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1  Abbreviations 
 
4E-BP1  Eukaryotic translation initiation factor 4E-binding protein 1 

AA   Amino Acid 

AID   Activation-induced cytidine deaminase 

APCs   Antigen presenting cells 

ASCs   Antibody secreting cells 

BCR   B-cell receptor 

Blimp-1  B lymphocyte-induced maturation protein-1 

BV   Brilliant violet 

CD   Cluster of differentiation 

CMV   Cytomegalovirus 

CNS   Central nervous system 

CTL   Cytotoxic T lymphocytes  

CTV   Cell trace violet 

CXCL-10  C-X-C motif chemokine 10 

EIF4E   Eukaryotic translation initiation factor 4E 

ELISA   Enzyme-linked immunosorbent assay 

FACS   Fluorescence-activated cell sorting 

FDR   False discovery rate 

GAS   Gamma interferon activation site 

GC   Germinal center  

GDP   Guanosine diphosphate  

GO   Gene Ontology 

GTP   Guanosine triphosphate 

GWAS  Genome-wide association study 

HCV   Hepatitis C virus 

HIV   Human immunodeficiency virus 

HRP   Horseradish peroxidase 

HSV   Herpes simplex virus 

IFN-a   Interferon-alpha 

IFN-b    Interferon-beta 

IFN-g   Interferon-gamma 
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IFN-e  Interferon-epsilon 

IFN-k  Interferon-kappa 

IFN-l  Interferon-lambda 

IFN-w  Interferon-omega 

IFNAR Interferon alpha-receptor 

IFNs  Interferons 

IgA  Immunoglobulin A 

IGF Insulin like- growth factor 

IgG  Immunoglobulin G  

IgM  Immunoglobulin M  

IL-10 Interleukin-10 

IL-21 Interleukin-21 

IL-6 Interleukin-6 

IL10RB Interleukin 10 receptor beta 

IL28RA Interleukin 28 receptor alpha 

IRF-4 Interferon regulatory factor-4 

IRF-9 Interferon regulatory factor-9 

ISG  Interferon-stimulated genes 

ISGF-3 IFN-stimulated gene factor-3 

ISRE  Interferon-stimulated response element 

JAK1 Janus Kinase 1 

LD Linkage disequilibrium 

LPS Lipopolysaccharides 

MHC Major histocompatibility complex  

mLST8 Mammalian lethal with SEC13 protein 8 

mTORC1 Mechanistic/mammalian target of rapamycin 

MX1  Interferon-induced GTP-binding protein Mx1 

NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B-cells 

NK-cells Natural killer cells 

OAS1  2′-5′-oligoadenylate synthetase. 

PAMPs Pathogen-associated molecular patterns 

PBMC Peripheral blood mononuclear cell 
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PBs  Plasmablasts 

PCs  Plasma cells 

pDCs Plasmacytoid dendritic cells 

PI3K Phosphoinositide 3-kinase 

PKCa Protein kinase ca 

PRDM1 PR domain zinc finger protein 1 

PRRs  Pattern-recognition receptors 

RLR  RIG-1-like receptor 

RLR  RIG-I-like receptor 

ROS Reactive oxygen species 

RSV Respiratory syncytial virus 

S6K  S6 kinase 

SARS Severe acute respiratory syndrome 

SD Standard deviation  

SGK1  Serum- and glucocorticoid-induced protein kinase 1 

SLE Systemic lupus erythematosus 

SNP Single nucleotide polymorphism 

STAT Signal transducer and activator of transcription 

TCR T-cell receptor

TD T-cell dependent (or) Thymus dependent

Tfh Follicular T helper cells

TI T-cell independent (or) Thymus independent

TLR Toll like receptor

TLR  Toll-like receptors

TSC 1  Tuberous sclerosis 1

TSLP Thymic stromal lymphopoietin

Tyk2 Tyrosine kinase 2

USP-18 Ubiquitin specific peptidase

VSV Vesicular stomatitis virus

WNV West Nile virus

XBP1  X-box binding protein 1
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Units: 

 
CPM   Counts per million 

h   hour 

KD   dissociation constant  

min   minute 

ml   milliliter 

ng   nanogram 

μg   microgram 
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2  Summary 
 

Interferon lambda (IFN-l) mediates a crucial antiviral response to protect the 

host cells during viral infection, as well as functioning as a potential immune modulator. 

In this thesis, we investigated the immune modulatory role of IFN-l in B-cells. In the 

first part, we established an ELISA-based in vitro assays to study IFN-l ligands and 

its receptor (Interferon lambda receptor 1 - IFNLR1 and IL10R2) interactions. First, we 

determined the receptor - ligand (IFNLR1 - IFN-l1-3) dissociation constant (KD) as a 

measure of the ligand and receptor binding affinity. We found that IFN-l1 showed 

higher binding affinity to IFNLR1 compared to IFN-l2 and IFN-l3. Further, we 

screened antagonistic peptides, which act to interfere in IFNLR1 - IFN-ls interactions. 

The peptides are designed to compete with IFN-ls at their IFNLR1 binding sites and 

this experiment thus allowed us to develop a molecular understanding of the 

interaction. We have also performed the small molecules screen to identify the 

potential substances targeting for IFN-l signaling, it will allow us the modulation of 

IFN-l signaling which is an interesting target for a broad range of applications. In the 

second part, we screened the immune cell populations to understand the direct 

response to IFN-l, to resolve discrepancies with previously reported data.  B-cells and 

the subpopulations of naïve, class switched and non-class switched memory B-cells 

were found to directly respond to IFN-ls. On the other hand, T-cells, NK-cells and 

monocytes did not show any response to IFN-ls. Since B-cells showed a response to 

IFN-l, we performed transcriptomic profiling of sorted B-cell, to examine the immune 

modulatory role of IFN-l in B-cells. On the basis of B-cell transcriptome analysis and 

follow up in vitro experiments, the IFN-l increases the mTORC1 

(mammalian/mechanistic target of rapamycin complex 1) activity in B-cells, upon B-

cell receptor (BCR) cross linking with anti-IgM. The BCR and IFN-l signaling cascade 

engage the mTORC1 pathway via phosphoinositide 3-kinase (PI3K). However, it 

needs further evaluation to see if IFN-l increase the mTORC1 activity indirectly via 

ISGs. IFN-l enhances the BCR-induced cell cycle progress though this mTORC1 and 

IFN-l alone did not induce any cell proliferation. Consequently IFN-l further boosts 

the differentiation of naïve B-cells into plasmablasts upon BCR-activation, so the cells 

gain effector functions such as cytokines release (IL-6, IL-10) and antibody production 

5



 

(IgM). The role of IFN-l in plasmablast differentiation was previously not known. In 

this study, we have shown how IFN-l functionally binds to B-cells and that it 

systematically boosts the differentiation of naïve B-cells into plasmablasts via 

mTORC1 and cell cycle progression in BCR-activated cells.  
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3  Introduction 
 
3.1  Interferons (IFNs): an overview 
 

IFNs are a large group of signaling proteins also known as cytokines, induced 

by host cells in response to a variety of viruses and other pathogens. Due to their 

ability to ‘interfere’ with viral infections, they are termed interferons 1. IFNs play a 

crucial role in protecting host cells from many infectious diseases caused by viruses, 

bacteria, fungi and parasite 2-7. IFNs are also involved in other tasks such as pro- and 

anti-inflammatory actions, have regulatory roles in autoimmune diseases, facilitate 

immune cells maturation, and control of tumor cell proliferation 8-15. The interferon 

family is represented by three major classes, designated type I, type II, and type III 

IFNs 16. 

 
3.1.1  Type I IFNs  
 

The type I IFN family members include 13 subtypes of IFN-α (IFN-α1, -α2, -α4, 

-α5, -α6, -α7, -α8, -α10, -α13, -α14, -α16, -α17, and -α21) as well as IFN-b, IFN-e, IFN-

k and IFN-w in human 17. These type I IFNs exclusively bind to the cell surface IFN-

α/b receptor (IFNAR) that consists of IFNAR1 and IFNAR2 chains 18. The Janus-

activated family kinases (JAKs), tyrosine kinase 2 (Tyk2) and JAK1 are associated 

with the cytoplasmic domain of IFNAR1 19. The receptor engagement leads to the 

phosphorylation of signal transducer and activator of transcription (STAT)1 and 2.  

STAT1 and STAT2 interact with IFN regulatory factor (IRF)-9, forming a complex 

called IFN-stimulated gene factor (ISGF)-3, which translocates into the nucleus. This 

complex binds to specific nucleotide sequences called IFN-stimulated response 

elements (ISREs) and activates the expression of hundreds of IFN-stimulated genes 

(ISGs) (Fig. 1). Moreover, in specific cell types, STAT homodimers or heterodimers 

form in different combinations between STAT1, 2, 3, 5, 6 20-23. Type I IFNs exhibit a 

potent antiviral effect and enhance the activity of natural killer (NK)-cells and 

macrophage functions and increase the expression of major histocompatibility 

complex (MHC) class I on virus infected cells 24-27. Type I IFNs modulate T-cells 

functions, including generation and activation of cytotoxic T lymphocytes (CTL) 28,29. 

Nearly every cell type in the body can produce type I IFNs 5.  
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Fig. 1: IFN signaling: an overview  
The interaction between Type I IFNs and IFNAR (heterodimer of IFNAR1 and IFNAR2); Type 

II IFN and IFNGR (IFNGR1 and IFNGR2); Type III interferon and IFNLR (IFNLR1 and IL-10R2). All 

activate classical JAK-STAT pathways, leading to the translocation of transcription factor complexes 

ISGF3 or GAF (IFN-γ) into the nucleus, which bind to ISRE or GAS promotor sites and activate ISG 

expression. From Sadler AJ and Williams BR, Nat Rev Immunol, 2008, 8 (7). 

