
Exploring Minds
Modes of Modelling and Simulation in Artificial Intelligence

Hajo Greif 1,2

1 International Center for Formal Ontology (ICFO)
Warsaw University of Technology

Plac Politechniki 1
00-661 Warsaw

Poland

2 Munich Center for Technology in Society (MCTS)
Technical University of Munich

Arcisstraße 21
80333 Munich

Germany

E: mail@hajo-greif.net W: h�ps://hajo-greif.net

Manuscript accepted for publication in Perspectives on Science, Special Issue on
Exploratory Models and Exploratory Modelling in Science, Guest Editors: Axel

Gelfert, Grant Fisher, Friedrich Steinle

Version of December 31, 2019 (final dra� post-refereeing)

Copyright: Perspectives on Science, h�ps://www.mitpressjournals.org/loi/posc

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PhilSci Archive

https://core.ac.uk/display/286033476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mail@hajo-greif.net
https://hajo-greif.net
https://www.mitpressjournals.org/loi/posc


Exploring Minds:
Modes of Modelling and Simulation in
Artificial Intelligence

Abstract: The aim of this paper is to grasp the relevant distinctions

between various ways in which models and simulations in Arti�cial Intel-

ligence (AI) relate to cognitive phenomena. In order to get a systematic

picture, a taxonomy is developed that is based on the coordinates of formal

versus material analogies and theory-guided versus pre-theoretic models

in science. These distinctions have parallels in the computational versus

mimetic aspects and in analytic versus exploratory types of computer sim-

ulation. This taxonomy cuts across the traditional dichotomies between

symbolic / embodied AI, general intelligence / cognitive simulation and

human / non-human-like AI.

According to the taxonomy proposed here, one can distinguish between

four distinct general approaches that �gured prominently in early and

classical AI, and that have partly developed into distinct research pro-

grammes: �rst, phenomenal simulations (e.g., Turing’s “imitation game”);

second, simulations that explore general-level formal isomorphisms in

pursuit of a general theory of intelligence (e.g., logic-based AI); third, sim-

ulations as exploratory material models that serve to develop theoretical

accounts of cognitive processes (e.g., Marr’s stages of visual processing

and classical connectionism); and fourth, simulations as strictly formal

models of a theory of computation that postulates cognitive processes to

be isomorphic with computational processes (strong symbolic AI).

In continuation of pragmaticist views of the modes of modelling and

simulating world a�airs (Humphreys, Winsberg), this taxonomy of ap-

proaches to modelling in AI helps to elucidate how available computa-

tional concepts and simulational resources contribute to the modes of

representation and theory development in AI research – and what made

that research programme uniquely dependent on them.
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1 Introduction

1 Introduction

Arti�cial Intelligence (AI) is a diverse research programme that includes many, partly

competing, approaches and that comes with many, often diverging, aspirations. De-

spite its disunity and its perpetually pre-paradigmatic status in Kuhnian terms, AI

is currently experiencing a renaissance. In doing so, it also undergoes numerous

transformations that make it ever more di�cult to determine its purpose and content.

This paper seeks to systematically account for the diversity of AI and to identify its

common themes on the grounds of a critical reconstruction of the various modes of

modelling and simulation that are used in the �eld. These distinctions are instructive

for the modelling and simulation debates in the philosophy of science, but also for the

philosophy and theory of AI: how do models and simulations relate to world a�airs?

How and to what purpose are they made to do so? What bearing do answers to these

questions have on various approaches to AI?

In order to at least begin to answer these questions, a taxonomy is developed that

builds, �rst, on the distinctions between formal and material analogies in scienti�c

modelling, and between theory-guided and pre-theoretic models (Section 2). These

two aspects of models in science have relevant analogies in the realm of computer

simulations: on the one hand, simulations comprise computational and phenomenal

elements, typically but not necessarily in conjunction. On the other hand, one can

distinguish between analytic, mathematical and synthetic, exploratory types of com-

puter simulations (Section 3). Using these conceptual distinctions as co-ordinates,

four approaches to modelling and simulation in AI will be outlined (Section 4). These

distinctions cut across a variety of well-established dichotomies that have been used

to conceptually sort the �eld of AI. This taxonomy will help to elucidate how avail-

able computational concepts and simulational resources contribute to the modes of

representation and theory development in AI research – and what made that research

programme uniquely dependent on them (Section 5).

2 A Variety of Models

In the various analyses of the role of models in science that emerged towards the end

of the 19th century, there are two recurring questions: �rst, how do models represent

an object or “target system”? The two basic types of representation are formal and
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2 A Variety of Models

material, but they occur in various forms and arrangements. Second, what is the

relationship between models and theories? Models can either be derived from an

existing theory, or they can enable the development of a theory. In principle, however,

they can also be completely independent of any theory.

The authors who �rst introduced the concept of models into philosophical re�ections

about science were quite inclusive, if not vague, in their accounts of what models

are and how they represent. Ludwig Boltzmann (1902) refers to models as “tangible

representations” in the �rst sentence of his “Model” Encyclopaedia Britannica entry,

but then allows models to be “constructed [. . . ] in thought” and “mentally conceived”

at the end of the very same sentence (1902, 788).

Heinrich Hertz (1899, 1-2) commences his inquiry into models from a notion of “our

conceptions of things” as mental images and develops a picture-theoretic account of

models that de�nes them mathematically as point-to-point mappings between states

and transformations in image and original while taking them to directly concern

perceptual experience and experimental measurements (Hertz 1899, 30). He maintains

that modelling relations are identical to the relations between mental images and the

“things themselves” in general (Hertz 1899, 177). All science, then, is model-based, and

the models it employs involve both mathematical mapping, which may or may not

happen ‘in the head’, and more material, observation-based relations.

Hertz’ and Boltzmann’s broad and inclusive views of models have given way to

more di�erentiated accounts of how models relate to world a�airs in classical mid-20
th

century philosophy of science: Max Black (1962, Ch. XIII) distinguishes between

analogue models, theoretical models and “archetypes” (plus physical scale models and

mathematical models, which are deemed less pertinent to scienti�c inquiry).

