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GENERAL ABSTRACT 

 

The challenge of the twenty-first century is to produce enough food to meet population 

demands without extending land or damaging the environment. Combining a 

maximum number of desirable traits such disease resistance, greater yield, and high 

quality is a desirable goal for plant breeders. The development of resistant crop 

genotypes is essential to ensure global food security, make the plant more useful and 

avoid crop losses. The development of molecular markers linked to the target traits is 

needed to predict phenotypic variation based on genotype. Marker-Assisted Selection 

(MAS) can reduce costs and the time required to obtain new cultivars by comparing 

selection only based on phenotypic evaluation. Single nucleotide polymorphisms 

(SNPs) are widely used as genetic marker.  

Sugar beet (Beta vulgaris L.) is the second source of world sugar supply and is grown 

in all temperate zones. The crop is attacked by many pathogens and among these, the 

soil-borne fungus Fusarium oxysporum causes severe sugar beet damages. Two 

different formae speciales have been reported in sugar beet, F. oxysporum f. sp. betae 

that causes Fusarium yellows, and F. oxysporum f. sp. radicis-betae that causes 

Fusarium root rot. Disease symptoms are characterized by wilt and yellow leaves that 

normally die as the disease progresses. Internal symptoms consist of a brown or grey 

brown vascular discoloration and in the case of root rot, there is a back external rot in 

the primary root. Sugar beet varieties are susceptible to F. oxysporum, which can 

cause a lower root yield and reduce sugar quality. No genetic studies have been done 

up to now, so no genes or quantitative trait loci (QTLs) conferring resistance to F. 

oxysporum in sugar beet have been reported. The aims of this work were (i) to 

investigate the response of a wide collection of sugar beet lines to F. oxysporum f. sp. 

betae, (ii) to identify resistant lines suitable for future breeding efforts and (iii) to 

discover molecular markers linked to the Fusarium resistance that could be considered 

for use in marker-assisted selection (MAS) programs. 

The first part of the thesis is a literature review of sugar beet breeding achievements, 

including the discovery of monogermity and cytoplasmic-genetic male sterility (CMS) 

that allowed the release of hybrid varieties. The review also focused on the breeding 

progresses against diseases obtained with classical and molecular methods using 

sources of resistance from wild beets. Next-generation sequencing (NGS) 

technologies with the recent release of the full sugar beet genome sequence are also 
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reported. Incorporation of genomics into conventional sugar beet breeding programs is 

essential to obtain important yield achievements in sugar beet.  

The second part was aimed at screening a wide range of sugar beet lines to identify 

the different effect to F. oxysporum f. sp. betae inoculation and to select resistant and 

susceptible lines. To achieve this, 29 sugar beet lines were screened under 

greenhouse conditions with two highly virulent isolates belonging to different genetic 

sub-groups.  

The third part regards an experiment conducted to evaluate the response of different 

sugar beet breeding germplasm to isolates of F. oxysporum f. sp. betae. In the 

previously tested lines, an unusual root rot was observed, normally reported in cases 

of infection with F. oxysporum f. sp. radicis-betae. Eight susceptible lines, from USDA-

ARS (US) and UNIPD (University of Padova, Italy), were inoculated with three different 

isolates of F. oxysporum f. sp. betae, the causal agent of Fusarium yellows. All 

inoculated lines developed disease symptoms, but severe root rot was observed only 

in the susceptible UNIPD lines inoculated with isolates that had never caused root rot 

in the USDA germplasm. In this work, an unusual root rot was reported for the first 

time that seems to be caused not only by the isolates, but is also due to a germplasm 

effect.  

The fourth part was aimed to identify molecular SNP markers linked to the Fusarium 

resistance in sugar beet. A candidate gene approach was used on susceptible and 

resistant lines to achieve this goal. Five resistant gene analogues were screened by 

means of a high-resolution melting (HRM) analysis and two allelic variants, within two 

genes, were significantly associated to Fusarium resistance. Sanger sequencing 

allowed the discovery of two SNP markers linked to the resistance. These two SNPs 

were significantly associated with the resistance and were mapped on the exon of 

Bv7_171470_ojty and Bv2_043450_zhxk, respectively. 
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RIASSUNTO GENERALE 

 

Il miglioramento genetico delle piante coltivate, basato sull’esplorazione, sull’utilizzo 

delle risorse genetiche e sulla ricerca genomica avanzata, è prioritario per soddisfare il 

fabbisogno alimentare di una popolazione mondiale in costante crescita. In particolare, 

l’introgressione di tratti desiderabili come la resistenza alle malattie e la maggior resa 

produttiva è fondamentale per garantire la sicurezza alimentare a livello globale. Per 

accelerare il miglioramento delle piante è essenziale predire le variazioni fenotipiche 

sviluppando marcatori molecolari legati ai tratti in esame. La selezione assistita da 

marcatori molecolari può ridurre costi e tempi di ottenimento di nuove varietà rispetto 

alla selezione basata solo su variazioni fenotipiche. Fra i marcatori molecolari 

disponibili, le mutazioni di singola base (SNP) sono i più diffusi. 

La barbabietola da zucchero (Beta vulgaris L.) è la seconda fonte di zucchero al 

mondo ed è coltivata in tutte le aree temperate. La coltura è colpita da numerosi 

patogeni e, fra questi, il fungo Fusarium oxysporum causa severi danni. Due differenti 

forme speciali di Fusarium, Fusarium oxysporum f. sp. betae (Fusarium yellows) e 

Fusarium oxysporum f. sp. radicis-betae (Fusarium root rot) sono state identificate in 

barbabietola. La malattia è caratterizzata da avvizzimento e clorosi fogliare con un 

progressivo deperimento delle foglie, spesso seguito dalla morte dell’intera pianta. I 

sintomi interni consistono in una discolorazione vascolare con imbrunimento dei fasci 

vascolari e, nel caso di marciume radicale, è presente un caratteristico annerimento 

all’esterno della radice principale.  

Per il controllo del patogeno, l’impiego di fungicidi e le rotazioni colturali non sono 

efficaci. L’introgressione di geni di resistenza dal germoplasma selvatico è ritenuta la 

strategia principale per la difesa della coltura. Questo richiede lo sviluppo di marcatori 

molecolari legati ai geni di resistenza per la selezione assistita degli individui resistenti. 

Gli obiettivi del lavoro di tesi sono stati i seguenti: (i) valutare la risposta a Fusarium 

oxysporum f. sp. betae di un’ampia collezione di linee di barbabietola da zucchero (ii) 

identificare linee resistenti a Fusarium oxysporum da poter utilizzare in futuri 

programmi di miglioramento genetico e (iii) identificare marcatori molecolari SNP 

(polimorfismi del DNA a singolo nucleotide) legati alla resistenza a Fusarium da 

utilizzare in programmi di selezione assistita da marcatori. 

Il primo contributo del lavoro di tesi descrive lo stato dell’arte dei risultati ottenuti nel 

miglioramento genetico della barbabietola da zucchero. Il contributo si focalizza sui 
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progressi ottenuti nella resistenza a malattie con metodi di miglioramento genetici 

classico e con l’impiego di tecniche molecolari utilizzando come fonte di resistenza 

germoplasma selvatico. E’ stato inoltre considerato il contributo delle nuove tecnologie 

di sequenziamento e del recente rilascio del genoma di riferimento al miglioramento 

genetico della barbabietola.  

Il secondo contributo riguarda la valutazione della risposta a Fusarium oxysporum f. 

sp. betae di un’ampia collezione di linee di barbabietola da zucchero al fine di 

identificare linee resistenti e suscettibili. Per raggiungere questo scopo sono state 

esaminate 29 linee di barbabietola da zucchero. Le piante sono state infettate con due 

isolati fungini F19 e Fob220a, appartenenti a due gruppi genetici distinti, entrambi 

altamente patogenici.  Dopo l’inoculo, per un periodo di sei settimane, è stato 

attribuito, per ciascuna pianta, un punteggio da 0 a 5 in base ai vari sintomi di malattia 

manifestati, quali: avvizzimento fogliare, clorosi e necrosi.  Successivamente, le piante 

sono state raccolte e le radici sono state esaminate per vedere dove era presente 

marciume radicale, discolorazione e quali piante invece risultavano resistenti al 

patogeno.  

Il terzo contributo descrive la risposta di due diverse collezioni di germoplasma di 

barbabietola da zucchero a isolati di Fusarium oxysporum f. sp. betae. Linee 

suscettibili, provenienti da USDA-ARS (US) e UNIPD (Università di Padova, Italia), 

sono state inoculate con tre distinti isolati di Fusarium oxysporum f. sp. betae, l’agente 

causa di Fusarium yellows. Tutte le linee inoculate hanno sviluppato i sintomi della 

malattia, ma un grave marciume radicale è stato osservato solo nelle linee provenienti 

da UNIPD inoculate con isolati che non avevano mai causato marciume radicale nel 

germoplasma USDA.  

Il quarto contributo riguarda l’identificazione, su geni candidati, di marcatori molecolari 

SNPs associati alla resistenza alla malattia. In particolare, sono stati identificati 5 

analoghi a geni di resistenza (RGA) dal lavoro di Dohm et al. 2014 e sono stati 

analizzati tramite analisi High Resolution Melting (HRM) su 96 campioni delle 6 linee 

più resistenti e più suscettibili a Fusarium. Due varianti, in 2 dei geni testati, sono 

risultate significativamente associate (p < 0.01) con la resistenza a Fusarium. Le 

varianti sono state validate attraverso sequenziamento Sanger. Il sequenziamento ha 

permesso di individuare due marcatori SNPs. L’associazione tra questi due SNPs e la 

resistenza a Fusarium è stata successivamente validata con il metodo di 

genotipizzazione Comparative allele-specific PCR (KASPar) su 96 campioni resistenti 

e 96 campioni suscettibili. La frequenza dell’allele A sia per lo SNP_Bv7_171470 e lo 
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SNP_Bv2_043450 è risultata significativamente più alta negli individui resistenti 

rispetto a quelli suscettibili. Questi due SNPs potranno essere utilizzati in programmi di 

selezione genetica al fine di migliorare la resistenza a Fusarium in barbabietola da 

zucchero. 
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GENERAL INTRODUCTION 

 

Fungal diseases 

Among the main causes of crop losses ever since humans began to cultivate plants 

are fungal diseases (Cornelissen and Melchers 1993). Phytopathogenic fungi follow 

three general strategies to interact with their host plants and gain access to nutrients 

(Horbach et al. 2011). Necrotrophic organisms obtain nutrients from dead or dying cell 

of living plants, they kill host cells by synthesis of toxic molecules and consume the 

plant tissue decomposition (Glazebrook 2005). Biotrophic organisms establish a stable 

relationship with living plant cells (Gan et al. 2012) because they depend on the 

metabolism of the infected host cells and surrounding plant tissue, to gain nutrients 

from living host tissue, through specialized feeding structures called haustoria 

(Pieterse et al. 2009). Hemibiotrophic organisms require living plants for part of their 

life cycle, but then kill them at later stages of the infection (Perfect and Green 2001). 

 

Mechanisms of defense 

Plants have evolved advanced defense mechanisms to oppose pathogen invasion 

including the activation of a wide range of  responses (Zhang et al. 2013). Resistance 

is determined by an array of structural barriers and proteins or other organic molecules 

to prevent or reduce the pathogen attack (Pieterse et al. 2009). The entry of 

pathogens is first hindered by the waxy cuticular layers and cell wall as well as 

preformed antimicrobical compounds (Zhang et al. 2013). Once pathogens penetrate 

the cell wall, the plant actives an innate immune system. There are two forms of this 

type of resistance: non-specific resistance, which is efficient against several 

pathogenic species or several strains of a single pathogen, and specific resistance, 

where one plant cultivar can resist by one or a few pathogenic strains (Kiraly et al. 

2007).  

The innate immune system is based on the sensitive perception of pathogen- or 

microbe-associated molecular patterns (PAMPs or MAMPs) (Boller and He 2009), but 

also the recognition of endogenous signals released after attack called damage-

associated molecular patterns (DAMPs) (Boller and Felix 2009). The recognition of 

these molecules is mediated by pattern recognition receptors (PRRs), which are cell 

surface-located transmembrane receptors (Zipfel 2008). PRRs consist of extracellular 
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leucine-rich repeats (LRR) or lysine motif (LysM) domains. This immune response is 

called PAMP-triggered immunity (PTI). Recognition of PAMPs produces several 

responses to limit the pathogens presence such as an increase of Ca2+ in the 

cytoplasm, the production of reactive oxygen species (ROS) that cause an 

extracellular oxidative burst, the accumulation of callose and stomatal closure. PTI 

also induces salicylic acid (SA) against biotrophs, and jasmonic acid (JA) and ethylene 

defense hormone in response to necrotrophic pathogens (Zhang et al. 2013). 

A second level of active plant immunity is called effector-triggered immunity (ETI), 

which perceives secreted effectors produced by pathogens that have suppressed the 

PTI response (Jones and Dangl 2006). During evolution plants have evolved specific 

disease resistance (R) genes that encode R proteins able to directly or indirectly 

recognize the presence or the activity of single effectors of invading pathogens 

(Thomma et al. 2011). The recognized effector is known as an avirulance (Avr) 

protein. This pairwise association, known as the gene-for-gene hypothesis, was 

introduced by Flor (Flor 1955) and is now firmly supported by the characterization of 

many R-Avr gene pairs (van der Hoorn and Kamoun 2008). Functional alleles are 

generally inherited as dominant characters; if a functional allele is lacking, the plant 

becomes infected because the recognition, and so the resistance, does not happen 

(Keen 1990). 

A hypersensitive response (HR), a form of programmed cell death localized to 

infection sites that increases resistance against biotrophic pathogens, is often 

associated with ETI (Zhang et al. 2013). The pathogens are arrested or killed in the 

dead plant cells because nutrients are not available. This response can increase the 

susceptibility to necrotrophic pathogens that can easily access nutrients from dead 

tissue (Poland et al. 2009). The indirect recognition of effectors is known as the guard-

hypothesis. This model explains how multiple effectors could be perceived by a single 

R protein and how relatively few R genes can target a broad spectrum of pathogens 

that attack plants (van der Hoorn and Kamoun 2008).   

R genes have been shown to encode two broad categories of leucine-rich-repeat 

(LRR) proteins that can be distinguished by protein domain structure and site of 

pathogen perception (Jones and Takemoto 2004). The R proteins  are cytoplasmic 

proteins, characterized by the presence of a conserved central nucleotide binding site 

(NBS) and a more variable C terminal LRR domain (Collier and Moffett 2009, McHale 

et al. 2006). NBS-LRR proteins have been shown to function in resistance by signaling 

only in response to the pathogen. A second category of R proteins is inserted in the 
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plasma membrane and minimally consists of an extracellular LRR domain and a 

transmembrane (TM) domain (Jones and Takemoto 2004).  Some of these 

transmembrane LRR proteins also have an intracellular protein kinase (PK) domain 

and belong to the larger class of receptor-like protein kinases (RLKs). The extracellular 

LRR domain of LRR-TM and LRR-TM-PK proteins is thought to function as the 

receptor for one or more extracellular pathogen-derived signals (Diener and Ausubel 

2005).  

The R genes resistance is also called qualitative resistance, whereas the other 

category of plant disease resistance is known as quantitative disease resistance 

(QDR) and is conferred by multiple genes of partial effect (Zhang et al. 2013). R genes 

usually confer high levels of resistance and are easy to manipulate for research and 

breeding improvement. However, they have some important limitations as the 

resistance can breakdown, caused by the strong selection and pathogen evolution. 

QDR is conferred by qualitative resistance loci (QRL) and is relatively broad in 

spectrum and robust against the pathogen evolution. QRL are involved in several 

biological activities in plants, such as the regulation of some morphological and 

developmental traits, the development of basal defense and the regulation of defense 

signal transduction (Poland et al. 2009).  

After some local infections, plants can develop a long-lasting enhanced resistance to a 

broad spectrum of pathogens throughout the plant. Systemic acquired resistance 

(SAR) and induced systemic resistance (ISR) are two forms of systematic resistance 

(Boller and Felix 2009), both effective against a broad spectrum of plant pathogens 

(Pieterse et al. 2009). Salicylic acid has been identified as an endogenous signaling 

molecule that acts during SAR development and the plant protein NPR1 is necessary 

to transduce the SA signal for SAR (Wang et al. 2005). ISR is typically induced by soil-

borne microorganisms and it is regulated by jasmonic acid- and ethylene- dependent 

pathways (Pieterse et al. 2009).  

 

Fusarium oxysporum  

Fusarium oxysporum Schelecht. is a ubiquitous soil-borne fungus that includes 

pathogenic and non-pathogenic strains (Appel and Gordon 1996). Pathogens can 

induce vascular wilt or root rot on a wide range of plants, causing severe crop losses 

(Olivain and Alabouvette 1999, Kroes et al. 1998). Pathogenic F. oxysporum also 

causes some human infections that can be superficial or limited to single organs 
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(Nelson et al. 1994) and disseminated infections in immunocompromised patients 

(Nucci and Anaissie 2007). All strains of F. oxysporum can be saprophytic (Leslie and 

Summerell 2006).  

Fusarium oxysporum produces three types of asexual spores: microconidia, 

macroconidia and chlamydospores (Nelson et al. 1981). In F. oxysporum 

macroconidia are multicelled, thin-walled with normally three septa and a short apical 

cell (Leslie and Summerell 2006). Macroconidia are falcate and are often produced in 

a structure called sporodochium on the surface of infected plants, but also in the aerial 

mycelium (Leslie and Summerell 2006). Microconidia have no septa and they can 

have different shapes: oval, elliptical or kidney shaped and are produced in false 

heads (Leslie and Summerell 2006). Chlamydospores have a thick wall and are 

produced in the hyphae or conidia through the condensation of their contents (Nelson 

et al. 1994). These asexual spores have an important part in the disease cycle of 

F.oxysporum: microconidia and microconidia are involved as secondary inocula, and 

chlamydospores survive a long time in the soil when a suitable host is not available 

(Ohara and Tsuge 2004). 

Fusarium oxysporum can be dispersed by many different means such as animals and 

wind, but also agricultural practices also play an important role in the dispersal of 

pathogenic strains by moving infected soil, water and by infected planting material or 

seed (Nelson et al. 1994). Asexual reproduction in F. oxysporum is done by 

microconidia and macroconidia while a sexual stage has never been observed (Kistler 

1997). 

The identification of F. oxysporum has commonly been based on morphological 

criteria such as the characteristic shape and size of microconidia and macroconidia, 

structure of conidiophores, formation and disposition of chlamydospores, colony color 

(Edel et al. 1997). On potato dextrose agar medium, strains produce mycelium that 

can have a highly variable color, from white to pale violet and it may be floccose, thin 

or abundant (Leslie and Summerell 2006).   

