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of a disease when a vaccine offers a complete protection. Due to repeated
contacts between the typical infective and previously infected individuals, R0

overestimates the average number of secondary infections and leads to, per-
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imperfect, alternative measures to R0 are defined in order to study the in-
fluence of the initial coverage and vaccine efficacy on the transmission of the
epidemic.
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1 Introduction

Mathematical modeling is an essential tool to represent the progress of an
epidemic through a population. It is commonly accepted that the work of
Kermack and Mckendrick (1927) is the prototype of almost all epidemiological
models based on a classification of individuals by their epidemic status. Since
then, many other compartmental models have been developed to investigate
a diverse range of communicable diseases to obtain a better knowledge of
their transmission mechanisms (Anderson and Britton 2000; Kretzschmar et
al. 2001; Aguiar et al. 2010; Artalejo and Lopez-Herrero 2014; Liu et al. 2018).

A common assumption is that the communicable disease spreads in a com-
munity of constant size. The population can be closed in the sense that infec-
tious individuals can infect only other individuals within the population under
study during the epidemic’s time span. However, assuming reintroduction of
the disease through contact with infected individuals from other areas could
represent a more realistic scenario (Marchette and Wierman 2004; Stone et al.
2007; Amador 2016).

After infection, it is assumed that patients recover due to their own im-
mune system which acts as a body’s defense force against germs and other
invading substances. Hence, to reduce the incidence of an infectious disease
requires improving sanitary and living conditions. In that sense, we cannot ig-
nore the impact of vaccination on this reduction, especially in the developing
world. Vaccines activate the immune system’s capacity of producing antibod-
ies to fight diseases without exposing it to diseases-producing pathogens. If a
vaccinated person comes into contact with the disease for which she/he has
been vaccinated, her/his immune system recognizes the invading germs and
immediately produces the antibodies that will kill foreign invaders. Generally,
vaccines provide immunity similar to that acquired from the natural infection,
and duration of protection varies depending on diseases and also on vaccine
strains. Lifelong immunity is not always provided by vaccination and usually
several doses of vaccine may be required. Furthermore, the immune response
may wane over time and it is necessary to administrate new doses of vaccine
to increase or restore immunity.

As it is an effective method of disease control, recent epidemiological mod-
els (Kribs-Zaleta and Martcheva 2002; Arino et al. 2003; Arino et al. 2010;
Ball and Sirl 2013; Samanta 2015; Ball and Sirl 2018; Li and Zhang 2019)
have added a vaccination compartment and vaccination strategies into their
mathematical model. Some papers discussing the impact of vaccination on the
spread of an epidemic assume complete protection (Iannelli et al. 2005; Alexan-
der et al. 2006; Ball et al. 2007; Lin et al. 2014; Eckalbar and Eckalbar 2015;
Guo 2017) but even vaccine efficacy, as measured by observational studies, is
not 100% (e.g., measles: 90-95%, mumps: 72-88% or rubella: 95-98%) and de-
pends on internal or individual factors, as well as on the dose and strain of the
vaccine virus (Demicheli et al. 2012). In scientific literature, vaccine efficacy
and effectiveness are often used interchangeably. Vaccine efficacy represents
the reduction in the risk of infection at individual level under optimal condi-
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tion (e.g., randomized controlled trials) while vaccine effectiveness compares
rates of the transmission of the disease between vaccinated and unvaccinated
individuals once the vaccine is approved for use in the general population.

The SIS model with imperfect vaccine has been studied from a determin-
istic point of view in the papers by Moghadas (2004) and Safan and Rihan
(2014), under nonlinear incidence in Xiao and Tang (2010) and Yang et al.
(2015), and with inclusion of a latency period as well as psychological ef-
fects in both susceptible and vaccinated individuals in Cheng et al. (2015). A
SIV model with stochastic perturbations is discussed in Liu et al. (2018) and
López-Garćıa (2016).

The above-mentioned studies deal with large populations, but transmission
patterns become quantitatively different when a small population is involved.
Firstly, individual variations of infectivity, recovery periods and vaccine pro-
tection, even for a homogeneous social group, should be taken into account.
Moreover, when the susceptible population becomes depleted the extent of
the epidemic is interrupted and, for closed populations, the extinction of the
disease is possible (Keeling and Ross 2008).

The aim of this paper is to quantify the spread of an infectious disease
that does not confer immunity, within a population that is partially protected
against the disease by a vaccine. A continuous time Markov chain (CTMC )
model represents changes in the composition of infected and vaccinated classes.
Two random variables will quantify the transmission of the epidemic process
with reintroduction: Re0, the number of infectious cases caused directly by
the first infected individual, and Rp, which is the number of infectious cases
caused by any infectious spreader. These random variables act as stochastic
counterparts to the basic reproduction number, R0, and more specifically the
control reproduction number, Rc, when there is an available vaccine.

In the literature, the term herd-immunity threshold refers to the critical
proportion of immune individuals that is needed to interrupt epidemic trans-
mission in a population. There is a simple relationship between herd-immunity
coverage and the basic reproduction number. If a perfect vaccine is available
and a fraction f of the population is vaccinated, then the disease will not
spread if (1 − f)R0 < 1. In general terms, we can represent the quality of a
vaccine by a measure of the vaccine imperfection h ∈ [0, 1], with h = 0 indi-
cating a perfect vaccine, and h = 1 a useless vaccine. For imperfect but not
useless vaccines, the critical vaccination coverage level to eradicate the infec-
tion is related to the proportion (1−1/R0)/(1−h). In any case, herd immunity
depends on estimates of R0, and is the result of a reduction in viral transmis-
sion caused by removing vaccinated individuals from the susceptible class. We
will investigate the spread of the disease directly, at any time, by updating
the current population state, and we will apply our alternative measures to
control disease spread by fixing an adequate vaccine coverage level.