The purpose of analogue models is to “reproduce as faithfully as possible in some

new medium the structure or web of relationships in the original”, where that repro-

duction establishes relations of isomorphism, formally de�ned in similar fashion to

Hertz’ view as “point-to-point correspondence” between relations in the model and

relations in the original, which may but need not depend on a pre-existing theory

of the target domain (Black 1962, 222, emphasis in original). In the mathematical

parlance introduced by Black, isomorphism is an identity relation between structures

in terms of a bijective function that individually pairs every element in one structure

with exactly one element in the other. As examples of changes of medium, Black cites
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2 A Variety of Models

“hydraulic models of economic systems, or the use of electrical circuits in computers”

(1962, 222), under the premise that the formally expressed isomorphism relations hold

independent of the choice of medium.

Black’s theoretical models are more conceptual and pragmatic and less formal in

nature, involving the transfer of theoretical concepts from a well-explored domain

of science to a less explored one, in order to facilitate the building and testing of

hypotheses in the latter. They do not presuppose a theory of the target domain but

are employed to develop it in the �rst place. Unlike analogue models though, the

performance of their epistemic tasks depends on the choice of medium. Given that,

according to Black’s example example, Clerk Maxwell modelled the electrical �eld

“in terms of the properties of an imaginary incompressible �uid” (Black 1962, 226),

the properties of that incompressible �uid will have a direct bearing on the set of

hypotheses concerning the electrical �eld that are derived from the model.

Lastly, Black’s archetypes are, often implicit and always informal, guiding metaphors

that organise an entire �eld of inquiry, and as such bear some resemblance to Kuh-

nian paradigms. On Black’s view, these three types of models stand in a relation of

decreasing formality and strictness and increasing generality and epistemic import.

A �rst attempt at distinguishing models along the kinds of likeness between model

and target system on the one hand and between its kinds of relationship to theories on

the other was introduced by Ernest Nagel (1961, Ch. 6). Both “formal” and “substantial”

analogies, he suggests, can be used to construct a theory or to extend its range of

application, or to apply a pre-existing theory. Consequently, two types of analogy are

co-ordinated with two types of uses, where these two axes are considered independent.

In her classic account of models and analogies, Mary Hesse (1966) chooses not to

detach these two aspects. Instead, she relies on a binary distinction between material,

pre-theoretic and formal, theory-guided analogies, which she characterises as follows:

there is one-to-one correspondence between di�erent interpretations of

the same formal theory, which we may call formal analogy, and there are

pretheoretic analogies between observables [. . . ] which enable predictions

to be made from a model. Let us call this second sense material analogy.

[. . . ] It should be noticed that if material analogies between models and

explicanda are to do the predictive job required of them, they must be
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2 A Variety of Models

observable similarities between corresponding terms and must not depend

on a theory of the explicandum. (Hesse 1966, 68, 69, emphasis in original)

De�nitionally, Hesse’s requirements for models can be pinned down as follows:

M-1 material models are structures that bear observable and pre-theoretic similarities

to, and thereby enable predictions of, their target systems.

M-2 formal models are structures that express interpretations of a formal theory,

without observable similarities being required.

De�nition M-2 echoes the “syntactic” view of theories, under which models are for-

mally described structures of which all axioms of a theory are true, and which provide

concrete values to its variables (for a paradigmatic formulation of this view, see Tarski

1953 and its critical discussion in Suppes 1960). Under the syntactic view, models may

remain independent of any observable phenomena and their explanation, although in

practice they typically serve the mapping of a theory onto a given set of phenomena.

The formal analogies involved are ‘vertically’ determined by the theory, in that the

same equations are used in otherwise disjunct domains of phenomena that do not

display similarities in observables between them from which predictions could be

generated. Hesse cites the Mathieu’s equation as an example, as it equally applies

to the behaviour of elliptic membranes and to the movements of a balancing artist

among other things. Despite being described by the same set of theoretical axioms,

these phenomena do not display observable analogies that otherwise might allow for

prediction or explanation of one domain in light of the properties of the other.

Hence, the primary mark of distinction between material and formal models is not

the way in which they are expressed but, �rst, their mode of reference to observables.

Second, they are distinguished by being determinants of theory or determined by

theory respectively.

With respect to the role of material models in theory-building, a key role accrues

to, in Hesse’s words, “neutral analogies”. They are relations assumed to hold between

model and target system that, at the time of the model’s introduction, cannot be

proven to hold or not to hold. Their speci�c value lies in their capacity to explore the

properties of the target system by generating predictions of its behaviour in light of

that analogy, which are to be con�rmed or discon�rmed at a later stage of inquiry.
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2 A Variety of Models

Neutral analogies are thus identi�ed as the “growing points” of a theory (Hesse 1966,

8-10). In this speci�c and important sense, the function of models is exploratory, as

guides for theory construction that are neither de�ned nor constrained by pre-existing

theory. In order to elucidate the exploratory role of models, Hesse chooses the example

of the “ether” in the development of the wave theory of light. When the wave theory

of sound was transferred to explanations of the behaviour of light, ether was chosen

as the neutral analogue of “air”, besides a number of established positive and negative

analogies between sound and light. There was well-founded knowledge concerning

the behaviour of air as a medium for the transmission of sound waves, from which

predictions were derived concerning the behaviour of the medium for the transmission

of light waves – which were ultimately not con�rmed.

Hesse’s dual requirement for material models, according to M-1, to be pre-theoretic

and display observable similarities to the target system is quite descriptive of how

models are in fact often used in science. Conceptually and logically, the parts of the

conjunct are independent though, either in the way described by Nagel (1961) or in

the more fundamental sense of models being genuinely autonomous from theory

(Morrison 1999). A model may bear observable similarities to the target system and

be based on a pre-existing theory, for example when functioning as an illustration

or exempli�cation of the theory’s empirical content. Hence, a third de�nition can be

introduced that aims at a class of models whose role in advancing science may be

comparatively modest, but whose role in elucidating it should not be neglected:

M-3 models are structures that materially exemplify the observable consequences of

an established theory, demonstrating its bearing on phenomena.

Conversely, a model might be pre-theoretic in a similar fashion to that envisioned by

Hesse for material models while referring to observables in a more abstract and indirect

way. This possibility has been explored by Bas van Fraassen (1980) in particular:

M-4 models are structures that bear a formally de�ned relation of isomorphism

to their target system, without either observable similarities or a pre-existing

theory being presupposed.

De�nition M-4 matches the “semantic” view of theories, under which theories are

not sets of propositions articulated in a speci�ed formal language. Instead, they are
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2 A Variety of Models

presented “in the �rst instance by identifying a class of structures as its models”,

where “the same class of structures could well be described in radically di�erent ways”

(van Fraassen 1980, 44). The classes of structures involved are identi�ed by reference

to relations of isomorphism. Theories, in turn, are descriptions of a set of related

isomorphic structures or “a family of models” that share a speci�c set of properties

(van Fraassen 1980, 65).