 

3.1.2  Type II IFNs  
 

IFN-g is the only representative of the type II IFN family. It binds to the 

heterodimeric IFN-g receptor (IFNGR), which consists of two chains: IFNGR1 and 

IFNGR2 30-32. JAK1 and JAK2 tyrosine kinases are associated with the cytoplasmic 

domain of IFNGR1. The phosphorylation of two STAT1 molecules allows them to form 

a homodimeric complex, which moves to the nucleus, where it induces the expression 

of genes with gamma interferon activation site (GAS) elements (Fig. 1) 22. IFN-g 

activates NK-cells and macrophages and plays a major role in both innate and 

adaptive immune responses against viral, fungal and bacterial infections 33. Further, it 

induces the expression of MHC II molecules. NK-cells, cytotoxic T-cells and T helper 

(Th) cells type 1 (Th1) mainly release IFN-g 34-36. 
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3.1.3  Type III IFNs 
 

Type III IFNs are a recently discovered group of IFNs 37,38. Type III IFNs show 

about 5-18% amino acid sequence identity with type I IFNs 39. In humans, the Type III 

IFN family consists of four members: IFN-l1, IFN-l2, IFN-l3, and IFN-l4, which are 

encoded by genes located on chromosome 19 (19q13.13 region). Among these IFN-

l family candidates, IFN-l1 and IFN-l2 share 81% amino acid identity, whereas IFN-

l2 and IFN-l3 share 96% amino acid identity. IFN-l4 and other IFN-ls share only 

about 28% amino acid identity 37-41. Among these IFN-ls only IFN-l1 is N-linked 

glycosylated 37. In mice, only IFN-l2 and IFN-l3 are functional and IFN-l1 and IFN-

l4 are pseudogenes, encoded by genes which all are located on chromosome 7 (7A3 

region) 39,42. Both IFN-l2 and IFN-l3 are glycosylated 42,43. The antiviral properties of 

IFN-l have been studied extensively with many viruses 44-48. The IFN-l mediated 

immunity is further extended to other pathogens like bacteria, parasites, and fungi 49-

53. 

 
3.2  IFN-l expression and signaling pathways 
 

IFN-l is expressed mainly in response to many viruses and bacteria 53.  

Sensing of pathogen-associated molecular patterns (PAMPs) by specific pattern-

recognition receptors (PRRs) induces IFN expression. PRRs such as membrane-

bound Toll like receptors, cytoplasmic receptors like RIG-I, and cytosolic DNA sensor 

Ku-70 lead to the activation of the NK-kB transcription factors and IRFs, which induce 

the expression of IFN-ls 54-58. The following figure describes the expression of IFN-ls 

through various pathways (Fig. 2). 

 
Epithelial cells are the dominant producer of IFN-l, such as respiratory 

epithelial cells against influenza virus in the lung and airway; epithelial cells against 

rhinovirus; gut epithelial cells against enteric virus 59-63.  Likewise, hepatocytes 

produce type III IFNs during the acute stage of HCV infection 64. Immune cell 

populations, such as plasmacytoid dendritic cells (pDCs), monocytes and BDCA3+ 

myeloid dendritic cells also produce IFN-l in response to double-stranded RNA (poly 

I:C) or viral infections 65-68. A recent study has described that the activation of TLR5 

by Salmonella might induce the expression of IFN-l 69. 
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Fig. 2: IFN-l release and signaling pathways  
 

Pathogens are sensed by pattern recognition receptor (PRRS), including Toll like receptors 

(TLRs), cytoplasmic RIG-I-like receptor (RLR) and DNA sensor Ku70, which activate multiple signaling 

pathways and induce IFN-l expression. On the other side, IFN-ls bind to IFNLR (composed of IFNLR1 

and IL10Rb) and activates JAK-STAT downstream signaling pathway. The expression of IFN stimulated 

genes (ISGs) lead the effector functions against viruses. From Lazear HM et al., Immunity, 2015, 43 

(1). 

 

IFN-l1-4 all bind to a heterodimeric surface receptor, which is composed of the 

unique IFNLR1 (also known as IL-28RA) chain and the ubiquitously expressed IL10Rb 

(IL-10R2) chain. The IL10Rb chain is also a part of the receptor complexes for IL-10, 

IL-22 and IL-26 70-72. The initial binding of IFN-ls to the IFNLR1 chain causes rapid 

conformational changes and recruits the second chain, IL10Rb, to form a receptor 

complex. The Janus tyrosine kinases JAK1, JAK2, and Tyk2 are associated with the 

receptor complex and mediate the trans-phosphorylation of IFNLR1 that facilitates 

transient docking site for cytosolic STAT proteins 39. The phosphorylation of STAT1 

and STAT2 causes the heterodimer to interact with IRF-9 and form a transcription 

factor complex ISGF-3. This complex then translocates into the nucleus, where it binds 

to specific ISRE promotor region and activates the transcription of over a hundred 

ISGs. IFN-l induced expression of the ISGs promotes the antiviral and other cellular 

responses (Fig. 2).  
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Although type I and type III signaling pathways seem similar with their 

cascades, the signaling kinetics differ, mainly due to their own specific feedback 

mechanisms. The ISG ubiquitin specific peptidase (USP-18) is expressed from both 

signaling cascades: it acts as a negative regulator for type I, but not type III signaling. 

Mechanistically, USP18 binds to IFNAR2 and blocks the further interaction between 

IFNAR2 and JAK1 73,74.  
 

3.3  Interferon lambda receptor expression  
 

Nearly every cell type expresses the receptor for type I (IFN-a/b) and type II 

(IFN-g) interferons 75. In contrast, the expression of IFN-l receptor is limited to 

epithelial cells, especially at mucosal surfaces, gut epithelial cells, hepatocytes and 

very few immune cell types 46,63,76-78. The primary hepatocytes initially show baseline 

response to IFN-l: treatment with IFN-a significantly increases the mRNA level of 

IFNLR1 79. Likewise, cytomegalovirus (CMV) infection in fibroblasts increases the 

mRNA level of IFNLR1 about two-fold; however, protein expression levels were found 

to be unaltered 80. Furthermore, the endothelial cells in the blood-brain barrier show 

limited response to IFN-l during West Nile virus (WNV) infection in mouse 52.  

 
Only specific immune cell types express IFNLR1.  In mouse immune cells, only 

neutrophils directly respond to IFN-l 81,82. The NK-cells do not express the IFN-l 

receptor, but it indirectly gets activated via macrophages during influenza infection 83. 

In human immune cells, many reported data show inconsistencies with the expression 

of IFNLR1. Human pDCs strongly express IFNLR1 and respond to IFN-l. NK-cells 

seem not to express IFNLR1. The IFNLR1 mRNA is measurable in B-cells, but the 

reports differ on whether B-cells can directly respond to IFN-l. The expression of 

functional receptor IFNLR1 in T-cells and monocytes is subject to ongoing debate 44,84-

91. Monocyte-derived macrophages express IFNLR1 and respond to IFN-l 92,93. 

Overall, the cell specific receptor expression and the signaling kinetics make IFN-l 

signaling distinct from that of other interferons.  
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3.4  The impact of IFN-l SNPs  

Genome-wide association studies (GWAS) describe a number of IFN-l 

single nucleotide polymorphisms (SNPs), which are strongly correlated with important 

clinical outcomes. The following figure shows the location of SNPs within the IFN-l 

genes (Fig. 3). 

Fig. 3: Location of IFNL genes and the SNPs 
The IFN-l genes are located on human chromosome 19 (19q 13.13). IFN-l1, IFN-l2, and 

IFN-l3 genes are functional. IFN-l4 generally exists as a pseudogene: only a subset of the 

human population carries the SNP rs368234815 with ΔG frameshift mutation in the first exon of 

IFN-l4, producing an in-frame protein. Key single-nucleotide polymorphisms (SNPs) in coding and 

non-coding regions of IFN-l genes are indicated. Adapted from Syedbasha M et Egli A, 2017, 

Front Immunol, 8 (119). 

3.4.1  IFN-l SNPs in innate immunity 

Many studies have demonstrated the impact of IFN-l SNPs in innate 

immunity over the last 10 years. The location of SNPs in IFN-l genes are described 

in Figure 3. Several SNPs in the IFN-l3 locus correlate with the response of IFN-

based therapeutics and spontaneous clearance of hepatitis C virus (HCV) 94-97.  The 

individuals carrying the rs12979860-C allele (CC) respond better to standard HCV 

treatment (pegylated-IFN with ribavirin) than the individuals carrying the rs12979860-
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T allele (CT or TT). The unfavorable rs12979860-T allele is more prevalent in those of 

African descent compared to those of Asian or European descent. Similarly, those 

carrying the rs8099917-T allele (TT) respond better than individuals with the TG or 

GG allele at this locus. This favorable rs8099917-T allele is more prevalent in Asians 

and Europeans compared to Africans. These two SNPs (rs12979860 and rs8099917) 

are in linkage disequilibrium (LD) 95,98. The molecular mechanism behind many IFN-l 

SNPs and their associations with treatment outcome is not understood.  

               
A recent study has described the mechanism of the IFN-l3 SNP rs4803217 

where the occurrence of the G allele is associated with HCV clearance, whereas the 

T allele favors HCV persistence 99.  HCV regulates two microRNAs: miR-208b and 

miR-499a-5p, which target the 3’ UTR of IFN-l3. The T allele enhances the binding of 

virus induced microRNAs at the 3’ UTR and facilitates AU-rich element mediated 

decay of IFN-l3 100. The ss469415590 (TT/DG) allele causes a frameshift mutation 

ablating the expression of IFN-l4. Approximately 40% of Caucasians have this SNP. 

