular dredging and vegetation management of the ditch are calculated as 

non-toxic for crops, and can be spread on cropland before ploughing. The entire cycle of 

depuration with ditches is then of low impact and cost. Developing countries in particular 

could gain advantage from this low-cost and easily-implemented system (Mahabali, 2014). 
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Given that combinations of mitigation measures can be very effective (Otto et al., 2015), a 

sustainable scheme for the mitigation of pesticide runoff to surface water can be based on: 

1) ditches for the immediate mitigation of direct runoff from fields; 2) wetlands, serving a 

watershed of hundreds of hectares; 3) linear buffer strips along water courses of high 

quality. 

Vegetated ditches are already present on cropland, and their environmental and ecosystem 

services can be exploited by proper management and maintenance. 

 

Conclusions 

Vegetated ditches have a great herbicides runoff mitigation potential for the protection of 

watercourses and can be inserted in environmental schemes. Their effectiveness with 

shallow flooding is high and length-dependent. In typical ditches of North-eastern Italy, for 

the main pre-emergence herbicides applied in maize, the distance required to reduce initial 

concentration by 50% is about 250 m. As a general rule for herbicides with KOC of 110-

400 L kg
-1

, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch 1 

m bed wide. 

The dissipation of herbicides in ditches is site-specific and mainly due to degradation and 

adsorption, while outflow with water discharge is low since the flood is shallow. Coverage 

of emergent plants and the hydraulic residence time is of great importance, and a better 

insight into herbicides adsorption onto the sediment-soil-plant complex is needed. 
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Supporting Information 

S1 Table. Modelling of the vegetated ditch. 

Parameter Value Note 

Bed width (m) 1  

Top width (m) 2  

Height (m) 1.8  

Length (m) 500  

Volume of water in the flood (m
3
) 52 (1) 

Part of flood increasing the saturated layer on the bed (%) 20 (2) 

Height of the saturated layer on the bed (cm) 3 (3) 

Water in the saturated layer on the bed (%) 81 (4) 

Vegetation biomass on the bank (kg/m
2
) 2 (5) 

Vegetation biomass density (kg/m
3
) 0.8 (6) 

Ratio (Veg. biom. in the bed)/(Veg. biom. in the bank) 0.6 (7) 

Height of the saturated soil layer (cm) 4 (8) 

Water in the saturated soil layer (%) 50 (9) 

Slope of the ditch (%) 0,1 (10) 

Suspended solids in the free water (m
3
) 0.052 (11) 

Volume of Biota in the whole ditch (m
3
) 0 (12) 

Part of the free water passing the outlet (%) 90 (13) 

Organic carbon content in the soil (accessible part) (%) 2 (14) 

Organic carbon content in suspended solid and sediment (%) 4 (14) 

 

Notes 

(1) Volume of water used in each of the three floods. 

(2) Part of the flooding water increases the saturated layer of the bed, i.e. the fluid layer 

composed of sediment and water; the rest becomes free water flowing slowly to outlet 

and beyond. 

(3) Height of the accessible part of the saturated layer, mean of the entire ditch length; 

height ranges from 1 cm (inlet) to 10 cm (outlet). The selected height of 3 cm is about 

half the observed, but is assumed to be the part completely accessible to chemicals 

during the 3 hours of sampling. 
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(4) Liquid part in the saturated layer, percentage of volume. This is an experimental value, 

average of 30 samples for the determination of herbicides in sediment. 

(5) Green biomass of plants on the bank, kg m
-2

. This is an experimental value, average of 

10 sampling areas of 1 m
2
 selected along the entire ditch length. In the fugacity model 

accumulation differs between root, stem and foliage. In the present simulation it has 

been assumed that aerial biomass is given 40% by leaves and 60% by stems, and that 

roots are 67% of total aerial biomass. 

(6) Biomass density according to the European Commission. Directive 2009. 

(7) Plant cover on the bed and on the banks was uniform along the ditch, the cover of the 

bank was regularly higher than on the bed; the relative cover was assessed visually. 

(8) Height of the soil layer saturated by flooding water, on both the bed and the banks, 

assumed to be completely accessible by chemicals. Each flood increases the water level 

by about 10 cm (mean value for the entire ditch), then the full length of the saturated soil 

covering the ditch is given by: 

Length=100 cm of bed width+2*3 cm height of the fluid layer+2*10 cm level free 

water=126 cm. 

(9) Water-filled pore space in soil was set at 50% according to results in a specific study 

(Pappalardo et al., 2015). 

(10) The slope of the ditch is low as is common in Po Valley, and free flowing water is 

only observed after heavy rainfall. 

(11) The free flowing water had a variable content of suspended solids from inlet to outlet, 

being higher at about 200 m from inlet; the selected mean value was 1 L of suspended 

solids each 1,000 L of water. 
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(12) The original fugacity model includes the animal biomass (Biota), for example fish, 

because chemicals can accumulate in fat; in the present simulation this compartment is 

included with nil volume in order to retain the original structure and ease its inclusion 

when needed. 

(13) According to field observation, about 90% of the flood passed the outlet and removed 

part of the chemicals; this advection reduced the chemical load in the vegetated ditch 

after each flood and consequently poses the highest potential risk for watercourses. 

(14) On the Exp. Farm of Padova University the organic content in field soil is 0.92% 

(Hackett et al., 2014), but is estimated as higher in the soil under the ditch, sediments and 

suspended solids according to specific studies (Herzon). 

 

S1 Text. Analytical procedure 

The procedures used for pesticide extraction and analysis derived from previous studies. 

Herbicide standards: terbuthylazine (99.5% purity), metolachlor (98.0% purity) and 

mesotrione (99.5% purity) were purchased by Dr. Ehrenstorfer (Augsburg, Germany). 

Methanol (HPLC-grade), water (HPLC-grade) and all other chemicals (analytical-grade) 

were purchased from Sigma-Aldrich. All analytes with individual stock solutions were 

prepared in methanol with concentration of 0.1 mg mL
–1

. Mixtures of standard solutions 

were prepared in concentration ranges from 0.1 to 2.5 μg mL
–1

. They were used as spiked 

solutions for sample fortification and for calibration curves. 

To determine herbicide concentration in water, 1 L field samples were filtered at room 

temperature with a vacuum equipment using cellulose nitrate membrane filters 0.45 m 

pore size. After filtration an acetate buffer (2.5 M) was added (ca. 1%, v/v) and water 

samples were extracted using a TELOS neo
TM

 PRP polymeric SPE column (60 mg, 
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Kinesis) and a J.T. Baker SPE-12G glass column processor at a flow rate of 15 mL min
–1

. 

After extraction the analytes were eluted with 5 mL of methanol without the vacuum and 

methanol aliquots were reduced to approximately 50 L with the use of a nitrogen gas 

stream at 45 °C. 

To determine herbicide concentration in sediment, 20 g of dry sediment were weighed in 

dark bottles and 50 mL of methanol-0.1 M HCl (9-1, v/v) was added. The bottles were 

shaken for an hour at 200 rpm at room temperature (about 18 °C). Mixtures were then 

centrifuged for 15 min at 3,200 rpm (Heraeus Christ Labofuge GL, Germany) and 

supernatant filtered at 0.45 m pore size. The filtrate was then evaporated at 38 °C using an 

IKA
®
 RV 8 rotary evaporator ((IKA

®
, Werke GmbH & C., Staufen, Germany) and the 

residue was dissolved in 50 mL of 0.1 M HCl. Subsequently, the extraction was conducted. 

The conditions of solid-phase extraction were the same as for water samples.  

To define the analyte recoveries, water and sediment (without analytes) were spiked with 

herbicides at concentrations of 0.4, 1.0 and 2.2 μg mL
–1

. Extraction was then the same as 

reported above. The recoveries in water were: mesotrione and metolachlor 95%, 

terbuthylazine 91%; the sediment recoveries were: mesotrione 81%, metolachlor 76%, 

terbuthylazine 79%. 

The analyses were performed by LC-MS using a 1100 Series Agilent Technologies system 

(CA, US), equipped with binary pump, diode array detector, and MSD SL Trap mass 

spectrometer with ESI source. A Eurospher
 
II (Knauer, Berlin, Germany)

 
column C18 P 

with TMS endcapping, 150 × 4.6 mm i.d., 3 m, 110 Å was used to analyze the samples, 

the mobile phase consisted of 0.6% formic acid in water (solvent A) and methanol (solvent 

B). 
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Gradient elution programme: from 0 to 4 min a linear increase of solvent B from 60% to 

80% and flow rate from 0.4 to 0.6 mL min
–1

, from 4 to 11 min a linear increase of solvent 

B from 80% to 100% at flow rate of 0.6 mL min
–1

; initial conditions were re-established in 

5 min and re-equilibration time was 2 min. 

A 10 L sample volume was manually injected each time. Retention times were 5.5 (±0.2), 

10.1 (±0.3) and 9.0 (±0.2) min for mesotrione, metolachlor, and terbuthylazine respectively. 

The limit of detection (LOD), 3:1 signal-to-noise ratio, was 0.070 g L
-1 

for mesotrione, 

0.020 g L
-1

 for S-metolachlor, and 0.014 g L
-1 

for terbuthylazine. 

 



S2 Table. Physical-chemical parameters of applied herbicides 

Parameter Unit Mesotrione Reference S-metolach. Reference Terbuthylaz. Reference 

CAS # 104206-82-8 [1] 87392-12-9 [1] 5915-41-3 [1] 

Applied rate kg/ha 0.15 Rec. rate in maize 1.25 Rec. rate in maize 0.75 Rec. rate in maize 

Mol. weight g/M 339.30 [1] 283.80 [1] 229.70 [1] 

Solub. in water g/L 15 [1] 0.480 [1] 0.009 [1] 

Vapor press. Pa 0.00569 [1] 0.004 [1] 0.00009 [1] 

LogKOW L/kg 0.11 [1] 3.05 [1] 3.40 [1] 

    3.13 [2] 3.04 [3] 

    3.00 [4] 3.20 [4] 

   0.11 Selected value 3.05 Selected value 3.40 Selected value 

KOC L/kg 19-141 [4] 121-309 [4] 162-378 [4] 

  80 Mean [4] 215 Mean [4] 270 Mean [4] 

  19-390 [1] 61-369 [1] 162-333 [1] 

  210 Mean [1] 215 Mean [1] 248 Mean [1] 

    83-118 [5]   

    101 Mean [5]   

    123 [6]   

  145 General Mean 163 General Mean 259 General Mean 

  390 Selected value 118 Selected value 259 Selected value 

t50 in field days 3-7 [4] 11-30 [4] 30-60 [4] 

  5 Mean [4] 21 Mean [4] 45 Mean [4] 

  2-14 [1] 6-49 [1] 6.5-149.8 [1] 

   Mean [1] 28 Mean [1] 78 Mean [1] 

   Median [1] 30 Median [1] 17 Median [1] 

   [7] 12 [7] 20 [7] 

    12 [8] 35 [9] 

    23 [3] 45 [3] 

    14 [10] 27 [10] 

  5 General Mean 21 General Mean 38 General Mean 

  5 Selected value 21 Selected value 38 Selected value 

 



S3 Table. Calculation of herbicides repartition in the vegetated ditch 

using the fugacity model 

Chemical Mesotrione S-Metolach. Terbuthyl. 