Accordingly, models are epistemically more central to science than theories. By

the same token, theories are genealogically not prior to models, but de�ned by them.

According to van Fraassen’s own example, Isaac Newton attempted to map the ap-

parent, observable movements of bodies both onto one another and onto the true

movements of bodies that he assumed to occur in an absolute space. If these images are

understood as isomorphic, the observed movements can be represented as di�erences

between true movements in absolute space. Absolute space is not observable itself

but described by the family of models of apparent motion.

An important implication of the last of the above approaches to modelling (M-4),

but partly also of the �rst (M-1), is that it substitutes the condition of truth for the

propositions of a theory with the condition of empirical adequacy (van Fraassen 1980,

12-13). If models are images, as Hertz (1899) suggested, or even if models are any

closer in nature to images than to propositions, they cannot be strictly speaking true

or false but only more or less faithful or adequate in a number of respects. A model

may vindicate but does not verify any theory that it might support. If one abstains

from ascribing truth values to pictures or other non-propositional structures, and

hence also to models (as Hertz 1899 does), and especially if one allows theories to be

non-propositional structures, too (as van Fraassen 1980 does), empirical adequacy will

be the strongest possible normative judgement on the value of a theory or the models

on which it may rest.

However, the empirical adequacy of a model is a function not only of empirical �t

but also of the purposes and resources of inquiry. This pragmatic leitmotif of modelling

in science, and in fact of science altogether, is explicit already in Hertz (1899). It also

�gures in van Fraassen (1980) and other anti-realist approaches as well as in what is

called the “practice turn” in the philosophy of science (inaugurated by Hacking 1983

and recently summarised in Soler et al. 2014).
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3 Simulations and Models

The degrees of freedom in how models may relate to world a�airs, pre-theoretic

versus theory-based and materially versus formally, and the pragmatic considerations

that go into designing these relations, become particularly manifest in the most recent

major addition to repertoire of scienti�c methodology: computer simulations.

3 Simulations and Models

A paradigmatic albeit extremely broad de�nition of simulations that puts them in

the context of scienti�c modelling is given by Stephan Hartmann: “a simulation

imitates one process by another process,” where “the term ‘process’ refers solely to

some object or system whose state changes in time” (Hartmann 1996, 83, emphasis

in original). According to this de�nition, simulations, in the most straightforward

cases, can plainly be dynamic models that seek to trace the outward behaviours or

the internal dynamics of a system. Consequently, a computer simulation will be a

computer implementation of such a dynamic model. In scienti�c practice, simulations

are typically computer simulations, so that the terms “simulation” and “computer

simulation” come to be used synonymously. (I will henceforth refer to computer

simulations simply as “simulations”.)

Paul Humphreys introduces a paradigmatic de�nition of computer simulations

that goes beyond this de facto constraint on simulations and moves from material

to formal criteria: “A computer simulation is any computer-implemented method

for exploring the properties of mathematical models where analytic methods are

unavailable” (Humphreys 2004, 107-8). This de�nition is too narrow, as the author

himself admits, as computer simulations often provide solutions to models that are

analytically tractable. It is also too broad, he concedes, as it also covers areas of

computational science otherwise unrelated to simulations.

Between these two poles of maximal generality and speci�city, one will �nd ac-

counts of computer simulations that highlight both their dynamic, material and their

mathematical, model-solving character. Typically, the connection between a simula-

tion and its target system is conceived of as a two-step relation, as critically discussed

by Eric Winsberg (2010, 9-11, 19-25): simulations are, in a �rst step, computer im-

plementations of formal models. They are designed to algorithmically solve, that

is, to provide concrete values for, the variables of those models. The simulation’s
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3 Simulations and Models

output counts as the model’s solution. In a second step, the solution helps to decide

on the model’s empirical adequacy. In the parlance of simulation-based science, if the

algorithms in question match the formal model, the simulation is veri�ed. If the model

underlying the simulation is found to correctly represent its target, the simulation is

validated.

According to this two-step image, a simulation represents its target system by �rst

realising the underlying model. However, veri�cation and validation may not be so

clearly distinguishable in practice. A model and its implementation are often mutually

adjusted in pragmatic fashion in order to make them both solvable and empirically

adequate. Such pragmatic considerations motivate Winsberg (2010, 19) to characterise

simulational methods as “motley”. Simulations might be informed by established

theories, but also resort to theoretically unprincipled assumptions, intuition, tricks and

tinkering, so as to bring model, simulation and, possibly, observation into accordance.

The implications, however, might not be as relativistic as it may seem at �rst sight, as

a greater amount of background knowledge, relative to traditional observational and

experimental methods, will compensate for ad-hoc practices in simulation modelling

(Winsberg 2010, 70-71).

Most authors consider simulations are su�ciently de�ned by their formal model-

solving properties, as far as “core simulations” are concerned, in contrast to complete

“computer models” (Humphreys 2004, 110) or what Winsberg (2010, 16-17) calls “models

of the phenomena” (see also Hartmann 1996, 84). In boundary cases, simulations may

have no empirical referent at all.

Conversely, the design and logic of computer simulations are subject to mate-

rial constraints imposed by the available mathematical and computational resources.

Humphreys (2004, 56) argues that “[m]ost scienti�c models are speci�cally tailored to �t,

and hence be constrained by, the available mathematics” (emphasis in original), and that

“It is the invention and deployment of tractable mathematics that drives much progress in

the physical sciences” (Humphreys 2004, 55, emphasis in original). Johannes Lenhard

(2015) adds the complementary observation that mathematical models have to be

tailored to a given set of computational resources. At any given time, an empirical

problem may be treated by simulational methods only to the extent that a speci�c set

of computational and mathematical tools is available.
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3 Simulations and Models

Within the limits of those pragmatic enablers and constraints, a simulation will

typically also comprise a material, observable rendering of their output, mostly in

the form of visualisations or other representations of its output with respect to the

variables identi�ed in the underlying formal model (Humphreys 2004, 111; Winsberg

2010, 31-34). That rendering has its own criteria of empirical adequacy, in terms of

observable similarities. The kind of presentation is chosen in accordance with the

visualisation methods that are available, the characteristics of the target system that are

considered particularly relevant, and the ways in which these are best communicated.