Isolates have been divided into more than 120 different formae speciales based on the 

host or group of hosts they attack (Armstrong and Armstrong 1981). A particular forma 

specialis (f. sp.) can be subdivided into physiological races based on their virulence to 

a set of differential host cultivars (Correll 1991). F. oxysporum strains have been also 

grouped into vegetative compatibility groups (VCGs) based on their capacity to form 

heterokaryons (Puhalla 1985). This group characterization is based on the genetic of 

the fungus, and can be helpful because only isolates of F. oxysporum closely related 
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genetically could be in the same VCG, and since F. oxysporum does not have a 

sexual stage, strains linked by clonal descent are in the same VCG (Kistler 1997).  

Many genetic markers such as isozymes (Bosland and Williams 1987), polymorphisms 

in mitochondrial DNA (mtDNA) (Jacobson and Gordon 1990, Kim et al. 1992), nuclear 

DNA polymorphisms (Assigbetse et al. 1994, Grajal-Martin et al. 1993) have been 

used to distinguish formae speciales and races of F. oxysporum. Phylogenetic studies 

suggest that some formae speciales in F. oxysporum are usually nonmonophyletic, 

and have originated independently during evolution (Baayen et al. 2000, O’Donnell et 

al. 1998). Researches have demonstrated that nonpathogenic strains of this fungus 

may become pathogenic by acquiring, through horizontal genetic transfer, 

pathogenicity chromosomes from pathogenic strains (Daboussi and Langin 1994, 

Jiménez-Gasco et al. 2010). 

Fusarium oxysporum is considered to be a hemibiotroph (Thaler et al. 2004) because 

the initial stages of interaction by this pathogen are thought to be biotrophic, but later 

stages resemble the lifestyle of necrotrophic pathogens (Kidd et al. 2011). 

The process of colonization and infection by F. oxysporum has been studied using 

light, fluorescence and electron microscopy (Di Pietro 2003, Lagopodi et al. 2002, Li et 

al. 2011). Dormant chlamydospores are stimulated to germinate (Nelson 1981). After 

germination of conidia, infection hyphae adhere to the host root surface and start to 

penetrate the host plant directly or through wounds (Bishop and Cooper 1983, 

Rodriguez-Gàlvez and Mendgen 1995), then the fungus moves to the vascular tissue 

developing xylem vessel elements. In infected xylem vessel elements, microconidia 

are produced that expand throughout the host plant (Nelson 1981). Brown 

discoloration is the first internal symptom that suggests F. oxysporum infection. The 

foliar symptoms in plants are vein-clearing, wilting, chlorosis and necrosis. The 

infected plants can become stunted and lose productivity, while in severe conditions 

can wilt and die (Nelson 1981). 

During root penetration and colonization, F.oxysporum secretes many cell wall-

degrading enzymes such as cellulases, xylanases, polygalacturonases, which permit 

the fungus access to the vascular system and then to diffuse through the xylem vessel 

(Roncero et al. 2003), but how these enzymes contribute to infection is not yet fully 

understood (Michielse and Rep 2009).  

Fusarium oxysporum is exposed to different plant defense responses (Di Pietro 2003, 

Michielse and Rep 2009). Recognition of the pathogen induces active defense 
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mechanisms including physical barriers, like the plant cuticle and cell wall barriers and 

the production of antimicrobial compounds such as beta-1,3 glucans and phenolics 

(Benhamou et al. 1994), which degrade the fungal cell walls (Mauch et al. 1988). 

These proteins and compounds could be induced in both susceptible and resistant 

plants, but the resistance response is due to the difference in timing and abundance 

(Swarupa et al. 2014). Fungal elicitors then induce the production of lignin and 

phenolic compounds (Mandal and Mitra 2007), that can strengthen the cell wall 

(Michielse and Rep 2009). 

In several crops, dominant plant resistance (R) genes have been found against host-

specific pathogenic races of F. oxysporum (Simons et al. 1998, Oumouloud et al. 

2008, Sharma and Muehlbauer 2007). In Arabidopsis Col-0 six dominant resistance to 

Fusarium Oxysporum (RFO) loci were observed and the locus RFO1 was identified 

that encoded a receptor-like kinase (Diener and Ausubel 2005). In tomato, six 

Immunity (I) loci were identified that are R-genes, which give resistance to different F. 

oxysporum f. sp. lycopersici races; these loci encode for proteins containing NBS-LRR 

domains (Sela-Buurlage et al. 2001). Fom-1 and Fom-2 are two dominant resistant 

genes identified in melon. The Fom-2 gene belongs to the NBS-LRR resistance genes 

(Joobeur et al. 2004). The gene-for-gene theory between F. oxysporum races and host 

cultivars is confirmed in tomato where a resistance gene I-3 resistance was found to F. 

oxysporum f.sp. lycopersici race 3, and an avirulence gene avr3 that breaks the 

resistance (Rep et al. 2005). 

Molecular markers and QTLs linked to Fusarium resistance genes have been 

identified in several crops (Wang et al. 2011, Ulloa et al. 2011, Lv et al. 2013) and they 

can be used in plant breeding through marker-assisted selection (MAS) to improve the 

selection of resistance to Fusarium. 

 

Fusarium yellows and Fusarium root rot in sugar beet  

Fusarium oxysporum has been reported to cause two devastating diseases in sugar 

beet, Fusarium yellows and Fusarium root rot (Harveson and Rush 1997). 

Fusarium yellows was first described by Stewart from symptomatic sugar beets in 

Colorado (Stewart 1931). The disease has been observed in the western United 

States for many years and now is becoming an increasing problem in many growing 

areas (Harveson and Rush 1997, Windels et al. 2005, Hanson 2006, Hanson and 

Jacobsen 2009). 



12 
 

The disease is characterized by foliar wilting and interveinal yellowing, with a vascular 

discoloration of the taproot (Stewart 1931). Foliar symptoms generally start in the older 

leaves as intervenial chlorosis (Franc et al. 2001). Often only half of the leaf will show 

symptoms first, followed later by the entire leaf (Franc et al. 2001). The leaves may 

change from yellow to brown (Hanson and Jacobsen 2009). On plants grown for seed 

it was reported that the seed stalk can be blighted (MacDonald and Leach 1976).  

Fusarium yellows does not cause external root symptoms (Hanson and Jacobsen 

2009). The internal symptoms are characterize from a brown discoloration in the 

vascular elements (Hanson and Jacobsen 2009) that in severe cases may spread to a 

rot of the vascular areas in the cortex (Hanson and Jacobsen 2009) 

Fusarium root rot, which shows the same foliar symptoms, is characterized by a black 

rot at the distal end of taproot (Martyn et al. 1989). The disease was first reported in 

Texas in 1989, and was one of the major causes of sugar beet yield losses in that 

state (Martyn et al. 1989). 

Both Fusarium yellows and Fusarium root rot can cause significant reduction in root 

yield, as well as reduced plant population, sucrose percentage and juice purity in 

affected sugar beet (Hanson and Jacobsen 2009). Disease development is favored by 

high temperatures (Harveson and Rush 1998) and in areas of fields that are low and 

compacted (Hanson et al. 2009).  

The causal pathogen of Fusarium yellows in sugar beet was identified as Fusarium 

oxysporum f. sp. betae (Fob) (Snyder and Hansen 1940, Ruppel 1991), whereas 

another forma specialis, F. oxysporum f.sp. radicis-betae is reported to be cause root 

rot (Harveson and Rush, 1998). 

Up to now numerous studies have been conducted to characterize the genetic 

diversity and evolutionary origin of F. oxysporum f. sp. betae, including vegetative 

compatibility grouping (VCG) (Harveson and Rush 1997), restriction fragment length 

polymorphism (RFLP) (Nitschke et al. 2009), random amplified polymorphic DNA 

markers (RAPDs) (Cramer et al. 2003), and comparisons of DNA sequences from 

conserved genomic regions (Hill et al. 2011). These techniques have been helpful to 

distinguish F. oxysporum f.sp. betae from other Fusarium spp., but it is still difficult to 

understand the pathogenic and phylogenic relationship between the F. oxysporum 

populations in sugar beet (Webb et al. 2012). Hill et al. (2011) grouped the Fob 

isolates in three clades based on the region where they were collected. The difficulty in 

categorizing isolates of Fob is also due to cross pathogenicity. In fact, Fob isolates can 
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infect other hosts, such as spinach (Spinacia oleraceae) (Armstrong and Armstrong 

1976), various weed species (MacDonald and Leach 1976) and common bean 

(Phaseolus vulgaris). Some F. oxysporum isolates from spinach can even cause 

Fusarium yellows in sugar beets (Hill et al. 2011).  

The use of resistant cultivars is an effective means to manage many diseases of sugar 

beet (Biancardi 2005) and genetic resistance is the primary instrument for controlling 

Fusarium diseases (Hanson and Jacobsen 2009). 

Fusarium oxysporum resistant sugar beet genotypes are known, but the genetic 

systems that control Fusarium diseases are still unclear. Larson et al. (2007) 

examined the protein changes associated with a resistant and a susceptible sugar 

beet to F. oxysporum, identifying some specific resistant and susceptible specific 

proteins. Therefore, is essential to develop resistant cultivar and the steps to achive 

this goal are: to conduct genetic studies of Fusarium resistance, to evaluate sugar 

beet varieties for resistance to Fob using different genetic backgrounds and to develop 

molecular markers linked to F. oxysporum resistant genes in sugar beet. 
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GENERAL AIMS 

 

Aims of the thesis were:  

 

(i) To screen a wide collection of sugar beet lines for Fusarium tolerance using 

different Fusarium oxysporum isolates under greenhouse conditions and 

identify resistant and susceptible lines. 

 

(ii) To study the host-pathogen interaction in different sugar beet breeding 

germplasm with Fusarium oxysporum. 

 

(iii) To identify molecular markers linked with the Fusarium resistance to use in 

marker assistant selection. 
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ABSTRACT 

Sugar beet (Beta vulgaris L.) is an important biennial arable crop for sugar and biofuel 

production grown in the temperate areas. It is derived from a wild beet (Beta maritima 

L.) but is relatively a new crop and the last type to be cultivated. Sugar beet breeding 

began on the early nineteenth century to mainly improve root and sucrose yield. 

Important progresses were also obtained during last century with the discovery of 

monogermity, male-sterility and genetic resistances to diseases. This manuscript 

presents the current state of the art of sugar beet breeding with an overview on 

achievements obtained with classical and molecular approaches. Among them, 

several linkage maps have been developed to identify molecular markers associated 

with resistance to biotic and abiotic stresses. The use molecular markers for assisted 

selection led to development of genotypes with higher adaptability to adverse 

environmental conditions. Transgenic breeding methods for sugar beet improvement 

for several traits as herbicide tolerant and rhizomania are also reported. Lastly, the 

manuscript reports the current knowledge on available genomic resources and its 

application in sugar beet breeding. Incorporation of genomics into conventional sugar 

beet breeding programs is necessary to continue the achievement of important yield 

progress in sugar beet. 

 

KEYWORDS: germplasm, wild beet, resistance traits, breeding methods, genomic 

resources 

 

INTRODUCTION 

 

Sugar beet, like chard, spinach beet, red beet and fodder beet is derived from a wild 

beet (Beta maritima L.) but is relatively a new crop and the last type to be cultivated 

(Coons 1936). Using mass selection, perhaps on fodder beet or natural hybrids of 

Beta maritima x fodder beets (Achard 1803, Knapp 1958), Achard obtained in 1802 

the "Weisse Schlesische Rübe", the first sugar beet variety (Fischer 1989). The sugar 

content (S%) (sucrose percentage of root) averaged about 7%, but further selections 

led to a rapid improvement and in 1850 the variety "Imperial Rübe" reached values of 

approximately 13%. Towards 1910, cultivated varieties had sugar contents similar to 
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the current value of 20% (Draycott 2006) and this progress was accompanied by 

outstanding improvements in sugar yield.  

In 1856 the first private center for beet selection was the KWS, established at 

Kleinwanzleben (Germany). Subsequently new private seed companies were 

estabilished. The list includes Van der Have (1879) in the Netherlands, Dippe (1850), 

Strube (1877) in Germany and Florimond Desprez (1856) in France. In the early 1900s 

various public research institutes started working on sugar beet selection, the first one 

was the Sugar Beet Experimental Station at Rovigo (Italy) founded by Munerati in 

1914. After some years, the USDA Stations came into operation and were obtained 

important results. Crossing sugar beet with Beta maritima, resulted in the identification 

of the first resistances to cercospora, curly top and later rhizomania (Biancardi et al. 

2012).  

Towards the mid-1800s, the French breeder de Vilmorin achieved significant progress 

in breeding using progeny selection (Bosemark 2006). Instead of evaluating and 

selecting single plants, as is done with mass selection, single offspring from parental 

cross was selected and tested. Lines showing the best root yield, sugar content, 

polarimetric degree (purity) and other useful traits were identified and seed from these 

improved lines was pooled to produce a superior gene pool. This method was used for 

traits with low heterotic effects (Bosemark 2006).  

Up to the early 1960's, the main objective of sugar beet breeding was the development 

of varieties with the maximum sugar yield at the lowest economic costs (Knapp 1958) 

through improvement of the weight and shape of the roots, sugar content, tolerance 

and/or resistance to diseases and bolting resistance.  

Around 1970 rhizomania was becoming a significant and widespread problem 

affecting sugar yields. This led to increased efforts to develop resistant varieties the 

first of which were released some years later. At the same time increasing attention 

was given to the qualitative traits of the roots in order to improve the sugar extraction 

rates in the factory. In addition to increasing sugar content, routine analysis for 

sodium, potassium, alpha-amino nitrogen, the main components that reduce the 

processing quality of roots, was introduced in breeding stations and sugar factories 

(Smith et al. 1977). 

Up to about 1960 the basic genetic structure of the first sugar beet varieties, apart 

from yield improvements, remained the same after which, thanks to the advances of 

breeding techniques, genetics and the cultivated varieties changed radically.  
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POLYPLOIDY 

 

Sugar beet cells normally have 18 chromosomes (2n), like Beta maritima (Bosemark 

and Bormotov 1971). In 1937, Blakeslee discovered the mutagenic properties of 

colchicine, an alkaloid that can modify the chromosome number during the mitosis 

(Acquaah 2009) and in the following year, Schwanitz produced the first tetraploid (4n) 

sugar beet, i.e. with double set of chromosomes (Schwanitz 1938, Rasmusson and 

Levan 1939). 4n families, compared with 2n families, have better root shape and fewer 

but larger leaves with shorter and stronger petioles (Bosemark 2006). Flowers, seed 

clusters and pollen grains are also larger. The negative aspects are a slower seed 

germination and root development and breeding 4n genotypes is more difficult and 

time consuming than breeding diploids (Bosemark 2006). 

In Europe, between 1951 and 1954, a number of polyploid multigerm varieties were 

produced crossing 2n and 4n lines, obtaining variable percentages of diploid, triploid 

and tetraploid seed. Triploid varieties, with heterosis effects, manifested intermediate 

morphological characteristics and were more productive than the other ploidy levels 

(Peto and Boyes 1940). Around the late 60’s, polyploid varieties were supplanted by 

the better yielding hybrid varieties.  

 

MONOGERM SEED 

 

Originally, cultivated sugar beet varieties were multigerm (Klotz 2005). Between two 

and five flowers fused together to create a multigerm seedball, called glomerule. When 

a glomerule was planted it resulted in the emergence of multiple seedlings very close 

together, that immediately started to compete for light, water and nutrients. Laborious 

and expensive manpower was required to manually thin the seedlings in order to leave 

approximately 10 isolated plants per square meter (Knapp 1958). To reduce costs and 

work ,“technical” monogerm seed was introduced, obtained by machines able to 

separate the glomerules in their monogerm components. Using this method, hand 

thinning was reduced, but not completely eliminated, because some percentage of bi-

germ seed with lower germination ability was still present (Knapp 1958).  

In 1948 genetic monogermity was discovered by Savitsky, an American breeder of 

Russian origin. Among flowering beets of the variety Michigan 18, he found five plants 
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bearing single flowers, which produced seed with just one embryo (Savitsky 1950). 

The plant carrying monogerm flowers could be distinguished by the presence of either 

a lateral branch or a single flower, but never both as normally happens in a multigerm 

plant (Biancardi and Skaracis 2005). Selection led to the development of genetic 

monogerm line SLC 101, that some American and European seed companies crossed 

with their multigerm genotypes to obtain new monogerm lines adapted to the 

respective cultivation environment after 2-3 cycles of selection (McFarlane 1971). 

Initial problems caused by poor germination, sugar yield, and diseases resistance 

were reduced or overcome by means of backcrosses (Biancardi and Skaracis 2005). 

Monogermity is controlled by the recessive allele mm, which in turn is influenced by 

some modifier genes that tend to slightly reduce the trait expression (Knapp, 1967). 

Currently, only genetic monogerm varieties are used, except in countries where the 

field emergence is difficult and/or manpower costs are still low, such as in some areas 

of Northern Africa and China. 

 

MALE STERILITY 

 

The release of completely hybrid varieties became possible after the discovery of 

cytoplasmic-genetic male sterility (CMS) (Owen 1945). Male sterile plants are 

characterized by flowers with white anthers that do not contain pollen. This trait 

derives from the interaction of two recessive genes xx zz with a sterile cytoplasm S. 

These plants are known as cytoplasmic male steriles (CMS) and to produce male 

sterile progeny it is necessary to cross CMS plants with a maintainer line (called an O-

type) which possesses the recessive genes xx zz, but has a normal cytoplasm (N). In 

fact, if the O-type individuals are selfed, they generate 100% fertile plants, whereas 

when crossed with CMS plants they produce 100% sterile plants. To develop the O-

types and their equivalent CMS, the O-types are selfed several times and backcrossed 

several times with a CMS line (Bosemark 2006).  

Seed production of monogerm hybrid varieties is more complicated than for open 

pollinated or triploid varieties. Essentially, CMS parents (usually an F1CMS parent) are 

crossed with a selected pollinator. Seedlings of both CMS and pollinators are 

established in a nursery in August for vernalisation through the following winter. The 

seedlings, known as steckles, are lifted from the nursery and transplanted in the seed 

production field in the following February-March, generally in a pattern of two rows of 
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pollinators to every six rows of CMS seed bearers. A 3:6 ratio may also be used. The 

transplanting costs can be eliminated sowing pollinator and CMS directly in the seed 

production field. After flowering, the pollinators are eliminated, the seed on the CMS 

plants is allowed to mature and is harvested around the end July. It is sold as a 

commercial variety in the following spring after processing and appropriate quality 

checks in seed factory. Usually the seed is pelleted to protect against pests and some 

fungal diseases as well as improving uniformity of sowing in the field (Winner 1993).  

An alternative type of sterility is genetic nuclear male sterility (NMS), which is 

controlled by the expression of a single recessive gene a (Owen 1952). Plants with an 

aa configuration are sterile and phenotypically identical to CMS plants. NMS is used 

only in certain breeding procedures because it is not suited for commercial seed 

production (Bosemark 1971). 

The release of completely hybrid varieties became possible after the discovery of CMS 

(Owen 1945). The first monogerm hybrid varieties used in Europe were triploids and 

showed a 10% improvement in yield over their contemporary diploid ones. Moreover, 

in the quantitative traits, they showed stronger resistance to disease (Nakamura et al. 