The structure of the paper is as follows. In Section 2, we describe the
SIV stochastic model with infection reintroduction and summarize results for
its long term behavior in terms of the reintroduction parameter. Section 3
introduces the proposed random variables, Re0 and Rp, as measures of the in-
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fection transmission in a partially vaccinated population. Theoretical and al-
gorithmic results will provide probability mass functions and moments for Re0
and Rp, depending on the initial vaccine coverage and effectiveness. Section
4 illustrates the applicability of the algorithmic results and presents several
qualitative facts regarding the infection transmission. Finally, we present some
concluding remarks and tentative future research lines.

2 Model description

We consider a homogeneous and uniformly mixing population of constant size,
N , where individuals are affected by a contagious disease. This disease is trans-
mitted by direct contact with an infected individual. The population is not
isolated, so we assume that there is an additional source of infection due to
external contacts. We suppose that some individuals in the population have
been protected against the disease with an available vaccine that confers im-
munity, but it is not a perfect vaccine and some contacts between vaccinated
and infectious individuals produce an effective contagion. Once a vaccinated
individual gets the infection, he no longer belongs to the class of individuals
that have been vaccinated and he belongs to the infective class while he is in-
fectious. Recovered individuals become susceptible to the disease, no matter if
they were previously vaccinated or not. Consequently, individuals in the popu-
lation are classified into three separate classes, namely susceptible, vaccinated
and infected. Vaccination was implemented at t = 0 and no vaccination will
take place after this epoch.

In general terms, the underlying mathematical model involves a SIV model,
where movement of individuals among the three epidemiological classes is
shown in Figure 1, with S denoting the class of susceptible individuals, I de-
noting the class of infected individuals, and V denoting the class of vaccinated
individuals.

Fig. 1 SIV compartmental diagram

At any time t > 0, the state of the epidemic is described by random
variables S(t), V (t), I(t), that record the number of susceptible, vaccinated
and infective individuals, respectively, at time t. According to the constant
size hypothesis we have

S(t) + V (t) + I(t) = N.
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We represent the evolution of the disease in terms of a two-dimensional CTMC:
X = {(V (t), I(t)), t ≥ 0}. Assuming that initially the population contains v0
vaccinated individuals, with 0 ≤ v0 ≤ N , the state space of X is S = {(v, i) :
0 ≤ v ≤ v0, 0 ≤ i ≤ N, 0 ≤ v + i ≤ N} that contains (v0 + 1) (N + 1− v0/2)
states. Notice that once v = 0 the vaccination compartment is empty and the
underlying model is the standard SIS epidemic one.

Next, we describe the dynamics of the Markov chain, X, in full details. See
Table 1 for a summary of parameters used. The exhaustive description of the
events and their transition rates is presented in Table 2. Finally, a diagram
showing transitions from a general state (v, i) ∈ S is depicted in Figure 2.

Table 1 Parameters of the model

Population size N
Disease internal transmission rate β
Disease external transmission rate ξ
Probability of vaccine failure h
Recovery rate γ

Table 2 Effective events and their transition rates

Effective event Transition Rate

Susceptible-Infected internal contagion (v, i)→ (v, i+ 1) βi(N − v − i)/N
Susceptible-Infected external contagion (v, i)→ (v, i+ 1) ξ(N − v − i)
Vaccinated-Infected internal contagion (v, i)→ (v − 1, i+ 1) hβiv/N
Vaccinated-Infected external contagion (v, i)→ (v − 1, i+ 1) hξv
Recovery and loss of immunity (v, i)→ (v, i− 1) γi

Fig. 2 Transitions among states
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To understand the dynamics of the model it is necessary to describe the
events that cause a change in the current model state (v, i). There are five
possible effective events that are listed in Table 2.

E1. A susceptible individual gets the infection from an infective individual
within the population.

E2. A susceptible individual gets the infection from an external source of
infection.

E3. Due to vaccine failure, a vaccinated individual becomes infected from
an infective individual within the population.

E4. Due to vaccine failure, a vaccinated individual becomes infected from
an external source of infection.

E5. An infective individual is recovered and becomes susceptible.

Sojourn times at each state in S are independent and exponential random
variables, with rate

qv,i =

(
βi

N
+ ξ

)
(N − v − i) + h

(
βi

N
+ ξ

)
v + γi. (1)

To describe Q, the infinitesimal generator of the Markov chain X, we partition
the state space in levels regarding the number of vaccinated individuals, that is
S = ∪v0v=0L(v), where level L(v) = {(v, i) ∈ S : 0 ≤ i ≤ N − v}, for 0 ≤ v ≤ v0,
which contains (N + 1 − v) states. Then, we can express the infinitesimal
generator of X in the following non-null block form

Q =


Q0,0

Q1,0 Q1,1

Q2,1 Q2,2

. . .
. . .

Qv0,v0−1 Qv0,v0

 ,

where Qv,v∗ , for 0 ≤ v, v∗ ≤ v0, are matrices of dimension (N + 1− v)× (N +
1 − v∗). The blocks Qv,v−1, for 1 ≤ v ≤ v0, correspond to transitions due to
vaccine failures, and the blocks Qv,v, for 0 ≤ v ≤ v0, correspond to transitions
within level L(v) that are due either to infections of susceptible or recoveries.
Non-null sub-matrices are described as follows

Qv,v−1 =



0 hξv

0 h
(
β
N + ξ

)
v

. . .
. . .

0 h
(
β(N−v)

N + ξ
)
v
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and

Qv,v =



−qv,0 ξ(N − v)

γ −qv,1
(
β
N + ξ

)
(N − v − 1)

. . .
. . .

. . .

(N − v − 1)γ −qv,N−v−1 β(N−v−1)
N + ξ

(N − v)γ −qv,N−v


.

The above block bidiagonal structure of Q guarantees that square matrices
appearing in the forthcoming theoretical results are, at most, tridiagonal and
diagonally dominant. Thus, they are non-singular, and linear systems involving
these matrices can be solved efficiently by a simplified form of the Gaussian
elimination algorithm (Golub and van Loan 1996).