Molecular weight 339.30 283.80 229.70 

Solubility in water (g/l) 15.000 0.480 0.009 

Solubility in water (M/m
3
) 44.209 1.691 0.039 

Vapor pressure (Pa) 5.69E-03 3.70E-03 9.00E-05 

Lipophilia: logKow (L/kg) 0.11 3.05 3.21 

T (°C) 25 25 25 

R (gas constant) (Pa*m
3
)/(M*°K) 8.3136 8.3136 8.3136 

Half-life (t50) (days) 5 21 38 

Density of compartments (Di) (kg/m
3
)    

Soil: Ds 1500 

Sediment: Dsed 1500 

Suspended solid: Dss 1500 

Air: Da 1.19 

Water: Dw 1000 

Biota: Db 1000 

Root: Dro 800 

Stem: Dst 800 

Foliage: Dfo 800 

Moles introduced (n) 0.007 0.045 0.049 

Mass introduced (g) 2.25 12.75 11.25 

Volumes of compartments (Vi) (m
3
)    

Soil: Vs 12.680 

Sediment: Vsed 2.850 

Susp. Solid: Vss 0.052 

Air: Va 1256.893 

Water: Vw 76.830 

Biota: Vb 0.000 

Roots: Vro 0.279 

Stems: Vst 0.250 

Leaves: Vle 0.166 

Sum(Vi) 1350.000 

Partition coefficients    

Soil    
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Soil: Koc (L/kg) 390.00 118.00 259.00 

Soil: Koc (m
3
/kg) 3.900E-01 1.180E-01 2.590E-01 

%OCsoil=%OMsoil 2.00 

Kp=Koc*%OC/100 (L/kg) (=Cs/Cw) 7.805E+00 2.361E+00 5.183E+00 

Soil (Cs/Cw): Kp (m
3
/kg) 7.805E-03 2.361E-03 5.183E-03 

Sediment    

%OCsed 4.00 

Ksed=Koc*%OCsed/100 (L/kg) (=Csed/Cw) 15.60 4.72 10.36 

Sediment (Csed/Cw): Ksed (m
3
/kg) 1.560E-02 8.600E-03 1.036E-02 

Susp. Solid    

%OCss 4.00 

Kss=Koc*%OCss/100 (L/kg) (=Css/Cw) 15.60 4.72 10.36 

Susp. solid (Css/Cw): Kss (m
3
/kg) 1.560E-02 8.600E-03 1.036E-02 

Air    

Air: Ka (M/pa*mc) (=1/RT) 4.0342E-04 4.0342E-04 4.0342E-04 

 

Water    

Water: Kw=H=VP/S (Pa*m
3
/M) 1.287E-04 2.188E-03 2.297E-03 

Air/Water (Ca/Cw): Kaw=H' adim.=(H/RT) 5.192E-08 8.825E-07 9.267E-07 

Biota (Aquatic biom.)    

LogBCF (0.85*logKow-0.7) -0.61 1.89 2.03 

BCF (dmc/kg) (=L/kg) (=Cb/Cw) 2.475E-01 7.807E+01 1.068E+02 

Biota (Cd/Cw): BCF (m
3
/kg) 2.475E-04 7.807E-02 1.068E-01 

Root    

RCF (dmc/kg)=10^(0.77*logKow-1.52)+0.82 8.567E-01 7.558E+00 9.767E+00 

Root: RCF (m
3
/kg) 8.567E-04 7.558E-03 9.767E-03 

Stem    

SCF (dmc/kg)=(10^(0.95*logKow-

2.05)+0.82)*0.784*EXP(-((logKow-

1.78)^2)/2.44) 

2.078E-01 3.181E+00 3.665E+00 

Stem: SCF (m
3
/kg) 2.078E-04 3.181E-03 3.665E-03 

Foliage    

Zw=1/H (M/pa*mc) 7769.537 457.117 435.350 

Kaw=H' adim.=(H/RT) (=Ca/Cw) 5.192E-08 8.825E-07 9.267E-07 

LogKaw -7.28 -6.05 -6.03 

Foliage: FCF (m
3
/kg)=10^(-1.61+logKow-

logKaw))/Da 

5.118E+05 2.623E+07 3.610E+07 
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Coefficients summary    

Solubility in water (g/l) 1.500E+01 4.800E-01 9.000E-03 

Vapor pressure (Pa) 5.690E-03 3.700E-03 9.000E-05 

Lipophilia: Kow (m
3
/kg) 1.288E-03 1.122E+00 1.622E+00 

Soil: Koc (m
3
/kg) 3.900E-01 1.180E-01 2.590E-01 

Soil (Cs/Cw): Kp (m3/kg) 7.805E-03 2.361E-03 5.183E-03 

Sediment (Csed/Cw): Ksed (m
3
/kg) 1.560E-02 4.720E-03 1.036E-02 

Susp. solid (Css/Cw): Kss (m
3
/kg) 1.560E-02 4.720E-03 1.036E-02 

Air: Ka (M/pa*mc) (=1/RT) 4.034E-04 4.034E-04 4.034E-04 

Air/Water (Ca/Cw): Kaw=H' adim.=(H/RT) 5.192E-08 8.825E-07 9.267E-07 

Water: Kw=H=VP/S (Pa*m
3
/M) 1.287E-04 2.188E-03 2.297E-03 

Biota (Cd/Cw): BCF (m
3
/kg) 2.475E-04 7.807E-02 1.068E-01 

Root: RCF (m
3
/kg) 8.567E-04 7.558E-03 9.767E-03 

Stem: SCF (m3/kg) 2.078E-04 3.181E-03 3.665E-03 

Foliage: FCF (m
3
/kg) 5.118E+05 2.623E+07 3.610E+07 

Calculation of Zi [M/(m
3
*Pa)]    

Soil: Zs=Kp*Ds*Zw 9.096E+04 1.619E+03 3.385E+03 

Sediment: Zsed=Ksed*Dsed*Zw 1.818E+05 3.236E+03 6.765E+03 

Susp. solid: Zss=Kss*Dss*Zw 1.818E+05 3.236E+03 6.765E+03 

Air: Za=Ka=1/RT 4.034E-04 4.034E-04 4.034E-04 

Water: Zw=1/Kw=1/H 7.770E+03 4.571E+02 4.354E+02 

Biota: Zb=BCF*Db*Zw 1.923E+03 3.569E+04 4.649E+04 

Root: Zro=RCF*Dro*Zw 5.325E+03 2.764E+03 3.402E+03 

Stem: Zst=SCF*Dst*Zw 1.292E+03 1.163E+03 1.277E+03 

Foliage: Zfo=FCF*Za 2.065E+02 1.058E+04 1.456E+04 

Sum(Zi) 4.711E+05 5.874E+04 8.308E+04 
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Calculation of Zi*Vi (M/Pa)    

Soil 1.153E+06 2.053E+04 4.292E+04 

Sediment 5.182E+05 9.224E+03 1.928E+04 

Susp. Solid 9.454E+03 1.683E+02 3.518E+02 

Air 5.071E-01 5.071E-01 5.071E-01 

Water 5.969E+05 3.512E+04 3.345E+04 

Biota 0.000E+00 0.000E+00 0.000E+00 

Root 1.484E+03 7.703E+02 9.482E+02 

Stem 3.224E+02 2.904E+02 3.186E+02 

Foliage 3.436E+01 1.760E+03 2.424E+03 

Sum(Zi*Vi) 2.280E+06 6.787E+04 9.969E+04 

Calculation of Fugacity (Pa): f=n/Sum(Zi*Vi) 2.909E-09 6.620E-07 4.913E-07 

Concentration (g/L)=f*Zi*PM*1000    

Soil 8.98E+01 3.04E+02 3.82E+02 

Sediment 1.79E+02 6.08E+02 7.63E+02 

Susp. Solid 1.79E+02 6.08E+02 7.63E+02 

Air 3.98E-07 7.58E-05 4.55E-05 

Water 7.67E+00 8.59E+01 4.91E+01 

Biota - - - 

Root 5.26E+00 5.19E+02 3.84E+02 

Stem 1.27E+00 2.19E+02 1.44E+02 

Foliage 2.04E-01 1.99E+03 1.64E+03 
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Chapter 4 

Assessing water purification service in an integrated 

agricultural wetland within the Venice lagoon drainage 

system 
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Introduction 

Wetland systems represent an important cornerstone for beneficial ecosystem services, 

especially in intensive agricultural landscapes. They provide a crucial suite of regulating, 

supporting, provisioning and cultural ecosystem services to regulate water flows and 

nutrient cycling, remove and detoxify excess fertilizers and pesticides, sequester carbon, 

enhance biodiversity and provide cultural and educational benefits to local communities 

(MEA, 2005; Swinton 2007; Power 2010; Borin and Malagoli, 2015). Wetlands can also 

play an important role in nutrient and sediment retention and water purification services, 

especially in the presence of shallow and surface water (Tanner et al., 2013; Tournebize et 

al., 2013; Pappalardo et al., 2015). The water purification service is mainly performed by 

the complex physical, chemical and biological processes established within the “plant-soil-

microorganism” system, so that wetlands can trap and retain 80 to 90% of sediment from 

runoff and eliminate 70 to 90% of entering nitrogen (N) (Borin et al., 2001; Jordan et al., 

2011). Water purification is basically provided by different biogeochemical processes such 

as degradation of organic compounds under anaerobic conditions, suspended solids 

retention by filtration and sedimentation, nitrogen removal by uptake and denitrification 

(Vymazal, 2010).  (Mthembu et al., 2013). The ability of natural wetlands to trap nutrients 

is well mimed by constructed or semi-natural wetlands that can assume even more 

importance in treating agricultural drainage water (Borin and Tocchetto, 2007; Otto et al., 

2016) by reducing N and P load and protecting surface and ground water. Indeed, 

“agricultural wetlands” efficiency in water purification is widely recognized, even if local 

conditions such as vegetation, climate and hydrology strongly affects performances 

(Gottschall et al., 2007). Depending on hydrology conditions and system management, 

different Constructed Wetlands (CWs) have been engineered and classified. They are 

generally divided into horizontal and vertical CWs, according to the flow direction; the 

former are further classified as Free Water Surface (FWS) and Sub-Surface CWs 

(Vymazal, 2010). Different combinations of hybrid designs of CWs are implemented in 

order to achieve greater treatment effect for pollution removal. In fact, FWS CWs resemble 

natural wetlands in appearance and are very effective in removal of organic compounds by 

microbial degradation and suspended solids by settling and filtration through the dense 

vegetation, plus abatement in biological oxygen demand (BOD), total nitrogen (TN) and 
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total phosphorus (TP) (Borin et al., 2001). Generally, FWS CWs are set up in a shallow 

isolated basin or a sequence of sub-basins, with a water depth of 20-40 cm (Vymazal, 

2010).  

The selection of plant species for CWs plays a pivotal role in water purification 

performances. According to numerous studies the suitable species are emergent 

macrophytes, mainly due to the physical effects of the plant biomass such as reduction of 

wind speed facilitating sedimentation, provision of surface for attached microorganisms, 

oxygen release from roots and, finally, plant metabolism (Brix, 1994; Vymazal et al., 2006; 

Gottschall et al., 2007).  

The macrophyte most used in CWs world-wide is Phragmites australis, both for horizontal 

subsurface flow and FWS CWs (Vymazal, 2011); its performance in nutrient uptake can 

reach up to 134 g N m
-2

 for TN and 13.6 g P m
-2 

for TP (Hernández-Crespo et al., 2015). 