1992) as has been verified for Rhizoctonia (Hecker and Ruppel 1976) and Cercospora 

(Skaracis and Smith 1987). In the last two decades triploid varieties have gradually 

disappeared, mainly due to the more efficient breeding procedures possible using 

diploid genotypes.  

 

SELF-STERILITY AND SELF-FERTILITY  

 

Sugar beet is an allogamous and outcrossing species due to the combined actions of 

protandry and a complex gametophytic self-incompatibility system (Panella and 

Lewellen 2007). Therefore normal families are usually self-sterile (or self-

incompatible), a character that reduces or avoids inbreeding through self-fertilization 

(Bosemark 1993). Self-sterility is usually caused by limited growth of the pollen tubes 

inside the pistils preventing fertilisation of the egg (Savitsky 1950). However, other 

physiological mechanisms that also ensure self-sterility are the death of zygotes or the 

unusual growth and degeneration of embryos. Larsen (1977) established that the self-

sterility in sugar beet is controlled by four gametophytic S-loci with complementary 

interaction, i.e. four S genes in the pollen have to match, in allelic form, genes in the 

pistil to prevent self-fertilization. Self-sterility was an important trait used to enhance 
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and maintain heterosis in multigerm varieties before the discovery of male sterility 

(Owen 1942). 

Self-sterility is a rather unstable character, especially under particular climatic 

conditions or during the late flowering (Owen 1942, Bosemark 1993). Indeed, in high 

or low temperatures normally self-sterile plants can produce self-fertile seed. This 

pseudo-compatibility, due to the breakdown of the gametophytic self-incompability 

system is still not completely understood (De Biaggi 2005). It was noted that putting 

the self-sterile plants under isolation in a temperate environment as found in England, 

70% of plants always produce few seeds. If the same operation is repeated in warmer 

environments, such as Italy, where the temperature within the isolators can reach 35-

40 °C, the percentage of plants that do not produce selfed seed is significantly 

reduced. 

Interestingly self-fertility, controlled by the dominant self-fertility gene SF (Owen 1942), 

also exists in sugar beet and was demonstrated in the monogerm line SL101. 

Therefore plants homozygote or heterozygous for SF do not cross with other plants 

(Savitsky 1950) and even under field condition self-fertile sugar beet are able to 

produce 90-95% of selfed seed. In breeding works self-fertility has been used with 

monogenic male sterility to develop recurrent populations (Bosemark 1971). 

 

GENETIC RESOURCES 

 

Early sugar beet breeding programs focused on developing germplasm characterized 

by high productivity. As production spread to different parts of the world new diseases 

arose, compromising production (Panella and Lewellen 2007). Few source of 

resistance were known for these diseases and breeders started to seek disease and 

insect resistance from exotic and wild beet (Panella and Lewellen 2007).  

All species belonging to the section Beta, including B. vulgaris ssp. maritima, known 

also as sea beet, are cross-compatible to different degrees allowing the introduction of 

genetic material from one beet species to another (Bartsh 2010). Wild beet 

populations have a wide geographical distribution along the northern Atlantic coastline, 

Mediterranean basin and coasts in northern Europe (Letschert et al. 1994). At the 

beginning of the 20th century wild (Beta vulgaris ssp. maritima) germplasm was 

introduced into the sugar beet breeding pool. The first successful transfer of disease 
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resistance was obtained by Munerati (1913) when he back-crossed a wild beet 

population from Po estuary with sugar beet to introduce resistance to Cercospora 

beticola. This germplasm has been widely used in several sugar beet breeding 

programs to obtain Cercospora resistant varieties (Biancardi et al. 2012). 

In the 1960s the innovations in sugar beet breeding, namely the introduction of a 

single source of CMS and limited sources for monogermity improved production but 

contributed to a loss of genetic variability. Crossing with B. maritima was a helpful tool 

to increase genetic diversity and reduce the potential bottleneck (Biancardi et al. 

2012). Since the 1980s several Beta germplasm collections were made and evaluated 

for productivity and disease resistance to improve our understanding of the genetic 

resources available in the wild germplasm (Doney and Whitney 1990, Frese et al. 

2001, Luterbacher et al. 2005). The first varieties to show resistance in rhizomania 

diseased fields comprised material of Italian origin likely to be derived from Munerati’s 

genotypes which also contained good Cercospora Leaf Spot (CLS) resistance 

(Biancardi et al. 2002). When rhizomania was identified in California, several Beta 

genetic resources were screened and the second resistance gene, Rz2, was found in 

a wild beet accession WB42, collected in Denmark (Scholten et al. 1996).  

Successful transfer of disease resistance from wild beet to sugar beet have been 

obtained for virus yellows, beet mosaic virus, beet curly top virus and powdery mildew 

(Biancardi et al. 2012, Luterbacher et al. 2004). Beta germplasm screening has been 

done to identify lines with genetic resistance to nematodes and resistance sources 

have been introgressed into sugar beet (Savitsky 1975, Panella and Lewellen 2007). 

Introgressing genes from wild relatives can be difficult because of associations with 

adverse traits such as the annual flowering life cycle. Poor root shape that interferes 

with harvesting operations, high fiber contents, elongated crowns, presence of red 

pigment, low sugar content and low processing quality (Biancardi et al. 2012). Several 

backcrosses in combination with recurrent selection are needed to eliminate 

undesirable traits closely linked to the gene for the desired trait. It essential to identify 

and protect Beta genetic resources to conserve the genetic diversity that could be 

used in future sugar beet breeding programs (Frese et al 2001) as well as developing 

facilities for the conservation and protection of their natural ecosystems.  
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BOLTING RESISTANCE 

 

Sugar beet has a biennial life cycle where the first year is characterized by a 

vegetative phase where the roots produced are  harvested in autumn (Biancardi et al. 

2005). Usually 10 to 14 weeks after sowing and in conditions of increasing day length, 

some beets may initiate the reproductive stage, characterized by shoot elongation 

(bolting) and flower development. Bolted plants reduce harvestable sugar yields 

especially where the percentage of bolted plants is greater than 1-2%. Bolters are also 

characterized by woody stems and fibrous roots that cause problems during 

harvesting operations (Bosemark 2006). Today these conditions are quite rare and the 

normal bolting percentage is less than 0.05%. 

Bolted sugar beet does produce viable pollen and seeds in their first year of life (Abou-

Elwafa et al. 2012). These contribute to the future weed beet population and need to 

be prevented and controlled. 

The annual growth habit is controlled by the dominant bolting B gene as described in 

commercial varieties by Munerati (Munerati 1931, Owen 1954). Both environmental 

and genetic factors can affect expression of the gene B (Boudry et al. 1994). In fact, in 

sugar beet homozygous for the B gene, bolting is initiated under long day period, while 

in heterozygous plants there is a more complex response to environment, and a period 

of vernalisation is also necessary to induce flowering (Büttner et al. 2010). Two 

additional loci, namely B2 and B4, were recently identified that are associated to 

bolting with a dominant action (Abou-Elwafa et al. 2012, Büttner et al. 2010, Hohmann 

et al. 2005). Gene B2 acts epistatically to B and for both a photo-thermal induction is 

necessary to produce bolting in homozygous recessive beets.  

The life cycle of wild beets depends on latitude. In a mediterranean climate they are 

prevalently annual and vernalization is not required for flowering. In northern areas 

wild beet is mainly biennial and needs vernalization for flower induction (Melzer et al. 

2014). Problems with bolting can be addressed through mass selection techniques to 

identify individual plants resistant to bolting. These are then used in progeny tests 

(McFarlane 1971). Bolting sensitivity is determined by sowing seed in the field 2-3 

weeks earlier than normal to stimulate vernalization. In greenhouses, this effect is 

obtained with adapted photo-thermal treatments (Bosemark 1993). 

Under adequate selection pressure, bolting resistance in sugar beet has been 

considerably improved, and in regions where cold temperature are possible after 
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emergence, sowing time has been anticipated in order to lengthen the production 

cycle (Westerdijk and Tick 1991). 

 

BIOTIC AND ABIOTIC RESISTANCES 

 

Curly top 

 

Curly top of sugar beet is caused by Beet curly top virus (BCTV), a single stranded 

DNA geminivirus that can cause severe and widespread losses in semi-arid areas 

(Strausbaugh et al. 2007). Typical symptoms are the leaf curling, discoloration, and 

stunting, followed by the death of the young seedling under severe infections 

(Strausbaugh et al. 2007). The disease is vectored by the beet leafhopper Circulifer 

tenellus. Management of the virus is difficult due to the wide host range of curly top 

virus and the high presence of the leafhopper in the infected environments 

(Wintermantel and Kaffka 2006). Effective resistance was observed following mass 

selection of roots in highly infested fields (Coons et al. 1931) and in 1933 the first 

resistant open-pollinated cultivar, designated US1, was released for commercial 

production (Coons 1949). Several inbreeding and progeny testing cycles were 

conducted to improve the varieties and to obtain BCTV resistant varieties the breeders 

have selfed genotypes with the SF gene and the NMS (Owen 1952). 

Abegg and Owen (1936) described a partially dominant genetic factor C, linked to the 

gene for crown color R. Murphy and Savitsky (1952) indicated an additive resistance in 

F1 hybrids under moderate BCTV infection. In case of severe BCTV attacks on 

susceptible genotypes, the genetic nature of resistance appeared more complex and it 

was suggested that two or more genes were involved in the BCTV resistance 

(Savitsky and Murphy 1954).  

Resistance to curly top is quantitative and combining this with resistance to other 

diseases is difficult (Strausbaugh et al. 2006), but in the 1990s seed companies 

incorporating resistance to BNYVV into commercial hybrids maintained desired levels 

of curly top resistance (Camp et al. 2005). The genetic control of the disease was 

successfully integrated with, and in some cases replaced by, insecticide treatments 

against the vector, but even here a combination of resistance with insecticides has 

only shown a reduction of disease incidence and in case of young beet even the 
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resistant varieties can be significantly infected and damaged (Strausbaugh et al. 

2008). Further improvement of the BCTV resistance is required to improve varieties 

and reduce the use of chemicals.  

 

Rhizomania 

 

Rhizomania, the most important disease in sugar beet growing areas, is caused by 

Beet necrotic yellow vein virus (BNYVV) transmitted to sugar beet roots by the soil-

borne fungus Polymyxa betae, that were firstly identified in Italy in 1958. Rhizomania is 

characterized by an extensive proliferation of the rootlets giving the root a beard-like 

appearance that causes a reduction of taproot development and diseased beets show 

necrotic rings in the root tip section. The disease causes a significant loss in sugar 

yield and a reduction in processing quality. The virus can cause losses of up to 80% in 

sugar yield (McGrann et al. 2009) and in recent decades is widespread in all main 

growing areas (McGrann et al. 2009). Immuno-enzymatic tests (ELISA) are used to 

easily quantify the BNYVV content in roots. The virus genome has been studied and 

molecular analysis were carried out for strain differentiation. Three distinct strain 

groups of BNYVV were identified (A, B and P) with geographical and pathogenic 

distinctions among the strains (Koenig and Lennefors, 2000, Schirmer et al. 2005).  

Strain groups A and B were revealed by restriction fragment length polymorphism 

(RFLP) (Kruse et al. 1994, Suàrez et al. 1999) and the type P was later identified by 

single-strand conformation polymorphism (SSCP) analysis (Koenig et al. 1995). 

Multiplex RT-PCR techniques have been developed for the simultaneous detection 

and characterization of BNYVV (Meunier et al. 2003, Ratti et al. 2005). Types A and B 

are distributed worldwide and contain only four RNA species and group P, has been 

identified in Japan, France (near Pithiviers) and UK, and contains RNA 5 (Tamada et 

al. 1989, Kruse et al. 1994, Koenig et al. 1995, Koenig and Lennefors 2000). Partial 

and complete sequencing analyses have been carried out in all the BNYVV types and 

variations of 3-6% between A and B types have been identified, whereas among 

isolates within A and B types the nucleotide sequences are highly conserved (Koenig 

and Lennefors 2000). 

The first source of rhizomania resistance was derived from Alba P, a cercospora leaf 

spot (CLS) resistant germplasm, multigerm variety (Biancardi et al. 2002) which 

showed notably higher field performance in infected conditions even before the 

http://www.sciencedirect.com/science/article/pii/S0166093404003350#bib12
http://www.sciencedirect.com/science/article/pii/S0166093404003350#bib12
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discovery of the disease vectors was noted (Bongiovanni and Lanzoni 1964). The 

resistance was classified as quantitative (Lewellen and Biancardi 1990). In 1985, a 

diploid monogerm hybrid that manifested a considerable resistance, was released by 

SES Italy (De Biaggi 1987). Later, the Holly Sugar Company isolated the “Holly” 

source of resistance. The two sources of resistance were recognized as monogenic 

and dominant and controlled by the same gene, Rz1 (Biancardi et al. 2002). Only a 

few cycles of selection were sufficient for improving this highly heritable trait (Lewellen 

and Biancardi 1990). The single dominant resistant gene was easily introgressed into 

different breeding material and several rhizomania resistant cultivars were obtained 

(Scholten and Lange 2000).  

Resistance to rhizomania has also found in several wild accessions, as WB41 and 

WB42 originating from Denmark and WB258 from Italy (Panella and Lewellen 2007). 

The resistant gene, named Rz2, identified in B. vulgaris subsp. maritima WB42 

population, was closely linked to the Rz1 gene. Greenhouse tests were carried out to 

study the inheritance of resistance to BNYVV from the Holly source and WB42 using 

segregating F2 and BC families. Resistance from Holly was simply inherited, whereas 

inheritance of resistance to BNYVV in WB42 was more complicated. The resistance is 

may be based either on one (or more) dominant major gene(s) with distorted 

segregation or on two complementary unlinked dominant genes, both of which 

required for resistance (Scholten et al. 1996). A resistance gene, Rz3, with incomplete 

penetrance, was reported linked to Rz1 and Rz2 (Gidner et al. 2005) on chromosome 

3. In the same chromosome have been identified other two novel resistance genes, 

Rz4 and Rz5 (Grimmer et al. 2007, Grimmer et al. 2008).  

BNYVV resistance-breaking strains has been first reported in the Imperial Valley of 

California, Usa (Liu et al. 2005), and the combination of Rz1 + Rz2 was showed lower 

virus concentration in BNYVV resistance-breaking strains infection than plants with 

Rz1 or Rz2 alone (Liu and Lewellen 2007). Overcome of Rz1 resistance has been also 

found in several areas in Europe where Rz1- resistant sugar beet plants presented 

severe BNYVV symptoms in fields (Koenig et al. 2008). Greenhouse and field tests 

showed that the Rz1-resistant genotype and the susceptible genotype were both 

highly infected by the resistance-breaking strain, whereas the plants carrying both Rz1 

and Rz2 was still efficient against the strain (Bornemann et al. 2014). It was observed 

that plants were more tolerant when Rz1 was in combination with Rz2 or Rz3 then 

alone (Gidner et al. 2005). For this reason, it is essential to pyramid several resistance 

genes with different mechanisms of resistance in commercial hybrids to have higher 
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levels of resistance and to improve the durability of a single dominant major gene for 

resistance (Lewellen and Biancardi 1990). 

 

Cercospora Leaf Spot 

 

Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, is a disease 

that damages leaves in humid temperate cultivation areas. It is characterized by 

circular spots that start in the older leaves (Holtschulte 2000). The infection develops 

necrotic lesions that enlarge and cause a more or less rapid destruction of the leaves. 

The disease can lead to a reduction in root weight, and sugar content but an increase 

of impurities and a loss of extractable sugar (Smith and Martin 1978).  

Genetic resistance to CLS has been described as polygenic and quantitative (Smith 

and Gaskill 1970). The discovery of CLS resistant genotypes first derived from crosses 

initiated around 1908 using sea beet collected along the coast of the Po River Delta 

(Munerati 1931). Some resistant lines were released after various backcrossing to 

reduce the undesirable traits of sea beet and over the years diverse commercial 

varieties were produced thanks to continuous selections in Italy and in the USA 

(Panella and Lewellen 2007).  

CLS resistance is controlled by at least 4 or 5 major resistance genes with variable 

effects depending on the intensity of infection (Weiland et al. 2004). CLS resistance 

still shows a partial control of the disease, mainly due to the negative correlation 

existing with the yield performance (Smith and Campbell, 1996) and the difficulty to 

introgress this multigenic resistance into high yielding sugar beet varieties. Several 

fungicides proved quite effective in limiting the disease. Disease control is achieved 

with an integrated approach of fungicides and resistance even in severe disease 

conditions (Skaracis and Biancardi 2000). 

 

Beet Cyst Nematode 

 

Cyst nematode (Heterodera schachtii) is considered one of the most destructive soil-

borne pests of sugar beet. Under high temperature and/or intense light conditions the 
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infected crop develops weakly and the leaves become wilted. Nematode can be 

managed using nematocides, with crop rotation and resistant varieties (Uehara et al. 

2010). Control of nematodes in sugar beet is becoming increasingly difficult. In fact, 

intervals of at least four years between beet crops is necessary to reduce the 

nematode multiplication rate, but this timespan is not always enough and chemical 

control is severely restricted (Lilley et al. 2007). The most efficient control method is 

the use of resistance varieties (Uehara et al. 2010). 

Nematode resistance has not been found within B. vulgaris but the trait was identified 

in the B. procumbens section (Biancardi et al. 2012). Interspecific hybridization with 

Beta procumbens for selecting resistance was successful (Savitsky 1960, 1975, Yu 

2005). Various nematode-resistant monosomic addition lines in diploid B. vulgaris 

were identified, each carrying gene Hs1pro-1 on an extra chromosome fragment coming 

from B. procumbens (Sandal et al. 1997) and homozygous resistant diploid sugar beet 

lines have been developed from these after recurrent selection (Heijbroek et al. 1988, 

Lewellen 1995). The isolation of the gene Hs1pro-1 enhanced the possibility to transfer 

the resistance to high yielding varieties (Cai et al. 1997). However, commercial 

varieties containing this translocated fragment often exhibit negative phenotypic 

effects in the absence of severe nematode infections (Jung and Wyss 1999). 

Polygenic recessive resistance to cyst nematode was found in B. maritima and several 

sea beet accessions with partial resistance were crossed with sugar beet (Panella and 

Lewellen 2007). The bulked F2 were also subjected to mass selection at Salinas under 

rhizomania conditions to produce a broadly based sugar beet x sea beet population 

called R22 and only in a later stage was resistance of this line to beet cyst nematode 

suspected. Greenhouse tests determined the superior performance of R22, showing 

sugar yield was significantly inversely correlated with cyst counts (Lewellen and 

Pakish 2005). 

Varieties carrying the resistance derived from Beta procumbens and Beta maritima 

have been released in USA and Europe and under field conditions, partial resistance 

demonstrated by a considerably reduced number of cysts has been reported (Lewellen 

and Pakish 2005)  
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Fusarium yellows and Fusarium root rot 

  

Fusarium yellows and Fusarium root rot are caused by the ubiquitous soil-borne 

fungus Fusarium oxysporum (Harveson and Rush, 1997). The disease can cause 

significant reduction in root yield, sucrose percentage and juice purity in affected sugar 

beet (Hanson and Jacobsen 2009).  

