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Abstract

In upper-arm reaching movements, positional variances of the opti-
mal trajectories based on optimal feedback control have been reported
to exhibit a peak around the middle of the movement duration in a one-
link arm model and in a mass point model. However, the variance in a
two-link arm model has not been examined. In this study, we show that
the positional variance of the hand of a two-link arm based on a linear
quadratic regulator exhibits a peak around the middle of the movement
duration and this property agrees with that of the measured trajectories
of humans.
Keywords : two-link upper-arm reaching movement, optimal feedback
control, linear quadratic regulator, positional variance

1 Introduction

In upper-arm reaching movements of humans, the trajectories of the hand are
slight curves and their speed profiles are bell-shaped curves [1]. Furthermore,
the positional variances of the hand exhibit a peak around the middle of the
movement duration in iterative one-link upper-arm reaching movements 2] and
in iterative two-link upper-arm reaching movements [3][4].

Todorov and Li (2005) proposed the iterative linear quadratic Gaussian
method (iILQG) as an optimal feedback control for upper-arm reaching move-
ments [5]. The results show that the optimal trajectories of the hand are slight
curves and that the optimal speed profiles are bell-shaped curves. Furthermore,
the optimal trajectories based on optimal feedback control have been reported
to exhibit a reduction of the positional variance around the middle of the move-
ment duration in a mass point model [4] or an inertial point model [6]. However,
the characteristic of the positional variance of the hand in a two-link arm model
has not been examined. In this study, we examined the positional variance of
the hand based on a linear quadratic regulator (LQR) in the two-link upper-arm
reaching movements.
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Figure 1: Task of a two-link upper-arm reaching movement in the horizontal

plane.

2 Method

We obtained the optimal control signals by using an LQR for a nonlinear muscu-
loskeletal system after its linearization and then computed the trajectories from
the optimal control signals and signal-dependent noise. Finally, the positional
variance of the hand was computed from the trajectories.

2.1 Task

Figure 1 shows the task of an upper-arm reaching movement. The start position
ps = (zs, yYs) is (0, 0.3) [m], and the target position p. = (z., y.) is (0, 0.55)
[m]. The movement duration is 0.35 s.

2.2 Musculoskeletal system

The musculoskeletal system is a two-link six-muscle arm model. The dynamics
of the system g(z, u) are as follows [7]:

a |9 K

7 || =9@u)= M l(;1)(—0(1;1,11) +7) (1)
.f r~ (_.f+ fc(u))
where the state vector = denotes [g, ¢, f]7, © = [u1,u2,--- ,us]7 represents
the vector of control signals, g = [6;,0:]7 indicates the joint angles, f =
[f1, fa, -+, fo]* refers to the muscle forces, T = [r;, 72)T denotes the joint
torques that are related to the muscle forces, the matrix of time constants T is
diag[T1, T2, -+ ,Ts}, and fo = [fe1, fe2, -+, fes|” represents the intrinsic muscle
forces.
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Table 1: Parameters of the two-link arm model

Parameter Link 1 Link 2
M; [kg] 1.59 1.44
L; [m] 0.30 0.35
I; [kgm?] 0.18 0.21
S; [cm] 6.78 7.99

The parameters of the two-link arm model are given in Table 1 {8]. The dynamics
of the muscle forces have the low-pass filter property in that the muscle force
changes smoothly [9], and the time constant 7; is set as 0.2 s.

The intrinsic muscle forces f. are determined as follows:

f.u)=u+Di+K(1I-1) (4)

where ! = [l1,lz,---,lg]T denotes the vector of muscle lengths, I. represents
the vector of muscle natural lengths, the matrix of viscosity coefficients D is

diag[d;, da, - - - ,dg], and the matrix of the elasticity coefficients K is diaglki, k2, - - - , ke].

The coefficients k; and d; are set as 1.0 x 10° N/m and 2.5 x 10® Ns/m, re-
spectively. The muscle length vector I is described as

I = Gg+l, (5)
@
_ |=ax aa 0 0 —az a3
i 0 0 —Q3 Q3 —Qa4 Qa4 (6)

where G represents the matrix of the moment arms, a; denotes the moment arm
(Table 2), and [y indicates the muscle length for ¢ = 0. Then, the following
equation is derived from Egs. (4) and (5):

fe(u)=u+DGq+ KG(qg—q.) (M)

where g. denotes the non-singular angle for the natural length I.. The non-
singular angle g. is assumed to be the joint angle for the target position p.. On
the other hand, the joint torque 7 is described as

r=-G'f. (8)

Then, the alternative dynamics of the musculoskeletal system are derived by
substituting Egs. (4) and (8) into Eq. (1).

q q
2l =gew=| M@(-C@a-6) ©)
f T-{-f+u+DGq+KG(qg—-q.)}

2.3 LQR controller

We obtained the control signals by using an LQR [7]. The linearized mode] of
the musculoskeletal system around a non-singular point (z*, ©*) is described as

%.’i ~ Az + Ba (10)
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Table 2: Moment arms of muscles.