2.1 Stationary behavior

As we are dealing with a finite state CTMC, the long-term behavior of X
depends on the structure of communicating classes of absorbing states. In
that sense, we notice that the reintroduction parameter (that is, the external
transmission rate ξ) plays an important role in the classification of the states
in S. If we assume that the population is isolated and contagions are produced
only by internal contacts; i.e., ξ = 0, then states with 0 infective individuals
are absorbing. This fact and the finiteness of the state space guarantee that
the process will become absorbed into any of the non-communicating classes
of absorbing states with probability one. Hence, the epidemic extinction is
certain and outbreaks involve a single epidemic episode that will last a finite
expected time.

On the other hand, when ξ > 0, the state space of the finite CTMC X
contains a single absorbing set given by L(0) = {(0, i) : 0 ≤ i ≤ N}. Thus,
once the process enters into L(0) it can move across these states but it can
not leave the absorbing set. Hence the stationary distribution assigns mass to
every state with no vaccinated individuals. Which means that, in the model
with external source of infection, occasionally the disease is faded away (i.e.,
I = 0) for a short time, but the infection is reintroduced at a later time. More
specifically, the theoretical long-term distribution of the number of infective
individuals agrees with the stationary distribution provided in Stone et al.
(2007), Section 2.6.
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Fig. 3 Simulated trajectories of X when N = 25, β = 2.5, ξ = 0, h = 0.3 and γ = 1.0
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Fig. 4 Simulated trajectories of X when N = 25, β = 2.5, ξ = 0.01, h = 0.3 and γ = 1.0

Figures 3 and 4 show typical trajectories for the CTMC X, starting from
a single individual infected in a population of 25 individuals, 5 of which are
vaccinated. We simulate 500 transitions among states and keep track of the
time at which a transition occurs. Each line in Figures 3 and 4 represents the
sequence of time points and the number of individuals (infected, vaccinated or
susceptible) recorded at these time epochs. The paths in Figure 3 correspond to
an isolated population and we observe that, approximately, after 2 time units
the epidemic transmission will cease. In Figure 4, the reintroduction parameter
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is ξ = 0.01. The path for vaccinated individuals shows that vaccine protection
has faded away in about 10 time units, while the paths for the infected and
susceptible populations settle towards the stationary endemic scenario.

3 Disease spread

This section deals with a probabilistic characterization of the offspring distri-
bution of secondary infections of an epidemic process, at a particular time.
We will consider two random variables to measure the spread of the infection,
when a first case of disease is identified in a population.

In epidemiology, the individual who first brings the disease into a group is
called the index case and we will start focusing on the number of infections
coming from the index case during its entire infectious period. Secondly, we
will study all of the secondary cases produced by the whole set of currently
infectious individuals prior to the first recovery. The above mentioned measures
are the stochastic analogues to the well-known basic reproduction number
R0 and, more specifically, to the control reproduction number Rc, defined
as the average number of secondary cases due to each infective individual
in the presence of control measures. In the case of vaccination R0 and Rc
satisfy the simple expression Rc = R0(1− (1−h)f), where h is the proportion
of vaccinated individuals for which the vaccine has no effect (hence, 1 − h
quantifies the vaccine effectiveness), and f represents the vaccine coverage
as the initial fraction of the target population that has received the vaccine
(Alexander et al. 2004; Magpantay 2014).

The Markovian chain, describing the evolution of the epidemic in the com-
partmental model, will play an essential role to develop theoretical results. The
evaluation of the probability mass distribution of the number of secondary
infections produced by a selected individual was firstly introduced by Ross
(2011) and, in an independent way, by Artalejo and Lopez-Herrero (2013).
Both papers consider finite SIS and SIR compartmental models and present
probabilities of the offspring distribution as the solution of systems of linear
equations. Their results generalize the study of the infection transmission from
the instant of the invasion to any stage of the disease progression and show
that, for populations of moderate size, the basic reproduction number can
overestimate the potential transmission of the epidemic process.

The analysis of the transmission of an epidemic process has been ex-
tended to epidemic models with vector-borne infections (Artalejo 2014), het-
erogeneous contacts (Economou et al. 2015; López-Garćıa 2016), infective
and susceptible immigrants (Almaraz et al. 2016), latency periods (Lopez-
Herrero 2017), generally distributed infectious periods (Gómez-Corral and
López-Garćıa 2017), Markov-modulated interactions (Almaraz and Gómez-
Corral 2018) or to models for two-species competition (Gómez-Corral and
López-Garćıa 2015).

Our results will reveal the influence of the vaccine, coverage and effective-
ness, and the reintroduction parameter on the transmission potential of the
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disease. Hence, in the subsequent sections we proceed with theoretical discus-
sions leading to probabilistic results.

3.1 The exact transmission variable Re0

In this section we study the potential transmission of an infective process by
studying the random variable Re0, defined as the number of infective individ-
uals that arise from contagions caused directly by the index case, that is, the
first individual in the population able to spread the disease. The objective is
to characterize the distribution of the random variable Re0 and to observe the
influence of the initial group of vaccinated individuals (i.e., vaccine coverage)
on the transmission.

This analysis is directly related to the infectious period of the index case.
During this period, the underlying Markov chain X evolves in Ŝ, the subset
of states showing at least one infectious individual. For practical purposes Ŝ
will be partitioned in levels, according to the current number of vaccinated
individuals, as follows:

Ŝ =
v0⋃
v=0

L̂(v) =
v0⋃
v=0
{(v, i) : 1 ≤ i ≤ N − v}.

First, we introduce appropriate notations for the generating and probability
mass functions, and for the factorial moments of Re0 conditioned to a specific
state (v, i) ∈ Ŝ.

ϕv,i(z) = E
[
zRe0 |(V (0) = v, I(0) = i)

]
=

∞∑
k=0

zkP ({Re0 = k |(V (0) = v, I(0) = i)}) , for |z| ≤ 1,

xkv,i = P ({Re0 = k |(V (0) = v, I(0) = i)}) , for k ≥ 0,

mk
v,i =

{
1 if k = 0,
E [Re0 (Re0 − 1) · · · (Re0 − k + 1) |(V (0) = v, I(0) = i) ] if k > 0.