Conversely, it is historically plausible that the lack of suitable means of visualisation

and communication has impeded the introduction of advanced simulation-based

models in the early days of computing, as Rainer Hegselmann (2017) argues with

reference to the Sakoda model as an equally sophisticated and unsuccessful early foray

into computer-based social science.

Despite de facto usually travelling together, the formal and material aspects of

modelling are partly separate a�airs in systematic respects: a straightforward mathe-

matical solution to a model is amenable only in the case of what Peter Asaro (2011,

93) calls “analytic” simulations, where it is possible to (locally) apply a pre-existing

(general) theory. In this paradigmatic set of simulation-based investigations, a formal

theory of the target system is involved, which will inform a set of formal models to be

implemented in a computer. On the basis of input data from the target system, the

computer will then generate an output that can be demonstrated to be isomorphic

to what the theoretical propositions would predict. In boundary cases, no empirical

referent might be involved at all, if and when the simulation solves equations using

�ctional or altogether non-referring data.

Conversely, “synthetic” simulations are designed to produce analogues of the phe-

nomena that are to be investigated in the absence of theory. Hessean material analogies,

in terms of observable similarities, take centre stage. From the observation of these

analogies, a set of theoretical hypotheses may be generated and then be subject to

further testing. For example, a sequence of variant or even contradicting models can

be tested and compared or the e�ects of �ctitious values of key variables surveyed.

In this type of simulation, the use of computers as universal machines actually ex-

ploits the lack of material constraints. In a complementary boundary case to that of

non-referring models, it might happen that a genuine theoretical understanding of
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3 Simulations and Models

the target system is not even sought, or is considered out of reach. In such cases,

behavioural similarities between model and target may be considered su�cient for the

purposes at hand. To some authors, the latter seems the primary use of simulations

under ‘technoscienti�c’ conditions (Nordmann 2011; Galison 2017).

The two types of boundary case aside, the distinction between analytic and syn-

thetic simulations bears an analogy to the distinctions between theory-guided and

exploratory experimentation (Burian 1997; Steinle 1997; Ribe and Steinle 2002; Wa-

ters 2007) and, relatedly, between theory-guided and exploratory modelling (Fisher

2006; Gelfert 2016). Where theory-guided experimentation and modelling amount to

the testing of theoretical hypotheses by empirical means that are to a large degree

determined by the respective theories, exploratory experimentation and modelling

lack both the guidance and the constraints provided by a pre-existing theory. Instead,

they have been described as practices of “getting a feel” for the phenomenon or model

(Gelfert 2016, 96). This seeming lack of conceptual and empirical focus is not to be

considered a de�cit though, but serves to ground an alternative approach that has

respectable historical credentials, from Goethe to Faraday (Steinle 1997; Ribe and

Steinle 2002).

With respect to exploratory experimentation, “Its de�ning characteristic is the

systematic and extensive variation of experimental conditions to discover which of

them in�uence or are necessary to the phenomena under study” (Ribe and Steinle 2002,

46). Its aim is “to open up the full variety and complexity of a �eld, and simultaneously

to develop new concepts and categories that allow a basic ordering of that multiplicity”

(ibid.). Variation of conditions, as the previous quotes suggest, is anything but random.

Instead, it follows preliminary conceptions of how the phenomena might be a�ected

by such variation, where these conceptions are judged to have a promise of furnishing

explanations. Exploration paradigmatically – but not always, as will be demonstrated

– serves the development of a theory, and embodies the key characteristics of the

material, pre-theoretic type of models described by Hesse (1966) in more poignant

fashion perhaps than she envisioned herself.

The material character of exploratory modelling in particular stands in a peculiar

relation to the properties of computer simulations outlined above: Given that the

mathematical structures involved in many models are particularly keen to exploratory

manipulation, variation of parameters may come “too cheaply” as compared to ex-
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4 Varieties of Models and Simulations in AI

perimental practice and its material constraints (cf. Gelfert 2016, 79, 82). Simulations,

if anything, facilitate the manipulation of mathematical structures across the entire

range of available possibilities. Given that computers are universal machines in Tur-

ing’s sense, for being capable in principle of accomplishing any logico-mathematical

task that is amenable to a solution at all (Turing 1936), the role of an elaborate theory

to constrain the range of simulational possibilities, and give direction to an inquiry,

has been argued to be more important than in experimental practice or direct, artefact-

based modelling (Asaro 2011; Guala 2002). Such a theory is not always available

though, nor does it have to be, as long as the range of possibilities is meaningfully

and methodically constrained.

Simulations with exploratory functions have assumed particular importance in one

scienti�c �eld that has received comparatively little attention in the philosophy of

modelling and simulation to date but that displays an unrivalled variety of approaches

to modelling and simulation: Arti�cial Intelligence. In its origins as an extremely open

and theoretically under-de�ned �eld, it o�ered itself for a multitude of approaches to

modelling and simulation, some of which are still of relevance today.

4 Varieties of Models and Simulations in AI

AI co-originated with computer science and played a formative role in the development

of the cognitive sciences. Unlike most well-established sciences, and unlike physics

in particular, the cognitive sciences were not in a position to rely on an axiomatic

theory of their subject matter. The cognitive sciences arose in the mid-20th century

from a growing dissatisfaction both with classical introspective psychology and with

behaviourism. Neither of these two approaches had a reasonably well-developed, let

alone an axiomatic, theory of cognitive processes at their disposal. Introspective psy-

chology lacked the credentials of objective science altogether, whereas behaviourism

did not accept cognitive phenomena as amenable to and worthy of scienti�c considera-

tion, and restricted itself to a systematic inquiry into observable behaviour. Confronted

with a number of explanatory problems unsolvable by either behaviourism or intro-

spective psychology, the cognitive sciences were founded in order to develop a novel

approach to scienti�c psychology. Lacking a psychological theory to rely on, the

endeavour commenced with models, and with computer models and their implemen-
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4 Varieties of Models and Simulations in AI

tations in particular, in the hope to be able work its way upwards to a comprehensive

theoretical account.

AI played a prominent and particular role in the development of the cognitive

sciences in that it, �rst and foremost, provided them with a novel set of methods.

However, AI was in a unique position that went much deeper than methodological

innovation. In his seminal contribution to applied mathematics, “On Computable

Numbers”, Alan Turing (1936) conceived of theoretical machines, now known as

“Turing Machines”, along the lines of a subset of cognitive operations, namely those

involved in the accomplishment of basic routines of arithmetic or “computation”.