The DG allele in IFN-l4 is associated with HCV persistence, whereas a TT allele 

favors viral clearance 27,53.  

 

3.4.2  IFN-l SNPs in adaptive immunity 
 

The impact of IFN-l SNPs in the adaptive immune response have been 

described. Previously reported data indicates that the IFN-l3 SNP rs10853727 minor 

alleles (AG or GG) are associated with high post-vaccine antibody titers in measles 

vaccinated children 101. The IFN-l3 SNP rs8099917 minor alleles (TG or GG) correlate 

with increased seroconversion rate after influenza vaccination. In addition, rs8099917 

minor alleles (TG or GG) show low levels of Th1 cytokines (IFN-a, IL-2 and IL-6) 

secretion in PBMCs with influenza stimulation. On the other hand, the major alleles 

correlate with low level of Th2 cytokines (IL-4, IL-5 and IL-13) and antibody production 
93. However, the mechanism behind these SNPs are yet to be understood.  
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3.5  Role of IFN in infectious diseases 
 

IFN-l plays an important role in controlling a wide variety of viral infections. 

Many in vitro and in vivo studies have been explained by IFN-l-mediated immunity 

against viruses in the liver, respiratory tract, gastrointestinal mucosa, blood-brain 

barrier, and immune cells. The miR-122- and CD81-expressing HepG2, primary 

hepatocytes, and other in vivo studies with chimpanzees, all indicate that HCV induces 

IFN-l response primarily, rather than IFN-a or IFN-b 64,102-105.  Many in vitro studies 

have shown that IFN-l can also inhibit the replication of HCV and HBV 106-109. These 

studies highlight the fact that IFN-l might be used as an alternative for HCV patients 

who are resistant to IFN-a based therapy.  

 
Respiratory epithelial cells predominantly produce IFN-l during infection with 

influenza and other respiratory viruses 60,61,110,111. Many in vivo studies have 

demonstrated that IFNLR1−/− mice are more susceptible to influenza, respiratory 

syncytial virus (RSV) and SARS coronavirus infections 47,112-114. Human bronchial 

epithelial cells produce IFN-l in response to rhinovirus infection and inhibit the 

replication of rhinovirus in bronchial epithelial cells 59. The mouse stomach and 

intestinal tissues express high level of IFNLR1 115. Furthermore, the epithelial cells in 

the gastrointestinal tract respond to IFN-l 46,114. IFN-l exclusively controls the infection 

of rotavirus, reovirus and norovirus infection in epithelial cells 46,63,116,117. The 

exogenous administration of IFN-l plays a major role in controlling the entry of West 

Nile virus (WNV) into the central nervous system (CNS) by restricting the blood-brain 

barrier 52. Also, IFN-l inhibits herpes simplex virus (HSV)-2 and zika virus replication 

in vaginal mucosa in mice 49,118. In immune cells, IFN-l is able to inhibit human 

immune deficiency virus type 1 (HIV-1) infection of IFN-l receptor expressing 

macrophages in blood 119. 

 
 Besides antiviral immunity, IFN-l has also been studied in the context of other 

microbial infections. Bacteria such as Mycobacterium tuberculosis, Listeria 

monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus 

spp., are able to induce IFN-l expression 53,120-125. An in vivo study with IFNLR1−/− 

mice exhibited less pathology without changes in cell infiltrates during Staphylococcus 
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and Pseudomonas infection 121. Further investigation is necessary to find the role of 

IFN-l in parasitic and fungal diseases.  

 
3.6  Role of IFN in other diseases 
 

IFN-l not only engages in infectious diseases, but also might play a role in other 

diseases such as cancer and autoimmune diseases.  

 
3.6.1  IFN-l in cancer  
 

The type I interferons (IFN-a/b) exhibit anti-tumor activity through the induction 

of cell apoptosis or immune cell priming 126,127. Several in vitro and in vivo studies 

demonstrated that IFN-l could alter tumorigenesis directly or indirectly. Like type I 

IFNs, IFN-l signaling induces apoptosis in colorectal cancer cells 128. The virus 

induced IFN-l promotes anti-tumor responses. The oncolytic treatment with vesicular 

stomatitis virus (VSV) strain induces IFN-l expression in hematopoietic cells, which 

enhances the anti-tumor responses of NK-cells 129. The lower level of IFN-l 

expression correlates with the progression of cervical cancer triggered by papilloma 

virus 130.  

 
IFN-l also play a potential role in the tumor micro-environment. IFN-l signaling 

induces the expression of chemokine CXCL-10 in mammary epithelial cells, which 

promotes the recruitment of CD4 T-cells into the tumor micro-environment 131. The 

higher IFN-l expression controls the tumor growth in a breast cancer mouse model 
131. In addition to that, the role of IFN-l has been showed in colon cancer, melanoma 

and fibrosarcoma tumor models, where IFN-l mainly activates anti-tumor NK and T-

cells 42,132,133. Over all, evidence indicates that IFN-l might be a potential therapeutic 

target for some cancers.  

 
3.6.2  IFN-l in autoimmune diseases 
 

The role of type I IFNs (IFN-a/b) in autoimmunity is well established. The level 

of type I IFNs are elevated in autoimmune diseases such as Aicardi syndrome 

Goutières (AGS), Sjogren’s syndrome, psoriasis, type I diabetes and systemic lupus 

erythematosus (SLE) 134,135. However, in humans, the role of IFN-l in autoimmune 

diseases is not established yet. The protective role of IFN-l in allergic asthma has 
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been showed in a mouse model. IFN-l downregulates Th2 cytokines (IL-4, IL-5 and 

IL-13), which progress the asthma pathogenesis. Mice treated with IFN-l show 

reduced production of Th2 cytokines and decreased eosinophil infiltration into the lung 
136-138. Another study with an arthritis mouse model showed that IFN-l improves the 

disease outcome by reducing IL-1b production and neutrophil recruitment into the 

arthritic joints 81. 

 

3.7  Immune modulatory role of IFN-l  
 

The recent papers describe the immune modulatory role of IFN-l. Mouse 

neutrophils express IFN-l receptor, which is further upregulate after LPS treatment or 

exposure to Aspergillus fumigatus. IFN-l acts directly on neutrophils and modulates 

its function via JAK2, which controls the AKT signaling and subsequent reactive 

oxygen species (ROS) production and degranulation process. IFN-l suppresses the 

intestinal inflammation by inhibiting ROS production via a distinct mechanism which is 

independent of the canonical JAK-STAT signaling 82. A recent study has described the 

immunomodulatory effect of IFN-l during influenza infection in the mouse respiratory 

tract. IFN-l enhances the adaptive mucosal immunity after infection of the respiratory 

tract with live-attenuated influenza. Upon infection, IFN-l triggers the upper-airway M 

cells to produce thymic stromal lymphopoietin (TSLP). In turn, TSLP leads the 

activation of migratory dendritic cells (DCs). In draining lymph nodes, the activated 

migratory DCs boost the antigen-dependent germinal center (GC) reactions, resulting 

in increased production of immunoglobulins IgG1 and IgA 139. Another mouse study 

showed that using IFN-l as an adjuvant in HIV vaccination reduces the number of 

regulatory T-cells and Th2 cytokine (IL-4) release. However, IFN-l increased the 

IgG2a response compared to IL-12 adjuvanted vaccine 140. 

 
 In humans, IFN-l modulates the T cell responses indirectly. The stimulation of 

PBMCs with IFN-l and concanavalin A increases Th1 cytokine (IFN-g) and 

suppresses Th2 (IL-4, IL-5, IL-13) production 84,136,138. The IFN-l3 SNP rs8099917 TT 

allele correlates with high IFN-l3 expression and reduced seroconversion after 

influenza vaccination. Further in vitro stimulation of PBMCs with inactivated influenza 

antigen and IFN-l lowers the release of Th2 cytokines and antibodies release. In vitro 
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blocking of IFN-l with antagonistic peptides results in increased antibody production 
93. Overall, these observations from mouse and human experiments suggest that the 

role IFN-l in adaptive immunity seems to be context dependent and requires further 

evaluation. Also, the interaction of IFN-l with other signaling pathways is not yet well 

studied.  

  
3.8  mTOR pathway 
 

The mechanistic/mammalian target of rapamycin (mTOR) is a protein 

serine/threonine kinase and a member of the phosphoinositol 3-kinase related kinase 

protein family, which is encoded by the human mTOR gene 141. mTOR regulates a 

variety of important cellular processes such as cell survival, cell growth, cell motility, 

cell proliferation, cellular metabolism, cytoskeletal organization, autophagy, 

mitochondrial biogenesis, lipid synthesis, transcription, and protein synthesis 142,143.  

 
mTOR forms two distinct complexes with additional regulatory proteins: mTOR 

complex 1 and mTOR complex 2. mTORC1 is made up of five components including 

the catalytic subunit of the complex mTOR, the regulatory associated protein of mTOR 

(Raptor), the mammalian lethal SEC13 protein 8 (mLST8), and the non-core 

components proline-rich AKT substrate 40 kDa (PRAS40) and DEP-domain-

containing mTOR-interacting protein Deptor 144. The impact of proteins interacting with 

mTOR are often not clear. PRAS40 and Deptor work as negative regulators of 

mTORC1 144-146. mTORC2 complex is made up of six components, including mTOR, 

the rapamycin insensitive companion of mTOR (Rictor), mammalian stress-activated 

protein kinase interacting protein (mSiN1), protein observed with Rictor-1 (Protor-1), 

DEPTOR, and mLST8. Among these components Rictor and mSiN1 contribute to 

mTORC2 structural organization 147,148. Deptor is a negative regulator of mTORC2 

activity 144. Protor-1 interacts with Rictor, however the exact roles not clear (Fig. 4) 
149,150. 
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Fig. 4: mTOR signaling pathway 
 
Activation of mammalian target of rapamycin takes place via a complex signaling cascades by external 

and internal cues as shown. mTORC1 complex comprises five proteins: mTOR, Raptor, mLST8, Deptor 

and PRAS40, whereas mTORC2 complex contains six proteins. mTOR, mLST8, mSin1, Rictor, Protor-

1 and Deptor. Upon activation, mTORC1 phosphorylates S6K and 4E-BP1 downstream targets and 

enhances protein production. Activation of mTORC2 leads to the phosphorylation of substrates SGK, 

PKC and AKT, and subsequent activation of biological processes. From Keating R et McGargill MA, 

2016, Front Immunol, 7 (180). 