Typical symptoms are foliar wilting and interveinal yellowing, with vascular 

discoloration of the taproot for Fusarium yellows (Stewart 1931) and black rot at the 

distal end of the taproot for plants affected by Fusarium root rot (Martyn et al. 1989).  

Fusarium yellows was first described in 1931 from symptomatic sugar beets in 

Colorado (Stewart 1931). The disease has been observed in the western United 

States for many years and now it is becoming an increasing problem in many growing 

areas (Harveson and Rush 1997, Windels et al. 2005, Hanson 2006, Hanson and 

Jacobsen 2009). 

Sugar beet genotypes resistant to Fusarium oxysporum are known, but up to now 

there are no genetic studies of Fusarium resistance although Larson et al. (2007) have 

examined the protein changes associated with sugar beet resistant and susceptible to 

Fusarium oxysporum. 

It is essential to develop molecular markers linked to Fusarium oxysporum resistant 

genes in sugar beet to conduct marker assisted selection (MAS) to overcome this 

increasing problem. 

 

Abiotic stresses 

 

The improvement of resistance and tolerance against drought, cold, heat, soil salinity 

etc. have been attempted by several breeders using different approaches. 

Considerable levels of genetic variability were observed in presence of these stresses, 

despite the environmental interactions (Ober and Luterbacher 2002, Stevanato 2005), 

and in some wild beets resistance traits were observed (Luterbacher et al. 1998). 

For example, drought is a serious problem that can cause severe yield losses in semi-

arid and arid region (Sadeghian et al. 2000) and between 10-30% losses in Europe 
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(Ober 2001, Jones et al. 2003). Sugar beet shows some resistance to dry conditions, 

likely because it derives from sea beet, but the potential breeding value for improving 

drought resistances is still unexploited due to the difficulties in transferring and 

introgressing this trait on high yielding germplasm. Drought tolerant varieties are 

important to maintain yield in different environments across years (Ober et al. 2005) 

and positive interaction between variety, yield and water availability has been found 

(Pidgeon et al. 2006). Several traits, such as leaf weight, transpiration rates and the 

succulence index were adopted to select tolerant genotypes (Ober et al. 2005), but 

they are controlled by unknown genetic factors. Similarly, for cold resistance, some 

degree of variance was detected in sugar beet varieties (Dix et al. 1994) and 

according to Wood et al. (1952), resistance to cold and to CLS appeared correlated, 

but until now no real improvement regarding the resistance to cold has been reported 

in literature. In the southern cultivation areas, temperature and light intensity are 

frequently excessive for sugar beet. Selection for improved tolerance of heat stress 

have been tried by analyzing the leaves for chlorophyll fluorescence (Clarke et al. 

1993, Srivastava 1996), but no real progress seems to have been achieved. Salinity is 

another increasing problem in several growing area and sugar beet show useful 

genotypic variation for tolerance (Ober and Rajabi 2010). Breeders have still to 

develop effective breeding systems to contrast the increasing stresses caused by 

global climate changes. 

 

Yield traits and processing quality 

 

Sugar yield is the main trait for growers and it is defined by the root weight per hectare 

and the sucrose percentage present in those roots (Stich et al. 2008). The inheritance 

of sugar content was detailed by Savitsky (1940), who suggested two to four major 

genes were involved in the control of sucrose percent from crosses between divergent 

types such as sugar beet (15–20% sucrose), fodder and red beets (3–12% sucrose 

each) or chard types (12–15% sucrose). Further experiments have confirmed that 

sucrose percentage is a quantitatively controlled trait with high heritability, but strongly 

affected by the environment (Trebbi and McGrath 2003).  

Sugar quality is determined by sucrose concentration and the concentration of soluble 

non-sucrose compounds (sodium, potassium and amino-nitrogen) that complicate the 

sucrose crystallization. There is a high, but negative correlation between sugar content 
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and root weight. Sugar content is a trait with additive variance with little expression of 

heterosis or dominance (Smith et al. 1973), while for root yield there is a non-additive 

variance (Campbell 2002). The non-sucrose compounds have a positive correlation 

with each other and root yield, but a negative correlation with sucrose concentration 

(Campbell 2002), and for that reason breeding to improve sugar quality is long and 

complicated process. In some cases, the non-sugar components concentration in 

the roots can be reduced by only a few cycles of mass selection (Powers et al. 1963, 

Smith et al. 1973, Smith and Martin 1989), suggesting that additive genetic variance is 

involved in determining the main factors of processing quality. Many of the traits that 

influence quality are under genetic control, but the effect of environment, cultural 

practices, storage conditions and so on, frequently have a greater impact (Campbell 

2002).  

Some anatomical and morphological traits of the roots are associated with processing 

quality influencing the harvest operations and the factory work (Bosemark 2006). 

Selection of hybrids with smooth root (with reduced or without the two vertical grooves 

and with smooth skin) lowers the amount of soil carried to the factory, that can cause 

damage during the slicing and diffusion phases (Tsialtas and Maslaris 2010). Smooth 

root varieties, with improved root shape and reduced crown dimension, derived from 

hybrids between sugar beet and garden beet (Panella and Lewellen 2007), were 

developed through repeated cycles of mass selection (Mesken and Dieleman 1988, 

Saunders et al. 1999). 

Sugar beet breeders are also interested in traits related to seed multiplication of 

commercial varieties. Production of high quality seed is essential since seed with high 

germination significantly influences the field emergence and uniformity. This trait in 

combination with vigour of seed and seedling has significant effects on sugar yield 

(Biancardi et al.2010). The seedlings need to develop quickly and the leaves have to 

filled in the space between rows as soon as possible with a uniform plant density to 

increase the amount of light intercepted (Biancardi et al.2010) and reduce 

development and competition of weeds (Paolini et al. 1999). 

 

MOLECULAR BREEDING ACHIEVEMENTS AND FUTURE PERSPECTIVES 

 

Around 1990, sugar beet breeding started to be assisted by the molecular biology 

techniques, which made selection easier and more certain (Skaracis 2005). Molecular 
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markers (polymorphism at the molecular level) are used to create genetic linkage 

maps, genotyping and marker-assisted selection (MAS) (Biancardi et al.2010). 

 

Genetic linkage maps 

 

Genetic linkage maps are a powerful tool in plant breeding. Linkage maps represent 

the position and the relative genetic distance between polymorphic traits along 

chromosomes (Collard et al. 2005), Molecular markers are developed to detect 

polymorphisms, define the genetic distance between the traits and identify 

chromosomal locations of genes and quantitative trait loci (QTLs) associated with the 

traits of interest (Mohan al. 1997). Genetic linkage maps are based on the principle 

that genes and markers can segregate during meiosis and if they are close together, 

they can be transmitted together to the progeny more frequently than genes or 

markers that are more distance (Collard et al. 2005). A segregating population from 

parents that differ for the traits of interest are needed for the construction of linkage 

maps. 

One of the first linkage maps in sugar beet was based on RFLP (Restriction Fragment 

Length Polymorphism) markers as reported by Pillen et al. (1992). The map included 

115 markers (108 RFLP markers, 6 isozyme and 1 morphological trait) that covered 

789 cM. Later it was extended using 117 markers (168 RFLP markers, 7 isozymes and 

2 morphological traits) distributed over 1057.3 cM (Pillen et al. 1993). In both maps, 

markers was distributed over 9 linkage groups that correspond to the haploid 

chromosome number of sugar beet.  

RAPD (Random Amplified Polymorphic DNA) markers were used for the construction 

of a genetic map in sugar beet by Uphoff and Wricke in 1995. The map included 85 

RAPD markers, 5 isozymes and genes for nematode resistance, annual flowering and 

hypocotyl colour and covered 738 cM. 

Based on the linkage map of Pillen et al. (1993), an integrated map was built using 

120 AFLP (Amplified Fragment Length Polymorphism) and 207 RFLP markers that 

allowed the development of a high-density map (Schondelmaier et al. 1996). The 

markers were distributed over 9 linkage groups, covering 621 cM. A SSR (Simple 

Sequence Repeats) based linkage map has been constructed where 23 markers have 

been assigned to each of the 9 linkage groups (Rae et al. 2000). ESTs (Expressed 
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sequence tags) have been used to develop a functional genetic map of sugar beet 

(Schneider et al. 2002), since using EST collections and QTL mapping is possible to 

identify genes. A linkage map from a sugar beet x table beet population has been 

constructed using 331 markers (3 morphological, 25 RFLP, 242 AFLP 46 SSR, 14 

EST and 1 STS markers) that covered 526.3 cM among the nine linkage groups 

(McGrath et al. 2007). Recently, SNPs (Single Nucleotide Polymorphism), that are co-

dominant markers and highly abundant in the sugar beet genome, have been used to 

develop high density marker maps (Schneider et al. 2001, Mohring et al. 2004, 

Schneider et al. 2007). Schneider et al. (2001) sequenced 37 gene fragments 

developed from ESTs in two inbred sugar beet lines, detecting a frequency of one 

SNP every130 nucleotides. One SNP every 72 bp in 315 EST-derived loci was found 

in a panel of 13 lines of sugar beet (Schneider et al. 2007).  

 

Identification of molecular markers 

 

Molecular markers can be used to identify desirable traits at a very early 

developmental stage, saving considerable time and accelerating the breeding work 

(Mohan et al. 1997). 

Identification of a DNA marker linked to the Rz1 gene resistant to rhizomania was first 

reported by Barzen et al. (1992). The gene was mapped on linkage group 4 

associated to a RFLP marker located at 6.7 cM from the Rz1 locus. Later, 12 RAPD 

markers linked to the gene were selected by bulk segregant analysis (BSA) and 

mapped on the same linkage group (Barzen et al. 1997).  

Several studies have been conducted to identify molecular markers linked to the Rz1 

gene for resistance to rhizomania (Pelsy and Merdinoglu 1996, Scholten et al. 1996, 

1997). Resistant and susceptible plants were crossed to obtain segregating families 

and the plants were inoculated in greenhouse with infected soil (Scholten and Lange 

2000). The second dominant resistant gene, Rz2, was mapped with RAPD and STS 

(Sequence Tagged Sites) markers, and it is located about 20 cM from Rz1 (Scholten 

et al. 1997, 1999). Other major resistant genes have been found linked to BNYVV 

resistance. The resistance in sea beet accession WB41 has been studied using AFLP 

markers and was identified a major rhizomania resistance gene on chromosome 3, 

which was called Rz3, distant 5 cM from Rz1 (Gidner et al. 2005). Rz1, Rz2 and Rz3 

are all located on chromosome 3 and because of Rz2 and Rz3 derived from two sea 
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beets both collected in Denmark at almost the same period it is not clear if they are the 

same gene or not. Studying a segregation population from composite cross of B. 

maritima accessions with sugar beet with BSA using AFLP, SNP and RAPD markers 

allowed to identify a major QTL for BNYVV resistance, named Rz4, that explained 

78% of the phenotypic variation and was located on chromosome 3 (Grimmer et al. 

2007). The Rz5 was identify in a mapping population using SNP and AFLP markers 

from the Italian WB258 accession and mapped Rz4 and Rz5 were located to 6.9 cM 

and 6.0 cM respectively on chromosome 3 both explaining more than 80% of the 

phenotypic variance. It was suggested that Rz1, Rz4 and Rz5 represent alleles of the 

same gene (Grimmer et al. 2008). Several bacterial artificial chromosome (BAC) linked 

to resistance gene analogues (RGAs) have been mapped on chromosome 3 using a 

segregating population for rhizomania resistance (Lein et al. 2006) and has been 

observed that 5 major gene clustering in two groups. The first locus might coincide 

with Rz1, Rz4 and Rz5, while the second locus represented the Rz2 and Rz3. 

Fertility restorer loci X and Y were located in chromosomes 3 and 4 respectively 

(Schondelmaier and Jung 1997). Gene X was mapped with an isozyme and RFLP 

markers terminally on chromosome 3 at a distance of 9.6 cM (Pillen et al. 1993, 

Uphhoff and Wricke 1995). Two QTL regions were identified at a distance of 15 cM on 

chromosome 4, explaining 79% of the variability, and one QTL, mapped on 

chromosome 3, explained 72% of the observed variation (Hjerdin-Panagopoulos et al. 

2002).  

A new source of CMS (H-CMS) from wild beets has been described by Boudry et al. 

(1993) and the gene has been mapped to chromosome 4, applying BSA analysis and 

9 RAPD markers linked to the H-CMS locus (Laporte et al 1998). The gene is also 

linked to the gene for the monogerm seed trait (Laporte et al 1998). Using a restorer 

line, NK-198, it was observed that pollen fertility segregated as a single dominant gene 

named Rf1. Two RAPD and 8 AFLP tightly linked to the gene were found that mapped 

to a terminal region of chromosome 3, suggesting that Rf1 may be an allele of the 

locus X (Hagihara et al. 2005). 

Resistance genes for beet cyst nematode (Heterodera schachtii) were found among 

wild species of section Patellares and 3 different resistance genes have been 

identified, Hs1 on the homoeologous chromosomes 1 of B. procumbens, B. webbiana 

and B. patellaris, Hs2 in the homoeologous groups to chromosome 7 of B. 

procumbens and B. webbiana, and Hs3 in chromosome 8 of B. webbiana (Kleine et al. 

1998). Resistance genes have been introgressed into sugar beet through 



44 
 

chromosome translocation (Jung and Wricke, 1987, Heijbroek et al. 1988). To identify 

chromosome segments with Hs1 from wild types in segregating offspring of 

monosomic additional lines (2n = 19) genome specific DNA probes were used 

(Schmidt et al. 1990, Jung and Hermann 1991, Jung et al. 1992). Heller et al. (1996) 

mapped 4 wild beet translocations from independent translocation events with RFLP 

markers. Marker loci were used to show close linkage (0-4.6 cM) with the end of 

chromosome 9, suggesting a recombination hot spot in this region. Hs1pro−1 gene was 

mapped at 3 cM to a RAPD marker at the end of chromosome 9 (Hallden et al. 1997). 

Two sugar beet lines carrying homologous translocations from wild beet (Beta 

procumbens) have been studied and a complete physical map of a Beta procumbens 

was done (Schulte et al. 2006). Moreover, a second nematode resistance gene Hs1-1 

pro−1 was suggested. A nematode tolerance gene, termed HsBvm-1 from Beta vulgaris 

ssp. maritima was mapped on chromosome 5 and using a BSA approach a SNP 

marker was found to be completely associated with the gene (Stevanato et al. 2015).  

Breeding for Cercospora resistance is difficult because it is a quantitative trait. Studies 

with Quantitative trait loci (QTLs) try to identify the location of those regions of the 

genome where the genes are involved in the specific trait. The QTL then needs to be 

validated, especially when the traits have a high interaction with the environment. 

QTLs studies have been used to identify chromosome regions associated with 

Cercospora resistance. Five QTLs have been mapped using 221 AFLP and 46 RFLP 

markers with a phenotypic variation from 7 to 18%. These QTLs were located on 

linkage groups 1, 2, 3 and 9 (Nilsson et al. 1999). Schafer-Pregl et al. (1999) identified 

QTLs in F3 families and F2 backcrosses under natural and artificial inoculation using 

224 markers (RFLP, AFLP,SCAR and microsatellites): three major QTLs were located 

on chromosomes 2, 6 and 9 in all conditions, three more QTLs were detected on 

chromosomes 4 and 5 in an F2 population only. Using a linkage map based on AFLP 

and RFLP markers, a QTL analysis was done on F2 population and F3 half-sib families. 

4 QTLs on chromosomes 3, 4, 7 and 9 have been found based on data from a leaf-

disc test and 5 QTLs associated with chromosomes 4, 7, 8 and 9 based on field data 

(Setiawan et al. 2000). 

Lines resistant and susceptible to CLS were used to generate recombinant inbred 

lines to identify QTLs. 4 QTL loci involved in CLS resistance were detected: 2 QTLs, 

qcr1 on chromosome 3 and qcr4 on chromosome 9, were found in the resistant line 

and explained approximately 10% and over 20% respectively, of the variance in the 

resistance index, while qcr2 on chromosome 4, qcr3 on chromosome 6 were found in 

the susceptible line, each explained about 10% of the variance. Both qcr1and qcr4 
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were mapped precisely as single QTLs, using progenies BC5F1 and BC2F1 obtained by 

recurrent backcrosses (Taguchi et al. 2011).  

Root and sugar yield as well as physiological traits are inherited quantitatively. 

Different molecular markers were used to find QTLs for the sugar yield related traits 

(Weber et al. 2000, Schneider et al. 2002, Stich et al. 2008, Reif et al. 2010, 

Wurschum et al. 2011). Weber et al. (2000) tested two segregating populations in 

several environments to identify QLTs linked to these traits. A number of QTLs were 

detected, but they mapped on different chromosomes in the two populations and just a 

few QTLs were correlated in different locations. QTLs for 7 traits related to sugar 

quality were mapped using 75 Expressed sequence tags (ESTs) associated with 

functions in carbohydrate and nitrogen metabolism. The experiment was done in 6 

different environments to evaluate the test-cross progeny, and the genes were mainly 

mapped as SNPs. 21 significant QTLs were found, all linked to ESTs (Schneider et al. 

2002).  

Molecular markers linked to the bolting gene are important to allow early identification 

of bolting plants. The first linkage maker was an isozyme marker (Abe et al. 1992) and 

later RFLP markers flanking the B locus were identified, with respective distances of 

3.8 and 5.2 recombination units located to the center of chromosome 2 (Boudry et al. 

1994). El-Mezawy et al. (2002) identified 2 AFLP markers that mapped close to the 

bolting gene, at a distance of 0.14 and 0.23 cM. These markers have been used for 

map-based cloning of the B gene (Hohmann et al. 2003). A second bolting locus, 

termed B2, was mapped to chromosome 9 (Büttner et al. 2010). A QTL analysis 

reported another new locus, B4, genetically linked to the B locus and mapped to 

chromosome 2 at a distance of 11 cM from B (Abou-Elwafa et al. 2012). 

In many species, flowering is regulated by complex genetic networks. In Arabidopsis 

thaliana, flowering is regulated by FLOWERING LOCUS C (FLC), CONSTANS (CO), 

and FLOWERING LOCUS T (FT) and homologs of these genes have been identified 

in sugar beet. Reeves et al. (2007) found BvFL1 on chromosome 6 and BvCOL1 has 

mapped on chromosome 2 at distance of 22-24 cM from B and 35-38 cM from B4 

(Chia et al. 2008, Abou-Elwafa et al. 2012). Two paralog FTs have been identified, 

BvFT1 on chromosomes 9 and BvFT2 on chromosome 4, which act antagonistically 

(Pin et al. 2010). In fact, BvFT1 repress flowering, while BvFT2 promotes it (Pin et al. 

2010). 

Approaches using association mapping have been adopted to identify the most 

important QTLs in multi-trait expression (Stich et al. 2008, Wurschum et al. 2011). 
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Stich et al. (2008) analyzed 111 diploid sugar beet lines in 6 locations and each line 

was genotyped with 26 SSR markers. 4 markers associated with sugar content and 

beet yield were found. In another study, 924 elite sugar beet inbred lines were tested 

in 7 locations for sugar and root yield and non-sugar compounds (Wurschum et al. 