Other typical macrophytes often planted in FWS CWs are Typha angustifolia L., Canna 

indica L., Cyperus papyrus L., Juncus effusus L., Schoenoplectus lacustris (L.) Palla, 

Schoenoplectus californicus (C.A. Meyer), Phalaris arundinacea L. (Vymazal, 2011). 

Even if CWs with one dominant botanical species showed individual differences in N 

removal (e.g. a Typha spp. CW showed removal of 565 mg N m
-2 

d
-1

 compared to 261 mg 

N m
-2 

d
-1

 by a Scirpus spp. CW), density of vegetation, rainfall regime and local ecological 

conditions may significantly affect water purification efficiency (Jaddhav and Buchberger, 

1995; Bachand and Horne, 2001). Moreover, Floating Treatment Wetlands (FTW) have 

also been engineered to integrate CW systems due to their flexibility to apply to the local 

hydrological system and the particular design of the phytoremediation system (De Stefani 

et al., 2011; Mietto et al., 2013). FTWs are innovative phytoremediation technologies that 

basically emulate a natural floating wetland “as a marsh of vascular vegetation having a 

significant mat of live and dead roots, peat and detritus, that floats over a layer of free 

water” (Sasser et al., 1991). Macrophytes installed on self-buoyancy mats cannot move out 

of the FTW, so they are potentially able to colonize the water body space required, and can 

extend the root system in a greater water column compared to conventional wetlands. The 

most common species tested in FTW are P. australis, T. latifolia, J.  effusus, P. 

arundinacea, Iris pseudacorus L., Carex spp. L., Glyceria maxima (Hartman) Holmb., C. 

indica, and Chrysopogon  zizanioides (De Stefani et al., 2011). Performances in pollutant 
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removal are also relevant as they can reduce important parameters such as 33-68% of 

chemical oxygen demand (COD), 66-95% of suspended solids (Van Acker et al., 2005; 

Mietto et al., 2013). FTWs are also highly efficient in the removal of some nutrients, 

showing abatement of almost 50% for TN and 22% for NO3
-
 in five days of detention time 

(Lianpeng et al., 2009). However, the choice of botanical species is crucial in terms of 

survival rate and therefore water purification performances. Previous studies suggested 

selecting local species or well-adapted plants that exhibit vigorous growth in polluted water 

under the local climate regime (Headly and Tanner, 2006; De Stefani et al., 2011; Pavan et 

al., 2015). 

The general aim of this study is to assess the water purification service of a 3.2 ha 

integrated wetland system to control diffused nutrient pollution from a conventional 

cropping system; the specific aims are focused on two different phytoremediation systems, 

a FWS CW and a FTW system, to estimate performance in reduction of NO3
-
 and TN in 

water flow, quantify the survival rate of FTW species, and screen survival, biometrics and 

biomass production of seven macrophytes adapted for FTW. 

 

 

Material and Methods 

Geographical framework and the integrated agricultural wetland 

The study area is located within the Venice lagoon drainage system (NE of Italy), a dense 

minor hydrographic network directly managed by the Adige Euganeo Land Reclamation 

Authority. This hydrographic network is crucial for two important roles: draining water 

from wide “lowlands” lying below the mean sea level into the Venice Lagoon system and 

providing a water supply to the farms (Pappalardo et al., 2015). The experiment is 

conducted on the “Tenuta Civrana” farm (365 ha) at 45.166° N and 12.066 E, in the 

Province of Venice (Cona, VE). It is land obtained from the drainage of the “Cavarzerano” 

marshes performed in the 1930s and contains natural environments such as lowland forests 

and wet environments (Fig. 1). 
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The climate is sub-humid (Köppen climate classification), with mean annual rainfall of 850 

mm, fairly uniformly distributed throughout the year. The temperature increases from 

January (average minimum value: -1.5 °C) to July (average maximum 27.2 °C). 

The integrated agricultural wetland covers 3.3 ha and was created in 2014 by restoring a 

semi-natural wetland and implementing five sub-basins in a FWS CW. At the outlet, the 

water flows through a subsurface pipe into a vegetated channel 470 m long that has been 

used to create a second phytoremediation system, the FTW (Fig. 1). The farm and 

integrated agricultural wetland are fed by a water diversion from the “Canale dei Cuori”, 

one of the main channels draining water from the surrounding territory. 
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Figure 1 -  A. Map of the Free Water Surface Constructed Wetland (FWS CW): white 

dots are sampling points and white narrows represent the flow direction (High-resolution 

imagery, Digital Globe, winter 2015); B. Unmanned Aerial Vehicle image during spring; 

C. The Floating Treatment Wetland system, flow direction and sampling points; D. L. 

Salicaria flowering in the floating system (F2) 
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GIS analyses and weather data 

Due to the peculiar geomorphology of the territory, a preliminary dGPS survey was 

performed in 2013 to investigate the microtopography and drainage system of the area. By 

analysing aerial images (satellite and UAV images) and processing Digital Terrain Models 

(DTM) in GIS environment, the experimental site has been set up for agro-environmental 

monitoring. 16 geo-referenced spots were identified for sampling and measuring physical 

parameters of water. Sampling points follow the water flow from the inlet to the outlet in 

both CWs. Moreover, qualitative and quantitative information from fieldwork activities, 

such as pictures of the basins and riparian zones, the floating barriers and the agglomeration 

of plants, have been georeferenced to analyse the spatial evolution of the system and its 

components. In order to have access to the most reliable climate dataset, the nearest official 

weather station at 4.2 km from the experimental site was used (Cesia, ARPAV station, 

Veneto Region). Validated weather data such as the daily cumulative precipitation and 

temperature were collected during 2014 and 2015, in order to analyse rainfall events and 

thermic trends (Fig. 2). 

 

Figure 2 - Daily cumulative precipitation and temperature (°C) in 2014-2015 
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The Free Water Surface Constructed Wetland  

The FWS CW system covers 2.4 ha and the hydraulic system is managed to feed, by 

gravity, five sub-basins during the crop season (March-November). Water flow passes 

through a set of sequential basins connected by sub-surface pipe (Fig. 1). The mean 

detention time is about 8-10 days. Due to the climate regime and geomorphology of the 

area, in winter the water flow from the canal is intentionally interrupted at the inlet, leading 

to the partial drying out of the basins. In spring (mid-March) the main canal restarts to feed 

the downstream basins, filling the FWS CW system. It is structured in two main sub-

trapezoidal basins (B1 and B2) derived from restoring a semi-natural wetland, with 0.5 and 

1 ha of surface area respectively; water depth is around 0.6 m in B1 and 0.4 m in B2. 

Hence, three other sequential downstream basins (B3, B4, and B5) with a shallower depth 

(0.3-0.4 m) have been created to complete the water purification treatment. Wetland 

vegetation has been restored and integrated with several local macrophytes that have 

established along riparian zones and inside the basins: P. australis, T. latifolia, I. 

pseudacorus, P. arundinacea, Menta aquatica L., Carex spp., Juncus spp. Through the 

creation of four islands vegetated with P. australis, Juncus spp. and Carex spp., B1 and B2 

basically have the task of slowing down the water flow, allowing a first stabilization of 

suspended solids. B2 is the most vegetated, with P. australis fully colonizing the banks 

(Fig. 1). The last three basins (B3, B4 and B5) have been planted with M. aquatica, Carex 

spp., P. arundinacea and P. australis in 2014; however, vegetation is still in the process of 

establishment. Instead, two years after implementation, the vegetation in B1 and B2 is 

showing a gradual naturalization, especially P. australis. 

 

The Floating Treatment Wetland  

After a first stage of purification, water flow from the FWS CW basins enters the FTW 

system, set up along the canal (Fig. 1). It is worth noting that the FTW is an open system, 

probably receiving drainage water from croplands bordering the northern side. The FTW 

system is based on a set of self-buoyant mats, rectangular (50 x 90 cm), with eight windows 

that have grids to sustain plants. The combined morpho-functional floating system is the 
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"TECH-IA
®

", a technology of Padua University spin-off PAN Ltd.; it is a floating structure, 

support for aquatic macrophytes, made in a recyclable material, ethylene vinyl acetate 

(EVA), rectangular in shape and weighing about 2 kg (De Stefani et al., 2011; Mietto et al., 

2013; Pavan et al., 2015). Single units were assembled to compose three vegetated floating 

barriers of 120 units each (F1, F2 and F3), divided into 6 modules (20 units per module). 

The floating units were tied using plastic strips and maintained in situ by means of ropes 

firmly anchored to the shore with stakes (Fig. 1). Flexibility of the barriers’ movement was 

ensured so that they can follow the water level in the main downstream channel and not 

incur damage to root systems. Two plants were transplanted into each unit, for a total of 40 

plants per module and 240 per floating barrier. 

The first upstream floating barrier (F1), the first to meet the water from FWS CW, was 

vegetated in May 2014 with 240 plants of Carex spp. The F2 barrier was vegetated in May 

2014 with six different macrophytes: Sparganium erectum L., S. lacustris, M. aquatica, 

Caltha palustris L., P. arundinacea, J. effusus for a total of 240 plants. This barrier was re-

vegetated in April 2015 with 240 plants of Lythrum salicaria L. The F3 barrier is composed 

of 240 plants of I. pseudacorus, vegetated in 2014 and re-vegetated in 2015. The three 

barriers are about 30 meters apart and are kept at a certain distance from the shore so that 

the selected macrophytes do not compete with wild plants on the banks. The outlet is at the 

end of the canal, with a sub-surface pipe discharging into agricultural ditches. The water is 

used for irrigation in the summer. 
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Fieldwork activities: water sampling, physical parameters and plant 

survey. 

170 representative water samples were collected periodically during the crop season in 

2014 and 2015; generally twice per month and after important rainfall events for a total of 

17 dates in spring, summer and autumn of the two years in 10 different points at the inlets 

and outlets of FWS CW and FTW (Fig. 1). Each representative sample is a bulk of 3 

replicates obtained at the same point separated by an interval of 30 minutes.  

Some chemical parameters of water were measured to determine water quality and 

efficiency of depurative systems. Electric conductivity (µS/cm), dissolved oxygen (mg/L), 

pH and temperature (°C) were measured at inlets and outlets of wetland sub-basins as well 

as in the main channel containing the floating systems using HQD (HACH Lange HQ 40d), 

a portable multitasking device used to assess some of the physical and chemical properties 

of water. Water turbidity was measured in means of Nephlometric Turbidity Units (NTU) 

using a portable turbidimeter (HACH 2100P Turbidimeter). 

The survival rate of plants in the FTW system (F1, F2, and F3) was assessed periodically 

during the two vegetative seasons counting the number of living plants in each of the three 

barriers monthly from May to August 2014 and from April to October 2015. The total 

survival percentage of each species was calculated at the end of the season.  

Plant height and root system length and width were used as parameters to monitor the 

performance of plants in the floating systems and test their capacity for adaptation and 

establishment. No plant measurements were taken in 2014 due to the newly set out floating 

systems not allowing enough time for establishment and sufficient growth of plant species. 

In 2015, plant height (above mat) and root length (below mat) were measured twice in June 

and October, while root system width was measured in October. Results were analysed and 

presented as means of Medians, 1
st
 and 3

rd
 quartiles. 