 

Many growth factors and cytokines activate mTORC1 signaling via PI3K, PI3K 

leads the phosphorylation of AKT; in turn AKT activates mTORC1. The two main 

mTORC1 effector substrates S6 kinase 1 (S6K1; also known as P70-S6 kinase 1 or 

ribosomal protein S6 kinase beta 1) and 4E-BP1 (eukaryotic translation initiation factor 

4E (eIF4E)-binding protein 1) are involved in downstream signaling 151. Activated 

mTORC1 employs numerous downstream biological effects by phosphorylating S6K1 

and 4E-BP1, which are associated with mRNA translation initiation and elongation 
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process 152. Initially 4E-BP1 blocks mRNA translation: upon 4E-BP1 phosphorylation 

by mTORC1, 4E-BP1 dissociates from eIF4E, in turn, eIF4E recruits translation 

initiation factor eIF4G to the 5’ end of mRNA. On the other side mTORC1 

phosphorylates and activates S6K1, which further phosphorylates S6 ribosomal 

protein and initiates mRNA translation (Fig. 4)  152-154.  

 
Less is known about the upstream signaling pathways that leads to mTORC2 

activation and the cellular functions of mTORC2 155. mTORC2 has been shown to 

regulate actin cytoskeletal organization and ion transport by phosphorylating PKCa 

(protein kinase ca) and SGK1 (serum- and glucocorticoid-induced protein kinase 1) 

respectively 156-158. mTORC2 activity is strongly connected to AKT activity, as 

mTORC2 phosphorylates AKT at Ser 473 159. Insulin activated PI3K promotes AKT 

(Ser 473) phosphorylation. Inhibition of PI3K reduces the mTORC2 kinase activity, as 

PI3K lies upstream of mTORC2 and promotes the phosphorylation of mTORC2 at Ser 

1261. SGK1, PKCa and AKT1 respond to different growth factors through mTORC2 

activation 160,161.  

 
3.8.1  mTOR and B-cells 
 
 The mTOR serine/threonine kinase is a major regulator of cell growth and 

lymphocyte proliferation. mTORC1 is involved in metabolic reprogramming of immune 

cells and has been connected to T-cell differentiation, migration and tolerance as well 

as B-cell maturation and humoral immunity 162-166. Recent studies describe the intrinsic 

role of mTOR in B-cell development and function. Conditional mTOR gene knockout 

(KO) mice exhibited lower numbers of splenic germinal centers and lower antibody 

responses than controls 167. Also, the deletion of Rictor in mTORC2 was found to 

decrease the survival of mature B-cells and antibody responses 168. The mTORC1 

inhibitor rapamycin significantly impairs the proliferation of B-cells and suppresses 

antibody responses in both mouse and human 169,170. The ATP-competitive mTOR 

kinase inhibitor (PP242) targets the active site of mTOR in both mTORC1 and 2. This 

inhibitor causes cell cycle arrest in pre-B leukemia cells; interestingly at the 

concentration, the inhibitor did not block the proliferation and function of normal mature 

B-cells 170. 
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3.9  B-cell activation and differentiation 
 
           B-cells are part of the adaptive immune response and function in the humoral 

immunity, secreting antibodies and regulatory cytokines in response to infection. Also, 

B-cells function as a professional antigen presenting cells (APCs). Naïve B-cells get 

activated upon encountering a pathogen or extracellular antigen through infection or 

vaccination. The activated naïve B-cells differentiate into antibody secreting plasma 

cells and memory B-cells. The activation of B-cells and the follow up humoral response 

takes place in two ways based on the nature of the antigen. Antigens activate B-cells 

with or without the help of T-cells, either in T-dependent or T-independent B-cell 

activation 171,172.  

 
 

 
 
 
Fig. 5: T-independent and T-dependent B-cell activation and response 
a) Activation of B-cells by carbohydrate antigens through BCR and generation of IgM producing 

plasmablasts via T-cell independent pathway. b) Antigen presenting cells (APCs) display processed 

peptides via MHC class II molecules to T-cells and activation of T-cells. c) Activated B-cells presenting 

peptides to activated T-cells via MHC-II. B- and T-cell interaction takes place, generation of plasma 

cells and memory B-cells through T-cell dependent pathway. From Pifferi C et al., 2017, Biomater Sci, 

5 (5). 
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3.9.1  T-independent B-cell activation and response 
 

Non-protein antigens like glycoproteins, lipids and nucleic acids, can 

activate B-cells without T-cell help, and as such are named T-cell independent or 

thymus independent (TI) antigens. TI antigens are further divided into type I and 

type II antigens. Type I TI antigens are recognized by toll-like receptors (TLRs). 

The mitogenic stimuli such as poly IC (TLR 3), LPS (TLR 4), CPG (TLR 9) active 

B-cells via TLRs 173. Type I TI antigens can activate both immature and mature B-

cells and induce B-cell proliferation and antibody (IgM) production. This type of 

response is very rapid during the early stage of extracellular infection and it lacks 

any affinity maturation or isotype class switching.  

 
The type II TI antigens are generally polysaccharides from encapsulated 

bacteria, which are highly repetitive surface structures 174. These antigens activate 

B-cells through cross-linking BCRs, resulting in B-cell differentiation and antibody 

release. Type II TI antigens only activate mature B-cells, due to the need for 

extensive cross linking of BCRs for activation; in this condition immature B-cells 

become energized and do not show any immune response 175. Type II T1 antigen 

polysaccharide vaccines such as Pneumovax (against Streptococcus 

pneumoniae) and Menomune (against Neisseria meningitidis) elicit long-term 

humoral response in adults, however Type II TI antigens do not produce a recall 

response (Fig. 5) 176-179. 

 

3.9.2  T-dependent B-cell activation and response 
 

The antigens requiring T-cell help to activate B-cells, are called T-cell 

dependent or thymus dependent (TD) antigens. Unlike T-independent activation, 

B-cell takes multiple days to elicit mature and high affinity antibody responses in 

T-dependent activation. The B-cell activation occurs in two phases. The early 

phase happens in T-cells and primary follicles outside the lymphoid follicles. In this 

phase, activated B-cells proliferate and undergo isotype class switching, and initial 

antibody secretion takes place. In the late phase, activated B-cells enter into the 

lymphoid follicle. In this GC environment, B-cells undergo isotype class switching, 

affinity maturation with somatic hypermutation 175.  
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Naïve CD4+ T-cells get activated through the recognition of antigen by 

professional APCs such as dendritic cells and macrophages 180. Meanwhile B-cells 

also recognize the same antigen. Upon activation, B-cells move from the follicle 

into the T-cell area, where the activated T and B-cells interact with each other 181.  

BCR bound TD antigens are taken up by B-cells via receptor mediated 

endocytosis, then antigens are degraded, and presented to cognate CD4+ T-cells 

as peptide fragments via MHC Class II molecules. T-cells recognize the MHC-

peptide complex through TCR, during this interaction B-cells also express B7 

(CD80/CD86) molecule, which binds to CD28 from T-cells. Followed by T-cells 

express co-stimulatory molecule CD40L that binds to B-cell CD40 receptor. This 

cognate interaction and T-cells release cytokines such as IL-2, IL-4 and IL-21. 

These cytokines promote B-cell proliferation and differentiation, isotype class 

switching and somatic hypermutation 175,182. During somatic hypermutation, the 

enzyme AID (Activation-induced cytidine deaminase) generates random mutations 

in the variable domains of the BCR, resulting in a BCR with high affinity to the 

antigen. These whole processes generate both high-affinity memory B-cells and 

antibody releasing plasma cells. Later these cells can migrate into the bone 

marrow (Fig. 5) 175.  

 

3.9.3  Memory B-cell activation and response 
 

The antigen- or virus-specific memory B-cells get activated upon binding of their 

target antigen via BCR without T-cell help, whereas other memory B-cells need T-cell 

help. The BCR bound antigens are taken through receptor mediated endocytosis by 

memory B-cells, then the antigens are processed and presented in MHC II molecules 

to follicular T helper (Tfh) cells 183. The T-cells recognize MHC II-peptide complexes 

through their TCR, then the same T- and B-cell cognate CD40-CD40L interactions 

takes place, further T-cell release its cytokines. All these events together promote the 

activation and proliferation of memory B-cells. The activated memory B-cells 

differentiate into plasmablasts or plasma cells. It is not clear whether memory B-cells 

undergo further affinity maturation in GCs or not 183,184. 
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3.10  B-cell differentiation and transcription factors 
 

The differentiation of B-cells into plasma cells requires coordinated molecular 

changes so that the cells are able to change phenotype and gain effector functions 

such as antibody production. The changes happen in many hundreds of genes: a set 

of transcription factors get activated or silenced during plasma cell generation 185.  

Transcription factors such as IRF-4, Blimp-1 (encoded by the PRDM1 gene) and XBP-

1 guide this differentiation process. IRF-4 initiates the differentiation process through 

the activation of PRDM1 186,187. The expression of PRDM1 and XBP-1 are critical for 

plasma cell generation and survival. The activation of B-cells through BCR or TLRs or 

CD40 results in upregulation of IRF-4 and XBP-1. The cytokines such as IL-21, IL-10, 

IL-6 upregulate the expression of PRDM1 via STAT3 activation 188,189.  