2011). A linkage map was built using 677 SNP markers that cover the entire genome. 

Main effect QTLs were detected for all the traits studied, some of which were major 

QTLs which accounted for genotype variances of more than 5%.  

High density genetic maps are helpful tools to improve sugar beet and the integration 

with physical maps allows QTL genes to be cloned. Many disease resistance genes 

have been cloned. These genes have highly conserved sequences with common 

functional domains, nucleotide binding site (NBS) domains and leucine rich repeat 

(LRR) domains, able to recognize the pathogen. Many of the genes over expressed 

during an infection encode for pathogenesis related (PR) proteins. Using the 

degenerate primer approach, resistance gene analogs (RGAs) were cloned and 

mapped in different genomes (Rossi et al. 2003, Collins et al 1998, Shen et al. 1998). 

In sugar beet 33 RGAs have been mapped (Hunger et al. 2003) and 3 RGAs were 

linked with Cercospora resistance QTLs on chromosomes 5, 7, and 9. Additionally 2 

RGAs were linked with rhizomania resistance gene Rz1, localized on chromosome 3. 

A useful tool in disease resistance breeding can be the use of molecular markers with 

pyramiding. The combination of several desirable genes and QTLs from different 

genetic backgrounds incorporated into a single genotype can be useful to develop 

stable disease resistance (Richardson 2010).  

The evaluation of genetic diversity and population structure is essential in any 

breeding program and in sugar beet several studies to address this have been 

conducted (Kraft et al. 2000, Li et al. 2010, Li et al. 2011). Kraft et al. (2000) examined 

the occurrence of Linkage Disequilibrium (LD) in nine sugar beet breeding lines based 

on 451 mapped AFLP markers and found that pairs of markers within 3 cM distance 

showed high LD. Moreover, 23 SSR markers were used to examine the population 

structure of an elite sugar beet germplasm and to investigate genetic diversity within 

and among subgroups of this germplasm. Two distinct subgroups were found within 

the entire germplasm set by STRUCTURE and principal coordinate analysis (PCoA) 

and the predicted value of r2 declined to 0.1 or less within about 10 cM (Li et al 2010). 

A genome-wide distribution map of genetic diversity and LD in an elite sugar beet 

germplasm, with 246 yield type and 238 sugar type pollen parent inbred lines, was 

obtained using 328 SNP markers (Li et al. 2011). Two distinct subgroups in the elite 
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sugar beet germplasm were identified based on different statistical methods as 

MCLUST, STUCTURE and PCoA. Significant LD between loci pairs was found at 

distances of 7 cM, 45cM, and 21 cM for the entire germplasm set and lines inbred for 

yield or sugar content respectively ( Li et al. 2011). In a recent work, genetic diversity 

and LD were investigated in 233 elite sugar beet breeding line using 454 SNP markers 

and 91 wild beet accessions with 418 SNPs (Adetunji et al. 2014). PCoA showed three 

distinct groups: the wild beet, the seed parent and the pollen parent breeding lines. LD 

persisted beyond 50 cM on four chromosomes in the pollen parent pool, and three 

chromosomes in the seed parent pool. LD decreased within a distance of  <6 cM on all 

chromosomes in both pools when genetic relatedness was corrected. Regions on 

chromosomes 3 and 4 where the disease resistance and monogermity loci are located 

showed strong genetic differentiation between the pollen and seed parent pools 

(Adetunji et al. 2014). These studies of LD decay can be used to design future 

Genome-wide association studies (GWAS). 

Molecular markers can allow to analyze phylogenetic relationships, to identify parental 

backgrounds in hybrids, to monitor gene flow and genetic variation in populations 

(Skaracis 2005). Oligonucleotide DNA probe hybridization has been used to fingerprint 

sugar beet and identify double-haploid breeding lines (Schmidt et al. 1993). Sugar 

beet lines have been fingerprinted using AFLP markers (Hansen et al. 1999, Kraft et 

al. 2000). The development of high throughput marker systems allow a rapid 

genotyping. Möhring et al. (2004) fingerprinted several sugar beet breeding lines with 

linkage group-specific SNP marker sets. In another study, a set of 54 varieties from 

five seed companies was genotyped using 702 Diversity Array-Technology (DArT), 34 

SNP and 30 SSR markers and analyzed for population structure. Three well-defined 

populations was observed and the clustering of varieties was well correlated with their 

seed company origin although some of the hybrid varieties likely have a parent closely 

related. Moreover, just 17 SSR markers were needes to identify the 54 hybrid varieties 

(Simko et al. 2012). When fingerprint analysis of 15 sugar beet genotypes (from 

CMSs, pollinators, and commercial varieties) was conducted using 192 SNP markers, 

PCoA and STRUCTURE analysis showed that CMSs, pollinators and varieties 

clustered into three distinct subpopulations (Stevanato et al. 2014). 
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TRANSGENIC TRAITS 

 

Plant genetic engineering started in the 1980’s with the insertion of helpful genes into 

plant genomes (Barton et al. 1983, Horsch et al. 1985) and researchers developed 

new traits to improve the crop production (Prado et al. 2014). 

Sugar beet is very sensitive to weed competition at earlier stages of growth, so weed 

control is particular importance especially during the first three months of vegetative 

growth to prevent competition for light and water, to avoid significant losses (May et al. 

2005). Weed managements strategies are labour-intensive and expensive because 

combination of multiple herbicide active ingredients are required with multiple 

applications (Skaracis 2005). Genetically modified sugar beets have been developed 

for herbicide tolerance, to allow the use of a cheap, non-selective single herbicide that 

can be efficiently used against a wide range of weeds. For example, a gene conferring 

tolerance to glyphosate, a commonly used broad spectrum herbicide, has been 

integrated into the sugar beet genome (Duke 2008). Sugar beet lines have also been 

transformed with the 5- enolpyruvylshikimate-3-phosphate synthase gene (CP4 

EPSPS) from Agrobacterium sp. CP4 and a glyphosate oxidase reductase gene 

(GOX) from bacteria, both able to confer high tolerance to glyphosate (Mannerlöf et al. 

1997). In 2007, a genetically modified herbicide tolerant sugar beet, termed H7-1, 

developed by Monsanto in cooperation with KWS Saat, was introduced in the USA 

and Canada and since 2009, 95% of US sugar beets were glyphosate-resistant 

(James 2010). Weed management has been simplified with herbicide-resistant sugar 

beet reducing time and costs for treatments (Khan 2010).  

Transgenic studies in rhizomania resistance were conducted introducing a viral coat 

protein (CP) gene from the BNYVV. First transformed sugar beet suspension cultures 

were obtained after cultivation of sugar beet cells with Agrobacterium tumefaciens 

carrying the CP gene of the BNYVV, and using protoplasts from these cells showed 

resistance to virus infection (Kallerhoff et al. 1990). The CP gene was also stable 

transferred and expressed in sugar beet hair root cultures using Agrobaecterium 

rhizogenes-mediated transformation (Ehlers et al. 1991). Tests of a CP-mediated 

rhizomania resistance have shown a reduced virus content in the greenhouse as well 

as in field trials (Mannerlöf et al. 1996). Another approach to develop resistance to 

viral diseases is RNA silencing mechanism, an active defense system against viral 

invaders in plants (Ding and Voinnet 2007) and in sugar beet this technology has been 

used against BNYVV (Lennefors et al. 2006, Pavli et al. 2010, Zare et al. 2015). Sugar 



49 
 

beets have been transformed with a RNA silencing mechanism by the expression of a 

0.4 kb inverted cDNA, derived from the BNYVV replicase gene (Lennefors et al. 2006). 

The plants showed high levels of resistance against different genetic strains of BNYVV 

under high infection levels in the greenhouse and in the field. Pavli et al. (2010) used a 

dsRNA-mediated silencing against the BNYVV replicase gene in sugar beet with 

transgenic hairy roots reporting a good level of BNYVV resistance. The stabile 

inheritance of the transgenes and virus resistance over years has been demonstrated 

using both transient and stable transformation methods and resistance induced by 

intron-hairpain RNA constructs with small intronic loops showed highest degrees of 

resistant events (Zare et al. 2015). 

Genetic transformation in beets has been used also to study the salt-tolerance. In 

Arabidopsis thaliana, six vacuolar Na+/H+ antiporters (AtNHX1-6) were identified 

(Aharon et al. 2003, Pardo et al. 2006), and overexpression of  NHX genes in  

transgenic plants showed salt- tolerant in several species (Zhang and Blumwald 2001, 

Zhang et al. 2001, Xue et al. 2004). In sugar beet two genes, AtNHX1 and AtNHX3, 

have been integrated into the genome (Yang et al. 2005, Liu et al. 2008) and in both 

the experiments transgenic plants showed highly improved salt tolerance. Under high 

salt conditions, the soluble salts were accumulated in the leaves and not in the roots, 

increasing root yield (Liu et al. 2008).  

Sugar beet production is limited by drought stress and to improve resistance, sugar 

beet plants have been modified to produce fructan (Pilon-Smits et al. 1999). Fructans 

are water-soluble polymers of fructose able to store carbohydrate and defend plants 

against drought stress (Pilon-Smits 1995). Sugar beets were transformed with the 

SacB gene from Bacillus subtilis. The transgenic plants accumulated fructans in 

storage roots as well as in older leaves, showing better growth under drought 

conditions compared to nontransformed sugar beets (Pilon-Smits et al. 1999). Sugar 

beet has been transformed with 1-sucrose:sucrose fructosyltransferase (1-SST) gene 

isolated from Jerusalem artichocke (Helianthus tuberosus) (Sévenier et al. 1998)  and 

from onion (Weyens et al. 2004). A higher conversion of stored sucrose into fructans 

was reported in both studies. Putative drought-tolerant sugar beet plants were 

obtained in in vitro tissue cultures using gamma irradiation-inducing mutation (Sen and 

Alikamanoglu 2012). In this work, inter-simple sequence repeats (ISSR) markers and 

SDS-PAGE analysis showed genetic distance between mutant and control plants. 

 Artificial mutant collections often show new variability not present in natural plants, 

and the combination of mutagenesis with targeting induced local lesions in genomes 
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(TILLING) is a helpful approach to identify the allelic variants present in the DNA 

regions of the artificial mutants (Pérez-de-Castro et al. 2012). In sugar beet the bolting 

gene B was mutated using ethylmethanesulfonate (EMS) and further characterised by 

TILLING several mutagenized plants showed a biennial behavior (Hohmann et al. 

2005). Subsequently, F2 populations derived from annual beets and biennial mutants 

have been studied showing that an EMS-induced mutation of B gene can be sufficient 

to remove the annual behavior, and a new bolting locus unlinked to the bolting gene 

has been identified (Büttner et al. 2010). 

 

NEW PERSPECTIVES IN SUGAR BEET BREEDING 

 

Huge amounts of genomic data are now available and can be used for genomic 

selection and accurate prediction of genomic breeding values for genotyped 

individuals within a breeding population (Hayes and Goddard, 2001). This type of 

genomic-assisted breeding has been studied in sugar beet. Würschum et al. (2013) 

evaluated the potential of genomic selection using a large sugar beet population of 

924 lines from different germplasm sources. The lines have been phenotyped in 

several trials for 6 agronomical traits and genotyped with 677 SNP markers. Genomic 

prediction has been investigated genotyping, with 192 SNPs for root vigor, 124 plants 

from 18 lines (Biscarini et al. 2014). The accuracy of estimated prediction was quite 

high, with an estimated cross-validation error rate close to zero. Such accurate 

predictions may be related to a high heritability for the root vigor trait (0.783). 

The full sugar beet genome sequence has recently become available (Dohm et al. 

2014) and should be useful to identify genetic basis of important traits. It represents 

85% of its 576-Mbp genome size and 27,421 protein-coding genes were identified 

supported by transcript data and based on sequence homology. The release of the 

sugar beet genome with supplementary data of predicted genes, their functional 

annotation and a list of 715 putative RGAs should be very useful tools for discovering 

important traits, determining the position and function of genes and developing highly 

accurate maps. 

The emergence of next-generation sequencing (NGS) technologies allows a fast and 

cheap sequence of millions bases that can be used to develop new molecular markers 

(Egan et al. 2012). The markers from NGS can also help to accurately determine the 
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position within the physical maps and to create high-resolution maps (Pérez-de-Castro 

et al. 2012).  

Dense genome coverage will allow the identification of molecular markers closely 

linked to specific genes and important QTLs. The large and increasingly accurate data 

derived from NGS and the more automated phenotyping systems need to be 

combined with new bioinformatics tools available to analyze the data efficiently 

(Varshney et al. 2014). Incorporation of genomics into a conventional breeding and 

integration across different scientific fields is also necessary to achieve important 

progress in sugar beet breeding.  
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ABSTRACT 

 

Fusarium oxysporum f. sp. betae (FOB) is an important pathogen of sugar beet 

worldwide causing leaf yellowing and vascular discoloration. The use of tolerant 

varieties is one of the most effective methods for managing this disease. In this study, 

a large germplasm collection, comprised of 29 sugar beet parental lines, was tested 

for FOB tolerance under greenhouse conditions. Five-week-old sugar beet plants were 

inoculated using a root dip method with two highly virulent isolates of FOB, F19 and 

Fob220a. Symptom severity was assessed weekly for six weeks, and the area under 

disease progress curve (AUDPC) was used to estimate disease development. Both 

isolates were virulent. Plants inoculated with F19 showed a significantly higher 

AUDPC (p<0.05) as compared to plants inoculated with Fob220a. The evaluated lines 

showed a varying tolerance response, from extremely susceptible to highly tolerant. 

Several roots from susceptible lines showed internal discoloration as well as root rot. 

This first screening for Fusarium oxysporum resistance on an Italian sugar beet 

germplasm led to identification of highly tolerant genotypes. Incorporation of these 

sources of tolerance to a breeding program will contribute to improve Fusarium 

tolerance in sugar beet.  

 

KEYWORDS: Biotic stress, genetic resistance, Fusarium oxysporum, sugar beet 

 

 

INTRODUCTION  

 

Sugar beet (Beta vulgaris L.) produces 25% of the global annual sugar supply and the 

crop is widely distributed throughout the temperate regions of the world (Draycott 

2006). Remarkable progress has been made on sugar beet breeding for agronomic 

traits such as root yield, sugar content and disease tolerance over the last 60 years 

(Biancardi et al. 2010). Many pathogens including fungi, viruses and nematodes attack 

sugar beet and diseases such rhizomania, Cercospora leaf spot (CLS), beet cyst 

nematode, Fusarium yellows and Fusarium root rot are increasing their impact on 

sugar beet production in many growing regions (Biancardi et al. 2010). 
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Fusarium oxysporum is a soil-borne fungus that induces vascular wilt or root rot on a 

wide range of crops causing severe losses (Olivain and Alabouvette 1999, Kroes et al. 

1998, O’Donnell et al. 1998), including (i) Fusarium yellows and (ii) Fusarium root rot 

in sugar beet (Harveson 2009). Fusarium yellows, caused by Fusarium oxysporum f. 

sp. betae, was first described in 1931 from symptomatic sugar beets in Colorado 

(Stewart 1931), then reported in several sugar beet growing areas (Harveson and 

Rush 1997, Windels et al. 2005, Hanson 2006, Hanson and Jacobsen 2009). 

Fusarium root rot caused by Fusarium oxysporum f. sp. radicis-betae was first 

reported in 1989 in Texas (Martyn et al. 1989). In both cases, the fungus penetrates 

through the roots and grows in the vascular tissue, causing wilting in affected plants 

and interveinal yellowing which usually develops first on the older leaves followed by 

the younger leaves, in addition to vascular discoloration of the taproot (Hanson and 

Jacobsen 2009). The root rot has the same foliar symptoms as Fusarium yellows but 

the root is characterized by a black external rot on the tip of the tap-root (Harveson 

2009). Fusarium diseases cause significant reductions in root yield, sugar content and 

purity (Hanson and Jacobsen 2009).  

Chlamydospores of Fusarium oxysporum remain in the soil for years and thus 

traditional control methods are not always efficient. Chemical control is difficult to apply 

with a soil-borne pathogen and has a high environmental impact, and crop rotation 

needs a long rotation that is economical not viable (Harveson 2009).  Introgression of 

disease resistance into sugar beet varieties is the best way to overcome this problem 

(Biancardi et al. 2010). To achieve this goal, it is essential to have resistant donor 

parents to breed resistant lines.  

Host-pathogen interactions have been studied in several crops and dominant plant 

resistance (R) genes against host-specific F. oxysporum races have been identified 

(Simons et al. 1998, Oumouloud et al. 2008, Sharma and Muehlbauer 2007). In 

Arabidopsis thaliana ecotype Col-0, six dominant resistance loci to F. oxysporum 

(RFO) were observed, and the locus Rfo1, encoding a receptor-like kinase, was 

identified (Diener and Ausubel, 2005). In tomato, six Immunity (I) loci were found 

which are R-genes that confer resistance to different F. oxysporum f. sp. lycopersici 

races. These loci encode for proteins containing NBS-LRR domains (Sela-Buurlage at 

al. 2001). In melon, the two dominant R genes are named Fom-1 and Fom-2 and the 

Fom-2 gene belongs to the NBS-LRR resistance genes (Joobeur at al. 2004). The 

gene-for-gene theory between F. oxysporum races and host cultivars was confirmed in 

tomato where a resistance gene I-3 was found to be effective against F. oxysporum 

f.sp. lycopersici race 3, and also a pathogen avirulence gene, avr3, that breaks the 
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resistance was identified (Rep et al. 2005). Several molecular markers and QTLs 

linked to Fusarium resistance genes were identified in different crops (Wang et al. 

2011, Ulloa et al. 2011, Lv et al. 2013) and have potential for use in plant breeding to 

improve the selection of resistance to Fusarium through marker-assisted selection 

(MAS).  

In sugar beet, Fusarium oxysporum-resistant lines are known, but the genetic system 

that controls Fusarium diseases is still unclear. Developing new resistant sugar beet 

cultivars with resistance genes depends on an effective screening technique. The 

evaluation of tolerant sources under controlled conditions allows for reduced 

environmental effects, enhancing the genetic control of the disease symptoms shown 

by each line, thus allowing an effective screening. The objective of this work was to 

evaluate the susceptibility of a wide set of sugar beet lines to Fusarium oxysporum 

isolates under greenhouse conditions to identify potential resistant genotypes that may 

be used as donors in a breeding program.  

 

MATERIALS AND METHODS 

 

Plant materials and growing conditions 

The study was performed on 29 sugar beet genotypes with 27 sugar beet pollinators 

from DAFNAE-Department of Agronomy, Food, Natural resources, Animals and 

Environment (University of Padova, Italy). A sugar beet variety, 20, provided by Lion 

Seeds Ltd (UK) and a resistant pollinator inbred line, 7927-4-309, from USDA-ARS 

germplasm (Lewellen) were selected as tolerant controls.  