Parameter ay as as a4
Moment arm [cm)] 4.0 2.5 3.5 3.0

where T = — ¢, 4 = u — u*,

:—Em',u'), B:%(m,u) (11)

The non-singular point is set as ([ge, O1xs]”, 0). The evaluation function J is
ts
J =" (t;)Q&(ts) +/ (7 Qz + u” Ru)dt (12)
0

where ¢ denotes the movement duration, Q; = diag(2a x 107, 2a:x 107, 5 x 105,
5 x 10%, 10, 10, 10, 10, 10, 10), @ = 0, and R = Bxdiag(1,1,1,1,1,1). ais
set as 0.1, 0.25, and 1.0, and § is set as 1.0, 5.0, and 10.0. Then, the optimal
control signal u takes the following form:

u=-RBTP(t)z. (13)

The matrix P(t) is obtained from the following Ricatti differential equation
running backward in time from ¢ = ¢4:

P(t) = —-ATP@#)-Pt)A+PH)BR'BTP(t)-Q, (14)
P(tf) = Qf- (15)

2.4 Positional variance

The signal-dependent noise w(t) was added to the optimal control signal w(t).
The applied noise was the Gaussian noise, in which the mean was zero and the
variance was 7|u;|?, where v was set as 1.0.

The positional variance of the hand in the horizontal plane was estimated
using a Monte Carlo simulation with 1000 repetitions. The variance o7, was
defined as the sum of the variance o2 and the variance 012, in accordance with
[3].

The state vector of the musculoskeletal system and the matrix P of the
Ricatti differential equation were updated by using the fourth-order Runge-
Kutta method. The initial values of the state vector z(0) were set as [g(0),
3(0), £(0)]T, where the inverse kinematics was used for determining the initial
angles g(0) for the start position pg, g(0)=[0, 0}, and £(0) = [0, 0, 0, 0, 0, 0]%.
The time step was set as 1 ms.

3 Result

Figure 2 (a) shows the optimal trajectory of the hand position based on the
LQR. The optimal trajectory of the hand position exhibits an almost straight
line. Figure 2 (b) shows the hand speed profile. The speed profile exhibits a
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Figure 2: Optimal trajectory based on the LQR. (a) The hand trajectory, (b)
the hand speed profile, (c) the positional variances of the hand (The solid line,
the dashed line, and the dotted line show the variances in the horizontal plane,

the z direction, and the y direction, respectively), (d) the angular torques (The

solid line and the dashed line show the torques of the shoulder and of the elbow,

respectively).
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Figure 3: Positional variances of the hand in the horizontal plane. (a) The

variances for @ = 0.1, 0.25, 1.0 and 3 = 1.0 are represented by a dotted line, a
dashed line, and a solid line, respectively. (b) The variances for a = 1.0 and 3
= 1.0, 5.0, 10.0 are represented by a solid line, a dashed line, and a dotted line,

respectively.
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bell-shaped curve with a peak around the middle of the movement duration.
Figure 2 (c) shows the positional variances of the hand. The variance in the
horizontal plane exhibits a peak around the middle of the movement duration.
Figure 2 (d) shows the angular torques, which change smoothly.

Figure 3 shows the positional variances of the hand in the horizontal plane.
The weights o and 3 denote the weights of the end-position constraint and of the
energy cost, respectively. When « increases, the positional variance at the end
of the reaching movement decreases because the positional accuracy required
by the reaching movement increases. On the other hand, when § is large (i.e.,
the rate of the energy cost in the cost function is large), the positional variance
increases because the control signal is suppressed.

4 Conclusions

In this study, we examined the positional variance of the hand on the basis of the
LQR in the two-link upper-arm reaching movement. The result revealed that
the positional variance exhibited a peak around the middle of the movement
duration. Therefore, optimal trajectories based on the optimal feedback can
show the characteristics of a human reaching movement, such as the trajectory,
the speed profile, and the positional variance.

It has been reported that the positional variance of the hand decreases with
a decrease in the target size in a one-link reaching movement of a human [2].
We examined the positional variances for the weights of the cost function. The
result revealed that the optimal trajectory based on the LQR can represent the
positional variance for the target size. The central nervous system might select
the weights for the target size.

We adapted the LQR for the nonlinear two-link musculoskeletal system,
and the optimal control signal was corrupted by the signal-dependent noise.
Although the iLQG was used in the previous studies [4][5], we used the LQR to
easily examine the characteristics of the LQR and could represent the character-
istics of the human reaching movement. In the future, we might have to examine
the characteristics of the optimal trajectory by minimizing the expected value
of the cost function in the two-link arm model.
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