 

Laboratory activities: biomass production and chemical analyses for N 

and P determination 

A biomass production survey was done on plants established in the FTW system. In 

October 2015, 12 random plant samples were each taken for Carex spp., L. salicaria and I. 
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pseudacorus and divided into aerial and root system. Total fresh weight was quantified on 

site; fresh matter samples were dried in a force draught oven at 65 °C for 35 h, milled at 2 

mm (Cutting Mill SM 100 Comfort, Retsch, Germany); in addition, 10 g ground sub-

samples were then dried at 130 °C to measure the residual moisture content. Biomass 

production data has been expressed in terms of grams per meter square (g m
-2

).  

Above and below ground dry matter of each plant sample was tested using the standard 

Kjeldahl method to determine Total Kjeldahl Nitrogen (TKN) and spectroscopic methods 

(ICP-OES, SPECTRO ARCOS) to determine TP concentrations (AOAC, 2000; Arduino 

and Barberis, 2000). Nitrogen and phosphorus uptakes by plants were calculated in terms of 

dry matter per square meter of floating mats (above and below mats separately). 

For water samples, TKN was determined using the standard Kjeldahl method (AOAC, 

2000; Arduino and Barberis, 2000), nitric nitrogen (NO3
-
) was determined according to 

Cataldo et al. (1975), TN content for each sample was calculated by summation of TKN 

and NO3
-
. TP was negligible as it did not reach the instrumental detectable threshold; 

orthophosphate (PO4
-3

) was determined for each of the samples in parts per million (ppm) 

using the standard colorimetric ascorbic acid method (Murphy and Riley, 1962; Edwards et 

al., 1965). Results were analysed and represented by box and whiskers plots. Data of 

chemical and physical parameters of water did not show normal distribution so they were 

statistically analyzed using the Kruskal–Wallis nonparametric test (accepted at the level of 

p<0.05). 

 

Results and discussion 

Water purification assessment 

During the 2014 and 2015 crop seasons, median concentrations of TN at the inlet (B1) and 

outlet (B5) of the FSW CW were 2.43 and 1.79 ppm respectively; median values were 1.65 

ppm at the inlet (F1 IN) and 1.39 ppm at the outlet (F3 OUT) of the FTW system set up 

along the canal (Fig. 3). However, the Kruskal–Wallis test did not show any statistical 

differences in concentration decrease through the two phytoremediation systems. These 

results are probably due to the short life of the experimental site and phytoremediation 

macrophytes established along banks and vegetated barriers, in both the FSW CW and 
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FTW system. Decreases in N-NO3
-
 concentrations are also not notable because the 

concentration in the drainage water that feeds the integrated wetland system in B1 and F1 is 

generally low (always below 10 ppm). However, it is worth noting that, after three days of 

rainfall (25-27 of March 2015) with a cumulative value of 42.4 mm, TN concentration 

notably increased at B1 IN and B2 IN to median values of 6.34 and 6.04 ppm respectively; 

therefore, it decreased throughout the basins to reach 1.29 ppm at B5 OUT (Fig. 3).  

 

Figure 3 - Box and plots with total N concentration in the integrated wetland system: FWS 

CW System (sub-basins) and Floating Treatment Wetland system (FTW) during two 

successive seasons, 2014 and 2015. 
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NO3
-
 contributed most to this increase recording 5.23 and 4.96 ppm at B1 IN and B2 IN 

respectively and decrease to 0.09 at B5 OUT. In the same manner, TN decreased from 1.77 

ppm at F1 IN to 1.31 ppm at F3 OUT and NO3
-
 decreased from 0.91 to almost zero ppm 

(F1 IN to F3 OUT). The high TN and NO3
-
 contents at inlets may be related to the rain that 

fell during the period of fertilization (March-April) for maize and other crops in the area. A 

possible diffused contamination by nutrient run-off from the agricultural basin could 

therefore be identified as the direct source (Fig. 4).  

 

Figure 4 - Line chart with total N and nitrate concentration in FWS CW system (sub-

basins) and Floating Treatment Wetland system (FTW) on 30 March 2015. 

 

Decrease in TN and NO3
-
 through the wetland sub-basins (FTW CW) and main channel 

(FTW) can be attributed to nitrification and denitrification processes (Kadlec and Knight, 

1996; Kadlec and Wallace, 2009; Maltais-Landry et al., 2009; Vymazal, 2007 and 2010; 
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Mthembu et al., 2013). Other mechanisms that can lead to this decrease include 

assimilation by plants and reduction into ammonia (Kadlec and Wallace, 2009; Vymazal, 

2007 and 2010). Such a decrease in TN and NO3
-
 concentrations may suggest an interesting 

depurative effect of the wetland integrated system, at least during a combined event of 

persistent rainfall after an intensive fertilization in the surrounding cropland. Total P was 

not detectable in any samples obtained during the early stages of the study. Conversely, 

determination of orthophosphates (PO4
-3

) was used as a tool to determine available traces of 

phosphorus forms. Concentrations of PO4
-3

 were very low in water with median value 

always lower than 0.03 ppm. According to Vymazal (2010), “phosphorus retention is low 

in all types of constructed wetlands and CWs are seldom built with phosphorus being the 

primary target of the treatment”. 

Concerning water turbidity, median values in the FWS sub-basin system fluctuated between 

high values of 152 NTU in B4 IN and 148 NTU in B3 IN and values as low as 78 and 68.5 

NTU for B5 OUT and B1 IN during the 2014 season. Although they did not show 

significant variation among the sampling points, these fluctuations may indicate instability 

of soil particles in the newly established wetland system. In the FTW system, values were 

lower downstream in the canal (56.6 and 55.7 NTU in F1 IN and F3 OUT) which may 

indicate more soil stability in this area. On the contrary, during 2015, turbidity considerably 

decreased in FWS sub-basin systems with median values as low as 43.4 NTU in B1 IN and 

45.3 in B5 OUT (Fig. 5). This decrease may suggest a better establishment and 

consolidation of the wetland system that leads to the precipitation of sediments (low re-

suspension of particles) (Petticrew and Kalff, 1992) and improvement of water quality 

(O’Geen et al., 2010). At the same time, turbidity in the FTW system decreased along the 

canal from 55.4 NTU at F1 IN to 28.6 NTU at F3 OUT, highlighting a better stability of 

soil and better establishment of root systems of floating plants preventing the re-suspension 

of sediments (Horppila and Nurminen, 2001, 2003 and 2005). Turbidity of water may be 

used as a physical parameter to evaluate changes in stability of total soluble solids in both 

sub-basins (FWS CW) and main downstream channel (FTW) (Fig. 5). 

In addition, low water velocity in the FWS sub-basin system promotes the sedimentation of 

TSS (Kadlec and Wallace, 2009). Median values of other physical parameters like electric 

conductivity, pH and dissolved oxygen are given in Table 1 as supporting data. 
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Figure 5 -  Box and plots representing turbidity (NTU) in wetland sub-basins (FWS 

CW) and mainstream channel (FTW) during the seasons 2014, 2015. 

 

  Median 

Parameter B1 IN B2 IN B3 IN  B4 IN  B5 IN  B5 OUT F1 IN F2 IN F3 IN F3 OUT 

pH 7.72 8.16 8.28 8.08 8.18 8.19 8.04 8.08 8.00 8.11 

EC 721 746 720 682 730 762 1069 1140 1195.5 1203.5 

O2 (mg/l) 10.14 11.17 8.81 9.79 9.61 8.75 8.24 8.93 9.39 8.80 

Table 1 - Physical parameters of water represented as supportive data 
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Plant survival in the Floating Treatment Wetland system 

Plant species in FTW system showed different survival rates between the two vegetative 

seasons 2014 and 2015 (Fig. 6). In the first season, survival rate varied between 3-100%; P. 

arundinacea and M. aquatica exhibited the highest survival rate during August 2014 with 

100% survival, followed by Carex spp. (98%), J. effusus (88%), C. palustris (73%) and I. 

pseudacorus (48%). S. lacustris and S. erectum showed the lowest rates, 8 and 3% 

respectively. However, all plant species reached the end of the season, according to their 

natural cycle. In the second season (2015), only Carex spp. survived the winter and 

completely regrew during spring; other species did not and had to be replaced with new 

plants. L. salicaria expressed the highest survival rate (95%) followed by Carex spp. (82%) 

and I. pseudacorus (48%). In autumn-winter, all three species went into senescence. Carex 

spp. proved great adaptability and a high tendency to establish in FTW, surviving two 

successive seasons with a high rate (82%) and large number of living plants (33 out of 40 

plants per 10 m
2
). L. salicaria showed great stability and a steady growth habit throughout 

the season with the highest survival rate (95%) and largest number of living plants (38 out 

of 40 plants per 10 m
2
). I. pseudacorus did not show much tendency to establish and grow 

in the second season in comparison with other species, with the lowest survival rate (48%) 

and fewest living plants per 10 m
2 

 (16 out of 40 plants). Low survival rate of I. 

pseudacorus can also be related to some alien animal species such as Myocastor coypus 

feeding on plants.  

L. salicaria, a depurative and competitive macrophyte (Jacobs, 2008), selected as a native 

species commonly growing along riparian zones, is a promising plant for use in FTW 

systems.  

 

Plant growth in the Floating Treatment Wetland system  

In 2015, plant height (above mat) and root length (below mat) were measured twice in June 

and in October while root system width was measured in October (Table 2). L. salicaria 

showed the maximum increase, with median value 59.5 cm in October versus 33.5 cm in 

June; I. pseudacorus showed median values of 24 cm in June and 37.5 cm in October, 

which were very low in comparison with similar studies. De Stefani (2012) reported 

median plant height values for I. pseudacorus of 136 and 116 cm at the end of the season in 



82 

 

two different experiments. On the other hand, Carex spp. did not show much increase in 

plant height with median values of 59.5 and 60 cm in June and October (92 cm was 

recorded for Carex elata Gooden. by Salvato and Borin, 2010). Carex spp. most probably 

attain an increase in density and bulkiness of leaves, contributing to plant width, rather than 

an increase in plant height. Regarding root depth, I. pseudacorus exhibited the maximum 

increase with median values 16 and 76 cm in June and October (median values of 46 and 

55.5 cm for root length were recorded by De Stefani (2012) at the end of the season in two 

different experiments, while root length reported by Pavan (2014) was 16cm at the end of 

the season). Carex spp. showed moderate increase in root length (median value of 36 and 

49 cm in June and October). L. salicaria did not show any increase in root length with 

median values of 48.5 cm in June and 42.5 cm in October. Increases in root length for the 

three species can be related to the growth habit of each species as well as nutrient 

translocation, with Carex spp. and L. salicaria showing increase in bulkiness and width 

while I. pseudacorus showed more increase in root length, exceeding the maximum length 

(30 cm) described by Jacobs et al. (2011). This increase may be attributed to nutrients 

contributing to root length rather than aerial part height. Root system width was measured 

in October 2015 only where maximum width attained by representative samples for each 

species was recorded. Median values for maximum root system width for Carex spp. and L. 

salicaria were similar at 16.5 and 15.5 cm respectively while I. pseudacorus showed a 

median value of 7.5 cm.  

 

  Carex L. spp. Lythrum salicaria L. Iris pseudocorus L. 