Sugar beet genotypes were grown in the greenhouse. Before planting, seeds were 

surface-disinfected by soaking in 0.5% sodium hypochlorite for 20 min, rinsed with 

sterile water and incubated overnight (with shaking at 150 rpm) with 50 mL of 0.3 % 

hydrogen peroxide to obtain a greater homogeneity in plant germination (McGrath 

2000). Metalaxyl was applied as a fungicide to control damping-off by Pythium 

species. The seeds were planted in the greenhouse (16 hr light cycle, 24 °C), in peat-

based potting mix (Sure-Mix, Michigan Grower Products, Galesburg, MI). Ten days 

after planting, for each variety, three seedlings per pot were transplanted to twelve 

plastic pots to ensure a uniform plant stand. After transplanting a slow-release fertilizer 
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(Osmocote 14-14-14, Everris International, Netherlands) was added to each pot to 

fertilize plants.  

 

Isolates and inoculum preparation 

Two virulent isolates, F19 and Fob220a, of Fusarium oxysporum f. sp. betae were 

used as inoculum. F19 and Fob220a (Hanson et al. 2009), belong to different genetic 

sub-groups (Hill et al. 2011). Both isolates were maintained desiccated on sterile glass 

fiber filter paper at -20°C for long term storage (Hanson and Hill 2004), and placed on 

potato dextrose agar (PDA) for a week before use. A plug 5 mm of hyphae from the 

actively growing edge of a colony on PDA was transferred to a flask containing V8 

juice media. Flasks were incubated for 7 days in an incubator shaker (at 27 °C and 

150 rpm). 

At the end of the incubation, the conidia were counted using a hemocytometer and the 

concentration was adjusted to 4 x 104 conidia per ml with sterile water. Five-week-old 

sugar beet plants were inoculated using a root-dip inoculation method (Hanson and 

Hill 2004). For each variety, the plants were removed from the substrate and the roots 

were washed with tap water. Twelve plants per treatments were randomly chosen and 

inoculated by dipping the roots for 8 min in the spore suspension of one isolate, 

shaking every minute. Mock inoculation was performed using sterile water. Plants 

were transplanted to the pots with 3 plants per pot. Plants were watered when soil was 

dry on the surface. A week after inoculation, damaged and dead leaves were removed 

to avoid subsequent confusion of disease ratings with transplanting damage. 

 

Fusarium symptoms rating 

Individual plants were rated weekly from 2- to 6-weeks post inoculation. Foliar 

Fusarium yellows symptoms were scored using a modified 0-5 rating scale (Hanson 

and Hill, 2004), where 0 = healthy plants, 1= leaves wilted or with small chlorotic 

areas, 2= leaves with inter-venial chlorosis, with entire leaves chlorotic, 3= leaves 

showing necrotic spots and dying but with less than half leaves per plant affected, 4= 

half or more than half the leaves dead, 5= entire plant dead. After 6 weeks, plants 

were harvested and the roots were cut open and examined for rot and vascular 

discoloration symptoms. For each variety, two randomly chosen roots for each 

treatment were surface-disinfected in 0.5% sodium hypochlorite for 30 sec and placed 
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onto PDA plates to confirm the presence of Fusarium isolates. The area under the 

disease progress curve (AUDPC), which also considers the time course of symptom 

development, was calculated for the 6 weeks for each plant and the mean AUDPC 

determined for each isolate or control. A disease severity index (DSI) was calculated 

using the following formula: DSI= [∑Ratings for each plant / (5 x Number of plant 

rated)] x 100, where 5 is the highest disease rating. The DSI ranged from 0 = all plants 

healthy to 100 = all rated plants dead. Experiments were done twice.  

 

Data analysis 

Data were subjected to analysis of variance (ANOVA) and the Tukey HSD Test was 

applied for genotype means comparison at P< 0.05. The package used for statistical 

analysis was Statistica 12.0 (StatSoft Inc. Tulsa, OK, USA).  

 

RESULTS  

 

The 29 inoculated sugar beet lines differed significantly (P<0.05) for their response to 

the two fungal isolates (Table 1).  

Table 1: Average area under the disease progress curve (AUDPC) values for 

Fusarium oxysporum f. sp. betae isolates F19 and Fob220a causing Fusarium yellows 

and root rot on sugar beet. Results show the average values for 29 sugar beet lines. 

Sterile water was used as control. 

 

Treatment AUDPC Mean    

F19 102,43 a 

Fob220a 82,72 b 

Steril water 14,49 c 

 

Means with different letters within columns differ by Tukey’s post hoc test at p = 0.05. 
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The two tested isolates were both virulent, but they caused significantly different 

disease severity values on the sugar beet lines (p<0.05). Isolate F19 caused greater 

disease symptoms than Fob220a (Table 1), except for the lines 20, 309, A3 and 2 

where the AUDPC was higher with the Fob220a inoculum (Table 2). 

The highest AUDPC value was recorded for the susceptible genotypes 9, followed by 

lines 12, 6 and 1 inoculated with F19. The genotypes inoculated with Fob220a 

showing the highest AUDPC values were 6 and 12. Sugar beet lines 7927-4-309 

named 309, A2, A3, A4 and A7 produced lower AUDPCs when inoculated with both 

isolates, while line 3 inoculated with Fob220a showed lower AUDPC than when 

inoculated with F19. Line 20 showed lower AUDPC with F19 compared to Fob220a 

(Table 2). 
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Table 2: Average area under the disease progress curve (AUDPC) value for 24 plants 

(12 per treatment, replicated twice) of sugar beet lines screened for tolerance to two 

Fusarium oxysporum f. sp. betae (FOB) isolates F19 and Fob220a. Varieties “20” and 

7927-4-309, named 309 were resistant controls. 

  F19     Fob22a   

Sugar beet line AUDPC   Sugar beet line AUDPC   

9 141.30 a 6 119.58 a 

12 140.30 ab 12 119.44 a 

6 134.80 abc 1 116.67 a 

1 129.40 abcd 2 107.04 ab 

10 114.20 abcde 17 103.10 abc 

5 110.70 abcde 5 97.85 abc 

7 109.50 abcde 13 88.52 abcd 

17 105.00 abcdef 10 85.46 abcd 

15 104.90 abcdef 7 84.15 abcde 

2 104.90 abcdef 9 82.40 abcde 

A9 101.10 abcdefg 15 80.50 abcde 

18 99.02 abcdefg 8 79.33 abcde 

11 98.73 abcdefg 18 76.56 abcde 

13 97.71 abcdefg A9 71.52 abcdef 

14 96.69 abcdefg 4 71.17 bcdef 

8 89.10 bcdefgh 20 63.73 bcdefg 

4 88.38 cdefgh 14 62.56 bcdefg 

19 83.27 cdefgh 11 61.40 bcdefg 

A6 81.81 defgh A5 59.50 bcdefg 

3 78.90 defgh 16 58.48 bcdefg 

A5 78.75 defgh 19 58.04 bcdefg 

A8 77.15 efgh A6 57.17 cdefg 

16 72.33 efgh A8 56.58 cdefg 

A7 72.04 efgh A3 44.19 defg 

A4 54.10 fghi A7 37.63 defg 

20 49.73 ghi A4 32.08 efg 

A3 42.29 hi 3 31.21 efg 

A2 17.21 i 309 23.04 fg 

309 12.25 i A2 14.44 g 

AUDPC was calculated from scores evaluated every week for 6 weeks using a 0 to 5 rating 

scale. Numbers represent mean AUDPC. Means with different letters within columns differ by 

by Tukey’s post hoc test at p = 0.05. 
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Fig. 1: Disease severity index (DSI) of four high susceptible sugar beet lines: 1, 6, 9 

and 12 and four highly tolerant lines: 3, 7927-4-309 (309), A3 and A4.  

 

The disease severity in susceptible lines increased rapidly from the first rating, while 

the more tolerant lines showed a slow progress in disease severity (Fig. 1).  

The severity of infection was very high in the susceptible lines with a rapid 

development of disease. In these genotypes typical interveinal chlorosis appeared at 

two weeks post inoculation (wpi). Subsequently, the leaves began to die and several 

plants were killed by three wpi. The first symptoms usually arose one or two weeks 

later in the tolerant lines than in the susceptible plants. 

At the end of the rating the total number of dead plants inoculated with F19 and 

Fob220a were 48% and 27%, respectively. Lines 12, 6 and 9 showed more than of 

80% of dead plants when inoculated with F19, with line 9 in particular reaching more 

than 96% mortality at the end of the experiment. In contrast, the control 309 line 

showed no dead plants with either FOB isolate, as did line A2 with F19 and A4 with 

Fob220a. Lines 3, A2, A6, A7, 19, A5, A8, 4, all inoculated with Fob220a showed less 

than 10% of dead plants. Line 20 showed the same mortality with both isolates (Fig. 

2).  
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Fig. 2: Percentage of dead plants for each of the 29 tested sugar beet lines treated 

with two different isolates of Fusarium oxysporum f.sp. betae (F19 and Fob220a) at 

the end of the experiments, seven weeks after inoculation. 

 

The correlation between AUDPC and dead plants was 0.87 and highly significant 

(P<0.05). The control plants inoculated with sterile water did not exhibit symptoms of 

infection by F. oxysporum during the experiment.  

At the end of the experiment all plants were harvested and roots were cut open and 

visually compared for root symptoms. All non-inoculated control plants presented 

healthy roots, while in the plants inoculated with Fob220a and F19 both discoloration 

and root rot were visible. The internal discoloration varied according to the genotype, 

and in the susceptible lines black-brown external discoloration was observed. 

Moreover, Fusarium was isolated from the roots of all lines inoculated under 

greenhouse condition and was confirmed as Fusarium oxysporum f. sp. betae, 

morphologically similar to the isolates used in inoculations. No Fusarium was isolated 

from non-inoculated control plants.  
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DISCUSSION 

 

Fusarium-induced diseases are a widespread threat to sugar beet production (Panella 

and Lewellen 2005). The use of resistant cultivars is the most cost-effective and 

sustainable management strategy (Fritsche-Neto and Borém 2012). The purpose of 

our study was to evaluate the responses of sugar beet germplasm lines to Fusarium 

oxysporum f. sp. betae in order to identify potential sources of resistance that could 

serve as valuable genetic resources for disease resistance breeding programs. The 

response of a collection of sugar beet germplasm was evaluated against two isolates 

of Fusarium oxysporum under greenhouse conditions and the cumulative progress of 

disease was estimated using AUDPC. 

Both isolates used in this screening were highly virulent as reported in other studies 

(Hanson et al. 2009, Hill et al. 2011) and F19 caused more severe disease symptoms 

than Fob220a, as previously demonstrated by Hanson et al. (2009). The tolerant and 

susceptible lines showed the same infection levels with both isolates. These two 

tested isolates were reported as Fusarium oxysporum f. s. betae that cause Fusarium 

yellowing with vascular discoloration in affected sugar beets (Hanson et al. 2009).  

In this study, surprisingly, in the susceptible genotypes we observed also root rot, the 

typical symptom caused by F. oxysporum forma specialis radicis-betae (Harveson and 

Rush 1998, Harveson 2009). To our knowledge, this is the first report of root rot 

symptoms on sugar beet plants inoculated with Fusarium oxysporum f. s. betae. This 

is probably due to a germplasm effect, so further tests are needed to clarify why this 

unusual response is present in the Italian sugar beet lines and if the root rot is due 

only to the fungal strains used in this study or whether there is also an host 

component.  

A wide variability was observed in the tested sugar beet lines and AUDPC values 

varied greatly between susceptible and tolerant lines, with susceptible lines showing 

higher AUDPC values than the tolerant lines, thus indicating a reduced disease 

progress in tolerant genotypes. The significant differences among the tested lines 

could be ascribed to the presence in the more tolerant lines of resistance genes to 

Fusarium infection. However, tolerance observed in greenhouse conditions should be 

tested in the field under natural F. oxysporum f.sp. betae infection (Hanson et al. 2009) 

especially as variability has been reported with different pathogen isolates (Ruppel 

1991,Hanson et al. 2009) and for different geographic regions. It is even possible that 
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the lines identified in the present work as moderate resistant may show more resistant 

under natural infected field if there are not optimal disease conditions. 

Genetic variability is essential to develop disease resistant plants (Michelmore et al. 

2013) and by means of this study new resistant lines were identified that may be used 

for a breeding program as donors of Fusarium resistance and combined with high-

yield genotypes in order to improve food security.  

The interaction between Fusarium oxysporum and host plants has been well studied in 

several crops and resistance genes have been identified (Diener and Ausubel 2005, 

Oumouloud et al. 2008, Sharma and Muehlbauer 2007, Sela-Buurlage et al. 2001). 

Moreover, in tomato and melon the genes involved in Fusarium resistance are 

dominant (Sela-Buurlage et al. 2001, Joobeur at al. 2004). The genetic control for 

resistance to Fusarium–induced diseases in sugar beet is still unknown. Fewer 

evidences are available about F. oxysporum-resistance sources in sugar beet with 

respect to other crops. Therefore, more research is needed to evaluate whether the 

genetic control is monogenic or polygenic. The monogenic resistance, also called 

qualitative resistance, is easily selected in a breeding program (Boyd et al. 2013) 

whereas the other category of plant disease resistance, known as quantitative disease 

resistance (QDR), is conferred by multiple genes with more durable resistance (Zhang 

et al. 2013). 

The next step will be to identify molecular markers linked to root rot tolerance to use in 

marker-assisted breeding. To achieve this goal two possible approaches can be 

applied: bulk segregant analysis (BSA) (Michelmore et al. 1991) and association 

analysis (Cardon and Bell 2001). BSA led to successful identification of markers linked 

to rhizomania and nematode resistance in sugar beet (Barzen et al. 1997, Stevanato 

et al. 2014), and offers promise for Fusarium resistance. To use this method it is 

necessary to develop a population resulting from a cross between a highly resistant 

and a highly susceptible line, such as some of those identified in this work, which 

segregates for the Fusarium resistant trait. An association study using these tested 

lines may be a useful tool to identify polymorphisms associated with the Fusarium 

oxysporum tolerance as previously reported for Physalis peruviana interaction with F. 

oxysporum (Enciso-Rodríguez et al. 2012). 

In conclusion, this first screening for Fusarium oxysporum tolerance on an Italian 

germplasm set led to identification of genotypes highly tolerant to Fusarium. These 

lines could possess resistant genes that could be transferred by a breeding program to 

high yield lines to increase sugar beet resistance to Fusarium. 
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ABSTRACT 

 

The soil-borne fungus Fusarium oxysporum may cause both Fusarium yellows and 

Fusarium root rot diseases with severe yield losses in cultivated sugar beet worldwide. 

These two diseases, causing the same foliar symptoms but different root response, 

are due to two distinct Fusarium oxysporum formae speciales. Fusarium yellows 

induced by the Fusarium oxysporum f.sp. betae presents vascular discoloration, 

whereas Fusarium root rot due to the presence of the F. oxysporum f.sp. radicis-betae 

is characterized by black rot in the root.  The aim of this work was to study the host-

pathogen interaction of sugar beet lines from two different sugar beet breeding 

programs with isolates of Fusarium oxysporum f. sp. betae. Eight susceptible sugar 

beet lines, selected by USDA-ARS (US) and UNIPD (University of Padova, Italy), were 

inoculated with three different isolates of Fusarium oxysporum f. sp. betae, the causal 

agent of Fusarium yellows. All inoculated lines developed disease symptoms, but 

disease severity (AUDPC) differed significantly (P<0.05) among lines. Two lines from 

UNIPD, 6 and 9, were the most susceptible to the disease, whereas the other lines 

showed similar levels of disease. Isolates of F. oxysporum f. sp. betae from different 

genetic groups, differ significantly (P<0.05) in pathogenicity. Five weeks after 

inoculation the plants were harvested and the root examined. Severe root rot has been 

observed in the susceptible UNIPD lines inoculated with isolates that had never shown 

root rot in the USDA germplasm. Our results show that Fusarium root rot is induced 

not only from different Fusarium oxysporum isolates that infect plants, but also is due 

to different host factors.  

 

KEYWORDS: sugar beet, root rot, host-pathogen interaction, germplasm 
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INTRODUCTION  

 

Fusarium oxysporum Schelecht. is a ubiquitous soil-borne fungus that includes 

pathogenic and non- pathogenic strains (Appel and Gordon 1996). Pathogens can 

induce vascular wilt or root rot on a wide range of plant, causing severe crop losses 

(Olivain and Alabouvette 1999, Kroes et al. 1998). F. oxysporum is considered to be a 

hemibiotroph (Thaler et al. 2004) because the initial stages of interaction by this 

pathogen are biotrophic, but later stages are comparable to the lifestyle of 

necrotrophic pathogens (Kidd et al. 2011). Pathogenic strains have a high level of host 

specificity and isolates have been divided into more than 120 different formae 

speciales (f. sp.) based on the host or group of hosts they attack (Armstrong and 

Armstrong, 1981). A particular forma specialis can be subdivided into physiological 

races based on their virulence to a set of differential host cultivar (Correll 1991).  

Sugar beet (Beta vulgaris L.) is grown in all the temperate zones and the crop 

contributes at least 20% of the world’s sugar supply (FAO STAT 2014). One of the 

main pressures to sugar beet cultivation is damage caused by pathogens, including 

viruses, nematodes, and fungi, which cause severe yield losses (Biancardi et al. 

2010). The soil-borne Fusarium oxysporum has the capacity to infect sugar beet and 

may cause severe losses in production in cultivated sugar beet worldwide and the 

fungus can cause either Fusarium yellows or Fusarium root rot (Harveson 2009). 

Fusarium oxysporum penetrates the roots and grows into the vascular system, 

producing toxic elements that lead to functional collapse, wilting, yellowing and often 

the death of the infected plant (Harveson 2009). Fusarium yellows was first reported in 

Colorado by Stewart in 1931.  Affected sugar beets present interveinal yellowing on 

the older foliage. Frequently, only one side of the leaf is affected first. Root symptoms 

are characterized by vascular discoloration (Stewart 1931). In 1989 a disease similar 

to Fusarium yellows, but with a severe root rot never observed before was discovered 

in Texas and the isolate of F. oxysporum that caused that root rot was proposed to be 

a new forma specialis (Martyn et al. 1989). The two different formae specialis (f. sp.) 

that cause Fusarium disease on sugar beet are: Fusarium oxysporum f.sp. betae that 

causes Fusarium yellows and F. oxysporum f.sp. radicis-betae which can lead to 

Fusarium root rot (Hanson and Jacobsen 2009, Harveson 2009). 

Recently some European sugar beet varieties showed root rot associated with 

Fusarium infection in the field. When these varieties were tested with US isolates of 

Fusarium oxysporum, classified as F. oxysporum f.sp. betae (yellows type), a root rot 
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was observed. In the present work, we evaluated the reaction of two genetically 

different sugar beet collections to distinct isolates of F. oxysporum f. sp. betae from 

two of the three F. oxysporum genetic groups (Hill et al. 2011) with the aim of 

investigating this response and test if it is due to an isolate effect or there is an effect 

of the beet germplasm. We compared the response of four US susceptible sugar beet 

germplasm lines and a collection of four susceptible sugar beet lines from University of 

Padova (Italy).  