As Turing demonstrated, complex mathematical operations may be broken down

into such elementary operations in such a way that they could in principle also be

accomplished by those machines. Hence, these machines would be able to solve any

logical-mathematical task that is amenable to a solution at all. However, the machines

designed by Turing were �rst and foremost theoretical machines, based on his theory

of computation. The functions of these theoretical machines were purposefully de�ned

in abstraction from any speci�c realisation and application, while being modelled on

the basis of the performances of human “computers”. In this sense, Turing used the

material model of human computers as a neutral analogy (M-1) in the development

of his theory of computation. (Another material model that inspired the design of

Turing’s theoretical machines on a more concrete level was the mechanical typewriter,

as suggested by Andrew Hodges 1983, 96-98.)

Accordingly, there is an element of modelling human cognitive processes that went

into the foundations of computer science. In turn, the endeavour of the cognitive

sciences was to build on this analogy in order to develop computer-implementable

scienti�c models of higher-level human cognitive abilities. However, there also was

a, more or less implicit, suggestion of a direct, behaviour-based analogy between

human and machine accomplishments. This analogy was introduced in fairly playful

manner in Turing’s later essay “Computing Machinery and Intelligence” (1950), and

there is a remarkable ambiguity in Turing’s work between these analogies (lucidly

described in Sprevak 2017). However, the latter analogy was transformed into a

research programme by later authors, and subsequently shaped public perception of

AI, as may be illustrated by the fact that the Loebner Prize competition for a computer

that passes the “Turing Test” and related e�orts (see also Warwick and Shah 2016).
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4 Varieties of Models and Simulations in AI

With respect to the role of human cognition in AI modelling, it is worth high-

lighting that from its very beginnings, AI comprised two expressly distinct research

programmes. Only one of them has human cognition as its topic and thereby belongs

to the cognitive sciences proper, whereas the other paved the way for the success of

AI in many �elds of application, but did not pursue a scienti�c agenda with respect

explaining human cognitive abilities. Remarkably, the latter approach corresponds

to the original de�nition of “Arti�cial Intelligence”, in which intelligent, cognitively

advanced human behaviour serves as a resource for modelling. An early anthology of

foundational works in AI (Feigenbaum and Feldman 1963) was divided into two parts

accordingly (see also Ringle 1979; Asaro 2011):

S-1 computer programs that solve complex intellectual tasks without prima facie

regard to modelling cognitive functions; the aim is “to construct computer

programs which exhibit behavior that we call ‘intelligent behavior’ when we

observe it in human beings” (Feigenbaum and Feldman 1963, 3);

S-2 simulations that implement models of the structure or functions of natural cog-

nitive processes, without prima facie regard to creating similarities in observable

behaviour; the aim is the “simulation of cognitive processes” (op. cit., 269).

Simulations of the �rst type (S-1) are also called “behaviour-based simulations” because

they make no or no systematic attempt to establish analogies between the computa-

tional processes involved in a computer’s attempt to solve a task and the cognitive

processes involved when a person tries to solve the same task. Conversely, it is the

task of S-2 simulations to provide analogies at the level of cognitive processes and

functions, which are not necessarily linked to the generation of behavioural similari-

ties at the observational level. Taking such similarities to be indicators of underlying

processes and proposing the supposed analogies as de�nitions of intelligence, or even

as evidence for machine intelligence, has been identi�ed as a fateful misunderstanding

of AI by several authors (e.g., Copeland 2000; Moor 1976; Whitby 1996).

The distinction between S-1 and S-2 simulations in AI can be further re�ned and

rendered in a new light by reference to the previously introduced coordinates of

material versus formal and theory-guided versus explorative modelling (M-1 to M-4).

It will thereby become possible to map out more precisely which scienti�c programs

and theories the various AI approaches serve, and how they do this.
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AI-1 – behavioural simulations: Some AI simulations are of an entirely phenom-

enal and material kind. They are concerned with the imitation of a subset of the

observable behaviours of human beings, without a prima facie regard to the under-

lying structures and functions they may serve. Such is paradigmatically the case for

Turing’s “imitation game” (1950) and the so-called “Turing Test”-based approaches

to AI that were derived from it. Turing introduces the imitation game as a thought

experiment in which he asks the reader to imagine computers being involved in a

blinded conversation between a (female) human being, a (male) impersonator and an

interrogator. The blinding of the conversation would be accomplished by restricting

communication between the players to teletype messages. The question is whether

a machine substitute of the human impersonator in such a game could be identi�ed

by the human interrogator within a certain time with a certain degree of reliability.

Turing himself emphasised that his imitation game neither provides a de�nition of

intelligence nor a proof of machine intelligence, as he states in a 1952 BBC broadcast

quoted in Copeland (2004, 494-5). He even calls the question “‘Can machines think?’

[. . . ] too meaningless to deserve discussion” (Turing 1950, 442), and proposes to replace

it with the question whether a digital computer would do well in the imitation game.

As there is no pretence of systematically accounting for the structure or function of

human thought in this approach to AI, there is no prima facie theoretical underpinning

to these ‘black box’ simulations. Nor do these simulations presuppose a model that

represents relevant properties of its target system in order to develop a theory from

it. All that Turing does is to informally suggest some analogies between human and

machine capabilities. He explores these analogies more systematically in other works

(especially Turing 1948), which are closer to what will be discussed in AI-3. Accordingly,

the scienti�c modelling relations M-1, M-2, and M-4 are not applicable to the imitation

game and Turing-Test-based AI. The status of this kind of simulation as scienti�c has

consequently been contested, which has not prevented them from being perceived

as the paradigm of AI by the general public and AI critics alike. However, these

approaches may serve relevant demonstrative purposes (Ringle 1979; Asaro 2011), and

hence fall under the M-3 category of theory-guided material models. They demonstrate

the force and scope of Turing’s theory of computation by making computers exhibit

partly human-like behaviours, which were beyond what, in Turing’s time, was deemed

within the reach of machines de facto and by de�nition. The expected e�ect was that
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our notions both of machines and of thinking are altered in the course of the spread

of digital computers. This is Turing’s declared goal in (1950, 442). Conversely, the

simulation’s observable human-like behaviour can be mobilised to identify some of the

behavioural cues by which human beings recognise each other as intelligent beings.