Plant character Date Median 25% 75% Median 25% 75% Median 25% 75% 

Plant Height Jun-15 59.5 40 69 33.5 22 38.25 24 15.15 32.75 

Oct-15 60 60 77.25 59.5 37.5 83.75 37.5 34.25 42.75 

Root Depth Jun-15 36 28 42.25 48.5 38.75 53.25 16 11.25 21.75 

Oct-15 49 45 61.5 42.5 40 47 76 63.5 89 

Root system 

width 

Oct-15 16.5 14.25 20 15.5 13.25 20.75 7.5 6.25 9 

Table 2 - Plant growth dimensions for the three species during June and October 2015 
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Observations showed bulkier and stouter root systems for Carex spp. and L. salicaria than 

I. pseudacorus, which tended to increase in length rather than width. According to 

Mthembu et al. (2013), the potential rate of nutrient uptake by plants is determined by plant 

growth rate and the concentration of nutrients in the plant tissues, thus nutrient storage in 

the plant is dependent on plant tissue nutrient concentrations and plant biomass 

accumulation. Based on this, the ideal characteristics for plants to be used as macrophytes 

in wetland systems are fast growth rate, high tissue nutrient content and the ability to attain 

a high standing crop (plant sustainability). 

 

Plant biomass production and nutrient uptake 

Carex spp. ranked first regarding dry biomass production with a total average of 433.13 g 

m
-2

, followed by L. salicaria with a total average of 210.32 g m
-2

. I. pseudacorus scored 

least biomass production with a total average of 106.95 g m
-2

. For the three species, the 

below ground mat (root system) biomass production was higher than the above mat (aerial 

parts); biomass production of Carex spp., the highest, averaged 266.94 g m
-2

 (62%) for 

below mat biomass versus 166.19 g m
-2

 (38%) for above mat biomass which is almost half 

of the above mat biomass production reported by Salvato and Borin (2010) for C. elata 

(349 g m
-2

). L. salicaria came in second place with average below mat biomass 174.61 g m
-

2
 (83%) and above mat biomass 35.71 g m

-2
 (17%), with I. pseudacorus ranking last 

(average below mat biomass 86.73 g m
-2

 (81%) and above mat biomass 20.22 g m
-2

 or 19% 

of total biomass)
 
(Table 3). Carex spp. exhibited the best performance in terms of above, 

below mat and total biomass production, proving great stability and establishment in the 

second season. L. salicaria showed good performance and high stability ranking in second 

place for above, below mat and total biomass production, though it was only introduced 

during this season and was already in senescence stage during sampling. I. pseudacorus did 

not seem to adapt well in the second season with the least above, below mat and total 

biomass production. Results of biomass production for I. pseudacorus are in contrast with 

those given by De Stefani (2012) and Pavan et al. (2015), which otherwise confirm the 

suitability and increased productivity of this species in similar FTWs; De Stefani (2012) 

reported median values of 3693 and 1516 g m
-2 

for above mat dry biomass in two different 

experiments, while the below mat dry biomass reached 3346 and 801 g m
-2

 in the same 
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experiments. Median values for above mat dry biomass of I. pseudacorus recorded by 

Pavan (2015) reached 180 and 500 g m
-2

 in two successive seasons. However, it is worth 

noting that this experiment was set up on an open wetland in an agricultural landscape; 

during agro-environmental monitoring activities M. coypus were observed feeding on I. 

pseudacorus. 

 

Figure 6 - Floating Treatment Wetland system (FTW): number of surviving plants per 10 

m
2 

for each species during two successive seasons (2014 and 2015) 
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Total nitrogen concentration in total dry biomass was closely related in the three species 

(1.12% in Carex spp. and L. salicaria, 1.02% for I. pseudacorus) but varied between above 

and below mat plant parts with higher nitrogen concentration in below mat parts averaging 

1.21, 1.19 and 1.04% for Carex spp., L. salicaria and I. pseudacorus respectively. Average 

above mat nitrogen concentration for Carex was 1.02% (1% was reported by Salvato and 

Borin, 2010) followed by I. pseudacorus (0.91%) and L. salicaria (0.64%). Carex spp. 

showed the highest nitrogen concentration in above and below mat dry biomass, indicating 

efficient performance. Although L. salicaria showed high nitrogen concentration in below 

mat biomass it had the least concentration among the three species in above mat biomass, 

which could be related to senescence of aerial parts and relocation of nitrogen to the root 

system (Vymazal, 2007). Nitrogen concentrations for I. pseudacorus were lower than those 

reported by De Stefani (2012) and Pavan (2015), which reached up to 4.62% for below mat 

and 2.77% for above mat dry biomass.  In terms of nitrogen uptake, Carex spp. showed a 

total uptake of 4.84 g m
-2

 with higher uptake through roots (3.19 g m
-2

, 66% of total 

uptake) followed by L. salicaria with total uptake of 2.35 g m
-2

 (2.11 g m
-2

 (90%) though 

roots). I. pseudacorus showed the least uptake (total 1.09 g m
-2

, below mat 0.92 g m
-2

 or 

84% of total uptake). Nitrogen uptake by I. Pseudacorus was also very low in comparison 

to results found by De Stefani (2012) and Pavan (2015), with values up to 115 g m
-2 

for 

below mat and 70 g m
-2

 for above mat uptake. 

Total phosphorus concentration was not very high in relation to nitrogen concentration, 

being highest in L. salicaria (0.09%) followed by Carex spp. and I. pseudacorus (0.07% for 

both). Like nitrogen concentration, phosphorus content was higher in below mat than above 

mat biomass. L. salicaria had the highest phosphorus concentration in roots (0.1%), Carex 

spp. and I. pseudacorus had nearly same concentration (0.08 and 0.07%). Phosphorus 

concentration for I. pseudacorus was low in comparison with that indicated by Pavan 

(2015), which reached 0.33%. Total phosphorus uptake was highest for Carex spp. (0.31 g 

m
-2

), with maximum uptake through the root system (0.24 g m
-2

, approx. 78% of total 

uptake). L. salicaria ranked second with total uptake 0.2 g m
-2

 (0.185 g m
-2 

(93%) in roots) 

with the least uptake by I. pseudacorus (total 0.074 g m
-2

, 0.066 g m
-2

 (89%) in roots). For 

the three species, phosphorus uptake was just in traces through aerial parts, with least for L. 

salicaria due to senescence and translocation to roots. 
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According to Hernández-Crespo et al. (2015), the nutrient concentration is inversely 

correlated with the quantity of aboveground biomass i.e., as above ground biomass 

increases, nutrient concentration decreases as most of the nutrients are already used by the 

plant for growth and performance during the peak of the season (Mthembu et al., 2013). In 

this study, a higher concentration of nutrients was located in the root system due to the 

translocation of most nutrients nearing the senescence period (Bonaiti and Borin, 2000; 

Vymazal, 2007). 
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  Above mat Dry Below mat Dry  Total 

Parameter Care

x L. 

Lythrum 

salic

aria 

L. 

Iris 

pseudaco

rus L. 

Carex 

L. 

Lythrum 

salic

aria 

L. 

Iris 

pseudaco

rus L. 

Carex 

L. 

Lythrum 

salic

aria 

L. 

Iris 

pseudac

orus L. 

DM (g/m
2
) 166.1

± 

29.40 

35.71 ± 

6.06 

20.22 ± 3.11 266.94± 

57.3

6 

174.61 ± 

24.2

5 

86.73 ±12.56 433.13 210.32 106.95 

N% (plant 

DM) 

1.02 

±  0.09 

0.64 ± 

0.12 

0.91 ± 0.19 1.21 ± 

0.07 

1.19 ± 

0.11 

1.04 ± 0.11 1.12 1.12 1.02 

N uptake 

(g/m
2
) 

1.65 

± 0.28 

0.24 ± 

0.04

3 

0.18 ± 0.02 3.19 ± 

0.66 

2.11 ± 

0.31

2 

0.92 ± 0.14 4.84 2.35 1.09 

P% (Plant 

DM) 

0.04 

± 

0.008 

0.03 ± 

0.00

8 

0.04 ± 0.018 0.08 ± 

0.01

8 

0.10 ± 

0.01

5 

0.07 ± 0.015 0.07 0.09 0.07 

P uptake 

(g/m
2
) 

0.068

± 

0.013 

0.013 ± 

0.00

2 

0.008 ±0.001 0.240± 

0.05

7 

0.185 ± 

0.02

9 

0.066 ±0.013 0.308 0.198 0.074 

Table 3 -  Average biomass production, nutrient concentrations and uptake for the three species 
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Conclusion 

Although abatement percentage has not yet been calculated through the integrated wetland 

system and decreases in the concentrations of nitrogen through the system were not 

significant (mainly related to the low concentration of nitrogen in the initial inlet point (B1 

IN) as well as the newness of the experimental site), a generally promising depurative 

effect appears from the concentration trend throughout the system. This effect is notable 

during March 2015 as emphasized by the major decrease in TN and NO3
-
 concentrations 

throughout the wetland sub-basins (FWS CW) and downstream channel (FTW) after a 

combined event of intensive rainfall and crop fertilization run-off. Phosphorus 

concentrations were almost negligible. Monitoring the vegetation in the floating treatment 

wetland system, Carex spp. showed the best adaptability through high survival rate, 

hardiness and continuity over two successive seasons, highest plant parameters, especially 

biomass production, as well as highest nitrogen and phosphorus uptakes. L. salicaria 

showed great stability, excellent growth performance during the season and good potential 

for establishment in the floating system while I. pseudacorus lagged behind in the second 

season with the lowest survival rate, plant growth parameters and nutrient uptake. Free 

water surface constructed wetland and floating treatment wetlands can thus be considered 

in an integrated agro-environmental management to control nutrient runoff from intensive 

cropping systems. 
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Chapter 5 

Assessment of energy potential from wetland plants 

along the minor channel network on an agricultural 

floodplain 

 

 

 

 

 

 

 

 

 

 

 



91 

 

Introduction 

Renewable Energy Sources (RES) embody, at present, one of the most important 

challenges to preserve, in the future, security of energy supply and reduction of Greenhouse 

Gases (GHG), by the progressive substitution of fossil fuels. In 2009, the European Union 

established a goal of 20% of RES in the energy supply and 10% of energy in the transport 

sector, in order to replace roughly 50 billion litres of fossil transportation fuels (European 

Commission 2006, 2008). Moreover, a long-term target has been included in the Strategy 

Plan 2020, to cut GHG from 80% to 95% by 2050. To develop RES, a cornerstone for the 

EU “20-20-20” triple goal
1
 is currently represented by energy derived from biomass, which 

is expected to account for 56% of RES supply by 2020 (Bentsen and Felby 2012). 

Bioenergy is mainly derived from cultivated crops (Rahmam et al. 2014). The International 

Energy Agency (IEA) reported a large increase in energy crop production, leaping from an 

estimated 14 Mha in 2004 (about 1% of global crop production) to 36 Mha in 2008, out of 

the 1,545 Mha of total land area available worldwide (Rahmam et al. 2014). According to 

IEA, FAO and UNEP reports, this share could further increase to 3 to 4 times by 2030 (IEA 

2006; FAO 2008; UNEP 2009). Similarly in the EU (EU27), about 5.5 Mha (3.2% of the 

total agricultural land) is presently growing energy crops. Most of this land is used for 

biofuel production, which covers 82% of energy crops; the remainder is used for the 

production of first-generation bioethanol (11%), biogas (7%), and perennial species mostly 

go into electricity and heat generation (1%) (Dworak et al. 2009; Elbersen et al. 2012). 