 
The expression of PRDM1 after B-cell activation is the primary trigger for B-cell 

differentiation. PRDM1 upregulates chemokine receptor CXCR4 and homing receptor 

integrin alpha 4, which enables the homing and survival of long-lived plasma cells 190. 

The transcription factor XBP1 induces the unfold protein response by switching the 

surface immunoglobulins to the cytoplasm 191,192.  The other transcription factors such 

as E2A and Pax5 positively regulate the expression of AID 193,194.  The overall 

regulation of these transcription factors is very crucial for the B-cell differentiation 

process.  

 
Several studies showed the important role of IFN-l in infectious diseases 

mainly against broad range of virus infections. However, the impact of IFN-l in 

immune cell functions are not well studied. So, we wanted to explore IFN-l signaling 

in immune cells to understand how it modulates the immune cell functions.  
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4  Aims of the thesis  
 

Vaccination significantly reduces the burden of infectious diseases. The 

functions of B-cells are tightly linked to successful vaccination. Interestingly, particular 

IFN-l genotypes have been linked to vaccine outcomes in humans. Although IFN-l 

modulates immune responses, the underlying mechanisms in B-cells remain largely 

unknown. Overall, understanding the molecular mechanisms behind the immune 

modulatory function of IFN-l signaling in B-cells may help to optimization vaccine 

efficacies e.g. as adjuvants, but may also be linked to other B-cell associated diseases 

such as auto-immunity and lymphoproliferative disorders.  

 
My main specific questions were the following: 

 
a. How IFN-l1-3 ligands differ between each other in interacting with the receptor (e.g. 

binding affinities to receptor)?  

b. Which immune cell directly respond to IFN-l in human? 

c. How IFN-l modulate immune cell function, mainly B-cell functions such as antibody 

release and in vaccine outcome? 
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ABSTRACT 

Type III interferon (IFN-l) is known to be a potential immune modulator, but the 

mechanisms behind its immune modulatory functions and its impact on plasmablast 

differentiation in humans, remain unknown. Since human B-cells directly respond to 

IFN-l, we performed B-cell transcriptome profiling to investigate the immune 

modulatory role of IFN-l in B-cells. We found that IFN-l enhances the mTORC1 

(mammalian/mechanistic target of rapamycin complex 1) pathway in B-cell receptor 

activated B-cells (BCR/anti-IgM). The engagement of mTORC1 by BCR and IFN-l 

induces the cell cycle progress in B-cells. Subsequently IFN-l boosts the 

differentiation of naïve B-cells into plasmablast upon activation and the cells gain 

effector functions such as cytokine release (IL-6, IL-10) and antibody production. Our 

study shows how IFN-l systematically boosts the differentiation of naïve B-cells into 

plasmablasts by enhancing the mTORC1 pathway and cell cycle progression in 

activated B-cells, which is a previously unknown immune modulatory role of IFN-l.  
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INTRODUCTION 

 
IFN-l is a crucial antiviral effector. IFN-l mediated immunity is not only limited 

to viruses such as Hepatitis C virus (HCV), Human immunodeficiency virus (HIV), 

influenza, norovirus, West Nile virus (WNV), Zika Virus but also extends to other 

pathogens such as bacteria, parasite and fungi1-5. The IFN-l family (type III) consist 

of four members: IFN-l1, IFN-l2, IFN-l3, IFN-l4. They bind to a heterodimeric 

surface receptor, which is composed of the ubiquitously expressed IL10Rb chain and 

the unique IFNLR1 chain. Receptor binding activates the JAK-STAT pathway and 

induces the expression of hundreds of interferon stimulated genes (ISGs)6. Interferon-

a/b receptor (type I) and interferon-g receptor (type II) are expressed in nearly every 

cell type7. In contrast, the expression of interferon-l receptor is limited to hepatocytes, 

epithelial cells and a few immune cell types1,8,9. The cell specific receptor expression 

and the signaling kinetics make IFN-l unique compared to other interferons10. In 

mouse immune cells, only neutrophils have been shown to directly respond to IFN-

l11. In human immune cells, however, much contradictory data has been reported on 

the expression of IFN-l receptor. This is mainly due to low level of receptor 

expression, low assay sensitivity and the lack of receptor-specific antibodies to detect 

the functional IFN-l receptor. Moreover, the impurities in immune cells isolation and 

the detection of IFN-l receptor in mRNA level by quantitative PCR (qPCR) can provide 

misleading data on the expression of functional IFN-l receptor in specific immune cell 

subtype. In brief, plasmacytoid dendritic cells (pDCs) have been shown to strongly 

express IFN-l receptor while direct response of other immune cells to IFN-l is ongoing 

long-standing debates12-19. Understanding of which immune cells respond to IFN-l is 

critical for further studying the impact of IFN-l in the cellular functions.  

 
IFN-l is secreted by many cell types including dendritic cells following infection 

or vaccination20,21. Triggering of B-cell receptor (BCR) by extracellular antigens or 

ligands promotes resting naïve/memory B-cells to proliferate and differentiate into 

antibody-secreting cells (ASCs). Activation of BCR signals instructs B-cells to make 

crucial cell-fate decisions. The B-cell differentiation process is linked to a certain 

number of cell divisions that are necessary to allow the expression of transcription 

factors such as Blimp1 (B lymphocyte-induced maturation protein-1) and IRF4 
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(Interferon regulatory factor 4)22. During this process, the phenotypic changes takes 

place in naïve/memory B-cells and the cells gain additional functions such as protein 

secretion23. The T-cells release cytokines including IL-5 (in mouse), IL-21 (in human), 

which are known to enhance plasmablast differentiation24,25. In this context of B-cell 

differentiation, the role of IFN-l is not known.  

 
In this study, we first show the specific responsiveness of various immune cells 

populations, including B- and T-cell subtypes, to IFN-l, using a highly sensitive 

phospho-flow cytometry assay.  Next, we performed B-cell transcriptome profiling and 

finally follow up in vitro assays to investigate the immune modulatory role of IFN-l in 

B-cells and their subtypes. Our data systematically indicates that IFN-l boosts the 

differentiation of naïve B-cells into plasmablasts by enhancing the mTORC1 signaling 

pathway and cell cycle progression in BCR-activated B-cells.  

 

RESULTS 

 
Immune cells specific response to IFN-l  

 
We investigated specific responsiveness of various immune cells subtypes to 

IFN-l by phospho-flow cytometry assay. To investigate if IFN-l signals through a JAK-

STAT pathway to stimulate gene expression like type I interferons such as IFN-a or 

IFN-b26, IFN-a2 was used as a positive control in the following assays. First, we 

quantified IFN-a2 (1000 U/mL) or IFN-l1 (1 μg/mL) induced STAT1 phosphorylation 

in PBMCs using phospho-flowcytometry. All analysed immune cell subtypes from 

PBMCs, i.e. CD3, CD4, CD8-T cells, B-cells, NK-cells, monocytes and plasmacytoid 

dendritic cells (pDCs), responded to IFN-a2. Remarkably, B-cells and pDCs 

responded to IFN-l1, but not other cell subtypes (Fig. 1a, Supplementary Fig. 1a). 

Comparatively, pDCs showed more response to IFN-l1 than B-cells (Supplementary 

Fig. 1b). Independent of flow cytometry analysis, we confirmed responsiveness of B-

cells to IFN-l1 by western blot with pSTAT1 measurement (Supplementary Fig. 1c). 

IFN-l1 induced STAT1 phosphorylation in a dose-dependent manner with an EC50 of 

56 ng/mL (Fig. 1b). Furthermore, IFN-l2 and IFN-l3 inducing pSTAT1, a similar 

manner as IFN-l1 in B-cells (Supplementary Fig. 1d). We then investigated isolated 
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B-cells to compare the level of STAT1 phosphorylation induced by IFN-l1 within B-

cell sub populations. Interestingly, IFN-l1 induced pSTAT1 level is slightly higher in

naïve B-cells compared to CD27+ memory B-cells (Supplementary Fig. 1e). A JAK

inhibitor assay was used to confirm that IFN-l signals through JAK/STAT pathway:

JAK inhibitor (3 µM ruxolitinib) almost completely blocked IFN-a2 or IFN-l1 induced

STAT1 phosphorylation in isolated B-cells (Fig. 1c). IFN-l induced gene expression

was confirmed with Mx1 (MX dynamin like GTPase 1) measurement at 24 h (Fig. 1d).

Mx1 encoded protein is induced by type I and type II interferons against a broad range

of viruses27. In addition, B-cell gene expression from transcriptome analysis showed

that IFN-l induced expression of interferon stimulated genes (ISGs) increased over

72 h (Fig. 1e). So IFN-l directly induce the ISG expression in human B-cells via JAK-

STAT signaling pathway.

IFN-l elevates BCR-induced mTORC1 pathway 

To understand the immune modulatory effect of IFN-l with B-cell fate and 

function, we isolated the B-cell population via FACS sorting (gating strategy outlined 

in Supplementary Fig. 2a) and performed B-cell transcriptional profiling using 

RNAseq (schematic workflow described in Supplementary Fig. 2b). More than 

thousands of genes were found dysregulated in each stimulation condition, most 

interestingly 271 genes were further altered by IFN-l3 over a-IgM stimulation 

(Supplementary Fig. 2c). We performed a gene set enrichment analysis to identify 

the pathways enriched by IFN-l during BCR-activation (Table 1). IFN-l3 enriched 

metabolic (mTORC1, MYC) and cell cycle (E2F, G2M) related gene sets following the 

genes sets (commonly shared) of IFN-a or IFN-g responses.  