In the rest of the section we will develop algorithmic schemes for deter-
mining ϕv,i(z), x

k
v,i and the moments mk

v,i. Firstly, we mark the index case.
The homogeneous mixing assumption guarantees all-to-all interactions with
no preferences in relationship among individuals. Therefore, individuals are
all the same and we split transitions in Table 2, associated to contagions, by
distinguishing whether or not a new infection comes from the index case. That
is, we partition contagion rates in the following way(

βi

N
+ ξ

)
(N − v − i) =

β

N
(N − v − i) +

(
β(i− 1)

N
+ ξ

)
(N − v − i),

h

(
βi

N
+ ξ

)
v = h

β

N
v + h

(
β(i− 1)

N
+ ξ

)
v.
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Then, for (v, i) ∈ Ŝ, we define new rates α∗v,i, α̃v,i, β
∗
v and β̃v,i as follows.

α∗v,i =
β

N
(N − v − i), (2)

α̃v,i =

(
β(i− 1)

N
+ ξ

)
(N − v − i), (3)

β∗v = h
β

N
v, (4)

β̃v,i = h

(
β(i− 1)

N
+ ξ

)
v. (5)

A first-step argument, conditioning on the possible transitions out of a fixed
state (v, i) ∈ Ŝ, shows that generating functions ϕv,i(z) satisfy the following
set of linear equations:

ϕv,i(z) =
γ

qv,i
+ (1− δv,0)

(
β∗v
qv,i

zϕv−1,i+1(z) +
β̃v,i
qv,i

ϕv−1,i+1(z)

)

+(1− δi,1)
γ(i− 1)

qv,i
ϕv,i−1(z) (6)

+(1− δi,N−v)
(
α∗v,i
qv,i

zϕv,i+1(z) +
α̃v,i
qv,i

ϕv,i+1(z)

)
,

where δi,j represents the Kronecker’s delta function, defined as 1 when i = j,
and 0 otherwise.

Equation (6) is the basis to get the mass function of the conditional random
variable Re0 |(V (0) = v, I(0) = i) by numerical inversion, which can be done
with the help of a Fast Fourier Transform (FFT ) algorithm (Tijms 2003). As
mass functions will be obtained through a direct recursive scheme, we do not
go further on this point and we proceed to get factorial moments mk

v,i, for
k ≥ 1.

By differentiating equation (6) with respect to z repeatedly k times (k ≥ 1)
and evaluating at z = 1, we obtain the equations involving factorial moments
conditioned to states (v, i) ∈ Ŝ.

mk
v,i = (1− δv,0)

(
β∗v
qv,i

mk
v−1,i+1 +

β̃v,i
qv,i

mk
v−1,i+1

)
+ (1− δi,1)

γ(i− 1)

qv,i
mk
v,i−1

+(1− δi,N−v)
(
α∗v,i
qv,i

mk
v,i+1 +

α̃v,i
qv,i

mk
v,i+1

)
(7)

+(1− δv,0)k
β∗v
qv,i

mk−1
v−1,i+1 + (1− δi,N−v)k

α∗v,i
qv,i

mk−1
v,i+1.

Using relationships appearing in (2)-(5), we can write a useful and simpli-
fied version of (7),

qv,im
k
v,i = (1− δv,0)h

(
βi

N
+ ξ

)
vmk

v−1,i+1 + (1− δi,1)γ(i− 1)mk
v,i−1
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+(1− δi,N−v)
(
βi

N
+ ξ

)
(N − v − i)mk

v,i+1 (8)

+(1− δv,0)kβ∗vm
k−1
v−1,i+1 + (1− δi,N−v)kα∗v,imk−1

v,i+1.

We notice that equation (8) provides conditional moments of order k based
on conditional moments of one order less.

Moreover, at any level 0 ≤ v ≤ v0, the system of equations described in
(8), for 1 ≤ i ≤ N − v and k ≥ 0, can be written in matrix form as follows

m0
v = ev, (9)

Avmk
v = −

(
(1− δv,0) (Dvm̂k

v−1 + Dβvm̂k−1
v−1) + kDαvm̃k−1

v

)
, (10)

where the auxiliary matrices and vectors involved in (9)-(10) are defined below.
For 0 ≤ v ≤ v0, ev is an all-ones vector of dimension (N − v) and Av will

denote the square (N − v) matrix with non null entries

Av(i, j) =


(i− 1)γ if j = i− 1, 2 ≤ i ≤ N − v,
−qv,i if j = i, 1 ≤ i ≤ N − v,(
βi
N + ξ

)
(N − v − i) if j = i+ 1, 1 ≤ i ≤ N − v − 1.

In addition, Dv,Dβv and Dαv represent (N − v) diagonal matrices, defined
as follows:

Dv = Diag

(
h

(
βi

N
+ ξ

)
v : 1 ≤ i ≤ N − v

)
,

Dβv = Diag (β∗v : 1 ≤ i ≤ N − v) ,

Dαv = Diag
(
α∗v,i : 1 ≤ i ≤ N − v

)
.

Finally, for k ≥ 0 and 0 ≤ v ≤ v0, mk
v and m̃k

v are (N−v)-dimensional vectors
defined as

mk
v =

(
mk
v,1, ...,m

k
v,N−v

)T
,

m̃k
v =

(
mk
v,2, ...,m

k
v,N−v, 0

)T
,

and m̂k
v is an (N−v−1)-dimensional vector given by m̂k

v =
(
mk
v,2, ...,m

k
v,N−v

)T
,

where notation T denotes transposition.
Given an integer k, factorial moments are recursively determined with the

help of the algorithmic scheme shown in Algorithm 1.