Biomasses are typically diversified into forest biomass (woody species in short rotation 

forestry), agricultural residues, post-processing biomass wastes (i.e. sewage sludge, 

manure) and energy crops of annual herbaceous species. The latter mainly include 

traditional food crops such as rapeseed, sugarbeet, sorghum, wheat, sunflower and silage 

maize (Betsen and Felby 2012; Elbersen et al. 2012). In Italy bioenergy is mainly derived 

from traditional widespread food crops such as wheat, barley, maize, rapeseed, soybean, 

sunflower, grain sorghum and sugarbeet (Cosentino et al. 2008). Recently, there has been 

increasing interest in high productivity perennial herbaceous species such as Arundo donax, 

                                                 

1
 The main target of the EU Energy 2020: a strategy for competitive, sustainable and secure energy.  The 

strategy is oriented to increase energy efficiency, by saving 20% of the EU's primary energy consumption and 

GHG emissions, as well as the inclusion of 20% of renewable energies in energy consumption (European 

Commission, 2010). 

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52010DC0639:EN:HTML:NOT
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Miscanthus spp. and Phalaris Arundinacea; however, such species still show constraints 

related to propagation techniques and harvest and storage systems (Cosentino et al. 2009; 

2012)   

To produce bioenergy, different conversion engineering techniques, combined with 

biotechnologies, are continuously under development, for both small- and large-scale 

applications: combined heat and power (CHP) for electrical (Eel) and thermal energy (Et), 

and combustion for domestic and industrial heat supply by biomass pellets and briquettes; 

second generation biomass integrated gasification combined cycle system (biogas, BG); 

and, by physical, biochemical conversion of the main biomass components (carbohydrates, 

cellulose, hemicelluloses and lignin), first- and second-generation biofuels such as biodiesel 

and bioethanol (Naik et al. 2010; Chiaramonti et al. 2012). 

Despite the initial emphasis on the key role of bioenergy in mitigating GHG emissions, it is 

widely acknowledged that important parameters are necessary to assess the sustainability of 

the whole energy process. In fact, serious constraints of energy crops are mirroring 

business-as-usual, environmental impacts from intensification processes of agricultural 

systems for food production. Crutzen et al. (2008) and Bouwman et al. (2010) stress energy 

crops are speeding up the N cycle by the increasing application of N fertilizer, leading to 

emission of reactive N, including NO3 leaching, NH3 volatilization, and emission of N2O 

and NO. The low energy density of biomass, implying large volumes to be stocked, 

transported and processed in the energy plant, is another limiting factor for bioenergy 

production (Elbersen et al. 2012).  

On the contrary, bioenergy from spontaneous perennial grasses growing in natural or semi-

natural habitats, such as wetlands, give immediate and consistent advantages in terms of 

cost reduction (Fazio and Monti, 2011; Kallioinen et al. 2012). 

Recently, biomass of perennial herbaceous species of wetland areas has aroused interest as 

an energy crop for the production of electricity and heat by CHP, BG and second-

generation bioethanol. Some species, such as reed canary grass (Phalaris arundinacea L.) 

and common reed (Phragmites australis (Cav.) Trin. ex Steud) revealed notable bioenergy 

performances (Fazio and Monti 2011; Kallioinen et al. 2012). At present, one of the 

promising energy conversion technologies is oriented to the production of lignocellulosic 
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ethanol, giving a larger role to wetland plants and marginal lands in a future supply 

scenario (Fazio and Monti 2011; Kallioinen et al. 2012). 

The general aim of this paper is to assess the energy potential of wetland vegetation 

associated to the minor hydrographic network of a reclamation area in North-East Italy, by 

identifying possible pathways towards a better sustainability in the use of local renewable 

energy sources.  

The specific objective is to perform a GIS-based analysis on beds of common reed at 

territory scale, combining experimental survey analyses on biomasses in the field with 

spatial simulations. By categorizing the geographical context of the area based on Land Use 

Land Cover (LULC), three different energy scenarios have been performed for combustion, 

biogas and second-generation ethanol. 

 

Materials and methods 

Geographical framework and study area 

The study area is located within the reclamation territory of the “Consorzio di Bonifica 

Adige Euganeo”, which covers 119,207 hectares in the North East of Italy, including 

46,000 hectares of the Venice Lagoon drainage system. The reclamation territory 

encompasses about 1,800 km of a minor hydrographic network, most of which is essential 

to drain water from lowland areas below the mean sea level to the Venice Lagoon 

(Consorzio Adige Euganeo, 2013). The eastern sector is characterized by a dense network 

of collector channels and ditches mainly vegetated by continuous beds of common reed 

(Fig. 1).  

A preliminary geographical analysis was done to categorize the typical landscape matrix 

within the reclamation territory, and to identify suitable study sites to perform spatial 

simulations on energy potential at local scale. Remote sensing analyses were performed by 

interpreting aerial images such as orthophotos (Veneto Region, 2006), high resolution 

satellite imagery (Spot Image, 2013), LiDAR DTM (2006) and official cartography at 

different scales (1:50,000 IGM; 1:5,000 Regional Technical Map). A specific territorial 

dataset on the minor channel network and vegetation was also acquired from the 
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“Consorzio di Bonifica Adige Euganeo” to support the geographical framework and field 

survey. 

Geomorphological and ecosystem characteristics are heterogeneous within the reclamation 

territory: a range of hills, the Euganean Hills, is located in the north-west sector; elevation 

range decreases from west to east. Therefore, due to the highly complex territory, the 

analysis focused on the floodplain in the eastern sector, where riparian vegetation and the 

hydraulic system are more homogenous (Fig. 1). 

According to the different landscape matrices, three specific study sites of 100 hectares 

each were identified and categorized with the Corine Land Cover map (CLC, 2006).  

 

 

Figure 1 - Geographical framework: Veneto Region and the reclamation territory of 

Consorzio di Bonifica Adige 
 

Remote sensing technologies and spatial analysis 

Geographical Information Systems (GIS) were chosen as the main tool to process spatially 

explicit data, and to perform spatial analyses and simulations of the energy potential of 

riparian vegetation. Therefore, all the biophysical, ecological, anthropic data acquired by 

both a literature search and fieldwork activities were processed and integrated into the 

Database Management System (DBMS), in order have a powerful geographically and 

temporally referenced and thematically differentiated data storage. 
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Spatial analyses were carried out thanks to the availability of aerial images and a LiDAR 

DTM at 1 m resolution dated back to 2006, with a horizontal accuracy of about 0.3 m, and 

a vertical accuracy of ±0.15 m (RMSE estimated using DGPS ground truth control points), 

provided by the Ministry for Environment, Land and Sea (Ministero dell'Ambiente e della 

Tutela del Territorio e del Mare, MATTM). 

In order to evaluate energy potential from biomass of beds of common reed associated to 

the minor channel network, it was first necessary to characterize the network conformation. 

A semi-automatic approach developed by Cazorzi et al. (2013) was applied for this 

purpose. From a LiDAR DTM, it was possible to automatically detect the network and 

compute its length, density and average channel widths. The procedure does not consider a 

hydrological characterization: neither the connectivity of the network nor the flow 

directions are accounted for (Cazorzi et al. 2013). The feature extraction relies on a 

thresholding approach based on the standard deviation of a morphological parameter called 

Relative Elevation Attribute (REA) (Carturan et al. 2009), automatically derived from the 

DTM. As the network identification is based on relief control, prior to local relief 

evaluation, it was necessary to identify and mask the man-made terrain features on the 

original DTM because they might greatly increase false detections and peak values on the 

relief index (Cazorzi et al. 2013). In addition, urban areas do not have a minor network 

system and considering them would only increase computational time, without any 

meaningful results. For the three study sites, urban, residential and industrial areas were 

therefore masked according to the 2006 CLC map and a comparative analysis of aerial 

images, official cartography and ground truthing. These have been shown to be crucial 

especially in study area n. 2 because most recent satellite imagery highlighted the presence 

of a roundabout that could not be identified in the previously-mentioned data. 

The semi-automatic approach was applied in order to characterize the whole minor 

drainage network system, including small ditches within agricultural fields. This method 

was used in order to only extract the channels representing surfaces potentially vegetated 

by common reed. For this reason, it was also necessary to mask the internal portions of the 

fields in order to improve the detection of the bigger channels that are usually located along 

their boundaries. For the purpose of this work, each study area was divided into sub-areas 

of 0.0025 km
2
 to speed up the elaborations and spatially distribute the measures (Fig. 2). 
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The thresholding approach applied to label REA peak values is based on the fact that 

different processes leave their signature on the statistical properties of landform geometry, 

and by quantifying and labelling these signatures in detail, it is possible to identify a 

threshold to label where a process starts (Lashermes et al. 2007; Tarolli and Dalla Fontana 

2009; Passalacqua et al. 2010a, 2010b; Tarolli et al. 2010; Pirotti and Tarolli 2010; Sofia et 

al. 2013). The result is represented by a Boolean map with features taking only binary 

values, 1 or 0 for network pixels and landscape pixels respectively (Fig. 2). 

 

 

Figure 2- The three main steps of the semi-automatic approach: input DTM (a), derived 

REA map (b), and the Boolean map (c) detecting the drainage network after masking 

procedure and thresholding approach 

 

Once the network had been extracted, it was possible to focus on its geometrical 

characterization and, thus, on the computation of its total length and average width for each 

sub-area of analysis. By summing up channel lengths and by averaging channel widths of 

all the sub-areas, we ended up, for each of the three study sites, with a total channel length 

and an average channel width.  

 

Field survey 

 

The first step was to spatially validate, adopting the ground truthing methodology (Desai 

and Potter 2006), the LULC distribution within the three study sites previously identified 

by remote sensing and GIS analyses on the reclamation territory scale. Ground truthing was 

performed by GPS technology. Secondly, with a specific territorial dataset provided by the 

Consorzio di Bonifica Adige Euganeo, representative spots for biomass sampling were 
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identified along the minor channel network within the three study sites. Sampling areas of 

50 m
2
 (site 1), 110 m

2
 (site 2) and 50 m

2
 (site 3) for biomass production were measured and 

geo-referenced. Common reed has been confirmed as the predominant species (about 90% 

of vegetation) growing on the riparian surfaces of the minor channel network. Vegetation 

was cut by mechanical mowing at 5 cm height and harvested in order to calculate the dry 

matter weight. Total fresh weight of the collected aboveground biomass was quantified on 

site; samples of 1,000 g were dried in a force draught oven at 65 °C for 35 hours, milled at 

2 mm (Cutting Mill SM 100 Comfort, Retsch, Germany); in addition, 10 g powered sub-

samples were dried at 130 °C to measure the residual moisture content. Biomass sampling 

was carried out in the summer (2013), during the ordinary channel maintenance operations 

of the drainage network by the Reclaimaing Authority Consorzio di Bonifica Adige 

Euganeo. Such operations are carried out annually to protect the territory from 

hydrogeological risk. Finally, fieldwork data on biomass sampling (DM, t/ha) were 

multiplied by the total useful area, in order to assess the potential production on the minor 

channel network. Maintenance operations such as cutting vegetation and cleaning channel 

beds are necessary to protect the territory from hydrogeological risk. Sample areas were 

georeferenced and processed in GIS environment. 

To assess the bioenergy potential of riparian surfaces several surveys were performed in the 

field by a Differential Global Positioning System (DGPS) to gather data about the bank-to-

bank channel widths. By using a laser rangefinder telemeter (Bushnell YardagePROtm 800) 

for the wider channel sections (6-25 m) and a surveyor tape for the small ones (3-6 m), the 

total width of ditches was measured. Lastly, 65 bank-to-bank channel sections were 

measured in the three study areas: 19 in the first, 21 in the second and 25 in the third (Fig. 