AI-2 – models of general intelligence: Some AI simulations are implementations

of models that are designed to represent a selection of cognitive accomplishments in

such a way that they collectively serve to de�ne a theory of general intelligence. These

AI models embody abilities of, for example, theorem-proving, logical problem-solving,

chess- and Go-playing or data analysis that one would call intelligent when observed

in human beings. General intelligence is what systems like logic-based AI (McCarthy

1960) or the Logic Theory Machine (Newell, Shaw, et al. 1963) were supposed to

achieve. The models involved were not designed to furnish or support explanations

of how, in particular, human nervous systems or, more generally, human beings

accomplish the logic-based tasks in question. Instead, they support explanations of

how these tasks are to be solved by any intelligent system.

Di�erent in approach but similar in general outlook is the more application-oriented

side of classical connectionism or neural network modelling (Rumelhart and McClel-

land 1986, Vol. 1). In one of the most successful current AI approaches derived from

the latter, Deep Learning algorithms are used for object or image recognition (LeCun

et al. 2015; Schmidhuber 2015). Structures are extracted from data sets on numerous

levels of abstraction in order to generate representations or classi�cations that are

interpretable for humans. However, the levels of abstraction and the processing stages

do not need to correspond to structures and processes in the human nervous system.

Similar to AI-1, observable similarities between logic-based or Deep Learning models

and human cognitive processes are welcome, but they are not the actual aim of inquiry.

However, based on partial formal isomorphisms between the logical operations or

neuronal processes in model and human thinking, these models can be argued to

form uni�ed classes that de�ne theories of general intelligence in human beings and

machines.

To the extent that a theory is a family of models, and to the extent that formal

isomorphisms are what unites this family, AI-2 models fall under the M-4 class. A

separate and explicit, let alone an axiomatic, de�nition of what general intelligence is
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will not be required under this approach, as the models in the class su�ciently de�ne

such a theory. While ‘brute force’ computational solutions of logico-mathematical

problems cannot provide foundations to a theory of general intelligence, general-level

formal analogies of the aforementioned kind will be su�cient for a system to count as

Arti�cial Intelligence.

Remarkably, theorem proving, chess playing and their kin were very explicitly

chosen by early and classical AI researchers over other constituents of human men-

tal life, such as emotion or embodied phenomena, not because these were deemed

irrelevant features, but for two complementary reasons: On the one hand, logically

explicable cognitive tasks were amenable to formalisation and computer simulation

by the means available at the time (as recounted, for example, by Boden 2006, 11).

On the other hand, the solution of logic-based problems was also considered to be

the core or even the exclusive domain of cognition sensu strictu, and as such treated

apart from other aspects of the human condition. Consequently, this approach to AI

remains only tangentially concerned with systematic inquiries into the human mind

as a whole. Instead, it informed all kinds of application-oriented AI, where intelligent

problem-solving remains the key objective.

AI-3 – material models of cognitive processes: Some AI simulations are imple-

mentations of models designed to contribute to the development of a theory of the

general laws of human cognition. The observable properties of the computational

models and the regularities therein serve as templates for those laws. The modelling

relations involved here are of the pre-theoretic material kind (M-1): a set of positive,

negative and neutral analogies between computational and mental processes is postu-

lated, where a central task of further inquiry is to determine the neutral ones as being

either positive or negative.

Prominent examples for this kind of approach include Marr’s account of the stages of

visual processing (Marr 1982) and classical cognitively oriented connectionism (Rosen-

blatt 1958), its precursors (McCulloch and Pitts 1943; Turing 1948) and descendants

in the more cognitively oriented side of neural network modelling (Rumelhart and

McClelland 1986, Vol. 2, where the two volumes of this collection neatly replicate the

distinction in Feigenbaum and Feldman 1963 discussed as S-1 / S-2 above). In distinct

ways and with respect to distinct levels of cognitive processes, computational concepts
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are used to generate theoretical hypotheses concerning the properties and regularities

of the respective cognitive processes and structures. The focus moves away from

general problem-solving (as in AI-2) to an investigation into the constituents of natural

cognition, such as perception and the functions of the nervous system. Marr (1982)

conceives of vision as the process of constructing, throughout the stages of perceptual

processing, representations of the information contained in the retinal image: from

the representation of the two-dimensional retinal image, a “primal sketch” is devel-

oped of edges, surfaces, and textures, and then a representation of the orientation

and apparent motion of these forms. Finally, a three-dimensional representation of

spatially situated objects is generated. All of these stages are described in terms of

computational operations, and involve testable predictions as to how visual percep-

tion actually works in biological organisms, however without postulating one-to-one

correspondences between the algorithms and hardware used and organic structures

and neuronal processes. Many of Marr’s assumptions have meanwhile been refuted by

neurobiological evidence – and the neutral analogies thereby established as negative.

Conversely to Marr’s approach, connectionism devises models of the basic structure

and operations of the nervous system. These models comprise a large number of units,

representing neurones organised in several (input, hidden and output) layers, and

weights that represent the e�ects of the synapses that connect them. The computer

simulates the connection patterns and activation values of the neurones, where neu-

rones are taken to perform computational operations on the input signals they receive,

thereby transform them into a new signal and pass it on to the next level. Instead

of modelling certain, rather abstractly conceived, elements of cognitive processes,

connectionism targets concrete components of the nervous system that realise these

processes. A recent approach that develops connectionist ideas into a Bayesian model

of “predictive processing” in animal and human nervous systems is presented in Clark

(2013). Another contemporary approach that explores the possible import of advanced

Deep Learning methods on cognitive inquiries, in particular perceptual abstraction, is

developed in Buckner (2018).

If the cognitive sciences are de�ned as “the study of mind as machine” (Boden 2006,

9, emphasis in original), AI-3 approaches do not merely provide it with some methods

of inquiry but also with – diverging – research programmes that say as which kind
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of machine the mind shall be studied. If the way in which a model is realised partly

depends on the material and conceptual resources available, and if these both enable

and constrain the ways in which that model relates to a world a�air, Marr’s assumption

that one can separate a computational theory of cognitive phenomena from the “gory

details of algorithms that must be run” (1977, 38) might turn out to be too idealising.

Apart from its role in the cognitive sciences, this type of AI also inspired a variety

of practical applications, but in a di�erent way than AI-2: certain cognitive features

serve as models for a technological solution, as, for example, in neural network-based

applications that provide analogues of neuronal processes but are dedicated to other,

more practical purposes.