 

MATERIALS AND METHODS 

 

Plant materials 

Eight susceptible sugar beet lines were examined. Four Italian sugar beet lines from 

DAFNAE- Department of Agronomy, Food, Natural resources, Animals and 

Environment (University of Padova, Italy), 6, 7, 9 and 18, and four USDA-ARS 

varieties, FC716 (Panella et al. 1995), C869 (Lewellen 2004), EL51 (Halloin et al. 

2000) and SP7322 (Coe and Hogaboam 1971) were grown in the greenhouse. 

Seed was soaked in 0.5% sodium hypochlorite for 20 min, rinsed with water, and 

incubated overnight (with shaking at 150 rpm) in 50 mL of 0.3 % hydrogen peroxide to 

promote uniformity in germination (McGrath, 2000). Metalaxyl was used to control 

damping-off by Pythium species. Seed was planted in peat-based potting mix (Sure-

Mix, Michigan Grower Products, Galesburg, MI) in plastic pots. Ten days after 

planting, three seedlings per pot from each variety were transplanted to twelve plastic 

pots, to obtain uniform plants. Plants were fertilized with slow-release fertilizer 

(Osmocote 14-14-14, Everris International, Netherlands) added to each pot after 

transplanting. The plants were grown in the greenhouse (16 hr light cycle, 24 °C). 

 

Isolates and inoculum preparation 

We used 3 Fusarium oxysporum f. sp. betae isolates, Fob220a, Fob13 and Fob216c, 

representing two of the three known genetic groups (Hanson et al. 2009, Hill et al. 

2011). Fusarium inoculum was prepared by taking a plug of hyphae from an actively 

growing edge of a colony on the potato dextrose agar (PDA) plate, which was then 
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transferred to a flask containing V8 agar media. Flasks were incubated for 7 days in an 

incubator shaker (150 rpm, 27 °C). 

Conidia concentration was estimated using a hemocytomer and adjusted to 4 x 104 

conidia per ml with sterile water. Five-weeks-old plants were inoculated using the root-

dip inoculation method (Hanson and Hill 2004). For each variety, the plants were 

gently removed from the soil and the roots were rinsed with tap water. Twelve plants 

per treatments were randomly chosen and their roots were submerged in the Fusarium 

spore suspension for 8 min with the suspension shaken every minute. Sterile water 

was used as control. Plants were replanted in pots with 3 plants/ pot. Plants were 

watered when soil was dry on the surface. A week after inoculation, damaged and 

dead leaves were removed to avoid confusion between transplanting and fungus 

damage. 

 

Fusarium Rating 

The response to F. oxysporum isolates was evaluated under controlled environment 

conditions. Beginning two weeks after inoculation, individual plants were rated weekly 

for foliar Fusarium yellows symptoms for 4 weeks using a modified 0-5 rating scale 

(Hanson and Hill, 2004), where 0 = healthy plants, 1= leaves may be wilted or with 

small chlorotic areas, 2= leaves with intervenial chlorosis, with entire leaves chlorotic, 

3= leaves showing nectotic spots, or nectrotic and dying but only less than half leaves 

are affected, 4= half or more of the leaves dead, 5= entire plant dead. 

 

Root evaluation 

Five weeks after inoculation, entire plants were de-potted and washed under running 

tap water to remove the attached soil. The roots were cut open longitudinally to 

examine root symptoms. For each variety, two randomly chosen roots were placed 

onto PDA plates, after surface disinfection in 0.5% sodium hypochlorite for 30 sec, to 

confirm the presence of Fusarium isolates.  
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Statistical method  

The area under the disease progress curve (AUDPC) was calculated for the 4 week 

ratings for each plant and the mean AUDPC determined for each isolate. Experiments 

were done twice.  

AUDPC was subjected to analysis of variance (ANOVA) and comparison of genotype 

means was done with Tukey’s HSD test P=0.05. The package used for analysis was 

Statistica 12.0 (StatSoft Inc. Tulsa, OK, USA).  

 

RESULTS 

 

Virulence of isolates 

All 8 sugar beet lines examined in the greenhouse were susceptible to Fusarium. The 

intensity of foliar disease symptoms differed significantly (P< 0.05) for their response 

to Fusarium: lines 6 and 9 from UNIPD were significantly more affected then the other 

lines (Table 1).  

 

Table 1: Average area under the disease progress curve (AUDPC) value for 24 plants 

(12 plants per treatment, replicated twice) for sugar beet lines screened with three  

Fusarium oxysporum f. sp. betae (FOB) isolates Fob220a, Fob216c and Fob13. 

 

Line Origin AUDPC 
 

6 Italy 39.38 a 

9 Italy 33.64 a 

7 Italy 19.83 b 

18 Italy 15.56 b 

SP7322 US 12.06 b 

FC716 US 11.86 b 

EL51 US 10.40 b 

C869 US 8.26 b 

 
Different letters denote significant differences at p<0.05 using a Tukey's post hoc test. 
 

All plants inoculated with sterile water remained symptomless. All three isolates of F. 

oxysporum f.sp. betae used in the greenhouse experiment, Fob220a, Fob216c and 

Fob13 were pathogenic and caused foliar disease symptoms in all tested genotypes. 
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Depending on the variety, symptoms started to appear 3 weeks after inoculation and 

they increased at different levels. Isolate Fob220a was more virulent than the other 

two isolates for all the inoculated genotypes, whereas Fob13 caused fewer disease 

symptoms (Table 2). Fob216 had the same level of virulence in all the tested 

genotypes (Table 3). 

 

Table 2: Average area under the disease progress curve (AUDPC) values for 

Fusarium oxysporum f. sp. betae isolates Fob220a, Fob216c and Fob13 causing 

Fusarium damages on sugar beet. Sterile water was used as control. Results show the 

average values for 8 sugar beet lines. 

 

 

 

 

 

Different letters denote significant differences at p<0.05 using a Tukey's post hoc test. 

 

The highest AUDPC mean values occurred on the cultivar 6, followed by the cultivar 9 

for the isolates Fob220a and Fob13 (Table 3). The lowest AUDPC mean value was 

recorded on the cultivar EL51 for each isolate (Table 3).  

Two plants from different germplasm, SP7322 and 7, both inoculated with isolate 

Fob216c, died two weeks after inoculation and the plant from genotype 7 showed 

complete rot root. Only one plant (from genotype 6) died using isolate Fob13. Isolate 

Fob220a killed five and six plants of the genotype 6 and 9, respectively. One plant 

each of FC716 and SP7322 also was killed by the isolate Fob220a.  

 

 

 

 

 

 

Teatment AUDPC  

Fob220a 23.77 a 

Fob216c 18.74 ab 

Fob13 14.11 b 

Sterile water 1.24 c 
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Table 3: Response of eight sugar beet lines to three Fusarium oxysporum f. sp. betae 

isolates: Fob220a, Fob216c and Fob13. Values are the average area under the 

disease progress curve (AUDPC) for 24 plants (12 plants per treatment, replicated 

twice) rated weekly for four weeks using a 0-5 rating disease scale. 

 

 
 Fob13 

 
Fob216c 

 
Fob220a   

Line Origin AUDPC   AUDPC   AUDPC 
 

6 Italy 28.88 a 32.67 a 56.58 a 

9 Italy 27.13 ab 23.33 a 50.46 a 

18 Italy 13.71 bc 19.25 a 13.71 b 

7 Italy 12.25 c 32.96 a 14.29 b 

SP7322 US 8.75 c 17.50 a 9.92 b 

FC716 US 8.17 c 8.46 a 18.96 b 

C869 US 7.29 c 7.58 a 9.92 b 

EL51 US 6.71 c 8.17 a 16.33 b 

 

Values for an isolate followed by the same letter are not significantly different by 

Tukey’s HSD test at P<0.05. 

 

 

Root infection 

Five weeks after inoculation, all plants were harvested and roots were cut open 

longitudinally and visually compared for root symptoms. Plants of the un-inoculated 

treatments showed healthy roots, whereas plants inoculated with the three FOB 

isolates with foliar symptoms showed different root symptoms as vascular 

discoloration or root rot.  
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Figure 1: Root symptoms of eight sugar beet lines to three Fusarium oxysporum f. sp. 

betae isolates: Fob220a, Fob216c and Fob13. Values are the percentage of rot, 

discoloration and healthy roots for 24 plants (12 plants per treatment, replicated twice) 

at five weeks after inoculation.  

 

Internal discolored lesions occurred on taproots of the plants from USDA and UNIPD 

lines (Figure 1). External symptoms were observed in all Italian accessions inoculated 

with each isolate. In the most severe host-pathogen interaction, roots of Italian lines 

were necrotic and visually destroyed.  Disease symptoms were always more severe in 

inoculation with the isolate Fob220a. Lines 6 and 9 inoculated with Fob13 and 

Fob220a did not have healthy roots, and 100% of plants of line 9 inoculated with 

Fob200a showed rot symptoms. Isolates Fob13 and Fob216c did not cause rot in all 

the tested US genotypes, whereas isolate Fob220a caused rot in more than 50% of 

UNIPD plants and less than 10% in the USDA plants. 

All isolates were re-isolated from roots tissue samples of each sugar beet lines after 

the harvest and the Fusarium isolates matched the species used in inoculations. 
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DISCUSSION 

 

Fusarium diseases were first reported in US sugar beet fields (Stewart 1931, Martyn et 

al. 1989), and nowadays they are an emerging problem in the other sugar beet 

growing areas (Biancardi 2010). In this study, we provide a comparison of two different 

sugar beet germplam types for the phenotypic reaction to infection by F. oxysporum f. 

sp. betae. All the sugar beet lines were known to be susceptible to Fusarium. The 

purpose of examining the reaction of different sugar beet germplasms to different F. 

oxysporum f. sp. betae is to understand if there is a different response linked to the 

host component and not only due to a strain component. 

The three isolates used in this study were previously described to be Fusarium 

oxysporum f. sp. betae, the causal agent of Fusarium yellows on sugar beet, that 

cause a series of leaves symptoms as wilting and necrosis that can lead to plant death 

and vascular browning of the root but not root rot (Hanson et al. 2009). Susceptibility 

to Fob among sugar beet lines was assessed by development of foliar disease 

symptoms and root symptoms at the end of the rating. 

The evaluation of leaf symptoms allowed us to observe that all the tested isolates were 

pathogenic and they caused significantly different disease severity as has been 

showed in other studies (Hanson and Hill 2004, Hanson et al. 2009). Fob220a was the 

most virulent isolates but the lines 18, 7, and SP7322 showed a high AUDPC with 

Fob216c, and a lower one with the other two isolates. All the tested sugar beet lines 

developed Fusarium symptoms, but they was more severe in the Italian lines 6 and 9. 

The visual examination of root symptoms was performed on 10-weeks-old plants at 5 

weeks after inoculation and permitted a clear discrimination between susceptible and 

healthy plants and was able to identify the different susceptible responses.  

The three Fob used in this work showed ,as previously reported, vascular discoloration 

in sugar beet (Hanson et al. 2009). In fact, all the tested US lines and Italian plants of 

lines 7 and 18 developed symptoms of wilting and yellowing with the same intensity, 

but after the harvest, when the roots had been analyzed, we observed discoloration for 

all the lines, and rot was present in the Italian roots. Rot usually started from the root 

tip and developed a black discoloration in infected root parts. In the US lines, no rot 

root was observed in plants inoculated with isolates Fob13 and Fob216c, while lines 

treated with Fob220a showed some plants with internal discoloration that spread to a 

rot near the vascular discoloration areas. 
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This screening of F. oxysporum f. sp. betae on different sugar beet germplasms 

suggested that there is a different range of responses to the pathogen. This study 

showed that sugar beet lines vary in their responses to infection by different isolates 

as reported previously (Hanson et al. 2009). Our work suggests that the differences in 

disease symptoms of lines caused by F. oxysporum in relation to the severity of 

disease also depend on the variety and the relative genotype susceptibility of these 

isolates.  

An option for screening different germplasms could be to use a mixing of different 

isolates for aggressiveness and origin to evaluate the variation between susceptible 

lines from different germplasms. However, in this study, we observed the response of 

susceptible sugar beet lines from different germplasm using three different pathogenic 

isolates, and these isolates clearly showed the different root responses on the lines 

tested.  

Plants have evolved complex defense mechanisms during the co-evolution of plants 

and pathogens (Dangl and Jones 2001) and, although all varieties could be 

considered susceptible, there are differences in disease reaction that may be due to 

genetic variation within the sugar beet germplasms. Because of the Fusarium 

diseases were a serious threat to the US sugar beet production, probably even the 

susceptible varieties present some genetic component able to reduce the Fusarium 

infection due to the unconscious selection of defense against a natural enemy. On the 

other side, the Fusarium diseases were not a problem in the past in Europe and the 

germplasm had never co-existed with highly virulent isolates, and therefore the 

susceptible lines did not present any defense mechanism against this pathogen. More 

studies are needed to characterize any possible genetic link between breeding 

selection and resistance to Fusarium oxysporum f. sp. betae.  
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ABSTRACT 

 

Fusarium spp. cause severe damage in many agricultural crops including sugar beet. 

Sugar beet needs to be protected from these soil-borne pathogens to guarantee an 

optimal sugar yield in the field. The genetic control is the key to overcoming this 

disease. Identification of single nucleotide polymorphism (SNPs) markers linked to the 

resistance can be a powerful tool for the introgression of valuable genes needed to 

develop Fusarium-resistant varieties. A candidate gene approach was carried out to 

identify SNP markers linked to Fusarium resistance in sugar beet. Five resistant 

analogue genes (RGAs) were screened by means of HRM analysis in a set of 

resistant and susceptible lines to Fusarium. HRM polymorphisms were observed in 

80% of amplicons. Two polymorphisms resulted associated with Fusarium resistance 

(P<0.05). The amplicons that showed association were sequenced and two SNPs 

were identified. The association was further validated on 96 susceptible and 96 

resistant plants using a competitive allele-specific PCR (KASPar) technology. The 

selected SNPs could be used for marker-assisted breeding of Fusarium resistance in 

sugar beet. 

 

KEYWORDS: sugar beet, Fusarium resistance, HRM analysis, KASPar assay 

 

INTRODUCTION 

 

Sugar beet (Beta vulgaris L.) crop is grown in all the temperate areas and produces up 

to 20% of the world’s sugar supply (FAO 2013).  Its production is challenged by 

several endemic and emerging diseases. Among fungal diseases, the soil-borne 

fungus Fusarium oxysporum can cause two diseases known as Fusarium yellows and 

Fusarium root rot and affecting sugar beet yield in US, Russia, Ukraine and China 

(Harveson 2009). Symptoms of Fusarium include foliar wilting and interveinal 

yellowing with vascular discoloration in case of Fusarium yellows and a black root rot 

in Fusarium root rot plants (Stewart 1931, Martyn et al. 1989). Crop rotation may not 

be always an effective control method because the pathogen can survive for long time 

in the rotation crops (Harveson 2009). Genetic resistance is the best option for 

managing the disease.  
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The identification and use of molecular markers linked to the Fusarium resistance 

could reduce not only the time for field screening but also accelerate the development 

of Fusarium resistant varieties. Among molecular markers, single nucleotide 

polymorphisms (SNPs), are attractive because they are the most abundant source of 

variation in genomes and amenable to high-throughput automated analysis 

(Mammadov et al. 2012).  

The candidate gene approach is one of the most used methods to identify associations 

between polymorphisms within pre-specified genes of interest and phenotypes or 

disease states (Hu et al. 2008, Thudi et al. 2014, Li et al. 2014, Guo et al. 2014). This 

method directly tests the effect of genetic variants in a gene that may be involved in 

the control of investigated trait (Pflieger et al. 2001). The candidate gene approach has 

proven extremely powerful for the identification of genes controlling disease resistance 

and for the development of markers highly useful for marker-assisted selection 

(Gebhardt and Valkonen 2001). 

Up to now, no genes and quantitative trait loci (QTLs) have been reported for 

Fusarium resistance in sugar beet. Nevertheless, resistance gene analogs (RGAs) can 

be key targets to identify genes for Fusarium resistance in sugar beet. RGAs are 

obtained on the basis of the conserved domains and they are characterized by their 

sequence similarity to plant resistant genes. For these reasons, they are considered 

optimal candidates for selection of markers associated with pathogen resistance. They 

can be used to develop molecular markers for resistance traits, because of their 

putative functions in plant innate immune systems and their high level of polymorphism 

(Liu et al. 2012). RGAs have been isolated from many crops (Palomino et al. 2006, 

Wenkai et al. 2006, Pei et al. 2007) and a list of 715 RGAs has been recently reported 

in sugar beet (Dohm et al. 2014).  

Besides applications in mutation screening, high resolution melting (HRM) is a rapid 

and highly sensitive method (Reed et al. 2007). HRM is a close-tube method that does 

not require fluorescently labeled probes and previous knowledge of the SNP variation 

is not required. In this topic, HRM assay allows to efficiently identify differences in 

sequence composition based on the melting curve shape between the amplicons 

(Liew et al. 2004). Another flexible method with low error rates is the Next-generation 

Competitive Allele Specific PCR (KASPar). It is a fluorescence-based simple SNP 

genotyping method developed by LGC Genomics LTd. (Semagn et al. 2013).   
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In this study, a candidate gene approach was carried out to identify SNP markers 

linked to Fusarium resistance in sugar beet. The identified SNPs could be used for 

marker-assisted breeding of Fusarium resistance in sugar beet.  

 

MATERIALS AND METHODS 

 

Plant material and phenotyping 

The plant material used in this study comprises a set of 27 sugar beet pollinators 

provided by DAFNAE-Department of Agronomy, Food, Natural resources, Animals and 

Environment (University of Padova, Italy). A resistant pollinator inbred line, 7927-4-

309, from USDA-ARS germplasm (R. Lewellen) and a sugar beet variety, 20, provided 

by Lion Seeds Ltd (UK) and were used as tolerant controls.  

Sugar beet lines were screened for resistance to Fusarium oxysporum f. sp. betae 

under greenhouse conditions. Five-week-old sugar beet plants were inoculated using 

a root-dip inoculation method (Hanson and Hill 2004). For each variety, twelve plants 

per treatments were randomly chosen and inoculated by dipping the roots for 8 min in 

the spore suspension, shaking every minute. After inoculation, each plant was 

evaluated weekly for 6 weeks for severity of foliar symptoms based on a  0-5 rating 

scale (Hanson and Hill 2004), where 0 = healthy plants, 1= leaves wilted or with small 

chlorotic areas, 2= leaves with inter-venial chlorosis, with entire leaves chlorotic, 3= 

leaves showing necrotic spots and dying but with less than half leaves per plant 

affected, 4= half or more than half the leaves dead, 5= entire plant dead. The 

experiment was repeated twice. The area under the disease progress curve (AUDPC), 

which also considers the time course of symptom development, was calculated for the 

6 weeks for each plant and the mean AUDPC was determined. 

 

DNA isolation, candidate gene selection and mutation screening by high 

resolution melting (HRM) analysis 

DNA was extracted from 20 mg of leaf tissue using the BioSprint 96 DNA Plant Kit in a 

BioSprint 96 workstation (Qiagen, Germany) following the manufacturer’s instructions. 