Based on this finding, first, we wanted to explore the mTORC1 signaling 

pathway. The genes involved in mTORC1 signaling were significantly upregulated in 

a-IgM + IFN-l3 condition compared to a-IgM alone (Fig. 2a). To verify the effect of

IFN-l on mTORC1 signaling in BCR-activated B-cells, the phosphorylation of well-

established mTORC1 targets S6 (S235/p236) and 4EBP1 (T37/46) along with

mTORC1 (S2448), was assessed28. First, we quantified the phosphorylation of S6

induced by IFN-l3 or a-IgM or a-IgM and IFN-l3 in combination over a time course of
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16 h in isolated B-cells. We found that IFN-l3 alone did not increased S6 

phosphorylation (Fig. 2b). Without additional induction, only BCR-induced S6 

phosphorylation was increased gradually up to 4 h and sustained over 16 h. 

Interestingly, IFN-l3 significantly enhanced BCR-induced S6 phosphorylation over 16 

h (Fig. 2b). The number of pS6 positive cells were increased from approximately 10% 

to 25% respectively from a-IgM to a-IgM together with IFN-l3 condition at 16 h (Fig. 

2c). Next, we focused on the phosphorylation of other mTORC1 candidates mTORC1 

and 4EBP1 along with S6 at 16h. As expected, IFN-l3 significantly increased BCR-

induced phosphorylation of mTORC1 and 4EBP1 along with S6 as measured at 16 h 

(Fig. 2d, e).  

 
Finally, we performed checkpoint inhibitor assays to confirm stimuli specific 

induction of mTORC1 pathway by pS6 quantification at 16 h. Inhibition of mTORC1 by 

rapamycin completely blocks S6 phosphorylation by a-IgM + IFN-l3, whereas 

inhibition of IFN-l signaling by ruxolitinib (JAK1/2 Iinhibitor) blocks the IFN-l3 induced 

boost of S6 phosphorylation. Moreover, inhibition of phosphoinositide 3-kinase (PI3K) 

by wortmannin completely blocks S6 phosphorylation, which also confirms that the 

BCR-induced activation of mTORC1 acts via PI3K (Fig. 2f)29. 

 

IFN-l increases BCR-induced cell cycle progression in B-cells   

 
mTORC1 controls cell proliferation and cell growth by modulating mRNA 

translation via the phosphorylation of downstream targets like 4E-BP1 to -BP3 and 

ribosomal protein S6 kinases30. Since IFN-l boosted the phosphorylation of BCR-

induced mTORC1 downstream targets S6 and 4EBP1, we sought to identify whether 

IFN-l is able to increase BCR-induced cell cycle. The gene set enrichment analysis 

indicated indeed that E2F targets (FDR = 5.44E-19) and G2M checkpoint (FDR = 

1.17E-15) genes involved in the cell cycle process were significantly upregulated in a-

IgM together with IFN-l3 condition compared to a-IgM alone (Fig. 3a, b). In addition, 

significant up-regulation of genes involved in cell cycle related biological processes 

were observed when testing the enrichment against Gene Ontology (GO) terms 

database (Fig. 3c).  
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To verify the influence of IFN-l in the cell cycle of BCR-activated cells, we 

measured the Ki-67 in isolated B-cells. The expression of Ki-67 is associated with cell 

proliferation and actively increases during the S phase of the cell cycle31. As expected, 

IFN-l3 significantly increased the expression Ki-67 in a-IgM together with IFN-l3 

condition compared to a-IgM. The number of Ki-67+ cells were remarkably increased 

from 12 % (a-IgM) to 30 % (a-IgM + IFN-l3) (p = 0.03) (Fig. 3d). Additionally, we 

performed proliferation assays with CTV labeled B-cells. IFN-l3 alone failed to induce 

the proliferation of B-cells, whereas activation of B-cells with a-IgM induced 

proliferation. Notably, the proliferative response of BCR-activated B-cells was further 

significantly increased from 14% to 23% by IFN-l3 (p = 0.005) (Fig. 3e).  

 

Effect of IFN-l on naïve B-cells to plasmablast differentiation   

 
Activation of mTORC1 and cell cycle progression can promote the cellular 

differentiation process32. To identify the functional role of IFN-l in B-cell differentiation, 

we performed gene set enrichment analysis on the transcriptomic data. The top 10 

hits of immunological signature gene sets are shown in Figure 4a. Genes involved in 

naïve B- cell to plasmablast differentiation were strongly upregulated when stimulated 

with a-IgM + IFN-l3 compared to a-IgM alone (FDR = 4.38E-163) (Fig. 4b). It is known 

that the transcription factors IRF4 and Blimp1 are essential for the differentiation of B-

cells into ASCs, and that IRF4 initiates the differentiation process by activating PRDM1 

gene which encodes Blimp1 protein33. The upregulation of PRDM1 and IRF4 was 

observed under a-IgM + IFN-l3 stimulation, compared to a-IgM alone, in total B-cells 

(Supplementary Fig. 4a, b).  

 
To confirm the specific effect of IFN-l in naïve B-cells to plasmablast 

differentiation, we performed the following in vitro assays with sorted naïve B-cells 

(gating strategy outlined in Supplementary Fig. 3). First, we measured the changes 

in the phenotypic markers CD27, CD38 and CD71 as described previously34. The 

naïve B-cells were stimulated with IFN-l3 or a-IgM or with a-IgM + IFN-l3 in 

combination. After four days, changes in surface markers were quantified by flow 

cytometry. The expression of surface markers CD71 and CD38 was found to be 

significantly increased under a-IgM + IFN-l3 stimulation compared to a-IgM alone 

31



(Fig. 4c). A similar effect was observed with CD27 expression (Supplementary Fig. 

4c). Likewise, CD38+IgM+ cells were increase more than 50% after four days of IFN-

l3 with BCR-activation (Supplementary Fig. 4d).  

 
Next, we examined the effector functions of BCR- and IFN-l activated cells 

upon B-cell differentiation process. The release of IL-6 and IL-10 was greatly induced 

by IFN-l3 in BCR-activated condition (72 h), but IFN-l3 alone failed to induce any 

cytokines (Fig. 4d). In contrast, no release of other cytokines IL-4, IFN-g (Fig. 4d), 

TNF-α, IL-13, IL-2, TNF-β, IL-17A, IL-12p70, APRIL, BAFF, CD40L was observed in 

any other stimulation conditions. A similar result was seen in the release of IL-6 or IL-

10 when IgM+ memory B-cells were subject to the above stimulation conditions 

(Supplementary Fig. 4e).  

 
Lastly, we measured the immunoglobulins from the supernatants collected (at 

day five) from BCR- and IFN-l3 activated naïve B-cells, cultured with or without 

mTORC1 checkpoint inhibitors. The analysis was performed using a multi-analyte 

human immunoglobin isotyping kit. IFN-l3 was found to boost the release of IgM from 

BCR-activated cells without any inhibitors (Fig. 4e). At the same time, no release of 

immunoglobins IgD, IgA or IgG1-4 under any stimulation conditions was noticed 

(Supplementary Fig. 4f), which indicates that IFN-l3 in combination with anti-IgM 

enhances the differentiation of naïve B-cells into IgM releasing plasmablasts. A similar 

response was seen with IgM+ memory B-cells (Supplementary Fig. 4g). PI3K 

inhibitor wortmannin or mTORC1 inhibitor rapamycin both blocked the IgM release 

completely, whereas JAK1/2 inhibitor ruxolitinib only reduced the IFN-l3 induced 

boost of IgM release by blocking the IFN-l signaling independent of BCR response 

(Fig. 4d). Overall these data suggest that IFN-l boosts the differentiation of naïve B-

cells into IgM releasing plasmablasts by enhancing the mTORC1 pathway. 

 

DISCUSSION 

 
In this study, we clearly demonstrate the direct responsiveness of B-cells to 

IFN-l by using different functional techniques. This allowed us to study the immune 

modulatory role of IFN-l in B-cell. We have performed transcriptomics on B-cells to 

study their response to IFN-l. We have shown the systematic link of how IFN-l 
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enhances B-cell differentiation by boosting the mTORC1 signaling and cell cycle 

process in BCR-activated cells. 

 
We initially performed broad analysis to identify which immune cells express 

functional IFN-l receptor to resolve the discrepancies in reported data on IFN-l 

receptor expression on immune cell populations. We clearly showed that IFN-l does 

not induce STAT1 phosphorylation on NK-cells, monocytes and T-cells (including 

CD4, CD8+ T-cells). Previously, NK-cells have been shown not to be directly affected 

by IFN-l, rather via IFN-l stimulated alveolar macrophages35,36. However, the 

expression of IFN-l receptor on T-cells and monocytes has been under debate13-17,19. 

The activation and differentiation state of the immune cells might influence the 

expression of IFN-l receptor. In agreement with previously published data17,18, we 

observed a strong response of pDCs to IFN-l. The expression of IFNLR1 mRNA was 

described on B-cells14,17. We evidently showed the direct responsiveness of B-cells to 

IFN-l via different functional assays (phospho-flow assay, WB and transcriptome 

profiling by RNAseq). IFN-l induces STAT1 phosphorylation in a dose-dependent 

manner in B-cells. While all B-cell sub subtypes directly respond to IFN-l, the naïve 

B-cell response is higher compared to that of memory B-cells. Moreover, IFN-l 

induced gene expression increased over 72h. It might suggest that in B-cells, IFN-l 

signaling is steady and prolonged like in hepatocytes with specific feedback 

mechanism37,38. 