3). By averaging the values gathered, we ended up with a mean bank-to-bank channel width 

for each study site. Since common reed mainly grows at the water edges and spreads along 

the banks, we subtracted the average channel width obtained with the semi-automatic 

approach from the average bank-to-bank channel derived in the field surveys, ending up 

with an average bank width for each study area. The total channel length was then 

multiplied by the average bank width in order to estimate the potential surface with the 

presence of common reed. 
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Common reed energy values 

To perform the energy potential assessment the literature data on common reed was 

reviewed and selected. 

For combustion, common reed showed energy contents similar to reed canary grass, 

Miscanthus (Miscanthus x giganteus, Greef et Deu) and wood chips, providing ca. 18.5-20 

MJ/kg (Komulaien et al. 2008; Cubars and Noviks 2012; Kask et al. 2013). Other 

experimental measurements give values such as 18-19 MJ/kg (Komulaien et al. 2008) and 

16.187 MJ/kg (Kitzler et al. 2012). However, for the purpose of this work, the Low Heating 

Value (LHV) of 10.41 (±3.18) MJ/kg (Politeo et al. 2011) for common reed cultivated in a 

constructed wetland in the Veneto Region was selected (Table 1). 

Biogas energy potential is determined by content in Total Solid (TS) and Volatile Solids 

(VS); Biochemical Methane Potential (BMP) expresses the CH4 potentially achievable by 

degradation of organic matter. According to Amon et al. (2007a; 2007b), yield in biogas 

ranges from 315 Nm
3
 t

-1 
VS for fresh reed to 421 Nm

3
 t

-1
 VS for reed silage treated with 

enzymes. Ensiling increases BG and CH4 yield compared to fresh material; enzyme pre-

treatment significantly increases the yield of both (Helbig 2009). Differences in energy 

performances from variation of harvest date are not significant; on the contrary biochemical 

pre-treatment processes using enzymes significantly increases energy values from 350 to 

421 Nm
3
 t

-1
 (Amon 2007b). CH4 content in BG production varies from 44.8% (silage) to 

48.3% (silage and enzymes) (Amon 2005). Hansson and Fredriksson (2004) confirm such a 

range in CH4 energy values. Therefore, assuming mean composition in VS of common reed 

DM is about 91% (Amon et al. 2007a, 2007b; Helbig 2009) and the total CH4 yield in 

accordance with VDI 4630 (2006) is about 200 Nm
3
 t

-1
of VS (Hansson & Fredriksson 

2004; Risèn et al. 2013; Nkemka and Murto 2013), the energy value for BMP assessed for 

the purpose of this paper is 182 Nm
3
 t

-1
 (Table 1).  

On the other hand, 2
nd

 generation bioethanol derived from cellulose, hemicellulose and 

lignin ranges widely in energy values, according to factors such as harvesting period, the 

different pre-treatment and fermentation processes to separate and provide easier access to 

the main biomass components (Chiaramonti et al. 2012; Kallioinen et al. 2012). However, 

experimental results on common reed grown in Veneto Region have been used, showing a 

yield of 88 kg (EtOH) t
-1

 (Florio 2014).  
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Energy transformation Values MJ/kg Sources Selected  

Combustion  

(Low Heating Value)  

18.5-20 

18-19 

16.1 

10.4 

Cubars & Noviks 

2012 

Komulaien et al. 

2008 

Kitzler et al. 2012 

Politeo et al. 2011 

10.4 

BMP (VS)  12.5-16.7 

13.9-15.7 

Amon et al. 2007a 

Hansson & 

Fredrikson 2004 

7.2 

Second-generation 

ethanol 

2.3 Florio 2014 2.3 

Table 1 Energy values for combustion, methane and 2
nd

 generation bioethanol 

 

To equalize methane and bioethanol values to the same measurement units (MJ), 

conversion factors of 39.79 and 26.8 were used to compare different energy scenarios 

(Beitz and Kuttner, 1987; Bauer et al. 2009). 

Results 

Land Use Land Cover classification 

Preliminary results, obtained by a quantitative analysis to spatially categorize the LULC 

distribution per study site, show that every study site presents different areas for artificial 

surfaces (AS), agricultural lands (AL) and water bodies (WB). Although agricultural areas 

are the dominant LULC, results highlight different patterns of LULC matrix: study site n. 1 

is characterized by 2% of AS, 96% of AL and 2% of WB; study site n. 2 presents 38% of 

AS, 60% of AL and 2% of WB; study site n. 3 has 26% of AS, 70% of AL and 4% of WB 

(Figure 3; Table 2). Considering the actual LULC scenario of the whole reclamation 

territory, the selected sample sites represent three typical territorial matrices of the region: a 

dominant rural landscape, mainly characterized by cropland (study site n. 1); a mixed 

rural/anthropic landscape (study site n. 2), and prevalently rural (70%) with relevant 

presence of artificial surfaces (26%) (study site n. 3). 
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Table 2 GIS analysis of the Land Use Land Cover surfaces and drainage network of the 

three study sites: Artificial Surfaces (AF), Agricultural Lands (AL), Water Bodies (WB), 

Total Drainage Network (TDN) and Useful Drainage Network (UDN) 

 

 

Figure 3 A) Field surveying campaign over the three study sites: ground truthing and bank-

to-bank channel section measurements; B) Land Use Land Cover analysis of  the three 

study sites: Artificial Surfaces, Agricultural Land and Water Bodies 

 

Study sites AF  

(ha) 

AL  

(ha) 

WB  

(ha) 

TDN 

(km) 

UDN 

(km) 

Total 

area 

(ha) 

area 1 2 96 2 27.6 5.5 100 

area 2 38 60 2 21.6 9.1 100 

area 3 26 70 4 25.2 8.9 100 
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From the total to the productive drainage network 

According to spatial analysis of the minor hydrographic system, the useful drainage density 

network for biomass production was quantified within the three study sites. Results 

obtained by semi-automatic extraction from LiDAR DTM firstly showed that the total 

drainage system is 27.6 km for study site n. 1, 21.6 km for study site n. 2, 25.2 km for study 

site n. 3; performing masking technique, the useful drainage network for common reed 

biomass production was calculated, of 5.5 km, 9.1 km and 8.9 km respectively (Table 2). 

Moreover, GIS analysis of drainage systems highlights two different drainage network 

scenarios calculated on 100 ha study sites: total drainage density and the useful drainage 

density for biomass production. Therefore, the useful minor channel network for 

harvestable common reed on riparian surfaces was quantified by comparative analysis of 

both drainage systems calculated for each study site. 

 

By overlay of Boolean maps (Figure 4) which show linear values of the hydrographic 

network, significant differences in drainage lengths, and therefore in density, were detected 

in all three study sites. The average drainage density based on 0.0025 km
2
 cells was then 

calculated for each study site by a comparative analysis: study site n. 1 has 11 km/km
2
, 

while useful drainage density is 2.2 km/km
2
; in study site n. 2, total drainage density is 8.7 

km/km
2
, useful drainage density is 3.6; in study site n. 3, total drainage density is 10 

km/km
2
, while useful drainage density is 3.6 km/km

2 
(Figure 4). Such a relevant deviation 

in drainage density values is mainly related to the presence of agricultural ditches within 

productive farmland. This pattern is very visible on the map of study site n. 1 (Figure 4a), 

characterized by 96% of agricultural land, 27.6 km of drainage network but just 5.5 km of 

productive riverbanks (Table 2,3).  
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Figure 4 Drainage network analysis and overlay of Boolean maps in the three study sites (A, B, C): 

in the left column the total drainage network, in the right one the productive drainage network 
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Common reed biomass production 

GIS analysis of riparian surfaces allowed vegetated areas along the drainage systems to be 

calculated. The three study sites present 8.5, 13 and 11.2 ha of vegetated surfaces for 

biomass production respectively. Fieldwork data on the aboveground biomass (DM) has 

been spatially processed to quantify potential productivity of each study site, calculated on 

the useful drainage network. Results on total biomass production reveal 30 t for study site 

n. 1, 222 t for study site n. 2 and 159 t for study site n. 3. Consequently, the three study 

sites show different values of average production per unit area: 1.5 t/ha for study site n.1, 

6.7 t/ha for study site n. 2 and 6 t/ha for study site n. 3 (Table 3). 

 

 Site 1 Site 2 Site 3 

Vegetated surfaces (ha) 8.5 13.0 11.2 

Total biomass production DM (t) 30 222 159 

Average Production DM (t /ha) 1.5 6.7 6 

Table 3 - Vegetated surfaces and biomass production on the useful drainage network 

within the three study sites 

 

Results seem to confirm the average production recorded within the same geographical 

context, with a constructed wetland, vegetated by Phragmites australis, showing an 

aboveground biomass production of 8.8 t/ha (Maucieri et al. 2014). 

Cartographic outputs in figure 5 show the total production distribution on the useful 

drainage network, calculated for each 0.0025 km
2
 cell. GIS analysis displays a general low 

production for study site n. 1, in which the highest range values are 0.75-1 t just in five 

cells; the most diffuse biomass production is in the range 0.25-0.50 t. On the contrary, 

study site n. 2 shows a higher production value, mainly clustered in a range of 1.5-3 t along 

the two banks of a major channel, running in a west-east direction (Figure 5b). Spatial 

analysis on study site n. 3 displays less clusters in the range 1.5-3 t, but a higher 

concentration of cells with values >3 t of biomass production, mainly localized along the 

two banks of the major channel in the area. Overlay of Boolean maps allows the total 

channel network to be visualized and biomass production localized on the productive 

riparian surfaces (Figure 5). Finally, by a relative frequency calculation, it emerges that 
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both study sites 2 and 3 have areas with a greater biomass production: the most frequent 

biomass classes are those from 1.0 to 1.5 and from 1.5 to 3.0 t. Instead, study site 1 is 

clearly less productive with biomass values mostly ranging from 0.25 to 0.50 t (Figure 6)  
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Figure 5 - GIS analysis of total biomass production within the three study sites. 

Production values (t) are performed on 0.0025 km
2
 cells. Boolean map overlays display 

the total drainage network length 
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Figure 6 - Relative frequency (%) for biomass production classes within the three study 

sites 
 

GIS analysis of energy potential 

 

Results for combustion conversion, based on a conservative assessment of heating values, 

reveal study site n. 1 as the lowest energy scenario, with cell values of LHV between 0.43 

to 48.37 GJ ha
-1

, an overall average value of cells of 15.55 GJ ha
-1

 and a median value of 

13.21 GJ ha
-1

. On the contrary, study sites n.2 and 3 show similar yields with average 

values of 69.4 GJ ha
-1

 and 63.1 GJ ha
-1

 respectively (Table 4) 

Biomass conversion for methane production presents lower performances compared to 

combustion: the highest average energy values are obtained in study site n. 2, with an 

average of 48.32 GJ ha
-1

; the lowest methane yield is in study site n. 1, with 10.81 GJ ha
-1

.  

The second-generation bioethanol scenario displays the lowest values: average values of 

3.53 GJ ha
-1 

for study site n. 1, 15. 73 GJ ha
-1 

for study site n. 2, and 14.28 GJ ha
-1

 for study 

site n. 3 (Table 4). 

In general, results showed different possible scenarios for bioenergy production from 

common reed in three dissimilar LULC matrices (Figure 3). Among the three energy 
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options, the highest performances are represented by combustion technologies, followed by 

methane and second-generation bioethanol production.  