Remark 1 Notice that the random variable Re0 measures the exact number
of secondary infective individuals arising directly from the index case and,
in contradistinction with R0 or Rc that are defined at the time of the in-
vasion, Re0 can be checked at all times. If we set t = 0 for the time at
which the invasion starts the initial situation is V (0) = v0 and I(0) = 1,
and Re0 = E [Re0 |V (0) = v0, I(0) = 1] provides the exact amount of expected
disease transmission, considering vaccine characteristics such as coverage and
effectiveness.
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Algorithm 1 Re0 factorial moments

For any k > 0, factorial moments mk
v =

(
mkv,1, ...,m

k
v,N−v

)T
, with 0 ≤ v ≤ v0, are

computed as follows:
Step 1. Set j = 0.

Step 1a. For 0 ≤ v ≤ v0, set m0
v = ev.

Step 2. Set j = 1.
Step 2a. Set v = 0, and

wj
0 = −jDα0m̃

j−1
0 .

Step 2b. Compute mj
0 = A−1

0 wj
0. Set v = 1. If v0 = 0, go to Step 3.

Step 2c. Set

wj
v = −

(
Dvm̂

j
v−1 + Dβvm̂

j−1
v−1 + kDαvm̃

j−1
v

)
.

Step 2d. Compute mj
v = A−1

v wj
v. Set v = v + 1. If v ≤ v0, go to Step 2c.

Step 3. Set j = j + 1. If j ≤ k, go to Step 2a.

Let us proceed to the analytic derivation of the probabilities xkv,i that the index
case will originate k ≥ 0 new infections, given that the current situation is
(v, i) ∈ Ŝ. A new appeal to the first-step methodology, by observing transitions
out of the state (v, i), provides the following set of recursive equations:

qv,ix
k
v,i = δk,0γ + (1− δk,0)

(
(1− δv,0)β∗vx

k−1
v−1,i+1 + (1− δi,N−v)α∗v,ixk−1v,i+1

)
+(1− δv,0)β̃v,ix

k
v−1,i+1

+(i− 1)γxkv,i−1 + (1− δi,N−v)α̃v,ixkv,i+1. (11)

For k ≥ 0 and 0 ≤ v ≤ v0, equation (11) for states in L(v) can be written in
matrix form in the following way:

Bvx0
v = −γev − (1− δv,0)Cvx̂0

v−1,

(12)

Bvxk
v = −(1− δv,0)

(
Cvx̂k

v−1 + Dβvx̂k−1
v−1

)
−Dαvx̃k−1

v , k > 0,

where notations ev, Dβv and Dαv represent the same algebraic structures as
defined in the lines following equations (9)-(10).

The remaining algebraic structures appearing in matrix expressions (12)
are described next: Bv and Cv are (N − v) square matrices with entries

Bv(i, j) =


(i− 1)γ if j = i− 1, 2 ≤ i ≤ N − v,
−qv,i if j = i, 1 ≤ i ≤ N − v,
α̃v,i if j = i+ 1, 1 ≤ i ≤ N − v − 1,
0 otherwise,

Cv = Diag
(
β̃v,i : 1 ≤ i ≤ N − v

)
,

and the vectors xk
v, x̂k

v and x̃k
v, containing probabilities xkv,i, are

xk
v =

(
xkv,1, ..., x

k
v,N−v

)T
,
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x̂k
v =

(
xkv,2, ..., x

k
v,N−v

)T
,

x̃k
v =

(
xkv,2, ..., x

k
v,N−v, 0

)T
.

Notice that P ({Re0 <∞|V (0) = v, I(0) = i}) = 1, for (v, i) ∈ Ŝ, because

Ŝ is a finite union of disjoint finite sets, amd in a finite population the number
of infective individuals arising from contagions caused by the index case is
necessarily finite. Consequently,

∑∞
k=0 x

k
v,i = 1, for (v, i) ∈ Ŝ.

For every number of contagions k ≥ 0 the equations in (12) are solved
recursively with the help of Algorithm 2. In order to determine mass dis-
tribution functions, a stopping criteria should be provided to avoid longer
computation runs. In fact, numerical results appearing in Section 4 come from
applying both recursive Algorithms 1 and 2. More specifically, those results
dealing with Re0-distributions for a given initial coverage value, v0, are ob-
tained from iterating Algorithm 2 until 95% of the values of the distribution
of (Re0 |V (0) = v0, I(0) = 1) is accumulated.

Algorithm 2 Re0 probabilities

For a fixed integer k ≥ 0, the set of conditional probabilities xkv,i, for (v, i) ∈ Ŝ, can be
computed according to the following scheme:
Step 1. Set v = 0.

Step 1a. Set j = 0 and compute x0
0 = −γB−1

0 e0.

Step 1b. Set j = j + 1. While j ≤ k, compute xj
0 = −B−1

0 Dα0x̃
j−1
0 .

Step 2. Set v = 1. If v0 = 0, stop.

Step 2a. Set j = 0 and compute x0
v = −B−1

v

(
γev + Cvx̂0

v−1

)
.

Step 2b. Set j = j + 1. While j ≤ k, compute

xj
v = −B−1

v

(
Cvx̂

j
v−1 + Dβvx̂

j−1
v−1 + Dαvx̃

j−1
v

)
.

Step 3. Set v = v + 1. If v ≤ v0, go to step 2a.

3.2 The population transmission variable

Another measure of the expansion of a contagious disease is Rp, which provides
the global spread of the disease by counting all the infections that take place
within the population, no matter who is the infectious spreader, before the
first recovery occurs. Rp is a random variable that can be analyzed either at
the beginning of the outbreak or at any later time, by updating the population
situation in terms of the current state of the CTMC X.

The aim of this section is to describe the probabilistic behavior of Rp and to
study the influence of the model parameters on global infection transmission.
In particular, we are interested in comparing Rc, the control reproduction
number of this model, with the expected value Rp = E[Rp |(V (0) = v0, I(0) =
1)] for different scenarios.

First, we derive theoretical results involving the probability distribution
and factorial moments of Rp. As in the preceding section, the central tool for
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our results will be the first-step methodology. But to avoid repetitive argu-
ments we provide results in a comprehensive manner, leaving out unnecessary
details.