 
The metabolic regulator mTORC1 has a crucial role in B-cell fate decision and 

immune response39. Our B-cell transcriptomics and follow up in vitro experimental data 

indicate that IFN-l boosts the mTORC1 pathway upon BCR-activation in B-cells: a 

previously unknown effect of IFN-l. Though IFN-l alone did not significantly increase 

the mTORC1 activity, IFN-l prolongs the BCR-induced phosphorylation of S6 

ribosomal protein over 16 h. S6 is phosphorylated by p70 S6 kinase (S6K) under the 

regulation of mTORC1. JAK inhibition confirms the IFN-l specific enhancement of 

mTORC1 pathway. The engagement of the mTORC1 by BCR and IFN-l receptor 

takes place via PI3K which is confirmed by inhibition of PI3K.  
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mTORC1/S6 plays an important role in cell-cycle progression40. As IFN-l 

increased mTORC1 activity, we investigated the effect of IFN-l on cell-cycle progress 

in B-cells. Our data showed that, IFN-l increases the expression of Ki-67 and 

proliferation of BCR-activated B-cells. However, IFN-l alone did not induce any 

proliferation. Additionally, hallmark gene set enrichment and Gene Ontology (GO) 

analysis signified that IFN-l amplifies the expression of gene sets involved in G2M, 

E2F and other cell cycle related biological process in BCR-activated cells. Overall, our 

data suggest that IFN-l boost the cell cycle progress by enhancing the mTORC1 

pathway. Ongoing mTORC1 signaling and cell cycle progression leads to cellular 

differentiation. The mTORC1 signaling is known to be involved in immune cell 

differentiation41,42. 

 
Our B-cell transcriptomics and follow up in vitro experimental data suggests 

that IFN-l boost the differentiation of naïve B-cells into plasmablast with gained 

effector functions such as cytokine and antibody release. While mouse B-cells lack 

IFN-l receptor, IFN-l indirectly triggers germinal center reaction and antibody 

production by a thymic stromal lymphopoietin (TSLP) dependent mechanism43. In 

humans the mechanistic role of IFN-l in humoral immunity needs to be further 

evaluated in precise context and properly defined environment, especially how IFN-l 

affects B-cells mechanistically during the complex interaction with antigen presenting 

cells and T-cells. Also, the further role of IFN-l induced ISGs in mTORC1 activity and 

follow-up functions can be explored (Fig. 5). The role of IFN-l in autoimmune diseases 

is not established yet. However, IFN-l is shown to be associated with pathogenesis 

for lupus nephritis (LN)44. Further, the level of p-mTORC1 in CD19+ B-cells positively 

correlated with the amount of peripheral plasmablasts and systemic lupus 

erythematosus (SLE) disease activity score index45. To connect our findings with 

previous clinical observations, the role of IFN-l signaling might be interesting to 

evaluate in hyper active B-cell in development of SLE and LN. 

 
In conclusion, our work demonstrates the direct response of B-cells to IFN-l.  

Further, it reveals how IFN-l systematically boost the plasmablast differentiation by 

enhancing mTORC1 pathway and cell cycle progression in activated B-cells (Fig. 5). 

These findings are particularly important in the context of IFN-l signaling as a potential 
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therapeutic target. Our data have provided an insight into the molecular mechanisms 

behind the immune modulatory function of IFN-l signaling in B-cells, which might help 

the optimization of vaccine efficacies and improve strategies to target B-cell 

associated auto-immune and infectious disease treatment. 

 

METHODS 

 
Purification of human B-cells 

Blood samples and buffy coats were collected from healthy blood donors after written 

informed consent (Blood donor center, University Hospital Basel). PBMCs were 

isolated from buffy-coats or from whole blood by a ficoll density gradient centrifugation 

method. B-cells were then purified from the PBMC fraction using negative selection 

Easysep human B-cell enrichment kit (STEMCELL Technologies). Zombie UV or 

zombie aqua fixable viability kit was used for live-dead staining according to 

manufacturer’s instructions (BioLegend). Live CD19+ B-cells were sorted using BD 

FACSARIA III cell sorter (BD Biosciences). Sorted B-cells were cultured in RPMI 1640 

medium (Sigma) supplemented with L-glutamine, 10% heat inactivated FBS (Gibco). 

The cells were incubated at 37ºC with 5% CO2. 

 

pSTAT1 or Mx1 measurement 

5 x 105 PBMCs or isolated B-cells were stimulated with IFN-α2 (1000 U/mL, PBL assay 

Sciences) or IFN-l1 (1 μg/mL, R&D Systems) for 30 min. The cells were surface 

stained for 20 min, with following surface markers in different panels 1) For Immune 

cell sub-populations: CD19 (PE/Cy7), CD3 (FITC), CD14 (PE), CD335 (NKp46) 

(BV605). 2) For pDCs: CD3 (BV-785), CD19 (APC/Cy7), BDCA-2 (BV-421), CD123 

(PE/Cy7). 3) For CD4, CD8 T cells: CD4 (FITC), CD8 (PE/Cy7), CD3 (BV-785), CD19 

(APC/Cy7). 4) For Isolated B cells CD19 (PE/Cy7), IgD (BV-605), CD27 (BV-421). The 

cells were fixed with fix buffer I (BD Biosciences, 557870) for 10 min at 37°C and 

permeabilized with perm buffer III (BD Biosciences, 558050) for 30 min on ice. After 

washing, pSTAT1 (AF-647) (BD Biosciences) antibody was added for 1 h, at RT. For 

Mx1 measurement, the cells were fixed at 24h. After permeabilization mouse anti-

human Mx1 primary antibody was added for 45 min, at RT. After washing anti-mouse 

AF-647 secondary antibody was added for 30 min, at RT. Finally, cells were harvested 
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for flow cytometry analysis. Data were acquired on LSRFortessa (BD Biosciences) 

and analyzed using FlowJo software (Tree Ster Inc). 

 

Immunoblotting  

PBMCs were stimulated with or without IFN-α2 (1000 U/mL) or IFN-l1 (1 μg/mL) for 

30 min. The cells were fixed with fix buffer I (BD Biosciences). The surface markers 

CD3, CD19, CD335 (Nkp46), and CD14 were used to sort T-, B-, NK-cells and 

monocytes respectively by using BD FACSARIA III cell sorter (BD Biosciences). The 

sorted immune cell subpopulations were directly lysed in 4X laemmli buffer (Bio-Rad). 

Proteins were separated by 10% SDS gel electrophoresis and then transferred on to 

nitrocellulose membranes. The membranes were blocked using 5% BSA in TBST 

buffer for 1 h, at RT. After washing, pSTAT1 (Cell Signaling Technology, CST) or b-

actin (Sigma) primary antibodies were added for overnight incubation at 4°C. After 

washing with TBST buffer, HRP linked anti-rabbit (CST) or anti-mouse (Jakson 

Immuno Research) secondary antibody was added, followed by detection with ECL 

substrate (Thermo Fisher Scientific) using ChemiDoc imaging system (Bio-Rad) 

 

mTORC1 inhibitor assay 

5 x 105 isolated B-cells were pre-incubated with Ruxolitinib (3 μM/mL, JAK1/JAK2 

inhibitor) (Selleckchem) or Wortmannin (0.5 μM/mL, PI3K inhibitor) (Selleckchem) or 

Rapamycin (0.05 μM/mL, mTORC1 inhibitor) (Selleckchem) for 1 h. After washing, the 

cells were stimulated with IFN-l3 (100 ng/mL) (R&D Systems) or α-IgM (2 μg/mL) 

(Jakson Immuno Research) or with a combination of α-IgM and IFN-l3. The cells were 

fixed at 16 h with fix buffer I (BD Biosciences) for 10 min at 37°C and permeabilized 

with perm buffer III (BD Biosciences) for 30 min on ice, after washing anti-human 

phospho-S6 (Ser235/236, AF-488) (BD Biosciences) or anti-human phospho-mTOR 

(pS2448, AF-647) (BD Biosciences) antibodies were added for 1 h. For p4EBP1 

staining, primary antibody rabbit anti-human phospho-4EBP1 (T37/46) (CST) was 

added for 45 min. After washing, anti-rabbit (AF-647) secondary antibody (CST) was 

added for 30 min. Finally, cells were collected for flow cytometry analysis.  For 

immunoglobulin measurements, supernatants were collected after 5 days.  
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Ki-67 measurement  

5 x 105 isolated B-cells were stimulated with IFN-l3 (100 ng/mL) or α-IgM (2 μg/mL) 

or with combination of α-IgM and IFN-l3 for 4 days. After surface and live-dead 

staining, cells were fixed with fix buffer I (BD Biosciences) for 10 min at 37°C and 

permeabilized with perm buffer III (BD Biosciences) for 30 min on ice. After washing, 

Ki-67 (BV-421) (BioLegend) antibody was added for 45 min at RT. Finally, cells were 

collected for flow cytometry analysis. Data were acquired on LSRFortessa (BD 

Biosciences) and analyzed using FlowJo software (Tree Ster Inc). 

 

B-cell proliferation assay  

Isolated CD19+ B-cells were labeled using CTV (Cell Trace Violet) proliferation kit 

(Thermo Fisher Scientific) according to the manufacturer instructions. CTV labeled B-

cells were cultured with IFN-l3 (100 ng/mL) or α-IgM (5 μg/mL) or with combination of 

α-IgM (5 μg/mL) and IFN-l3 (100 ng/mL) for 5 days. The proliferation was measured 

using LSRFortessa (BD Biosciences) and analyzed using FlowJo software (Tree Ster 

Inc). 

 

Measurement of surface markers for naïve to plasmablast differentiation 

5 x 105 sorted naïve B-cells were stimulated with IFN-l3 (100 ng/mL) or α-IgM (2 

μg/mL) or with combination of α-IgM and IFN-l3 for 4 days. Zombie UV fixable viability 

kit was used for live-dead staining according to manufacture directions (BioLegend). 

The expressions of surface markers CD27 (BV421), CD71 (APC/Cy7), CD38 (BV711) 

(BioLegend) were quantified using LSRFortessa (BD Biosciences) and analyzed using 

FlowJo software (Tree Ster Inc). 