AI-4 – cognition as computation: Some AI simulations are implementations of

models that are supposed to provide direct analogues of cognitive processes, with strict

one-to-one correspondence relations between computational operations and cognitive

processes that are based on Turing’s (1936) theory of computation. In this case, the

elements of an axiomatic theory of computation and their interrelations determine

the elements of a model of cognitive processes and their interrelations, under the

premise that the same theory equally applies to both domains. The computational

states and processes proposed in the model are expressions of the propositions of

a theory that determines relations of formal analogy between computational and

cognitive processes. The theory of cognition in AI-4 is co-extensive with a theory

of computation. Hence, the modelling relation in question involved here formal and

theory-guided (M-2).

This analysis applies to the paradigmatic statement of strong symbolic AI, the

physical symbol system hypothesis (Newell and Simon 1976; Newell 1980). The basic

hypothesis is that both computation and human thinking consist in the rule-governed

manipulation of meaningful symbols. More precisely, the theory of computation

involved postulates that computation is the rule-governed manipulation of symbols,

whereas cognitive processes are one class of phenomena involving content-bearing

symbols that exempli�es this theory. A physical symbol system is physical because it

consists of physical entities, namely symbol tokens. It is a system because those symbol

tokens are parts of expressions in which their relations are logically determined, and

hence can be computed. And it is symbolic because, �rst, those expressions refer to
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objects, processes or other expressions and, second, the system can interpret these

expressions. If a computing system exhibits these properties, according to the physical

symbol system hypothesis, it can, in and of itself, realise the necessary and su�cient

conditions for the presence of cognition. It will thereby not merely represent features

of cognitive processes, but embody them. Any mind will then be a physical symbol

system, and vice versa, so that cognition is computation (Pylyshyn 1980). This sort

of argument works in two complementary ways: on the one hand, cognitive models,

according to strong symbolic AI, are “computational in a dual sense, in that they not

only use computers to do the complex calculations required for modeling, but also

postulate that minds are actually performing a kind of computation” (Thagard 2014,

534). This kind of dual computational modelling relation raises the question whether it

applies to “biologically realistic neurocognitive models”, too (ibid.). On the other hand,

some computational processes will by de�nition be cognitive processes, provided that

certain conditions concerning the kind and complexity of the computations involved

are met.

Hence, strong symbolic AI regards human thought as computational by nature,

provided that the computations are performed on semantically meaningful symbols.

This latter premiss is not further explained in this approach. This has exposed strong

symbolic AI to critiques along the lines of the “symbol grounding problem” (Harnad

1990): The foundational question remains unanswered as to how the symbols involved

in cognitive phenomena come to have their semantic content. Taken by itself, the

symbols’ computability does not provide the requisite information.

5 Discussion

The preceding descriptions should have made clear that the modelling relations and

their roles are clearly distinct in each case. Only in AI-3, the simulations assume the

exploratory, theory-guiding role of models in science envisioned by Hesse (1966), but

the models developed under this type of approach have been developed into competing,

and partly mutually exclusive, theoretical accounts of human cognitive abilities. They

certainly have not given rise to a uni�ed theory of human cognition.

In AI-2, a more general but still exploratory character of the modelling relations is

bought at the cost of being focused not on natural, human cognition but on higher-level
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isomorphisms between computational and some cognitive processes. This, however,

was the original self-understanding of AI as a research programme in the �rst place.

The scienti�c clout of general intelligence approaches has turned out to be relatively

more modest with respect to explaining natural cognitive phenomena, but they proved

to be more enduring, although mostly outside cognitive inquiries.

Turing Test-based approaches (AI-1) remain highly visible but are as tenuously

related to scienti�c modelling as ever, while having shaped the public image of AI. In

the beginning, they primarily stood in the service of one (namely Turing’s) theory of

computation, being employed by its inventor to demonstrate the power and scope of

that theory. The intended analogies to cognitive phenomena remained informal, but

meanwhile have come to be interpreted in a stronger sense.

Only in strong symbolic AI (AI-4), the analogies are strictly formal and theory-

guided, to the point of making the theory of computation a theory of cognition – and

thereby making the properties of model and target system fall into one. It was the

key target of philosophical AI critiques but lost much of scienti�c credentials after the

days of “Good Old-Fashioned AI” (GOFAI). It would be worth to further pursue the

argument that strong symbolic AI turned out scienti�cally sterile precisely because it

was not in the business of opening up new domains of phenomena to model-based

investigation and subsequent theory-building but imposed one theory on one domain

of phenomena in top-down fashion.

It should be noted that these approaches are not necessarily strictly disjunct. Some-

times they blend into each other and can only be di�erentiated according to their

respective primary foci. For example, while AI-2 approaches are separated from AI-3

by their explanatory aims, they are distinguished from AI-4 by their ontological pre-

suppositions: does AI seek a computational theory of general intelligence (AI-2), or

does it propose a theoretically principled identity relation to hold on a general level

between computational and cognitive processes (AI-4)? It should also be noted that in

some prominent cases the same AI researchers have pursued di�erent approaches in

di�erent projects (Turing, Newell and Simon are the most notable examples here).

The conceptual distinctions developed in this taxonomy cut across a number of

established dichotomies that have traditionally been used to sort the �eld of AI: First,

the proposed classi�cation remains prima facie indi�erent to the dichotomy between

symbolic and embodied processes, which largely separates GOFAI and its heirs from
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modern or “Nouvelle AI” approaches and the most in�uential AI critiques alike: do

symbolic forms and logical operations of the kind involved in abstract, higher-level

human thought, provide the necessary and su�cient ingredients for a model of human

cognition in its entirety, or must such a model also or even primarily capture the

embodied and environmentally embedded nature of cognitive phenomena? According

to the most prominent critique of the symbolic AI in Dreyfus (1979), an approach of

the latter kind would be required but is unattainable for AI in principle. Second, the

matrix presented above is more di�erentiated and should be more systematic than

the rather intuitive programmatic distinction between the simulation of intelligent

behaviour and the simulation of cognitive processes present already in early AI. Third,

it operates on a di�erent level than the distinction with which the previous one has

been combined in the leading AI textbook, namely between human-like and non-

human-like AI on the level of observable similarities, from which the following matrix

has been generated: “thinking humanly” versus “acting humanly” versus “thinking

rationally” versus “acting rationally” (Russell and Norvig 2010, 1-5).

The distinctions between formal and material models and between pre-theoretical

and theoretical models can provide further analysis to the similarity criterion at issue

here: if a selection of formally reconstructed features of human cognition is used to

design systems that provide solutions to intellectual problems on a general level (AI-2),

it is unlikely that the aim of this kind of approach will be a material model or even a

theory of human cognition in particular – unless an identity relationship is assumed

(AI-4). Conversely, if models of human cognitive traits are used to design systems that

are supposed to be similar to human thought or behaviour in some relevant respects,

the desired modelling relationship will certainly be material, as it either serves to

develop a theory of these phenomena (AI-3) or seeks to demonstrate the observable

consequences of an existing theory that is based on a presumed fundamental material

likeness between human and machine computation (AI-1).