The quality and quantity of extracted DNA were evaluated electrophoretically and 

spectrophotometrically by microfluidic gel electrophoresis with an Agilent 2200 
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TapeStation system (Agilent Technologies, USA). The DNA concentration of each 

sample was adjusted to 20 ng ul-1. To ensure high-precision liquid dispensing the robot 

QIAgility (Qiagen, Germany) was used in the sample preparation.  

Five sugar beet resistant gene analogs (RGAs) identified by Hunger et al. (2003) and 

even reported in Dohm et al. (2014) were screened by means of HRM analysis (Table 

1). Primer pairs were designed using Primer3 software 

(http://www.sgn.cornell.edu/tools/primer3/). The amplicon produced was 160 bp long.  

 

Table 1: List of selected RGA genes 

RGA  
(Hunger et 
al. 2003) 

RGA  
(Dohm et al. 2014) 

Length  
(bp) 

RGA class Gene Product 

8M01 Bv7_171470_ojty 7828 NLcc Disease resistance 
protein At4g27190 
 

AD-c-15c Bv2_043450_zhxk 6688 CNL Putative disease 
resistance protein 
At3g14460 
 

AB4 Bv9_225140_hpxq 4739 NLcc Putative disease 
resistance RPP13-like 
protein 1 
 

8C05 Bv6_147620_tzmc 5233 RLK Hypothetical protein 
 

9J14 Bv6_152400_uaqg 4165 RLK Hypothetical protein 

 

CNL= CC-NBS-LRR coiled-coil (CC), nucleotide-binding site (NBS), leucine rich repeat (LRR); 

NLcc= NBS-LRR; Receptor-like kinases (RLK) 

 

HRM genotyping was performed in 384-well plates using a QuantStudio TM 12 K Flex 

Real-Time PCR System (Thermo Fisher Scientific, USA) in a total of 5 µl final volume 

per well. The HRM mix contained 2.5 µl of MeltDoctor HRM Master Mix, 0.45 µl of both 

forward and reverse primers and 0.2 µl of nuclease-free water. The thermal profile 

was: 95 °C for 10 min followed by 40 cycles at 95 °C for 15 s, 60 °C for 1 min. The 

samples were then melted at a ramp rate of 1 % from 60 to 95 °C. All samples were 

amplified in duplicate. HRM profiles were analyzed with the QuantStudio TM 12K Flex 

Real-Time PCR software version 1.2.2 (Thermo Fisher Scientific, USA). 
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Sequencing PCR amplicons 

PCR reaction was performed in 15 μL PCR reactions containing 20 ng genomic DNA, 

1x PCR buffer (EuroClone, UK), 0.2 μM of each primers, 1.8 mM MgCl2, 150 μM dNTP 

and 0.8 U of Euro-Taq DNA polymerase (EuroClone, UK). Thermal cycling (TC-512; 

Techne inc, US) profiles were as follows: 94°C for 30 s, followed by 35 cycles of 94°C 

for 20 s, 54°C for 20 s, 72°C for 50 s, followed by a final extension at 72°C for 5 min. 

The resulting PCR products were analyzed on agarose gel and purified using 

QIAquick PCR purification kit (Qiagen, USA) and then sequenced by a Sanger 

sequencing platform at Eurofins MWG Operon (Ebersberg, Germany). The sequence 

data were analyzed and aligned for SNP discovery using Mutation Surveyor version 

5.0 (SoftGenetics, USA).  

SNP validation  

Candidate SNPs were selected and surrounding sequences of them were sent to 

KBiosciences UK Ltd for primer design and analysis of the SNPs using the PCR-based 

KASP™ genotyping assay on resistant and susceptible individuals. 

Statistical analysis 

Phenotypic data were subjected to analysis of variance (ANOVA) using Statistica 12.0 

(StatSoft Inc., USA). The statistical tools for genotype analysis of SNPs were provided 

by SNPStats (Solé et al. 2006). For each SNP we calculated Hardy-Weinberg 

equilibrium, allele and genotype distributions, and association tests. Odds ratios (OR) 

and confidence intervals (CI) for the allelic association analysis were estimated by a 

unconditional logistic regression analysis testing multiple inheritance models 

(codominant, dominant, recessive, over-dominant, and log-additive) The best model 

were identified according to the smallest Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) values. The difference in genotype distribution 

between resistant and susceptible samples was assessed by the Chi-square test. 
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RESULTS 

 

Phenotypic analysis  

Fusarium symptoms of 29 sugar beet lines were evaluated for 6 weeks after pathogen 

inoculation. Significant differences in disease symptoms (AUDPC) were observed 

between lines (P< 0.05). 

The resistant lines showed disease symptoms two weeks later than the susceptible 

lines. Several susceptible plants were dead three weeks after inoculation. More than 

65% of the inoculated plants of lines 6, 9 and 12 were dead at the end of the rating 

period.  

 

Figure 1: Fusarium symptoms (AUDPC) of the 6 most resistant and the 6 most 

susceptible sugar beet lines. 

Fig. 1 shows the AUDPC values of the 6 most resistant and 6 the most susceptible 

sugar beet lines selected for high resolution melting (HRM) analysis. The AUDPC 

average value was 41.71 and 117.78 for the resistant lines and for susceptible lines, 

respectively.  
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SNP discovery by high resolution melting (HRM) analysis 

Five resistant analogue genes (RGAs) were screened by means of HRM analysis on 

individual DNA samples of the 6 most resistant and the 6 most susceptible lines. HRM 

polymorphisms were observed in 80% of amplicons. Two polymorphisms resulted 

associated with Fusarium resistant (P<0.05). The amplicons that showed association 

were sequenced and two SNPs were identified. The first SNP, located in the exon of 

Bv2_043450_zhxk gene, was named SNP_Bv2_043450, while the second SNP, 

located in the exon of the Bv7_171470_ojty gene, was named SNP_Bv7_171470. The 

AA genotype resulted associated with Fusarium resistance both at the SNP_ 

Bv2_043450 and SNP_Bv7_171470 loci. Fig. 3 shows representative HRM profiles 

from SNP_Bv2_043450 and SNP_Bv7_171470 amplicons obtained from resistant and 

susceptible samples.  

 

Figure 3: Representative HRM profiles from SNP_ Bv2_043450 and SNP_ 

Bv7_171470 amplicons. 

 

SNP validation by KASPar genotyping 

The two SNPs associated with Fusarium resistance, were converted to KASPar 

assays then used to further validation on 96 susceptible and 96 resistant sugar beet 

samples. Fig. 4 shows allelic discrimination plots from competitive allele-specific PCR 

(KASPar) genotyping of the SNP_ Bv2_043450 and SNP_ Bv7_171470 
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polymorphisms. The genotyping call rates for both SNPs were 80% for resistant 

samples and 92% for the susceptible samples. 

 

 

 

Figure 4: Allelic discrimination plots of SNP_ Bv2_043450 and SNP_ Bv7_171470 

obtained by means of KASP analysis. 

 

Table 2 showed the genotypic and allelic frequencies of SNP_Bv2_043450 and 

SNP_Bv7_171470 polymorphisms in 96 resistant and 96 susceptible samples.  

The distribution of SNP_Bv2_043450 and SNP_Bv7_171470 genotypes were in 

Hardy-Weinberg equilibrium (P<0.01, data not shown) both in resistant and 

susceptible groups.   
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The frequency of the A allele both for SNP_Bv7_171470 and SNP_Bv2_043450 was 

significantly higher (P<0.05) in the resistant individuals than in susceptible individuals. 

The distribution frequencies of the A and C alleles in the SNP_Bv2_043450 were 47% 

and 53% in the resistant group and 34% and 66% in the susceptible group, 

respectively. The AA, AC and CC genotypes frequencies were 25%, 44% and 31% in 

the resistant group and were 8%, 52% and 40% in the susceptible group, respectively.  

Allelic distribution of SNP_Bv7_171470 for A and C alleles in the resistant group were 

53% and 47% and in the susceptible group were 35% and 65%. The AA, CA and AA 

genotypes were 37%, 33% and 30% in the resistant group and 17%, 36% and 47% in 

the susceptible individuals, respectively.  

 

Table 2: Comparison of genotypic and allelic distribution of SNP_Bv2_043450 and 

SNP_Bv7_171470 between resistant and susceptible groups. 

SNPs Genotypes 
[n(%)] 

  Χ 2 P 
value 

Alleles [n(%)] Χ 2 P 
value 

 A/A 
(freq) 

A/C 
(freq) 

C/C 
(freq) 

  A (freq) C (freq)   

SNP_ 
Bv2_043450 

        

Resistant 19 
(24.7%) 

34 
(44.2%) 

24 
(31.2%) 

8.69 0.012 72 
(53.3%) 

82 
(46.7%) 

5.48 0.019 

Susceptible 7 
(8%) 

46 
(52.3%) 

35 
(39.8%) 

  60 
(34.1%) 

116 
(65.9%) 

  

          

SNP_ 
Bv7_171470 

        

Resistant 28 
(36.8%) 

25 
(32.9%) 

23 
(30.3%) 

8.57 0.013 81 
(53.3%) 

71 
(46.7%) 

10.4 0.012 

Susceptible 15 
(17.4%) 

31 
(36%) 

40 
(46.5%) 

    61 
(35.5%) 

111 
(64.55%) 

    

 

For each SNP we calculated odds ratios (OR) and confidence intervals (CI) for the 

allelic association analysis by a logistic regression analysis testing multiple inheritance 

models (codominant, dominant, recessive, over-dominant, and log-additive). The best 

model was identified according to the smallest Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) values.  

The genotype frequency of AA in the SNP_Bv2_043450 and in the SNP_Bv7_171470 

were both significantly associated with Fusarium resistance (p =0.0029, OR =0.26, 
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95% CI = 0.10-0.67 and p= 0.0069, OR=0.36, 95% CI = 0.17-0.76). This suggests that 

the allele A of the SNP_Bv2_043450 (Table 3) and SNP_Bv7_171470 (Table 4) was 

associated with an increased Fusarium resistance. The model with the lowest AIC and 

BIC for both SNP_Bv2_043450 and SNP_Bv7_171470 was the recessive model. 

 

Table 3: Different inheritance models analysis of SNP_Bv2_043450 between resistant 

and susceptible groups.  

Model  Genotype  Resistant 
[n(%)] 

Susceptible 
[n(%)] 

OR (95%CI) P-value AIC BIC 

        
Codominant C/C 24 (31.2%) 35 (39.8%) 1 0.012 225 234 

 
C/A 34 (44.2%) 46 (52.3%) 0.93 

   

    
(0.47-1.84) 

   

 
A/A 19 (24.7%) 7 (8%) 0.25 

   

    
(0.09-0.69) 

   
Dominant C/C 24 (31.2%) 35 (39.8%) 1 0.25 231 237 

 
C/A-A/A 53 (68.8%) 53 (60.2%) 0.69 

   

    
(0.36-1.31) 

   
Recessive C/C-C/A 58 (75.3%) 81 (92%) 1 0.003 223 229 

 
A/A 19 (24.7%) 7 (8%) 0.26 

   

    
(0.10-0.67) 

   
Overdominant C/C-A/A 43 (55.8%) 42 (47.7%) 1 0.3 231 237 

 
C/A 34 (44.2%) 46 (52.3%) 1.39 

   

    
(0.75-2.56) 

   
Log-additive --- --- --- 0.58 0.018 226 233 

        (0.37-0.92)       

 

OR= odds ratio, CI=confidence interval. Five inheritance models (codominant, dominant, 

recessive, over-dominant, and additive) were tested according to the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC) using SNPStats tool. The inheritance 

model with the lowest values of AIC and BIC has the best fit. 

 

 

Table 4: Different inheritance models analysis of SNP_Bv7_171470 between resistant 

and susceptible groups 

Model  Genotype  Resistant 
[n(%)] 

Susceptible 
[n(%)] 

OR 
(95%CI) 

P-value AIC BIC 
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Codominant C/C 23 (30.3%) 40 (46.5%) 1 0.013 221 231 

 
A/C 25 (32.9%) 31 (36%) 

0.71 
(0.34-1.49)    

 
A/A 28 (36.8%) 15 (17.4%) 

0.31 
(0.14-0.69)    

Dominant C/C 23 (30.3%) 40 (46.5%) 1 0.034 223 230 

 
A/C-A/A 53 (69.7%) 46 (53.5%) 

0.50 
(0.26-0.95)    

Recessive C/C-A/C 48 (63.2%) 71 (82.6%) 1 0.005 220 226 

 
A/A 28 (36.8%) 15 (17.4%) 

0.36 
(0.18-0.75)    

Overdominant C/C-A/A 51 (67.1%) 55 (64%) 1 0.67 228 234 

 
A/C 25 (32.9%) 31 (36%) 

1.15 
(0.60-2.20)    

Log-additive --- --- --- 
0.56 

(0.38-0.84) 
0.004 220 226 

 

OR= odds ratio, CI=confidence interval. Five inheritance models (codominant, dominant, 

recessive, over-dominant, and additive) were tested according to the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC) using SNPStats tool. The inheritance 

model with the lowest values of AIC and BIC has the best fit. 

 

 

DISCUSSION 

 

In this study, we used a candidate gene approach to identify SNP markers associated 

with Fusarium resistance in sugar beet. The results have demonstrated that the 

combination of candidate gene approach with two high-throughput and cost effective 

methods as HRM analysis and KASPar technology led to identify and validate SNP 

markers associated with Fusarium resistance. 

Resistance genes to Fusarium oxysporum were previously identified in many crops 

(Simon et al. 1998, Sharma and Muehlbauer 2007) and several studies have been 

conducted to identify molecular markers linked to resistance (Mutlu et al. 2008, 

Oumouloud et al. 2008, Jain et al. 2015). For instance, one dominant and one 

recessive gene were identified for Fusarium resistance in pigeonpea (Saxena et al. 

2012). Three dominant genes (Fom-1, Fom-2 and Fom-3) and a recessive gene (fom-

4) were found in melon (Joobeur et al. 2004, Oumouloud et al. 2010). Recently, SNP 

markers linked to Fusarium resistant were found in Physalis peruviana (Enciso-

Rodriguez et al. 2013) and in watermelon (Ren et al. 2015). 
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The two identified SNP mutations associated with Fusarium resistance were mapped 

in exon of the gene Bv2_043450_zhxk and in exon of the Bv7_171470_ojty gene, 

respectively. The gene Bv2_043450_zhxk encoded a CC-NBS-LRR disease 

resistance protein At4g27190 and Bv7_171470_ojty encoded a NBS-LRR putative 

disease resistance protein At3g14460. These two genes are both involve in defense 

response and ATP binding (Dohm et al. 2014). Plant NBS-LRR proteins mainly 

function in host resistance by specific interaction with pathogen effectors, which active 

defense response (Jones and Dangl, 2006). LRR domains play roles in interaction 

between gene and pathogen, while NBS domains is involved in blind ATP (Porter et al. 

2009). CC domains are involved in protein-protein interaction and signaling (Martin et 

al. 2003, Marone et al. 2013). Therefore, it is possible that Bv2_043450_zhxk and 

Bv7_171470_ojty play an important role in Fusarium oxysporum resistance in sugar 

beet. Both SNP polymorphisms are silent mutations, which do not result in an amino 

acid exchange. While non synonymous SNPs can change protein structure and 

function, some synonymous SNPs might affect translational kinetics leading to an 

altered protein conformation and consequently change protein function (Kimchi-Safarty 

et al. 2007, Komar 2007). In addition, any non-functional SNP could be linked to 

functional variants.  

This study is an initial achievement for future improvement of sugar beet against F. 

oxysporum. Host-plant resistance is the most economic and effective strategy for 

control of Fusarium diseases in sugar beet cultivars and for this reason the 

introgression of these resistant genes into susceptible materials is important to 

maintain the crop production.  

In conclusion, our results suggest that the two SNP markers, SNP_Bv2_043450 and 

SNP_Bv7_171470 play a significant role in the Fusarium resistant. These SNPs can 

be used in breeding-assisted selection programs to improve Fusarium resistance in 

sugar beet. 
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GENERAL CONCLUSIONS 

 

The improvement of Fusarium resistance in sugar beet is important to overcome 

Fusarium infection in the field. To achieve this goal it is essential to screen the 

germplasm for Fusarium resistance and develop molecular markers linked to 

resistance for marker assisted selection.  

The first part of this thesis provided the state of art of the sugar beet breeding 

achievements obtained so far, in order to provide an overview on traditional sugar beet 

breeding strategies and the development of molecular breeding methods. The 

progress in breeding techniques and technologies leads to rapidly evolving of new 

approaches and it is essential to investigate and determine the most appropriate 

method to apply in a sugar beet breeding program.  

The phenotypic screening conducted in this work led to the identification of resistant 

lines to Fusarium oxysporum f. sp. betae that can be used in breeding programs to 

improve resistance. Moreover, it was observed for the first time that isolates of F. 

oxysporum f. sp. betae, from different genetic sub-groups, with various levels of 

pathogenicity, can cause not only vascular discoloration but also severe root rot. 

Therefore, Fusarium root rot symptoms in sugar beet appear to have a host 

component as well as a fungal strain component.  

The candidate gene approach used in this study allowed to identify two SNP markers 

associated with the resistance in the exon of genes Bv7_171470_ojty and 

Bv2_043450_zhxk, respectively. These two genes are both involved in defense 

response and may play an important role in Fusarium resistance. The two SNPs can 

be used in molecular marker selection to improve Fusarium resistance in sugar beet. 

Moreover, the thesis has demonstrated that the combination of a candidate gene 

approach with two high-throughput and cost-effective methods, HRM analysis and 

KASPar technology, is an effective technique to identify and validate SNP markers 

linked to disease resistance. The feasibility of using this approach on other crops with 

available genome sequence represents the starting point to set up specific breeding 

programs to improve disease resistance. 

 

 

 



128 
 

ACKNOWLEDGEMENT 

 

Firstly, I would like to thanks my supervisor Professor Giuseppe Concheri to give me 

the opportunity to start this amazing experience. I would like to express my gratitude to 

my co-supervisor Dr Piergiorgio Stevanato for bringing me into this fascinating world 

and guiding me through the course of my research work.  

My sincere thanks go to Professors Mitch McGrath and Linda Hanson, to give me the 

opportunity to spend one year of my PhD study at Michigan State University, where I 

could access to laboratory and research facilities. Without they precious support I 

would not be able to conduct this research.  

I would like to express my thanks to all the people and friends that I met and helped 

me at MSU in the field work and made me felt at home. In particular Tom Goodwill, 

Paul Galewski, Jane Jiang and Dennis Katuuramu. I need to thanks my amazing 

roommates Susu, Gabi and Joan who always helped me. 

I would like to thanks Dr Marco De Biaggi for the sugar beet breeding lessons walking 

in the fields, Marco Bertaggia, Fabio Stellin and Massimo Cagnin to be good friends 

and supporters in the difficult moments.  

Finally, I would like to thanks my family and my friends who always supported me and 

encouraged me to stive toward my goals. 

 