Let ψv,i(z) be the generating function of Rp, given that the current state

of X is (v, i) ∈ Ŝ, with factorial moments Mk
v,i for k ≥ 1 (M0

v,i = 1). At any
point z, with |z| ≤ 1, generating functions are the solution of the following
tridiagonal set of linear equations:

ψv,i(z) =
γi

qv,i
+ (1− δv,0)

h
(
βi
N + ξ

)
v

qv,i
zψv−1,i+1(z)

+(1− δi,N−v)

(
βi
N + ξ

)
(N − v − i)

qv,i
zψv,i+1(z), (13)

for 0 ≤ v ≤ v0, 1 ≤ i ≤ N − v.
The k−th factorial moments of states (v, i) ∈ Ŝ are the solution of a system

of linear equations, arising from (13) as usual by taking derivatives with respect
to z followed by an evaluation for z = 1, that is expressed in matrix form as
follows:

HvMk
v = −(1− δv,0)Dv

(
kM̂k−1

v−1 + M̂k
v−1

)
− kD̃vM̃k−1

v , (14)

for k ≥ 1 and 0 ≤ v ≤ v0. Here Hv and D̃v are (N − v) square matrices
defined by:

Hv(i, j) =


−qv,i if j = i, 1 ≤ i ≤ N − v,(
βi
N + ξ

)
(N − v − i) if j = i+ 1, 1 ≤ i ≤ N − v − 1,

0 otherwise.

D̃v = Diag

((
βi

N
+ ξ

)
(N − v − i) : 1 ≤ i ≤ N − v

)
.

Vectors Mk
v, M̂k

v and M̃k
v related to factorial moments are defined as follows

Mk
v =

(
Mk
v,1, ...,M

k
v,N−v

)T
,

M̂k
v =

(
Mk
v,2, ...,M

k
v,N−v

)T
,

M̃k
v =

(
Mk
v,2, ...,M

k
v,N−v, 0

)T
.

The distribution of the random variable Rp, conditioned to any state

(v, i) ∈ Ŝ, can be obtained by inverting transforms with the help of the recur-
sive equations (13) and an FFT algorithm. But, as it was stated in the pre-
ceding section, it is possible to find a set of equations whose solution provides
directly the point mass function of Rp: z

k
v,i = P ({Rp = k |V (0) = v, I(0) = i}),
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when (v, i) ∈ Ŝ, for 0 ≤ k ≤ N−1. Notice that when we observe i infected indi-
viduals in the population, then the number of secondary cases taking place be-
fore the first recovery is at most N−i. So, for any integer k, with 0 ≤ k ≤ N−1,
zkv,i = 0, whenever i > N − k.

Next, we introduce appropriate vectors to derive probabilities zkv,i when

(v, i) ∈ Ŝ, that is:

zkv =
(
zkv,1, ..., z

k
v,N−v

)T
,

ẑkv =
(
zkv,2, ..., z

k
v,N−v

)T
,

z̃kv =
(
zkv,2, ..., z

k
v,N−v, 0

)T
.

Finally, for each level v, with 0 ≤ v ≤ v0, Rp point probabilities come from
the following recursive equations:

DQz0v = dγ , (15)

DQzkv = (1− δv,0)Dvẑk−1v−1 + D̃vz̃k−1v , for 1 ≤ k ≤ N − 1, (16)

where DQ and dγ are a diagonal matrix and a vector, with respective entries
qv,i and γi, for 1 ≤ i ≤ N − v.

As in Section 3.1, Rp factorial moments and probabilities can be computed
from recursive schemes based on equations (14) and (15 - 16), respectively.
Their algorithmic descriptions are similar to Algorithms 1 - 2 and are not
stated in the text, but they are the basis for obtaining Rp’s numerical results
appearing in Section 4.

Remark 2 In the paper by Artalejo and Lopez-Herrero (2014), the authors
presented closed form expressions for probabilities dealing with the popula-
tion transmission random variable in stochastic SIS and SIR models. For our
SIV model, the mathematics is more involved due to the external transmis-
sion parameter and, unfortunately, it is not possible to derive general closed
expressions for conditional probabilities zkv,i. However, after some algebra we
obtained the closed values of point probabilities in a few specific situations.

zk0,N = P ({Rp = k |V (0) = 0, I(0) = N }) = δk,0, for 0 ≤ k ≤ N − 1.

For 0 ≤ v ≤ v0 and 1 ≤ i ≤ N − v we get:

z0v,i = P ({Rp = 0 |V (0) = v, I(0) = i}) =
γi

qv,i
,

z1v,i = P ({Rp = 1 |V (0) = v, I(0) = i})

= (1− δi,N )

(
β
N i+ ξ

)
γ(i+ 1)

qv,i

(
hv

qv−1,i+1
+

(N − v − i)
qv,i+1

)
.
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4 Numerical illustrations

This section illustrates theoretical and algorithmic results derived in previous
sections.

We fix the recovery rate as γ = 1.0 in all the experiments, so the time unit
is taken as to be the expected time that an infected individual takes to recover
to become susceptible again.

In the first scenario, we consider a population of N = 100 individuals,
20% of which is partially protected against the infection by a vaccine with
effectiveness of 97%. We are interested in the random variable Re0, that is the
number of secondary infections produced by the index case. Hence, the initial
number of infective individuals is I(0) = i0 = 1.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

=0.01

=0.1

=1.0

=2.0

Fig. 5 Re0 distribution for several values of ξ, when N = 100, β = 10.0 and h = 0.03

Figures 5 and 6 represent histograms for the distribution of Re0 when we
vary external or internal contact rates, respectively. Heights indicate the value
of the probabilities xk20,1 = P ({Re0 = k |V (0) = 20, I(0) = 1}) and colors ap-
pearing in both figures are depicted for a better distinction among considered
situations. In more detail, Figure 5 shows mass functions ofRe0 when the exter-
nal transmission rate ξ is 0.01, 0.1, 1.0 and 2.0, for a fixed internal transmission
rate β = 10.0. For each rate ξ, mean values of Re0 are 4.2035, 3.7601, 2.5342
and 2.0592, respectively. Moreover, distributions present a strictly positive
mode that occurs with a probability that decreases for increasing values of
the external rate. This remark is according to the intuition because for a fixed
internal contact transmission rate β, when the external transmission rate in-
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creases the index case has less opportunities to spread the disease compared
with outsider infection sources.