The key di�erence between the conceptual matrix proposed here and the established

classi�cations is that the focus here is not on elucidating what is modelled and simu-

lated, but on how and for what purpose this is done. In S-1 and S-2, AI comprised two

very di�erent types of answers to “what” questions, but that distinction alone o�ers

little systematic insight into how modelling is or shall be accomplished on either side.

The symbolic / embodied dichotomy, in turn, is concerned with presumed properties
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of the target systems but has implications for how models are supposed to look like:

they either will be symbolic all the way down, or they will necessarily have to be

embodied. This decision is made on the level of ontological presuppositions rather

than methodology though.

The distinction between formal and material models in particular o�ers an indirect

route to capturing a point that is missed by the previous dichotomies: much of classical

AI had little concern for how cognitive processes are materially realised, but this

is plainly the reverse side of the same computational coin, in that AI had equally

little prima facie concern for how its models are materially realised. Computational

principles, and hence logico-mathematical rules alone, were taken to serve as the

enablers and constraints of AI modelling, as if they were implementation-independent

concepts. They certainly were so in principle, by virtue of being thus de�ned in

Turing’s theory of computation, but they were not so in practice, where modelling

decisions had major consequences for the answers that would be given to “how” and

“what” questions alike.

To conclude my discussion by explicating this point, I will now argue for a special

relation of AI models to their implementation. This argument has one pragmatic

and one conceptual aspect. A speci�c trait that sets AI apart from other sciences

in pragmatic terms is its particular entwinement with the realisation of its models,

in terms of a very concrete and material reliance on the tools and technologies of

modelling. In fact, if there is a science that is so closely tied to the way in which its

models are realised that it will be di�cult to point to its models in abstraction from

their realisation, it will be AI. All approaches took the functional architecture of the

computer as such as their starting point, and most relied on the factual availability

of computers. Of course, there is the principled possibility of developing and using

computational models that are not actually implemented in digital computers – which

was the case for those models which were devised before the advent of the �rst stored-

program computers in 1948. The primary examples are Turing Machines (1936) and

McCulloch and Pitts’ Logical Neurone (1943). These un-implemented models on their

own would have been unlikely to establish and sustain a research programme that

fully relies on computational principles. Conversely, these un-implemented models

contributed, and in Turing’s case were foundational, to the design of the digital

computer itself, and hence ultimately their own implementation.
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There is no such direct dependence on the availability of computers in the classical

natural sciences, which adopted computer simulation methods and integrated them

into their methodological repertoire once they were available and came to be perceived

as useful. Although physics, chemistry, biology or economics are dependent on the

availability of these methods when it comes to mastering increasingly complex subjects

matter, these disciplines as such do not comprehensively and existentially depend

on the availability of digital computers. (However, classical Baconian science might

have existentially depended on the availability of experimental apparatus in similar

fashion.) Hence, it might hence be di�cult to �nd any other discipline beyond AI that

invented itself and developed its key concepts and theories on the grounds of what

computers can do, and that did so across the entire range of possibilities of modelling

and simulation.

This speci�c implementation-dependence of AI models might be counted (and

consequently discounted) as a matter of technological fact, but there is a deeper,

more conceptual interpretation available: AI’s computational concepts and simulation

technologies are essential to the discipline because they already purport to represent

relevant properties of their target systems in and by themselves. If computers are

modelled on some aspects of human cognition, and if, in turn, these aspects are part of

what is modelled by computers in AI, there will be a solidly positive analogy between

computers and cognition that goes into the foundation of the discipline. It has to be

taken for granted even if one does not subscribe to the view that cognitive processes

are computational processes.

AI’s peculiar conjunct of a conceptual claim for a implementation-independence

in principle of computational models and a particular de facto dependence on their

implementation in practice makes most sense if one takes the presence of computational

structures and processes both in machines and in human minds to be the organising

metaphor of AI, or an “archetype” in the Blackean sense. It is an analogy, and above

that a material analogy, that has to be accepted in order for the research programme

to proceed in the �rst place. This archetype is established but not explicated in

Turing’s theory of computation but becomes quite pronounced and elaborated in the

Logical Neurone approach (McCulloch and Pitts 1943; McCulloch 1960) and John von

Neumann’s claim that “the neurons of the higher animals are de�nitely elements [of

digital computing devices]” (Neumann 1945, § 4.2).
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Whether this general idea is developed into a strict analogy between the basic

principles at work in minds and machines that is reducible to Turing’s theoretical

principles (which is assumed in AI-4 but not by von Neumann, McCulloch or even

Turing himself), or whether it informs the development of further material analogies

to guide inquiries into how the mind or the brain works (as in AI-3), is a question that

hinges upon the strictness of the interpretation of the computational archetype: does

a theory of computation su�ce as, and thereby constrain, the theoretical foundation

of a computation-based inquiry into cognition, or does the archetype allow for novel

computational models and their implementations to be used in the exploration of new

domains of phenomena and the development of various theories of cognition? The

dynamics of the development of AI after the days of GOFAI, especially within the realm

of AI-3 approaches, suggests the latter. If, on the other hand, the diagnosis is correct

that Turing’s theory of computation itself is based on an exploratory model, namely

the human computer, the computational archetype, even in its strict interpretation,

will rely on an analogy that is material and pre-theoretic.

The dependence of AI on models as archetypes as such will not distinguish it from

other scienti�c disciplines in their incipient stages, which also develop and coalesce

around a central image or metaphor (see, for example, Bensaude-Vincent 2013 and 2001

on synthetic biology and materials science respectively). However, it will be di�cult

to imagine how such an archetype might de�ne the subject matter and determine the

methodology in other sciences to a similar extent as in AI. On some accounts (AI-4 in

particular), the guiding metaphor, the theory, the methodology and the subject matter

all are known by the analogy of the mind as computer.

The concluding thought of Black’s discussion of the importance of models as

archetypes is that “Perhaps every science must start with metaphor and end with

algebra; and perhaps without the metaphor there would never have been any algebra.”

(1962, 242) If this observation is to the point, and if the algebra in this context is

embodied by AI’s computational principles, the algebra will be the metaphor.
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