GIS analysis on bioenergy displays energy values for three different technology scenarios 

with spatially explicit data for each study site (Figure 7).  

 

 

Energy scenarios  Study site 1 Study site 2 Study site 3 

Combustion (GJ ha
-1

) (GJ ha
-1

) (GJ ha
-1

) 

Min-max 0.43-48.37 1.94-168.7 2.84-183.65 

Average 15.55 69.4 63.1 

Median 13.21 68.8 48.56 

    

Methane (BMP)    

Min-max 0.3-33.64 1.35-117.37 1.98-127.74 

Average 10.81 48.32 43.87 

Median 9.19 47.86 33.78 

    

2
nd

 generation bioethanol    

Min-max 0.09-10.97 0.44-38.22 0.64-41.59 

Average 3.53 15.73 14.28 

Median 2.99 15.58 11 

Table 4 - Bioenergy potential for three different technology scenarios: combustion, 

methane and 2
nd

 generation bioethanol 
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Figure 7 GIS analysis of the three conversion technology scenarios for each study site 
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Discussion and conclusions  

 

The developed cross-cut methodology aimed to assess energy potential from natural 

riparian vegetation of the minor channel network. It introduces an integrated GIS-based 

approach to evaluate at local scale possible energy scenarios from three dissimilar LULC 

matrices. The highest performances are clearly represented by combustion technologies, 

followed by methane and 2nd-generation bioethanol production.  

Concerning combustion potential, study site n. 2 presents an average value of 69.4 GJ t
-1

, 

showing an interesting energy yield. However, it has been performed the LHV of 10.41 

(±3.18) GJ t
-1

 for a conservative yield assessment; on the contrary, by using the High 

Heating Values of 16.69 (±0.53) GJ t
-1

 (Politeo et al. 2011), combustion yield would 

increase about 62.37%, highlighting a more promising energy scenario. Concerning 

methane and 2
nd

 generation bioethanol production yields are lower than common bioenergy 

crops. In the best case values in BMP (48.3 GJ ha
-1

) and 2
nd

 generation bioethanol (15.7 GJ 

-1
) are at present not competitive with bioenergy crops such as sugarbeet, silage maize and 

silage sunflower, which show CH4 yields from 60 to 131 GJ ha
-1

 (Amon et al. 2007a; 

2007b) and 74.7 GJ ha
-1

 respectively (European Biofuels Technology Platform, 2013; 

Goldember and Guardabassi 2010). The latter is almost 4.5 times higher than the best 

energy performance in study site n. 2. 

Riparian zones of the minor channel network could generally represent a significant source 

of bioenergy, mainly for combustion transformation; however, such bioenergy production 

implies some important limitations. Firstly, not all the territory displays homogeneous 

potential bioenergy values: in study site n.1, characterized by a dominant rural landscape 

(95% of LULC is Agricultural Land) and by the longest total drainage network (27.6 km), 

biomass production and, therefore, energy yield, are the lowest. As a matter of a fact 

biomass is available only along 5.5 km of riverbanks. Many agricultural ditches and small 

channels make common reed not easily harvestable in this area (Figure 3, 4a). On the 

contrary, study site n. 2, despite the shortest total drainage network of 21.6 km, presents the 

highest bioenergy potential with 9.16 km of vegetated riparian zones, which provide 221.9 t 

of biomass production.  
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Further spatial analysis are definitely required to assess an efficient and sustainable energy 

system, identifying suitable spots for biomass storage, transformation and energy 

utilization. Such assessments are necessary to minimize transport and energy infrastructure 

costs. 

It is important to mention that such biomass production required no energy inputs in terms 

of soil management (tillage, fertilization) or water supply. Biomass is produced naturally on 

marginal lands associated to the minor channel network and it is usually cut and directly 

stocked in situ by the Reclamation Authority. Such biomass management implies the 

potential physical dispersion of biogenic agents which strongly contribute to water bodies 

eutrophication and other ecological impacts.  

Finally, the results of this study highlight some workable alternatives for increasing the 

energy supply, turning the ecological problem of the waste disposal of common reed 

biomass into an opportunity to produce a sustainable and delocalized bioenergy at local 

scale. 
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Chapter 6 

Conclusions 
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Conclusions 

The present thesis showed different agricultural uses of vegetated systems which were 

tested mainly to provide water purification services and other ancillary ecosystem services.  

The choice of adopting wetlands and vegetated ditches as experimental trial was basically 

related to the ecological and climatic condition of the Po floodplain: seasonal shallow 

groundwater, sub-humid climate (about 850 mm fairly uniformly distributed throughout the 

year), a dense and often vegetated minor hydrographic network, and the wide presence of 

high performance phytoremediation plants such as P. australis, T. latifolia, P. arundinacea, 

I. pseudacorus, L. salicaria and Carex spp. (Borin and Malagoli 2015; Gregoire et al., 

2011; Vymazal, 2011; Vymazal,  2013; Vymazal and Brezinovà, 2015). Moreover, the 

presence of a dense minor hydrographic network within the agricultural territory, realized 

both for irrigation and for draining out water from the depressed areas (below M.S.L.), 

makes more feasible the use of constructed wetlands and controlled vegetated ditches for 

phytoremediation purposes (Pappalardo et al, 2014).  

The first study (Chapter 2) showed that a constructed surface flow wetland is very effective 

in the reduction of herbicides runoff, with a mitigation effectiveness of about 98% for two 

of the main herbicides applied to maize: metolachlor and terbuthylazine. This is in 

agreement with the conclusions of other recent European studies (Kay et al., 2009; Stehle et 

al., 2011; Maillard et al., 2011). Comparison with results from other research is possible 

only after a clear and simple definition of mitigation or removal, as proposed in the study. It 

is difficult to single out exactly which processes cause the mitigation. The observed 

dynamic suggests the mitigation is provided by a reversible adsorption to the superficial 

organic matter complex, i.e. by plants, plant residues and soil. In fact, following a 

successive severe flood, 15-30% of the herbicides detected in the first flood was mobilized 

after 25 days, and 40 days later another flood again mobilized a lower but detectable 

amount of herbicides. In both floods a mixture of herbicides and metabolites was present. It 

is worth noting that mobilization of terbuthylazine from the constructed surface flow 

wetland is correlated with the contact time with water, while that of metolachlor, slightly 

less adsorbed and more soluble, is not. Given that flooding speed is quite regular 

throughout the constructed surface flow wetland, mitigation can be linked either to the 

duration or residential time of the flood. Results highlight that the constructed surface flow 
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wetland is a dynamic system with a high buffer capacity. In ordinary conditions of the plain 

cropland in north-eastern Italy, where 3-4 runoff events of low volume occur (Cardinali et 

al., 2013), the mitigation capacity of a 0.3 ha constructed surface flow wetland serving a 6 

ha basin is likely complete, i.e. no herbicides will by-pass the constructed surface flow 

wetland and enter surface water outside the basin. According to an iterative method for 

mitigation calculation, hypothesizing a final mitigation of 99.99% for a constructed surface 

flow wetland of 200 m, the mitigation capacity for a heavy runoff of 3.5 mm from a 10 ha 

basin is 90% for each 50 m in length for a 15 m wide wetland. This suggests that also 

smaller constructed surface flow wetland can be very useful at farm scale when other 

mitigation techniques are implemented, i.e. spray band applications, post-emergence only. 

The second study (Chapter 3) showed how the management of vegetated ditches may have 

a great herbicides runoff mitigation potential for the protection of watercourses and can be 

inserted in environmental schemes. Their effectiveness with shallow flooding is high and 

length-dependent. In typical ditches of north-eastern Italy, for the main pre-emergence 

herbicides applied in maize, the distance required to reduce initial concentration by 50% is 

about 250 m. As a general rule for herbicides with KOC of 110-400 L kg
-1

, a runoff of 1 

mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch 1 m bed wide. The 

dissipation of herbicides in ditches is site-specific and mainly due to degradation and 

adsorption, while outflow with water discharge is low since the flood is shallow. Coverage 

of emergent plants and the hydraulic residence time is of great importance, and a better 

insight into herbicides adsorption onto the sediment-soil-plant complex is needed. 

The third study (Chapter 4) highlighted the use of an integrated agricultural wetland system 

of 2.4 ha in abating nutrients load from an agricultural basin and the adaptability of seven 

macrophyte species in a floating treatment wetland system, located downstream along an 

agricultural canal. Although wetland performance in water purification were not so high 

and decreases in the concentrations of nitrogen through the system were not significant  - 

mainly related to the low concentration of nitrogen in the initial inlet point as well as the 

newness of the experimental site - a generally promising depurative effect appears from the 

concentration trend throughout the system. This effect is notable during March 2015 as 

emphasized by the major decrease in TN and NO
3-

 concentrations throughout the wetland 

sub-basins and downstream channel after a combined event of intensive rainfall and crop 
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fertilization run-off. Phosphorus concentrations were almost negligible. Monitoring the 

vegetation in the floating treatment wetland system, Carex spp. showed the best 

adaptability through high survival rate, hardiness and continuity over two successive 

seasons, highest plant parameters, especially biomass production, as well as highest 

nitrogen and phosphorus uptakes. L. salicaria showed great stability, excellent growth 

performance during the season and good potential for establishment in the floating system 

while I. pseudacorus lagged behind in the second season with the lowest survival rate, plant 

growth parameters and nutrient uptake. Free water surface constructed wetland and floating 

treatment wetlands can thus be considered in an integrated agro-environmental 

management to control nutrient runoff from intensive cropping systems. 

The fourth study (Chapter 5) would highlight the potential use of “wetland plants” growing 

along the riparian zones of the minor channel network as source of sustainable bioenergy, 

mainly for combustion transformation. However, the study showed such bioenergy 

production implies some important limitations: firstly, not all the territory displays 

homogeneous potential bioenergy values: in study site n.1, characterized by a dominant 

rural landscape (95% of LULC is Agricultural Land) and by the longest total drainage 

network (27.6 km), biomass production and, therefore, energy yield, are the lowest. As a 

matter of a fact biomass is available only along 5.5 km of riverbanks. Many agricultural 

ditches and small channels make common reed not easily harvestable in this area. On the 

contrary, study site n. 2, despite the shortest total drainage network of 21.6 km, presents the 

highest bioenergy potential with 9.16 km of vegetated riparian zones, which provide 221.9 t 

of biomass production. Further spatial analyses are definitely required to assess an efficient 

and sustainable energy system, identifying suitable spots for biomass storage, 

transformation and energy utilization. Such assessments are necessary to minimize 

transport and energy infrastructure costs. It is important to mention that such biomass 

production required no energy inputs in terms of soil management (tillage, fertilization) or 

water supply. Biomass is produced naturally on marginal lands associated to the minor 

channel network and it is usually cut and directly stocked in situ by the Reclamation 

Authority. Such biomass management implies the potential physical dispersion of biogenic 

agents which strongly contribute to water bodies’ eutrophication and other ecological 

impacts.  Finally, the results of this study highlight some workable alternatives for 
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increasing the energy supply, turning the ecological problem of the waste disposal of 

common reed biomass into an opportunity to produce a sustainable and delocalized 

bioenergy at local scale. 

In general, wetlands and vegetated ditches may represent an important opportunity to 

manage, both at field and territory scale, water purification services such as nutrient and 

sediment retention, and mitigation from pesticide runoff by the implementation of in-site 

and off-site mitigation devices. 
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