0 1 2 3 4 5 6 7 8 9 10 11 12
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= 5.0

=10.0

Fig. 6 Re0 distribution for several values of β, when N = 100, ξ = 0.01 and h = 0.03

Figure 6 displays mass functions corresponding to β = 1.0, 5.0 and 10.0,
for an external transmission rate ξ = 0.01. We get decreasing shape functions
for β = 1.0 or β = 5.0 and the chance that the index case produces no
secondary infections is 55% and 20%, respectively. However, for β = 10.0, the
Re0 distribution is bimodal, with an 11.2% chance that the index case recovers
before spreading the infection. In general terms, long internal transmission
rates contribute a higher number of secondary cases.

Next we focus on the effect of the vaccine coverage on the expansion of the
infection. Figure 7 shows the probability that the index case produces two or
more secondary cases of infection, as a function of the external rate β. This
quantity can give an idea of what is, for a given infective process, the chance
of invading a susceptible-vaccinated population. Each curve corresponds to a
different initial vaccine coverage. The remaining parameters of the model are
N = 100, ξ = 0.01, and the vaccine is efficient in 97% of the vaccinated indi-
viduals. Probability increases with β, no matter how large the initial coverage
v0 is. For a fixed external transmission rate, the chance of having at least
two infections increases when initial coverage decreases. In particular for a
small population of 100 individuals affected by a hard measles outbreak, with
R0 = β/γ = 18.0, numerical results evince that a massive vaccination policy
with two doses of MMR vaccine (measles, mumps, rubella) guarantees that
the probability of having two or more measles infections from the index case
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is 0.12, while in an unprotected population (v0 = 0) this probability grows up
to 0.9.
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Fig. 7 P ({Re0 > 1 |V (0) = v0, I(0) = 1}) as a function of the internal transmission rate
when N = 100, ξ = 0.01 and h = 0.03

Now we deal with the expected number of secondary cases produced by the
index case since their introduction in a population where individuals are either
susceptible or vaccinated. We observe the influence of the model parameters β,
ξ, h and v0 on the expected value of Re0. Results correspond to a population
of N = 100 individuals.

Figures 8-10 are contour graphs for Re0 = E[Re0 |V (0) = v0, I(0) = 1],
arising when we combine the influence of two parameters of the model. Dif-
ferent colors represent different values for Re0, as it is indicated by the color
code given in each of the Figures.

Figure 8 shows the influence on Re0 of the internal and external transmis-
sion rates, when 20% of the population has received a vaccine which is effective
among 97% of the vaccinated individuals. The average of secondary infections,
produced by the index case, increases with the internal transmission rate and it
decreases when ξ increases, which is in agreement with the comment for Figure
5. These behaviors are more noticeable for large transmission intensities.

Figure 9 displays Re0 as a function of the internal transmission rate, β, and
the potential risk of vaccine failure, h. We assume in addition that 20% of the
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population is vaccinated and that the rate of external transmission is ξ = 0.01.
The expected number of infections caused directly by the index case increases
with β. In the early spread of the epidemic, the influence of the vaccine failure
risk is relatively small for outbreaks showing internal rates β smaller than 6
compared to those with higher values for β.
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Fig. 8 Re0 as a function of β and ξ when N = 100, h = 0.03 and v0 = 20

Finally, the contour graph shown in Figure 10 presents the relationship of
the internal transmission and vaccine coverage on Re0. The additional param-
eters are N = 100, ξ = 0.01 and 97% for vaccine effectiveness. An increase of
vaccine coverage produces a decrease on the initial spread of the infection. For
instance, administration of two doses of MMR vaccine is 97% effective against
rubella (basic reproduction number R0 ≈ 6). So, assuming that R0 = β/γ, re-
sults in Figure 10 show that the index case transmits an infection like rubella
to an average of 3.5 people in an unprotected population, and to less than one
person when a massive vaccination policy was launched in the population. To
achieve that the infection will not propagate in the population, that is Re0 < 1,
higher immunization coverage is needed as β increases.
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Fig. 9 Re0 as a function of β and h when N = 100, ξ = 0.01 and v0 = 20
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Fig. 10 Re0 as a function of β and v0 when N = 100, ξ = 0.01 and h = 0.03

The boxplot appearing in Figure 11 corresponds to the distribution of the
number of secondary infections produced by the index case. The box encloses
the middle central part of the distribution, lower and upper edges of the box
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correspond to the lower and upper quartile, respectively, and the line drawn
across the box indicates the median of the distribution; finally, whiskers above
and below the box cover 95% of the distribution. The objective is to com-
pare the patterns of the epidemic when we increase the vaccination coverage,
in a population of N = 100 individuals, assuming that a 97%-effective vac-
cine is available to control an epidemic process with internal and external
transmission rates β = 10.0 and ξ = 0.1, respectively. This choice for model
parameters corresponds to an infection by varicella-zoster virus (VZV) and
the administration of varicella vaccine that is 97% effective in the first year
after vaccination. A low vaccine coverage leads to a large number of secondary
infections. In general terms, the number of secondary cases produced by the
index case decreases when v0 increases. Notice that changes on the number
of secondary infections are not significant while the vaccination coverage is
under 25. This fact shows the importance of the random variable Re0 to fix
an appropriate vaccination level.
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Fig. 11 Boxplot for Re0 under several vaccine coverage values when N = 100, β = 10.0,
ξ = 0.1 and h = 0.03

Next we present some results relative to the global spread of the disease.
In Figure 12, we compare Rc, Re0 and Rp when the internal transmission rate
β varies over the interval (0, 20.0). As in previous scenarios, the recovery rate
is γ = 1.0. Vaccine coverage reaches half of the population and presents an
effectiveness of 97%. We compare results for populations of N = 100 and 1000
individuals, with external transmission rate ξ = 1/N . For our parameter se-
lection R0 = β and Rc = R0(1 − (1 − h)/2) = 0.515β. Hence, as a function
of β, the control reproduction number corresponds to the top line in Figure
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12. We notice that differences between Rc and Re0 increase with increasing
transmission rates. When β = 20.0, we find Rc = 10.30 and Re0 = 4.36 for
N = 100, and Re0 = 5.67 for N = 1000. These magnitudes show the overes-
timation of the number of secondary cases of infection produced by the index
case, as provided by Rc, and how the expected exact reproduction number
Re0 corrects the effect of the linearization hypothesis commonly assumed in
the deterministic literature. Regarding the expected population transmission,
Rp, we conclude that it converges to the control reproduction number as the
population size increases. In fact, for N = 1000 differences between Rc and Rp
are smaller than 0.4 when β ∈ (0, 20.0). Hence, the line for Rp is graphically
indistinguishable from Rc and it is not plotted for N = 1000.
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Fig. 12 Comparing Rc, Re0 and Rp versus the internal transmission rate when ξ = 1/N ,
h = 0.03 and v0 = N/2

Finally, Table 3 shows the minimal vaccination coverage needed to inter-
rupt epidemic transmission; that is, in order to get values smaller than one for
the expected number of secondary cases coming from the index case. Notice
that if the expected transmission (either from the whole set of infectious or
limited to the index case) is less than 1, each infected individual transmits
the disease to less than one person, which means that not every case will re-
sult in a new individual infection and epidemic transmission will cease. We
display results for a population of N = 1000 individuals, where the external
transmission rate is taken as ξ = 1/N and the internal rate β is assumed
to be at least 1. We compare two scenarios by considering that the effective-
ness of a vaccine is either 97% or 90%. Values represented by vc give the
herd-immunity threshold based on the control reproduction number Rc (i.e.,
starting from R0 = β/γ, coverage is chosen as vc/N > (R0−1)/(R0(1−h)) in
order that Rc < 1 ). Additionally, ve0 and vp are minimal critical levels that
guarantee that expected values Re0 and Rp, respectively, are less than one.
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Numerical values come from an iterative application of Algorithm 1 for Re0
and its variant for Rp, by raising initial coverage until expected values fulfill
the required condition. Any dash symbol in Table 3 means that even a 100%
vaccine coverage does not guarantee that the expected number of secondary
cases (measured in terms of Rc, Re0 or Rp) are less than one. Note that, as Rp
includes also secondary cases arising from external infectious individuals, the
minimal critical level vp presents higher values, at a fixed transmission rate
β, when it is compared with vc or ve0. On the other hand, when the internal
transmission rate β increases, higher immunization coverage is needed to keep
the expansion of the epidemic under control.

Table 3 Minimum level of vaccination with parameters N = 1000 and ξ = 1/N

h = 0.03 h = 0.1
β vc ve0 vp vc ve0 vp
1 0 0 413 0 0 445

1.5 344 341 556 370 368 695
2 515 513 645 556 554 808
3 687 686 750 741 739 873
4 773 772 809 833 832 915
5 825 823 848 889 888 944
6 859 858 875 926 925 966
7 884 882 896 952 952 982
8 902 902 911 972 972 996
9 916 915 923 988 988 −
10 928 927 933 − − −
11 937 936 942 − − −
12 945 944 949 − − −

5 Conclusions

This paper studies infectious disease dynamics in a stochastic framework,
where a Markov chain is used to model disease transmission. The continu-
ous time Markov chain models changes in the state of the process defined as
the number of individuals that are susceptible, infected or vaccinated. Assum-
ing that susceptible and vaccinated individuals (due to vaccine failures) can
get the infection through both internal and external contacts makes the model
more realistic than those with only internal contacts.

Deterministic models are very useful in understanding the dynamics of
infectious diseases and estimating important epidemiological descriptors as,
for instance, the basic reproduction number. In this context, populations are
relatively large, and the effect of depletion of susceptibles is minor but leads
to reproductive numbers that overestimate the transmission potential of the
disease. Our research involves a pair of random variables, Re0 and Rp, as
alternative measures of the control reproduction number Rc. The stochastic
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Markovian framework allows us to identify the effective event leading to a new
contagion. Consequently, we exclude repeated contacts established between
the index case and already infected individuals, thus correcting for the effect
of the linearization assumption commonly assumed in the deterministic frame-
work and which produces the overestimation of the reproductive potential of
a disease.

Concerning speed, our numerical algorithms provide results depending
strongly on the population size and the other parameters of the model. For in-
stance, the derivation of Re0 through Algorithm 1 involves factorial moments
m1
v,i of (N − v0/2)(v0 + 1) transient states, which for the particular choice

of N = 1000 and v0 = N/2 implies 375, 750 such states and requires 118 sec
CPU time, in a personal computer of 2.31GHz and 6GB RAM.

Numerical results regarding vaccination coverage levels should be seen as
a first approach to investigate optimal policies for controlling the spread of
an infectious disease. The aim for future research is to develop health policies
based on time horizons and warning levels related to the remaining vaccinated
individuals.

This research can be generalized to different models for imperfect vaccine
response by considering vaccines that reduce the probability of infection or
that confer protection that wanes over time (see, for instance, Ball et al. 2008,
Ball and Sirl 2018). Additionally, more sophisticated models could be treated
by introducing population structures such as households, and also by includ-
ing assumptions concerning to epidemics showing latent infectious periods or
lifetime immunity after recovery.
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4. Almaraz E, Gómez-Corral A (2018) On SIR-models with Markov-modulated events:
Length of an outbreak, total size of the epidemic and number of secondary infections.
AIMS 23:2153-2176 https://doi.org/10.3934/dcdsb.2018229
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