 
Immunoglobulins and Cytokines measurement 

2 x 105 sorted naïve or IgM+ memory B-cells were stimulated with IFN-l3 (100 ng/mL) 

or α-IgM (2 μg/mL) or with a combination of α-IgM and IFN-l3. The supernatants were 

collected at 72 h for cytokine measurements. The cytokines were measured using 

multi-analyte flow assay (Legendplex human B-cell cytokines panel, BioLegend). The 

supernatants were collected at day 5 for immunoglobulin measurements. The 

immunoglobulins were measured using multi-analyte flow assay (Legendplex human 

Ig isotyping panel, BioLegend). 
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Reagents for flow cytometry and immunoblotting  

The following antibodies, reactive to human antigens, were used. For FACS: CD3-

BV785 (OKT3), CD4-FITC (SK3), CD14-PE (M5E2), CD19-APC (SJ25C1), CD19-

PE/Cy7 (H1B19), CD19-APC/Cy7 (H1B19), CD27-BV421 (M-T271), CD27-PE (M-

T271), IgD-BV605 (IA6-2), CD38-BV711 (HIT2), IgM-PE/Cy7 (MHM-88), CD8-PE/Cy7 

(SK1), CD123-PE/Cy7 (6H6), BDCA-2-BV421 (201A), CD38-APC/Cy7 (HIT2), 

CD335-BV605 (9E2), CD71-APC/Cy7 (CY1G4), Ki-67-BV421 (Ki-67), Anti-mouse-

AF-647 (Poly4053) from BioLegand. pSTAT1 (pY701)-AF647 (4a), phospho-S6 

(pS235/p236)-AF488 (N7-548), phospho-mTOR (pS2448)-AF647 (021-404) from BD 

Biosciences. Phospho-4EBP1 (T37/46) rabbit mAb (236B4), Anti-rabbit-AF-647 from 

Cell Signaling technology. For immunoblotting analysis: pSTAT1 (Tyr701) rabbit mAb 

(58D6), HRP-anti-rabbit antibody from Cell Signaling technology. Monoclonal anti-β-

Actin antibody (mouse) from Sigma. HRP-goat-anti-mouse antibody from Jakson 

Immuno Research. 

 
Statistical analysis 

Statistical analysis was performed using Graphpad prism version 7 and R. Data are 

represented as median with interquartile range. Statistical significance was 

determined by paired two-tailed Student’s t-test, Wilcoxon signed-rank test, as 

specified in the relevant figure legends. P values < 0.05 were considered statistically 

significant. 

 
B-cell transcriptomics 

1 x 106 isolated B-cells were used per condition, stimulated with IFN-l3 (100 ng/mL) 

or α-IgM (0.5 μg/mL) or with a combination of α-IgM and IFN-l3. Schematic workflow 

diagram of B-cell transcriptomics experiment is described in Supplementary Fig. 2b.  

In total 4 donors were used for IFN-l3 alone conditions and total 6 donors were used 

for control, a-IgM and a-IgM + IFN-l3 conditions. The total RNA was isolated using 

RNeasy micro kit (Qiagen). The quality of the isolated RNA was determined with a 

Fragment Analyzer (Agilent, Santa Clara, California, USA). The TruSeq Stranded 

mRNA kit (Illumina, Inc, California, USA) was used in the subsequent steps. Briefly, 

total RNA samples (60 ng) were polyA enriched and then reverse-transcribed into 

double-stranded cDNA. The cDNA samples were fragmented, end-repaired and 

adenylated before ligation of TruSeq adapters containing unique dual indices (UDI) for 
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multiplexing. Fragments containing TruSeq adapters on both ends were selectively 

enriched with PCR. The quality and quantity of the enriched libraries were validated 

using the Fragment Analyzer (Agilent, Santa Clara, California, USA). The product is a 

smear with an average fragment size of approximately 260 bp. The libraries were 

normalized to 5 nM in Tris-HCl 10 mM, pH8.5 with 0.1% Tween 20. The Novaseq 6000 

(Illumina, Inc, California, USA) was used for cluster generation and sequencing 

according to the standard protocol (single read, 100 bp). RNA quality control, library 

preparation and sequencing was carried out by Functional Genomics Center Zurich 

(FGCZ) (https://fgcz.ch). 

 
The raw RNAseq reads were quality assessed using FastQC v0.11.7 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and sequencing adaptors 

trimmed with fastp v0.19.646. STAR v2.6.0c was used to align fastq files to the human 

primary assembly (GRCh37 release 92), and to produce counts of mapped reads per 

gene47. Count tables were imported in the R statistical environment and normalized 

via the TMM method implemented in EdgeR48,49. Genes that had less than 1 count per 

million (CPM) in more than four samples were filtered out, together with outlier 

samples identified in principal component analysis (PCA). Genes differentially 

expressed (DEGs) were independently assessed by fitting a quasi-likelihood negative 

binomial model and testing the expression in relation to a minimum required log fold-

change threshold (logFC = 1.5)50. As cutoff for significant DEGs after multiple testing 

correction (BH), a false discovery rate (FDR) of 1% was used. Smear plots were 

produced using ggplot2 (https://ggplot2.tidyverse.org) and heatmaps generated with 

pheatmap (https://CRAN.R-project.org/package=pheatmap). 

 
To test whether a condition was enriched for relevant up/down-regulated pathways, 

the Camera approach was used together with the collection of hallmark and 

immunologic gene-sets and Gene Ontology (GO) terms from Molecular Signatures 

Database (MSigDB)51. Using gene-wise moderated t-statistics, Camera tests whether 

a gene-set is highly ranked relative to condition signature in terms of differential 

expression (logFC), accounting for inter-gene correlation52. In order to show the 

enrichment of gene sets amongst logFC ranked genes, barcode plots were produced 

using the function implemented in the limma package53.  
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FIGURE LEGANDS 
 
Figure 1. Immune cells specific response to IFN-l     

(a) Phospho-flow cytometry analysis was performed to quantify the phosphorylation of 

STAT1 upon IFN-a2 or IFN-l1 stimulation in PBMCs (for 30 min) from 4 to 5 healthy 

donors. In the upper row, the representative FACS histogram plot with geometric mean 

fluorescence intensity of pSTAT1 induction are shown for each sub-population from 

PBMCs (T-cells: CD3, B-cells: CD19, NK-cells: Nkp46, Monocytes: CD14, pDCs: 

CD123 & BDCA-2). The collective donors of corresponding sub-populations are 

shown below. The statistical significance was determined using a paired two-tailed 

Student’s t-test. (b) Dose responsive induction of pSTAT1 in B-cells, IFN-l1 induced 

STAT1 phosphorylation in B-cells in a dose-dependent manner (n = 3, EC50 = 56.1 

ng/mL). (c) Ruxolitinib (3 μM/mL) pretreated (for 30 min) isolated B-cells were un-

stimulated or stimulated with IFN-a2 or IFN-l1 for 30 min, induction of STAT1 

phosphorylation was measured, statistical significance was calculated using Wilcoxon 

signed-rank test for IFN-a2 + Ruxolitinib vs IFN-a2, IFN-l1+ Ruxolitinib vs IFN-l1, 

data are shown as median with IQR. (d) Expression of Mx1 was measured in isolated 

B-cells, after 24 h stimulation with IFN-a2 or IFN-l1 by using flow cytometry (n = 3). 

(e) Heat map of interferon stimulated genes (ISGs) expression in B-cells by IFN-l3 for 

24 h and 72 h. The expression of genes is shown in mRNA copies in counts per million 

(CPM). 

 
Figure 2. IFN-l elevates BCR-induced mTORC1 pathway    

(a) Hallmark gene set enrichment barcode plot showing mTORC1 signaling genes to 

be relatively more activated by IFN-l3 in a-IgM + IFN-l3 condition compared to a-IgM 

alone (FDR = 3.50E-06). The log Fold Change (FC) are ranked left to right from 

smallest to largest. The ranked statistics are represented by shaded bars, and the 

positions of the specified subsets are marked by vertical bars. The enrichment worm 

(top) shows the relative enrichment of the vertical bars in each part of the plot. (b) 

Purified B-cells were stimulated with IFN-l3 or a-IgM or combination of a-IgM with 

IFN-l3 over 16 h time course to quantify the mTORC1 target protein, S6 

phosphorylation (Ser235/236) (n = 3), the shaded area in the graph indicates the 

confidence interval. (c) The representative FACS plot is shown the phosphorylation of 

S6 upon stimulations at 16 h. The percentage of pS6 cells from collective donors is 
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shown at right side (n = 6). (d,e) The phosphorylation of different targets of mTORC1 

pathway pmTOR1 (S2448) and p4EBP1 (T37/46) were quantified at 16h by flow 

cytometry. To measure IFN-l3 induced phosphorylation increase (in geometric mean 

fluorescence intensity), a-IgM + IFN-l3 was compared to a-IgM condition by Wilcoxon 

signed-rank test: *p < 0.05, **p < 0.01, ***p < 0.001. (f) The checkpoint inhibitor assay 

was performed to confirm stimuli specific induction of mTORC1 pathway by 

quantification of S6 phosphorylation at 16 h. The percentage of pS6 induction are 

shown in scatter dot plot (n = 5) as median with IQR, Wilcoxon signed-rank test was 

used for statistical analysis. 

 
Figure 3. IFN-l increases BCR-induced cell cycle   

(a, b) Hallmark gene set enrichment barcode plot showing set of genes from E2F 

target and G2M check points were upregulated by IFN-l3, a-IgM + IFN-l3 was 

compared to a-IgM alone condition (E2F targets – FDR = 5.44E-19, G2M check points 

– FDR = 1.17E-15). (c) The Gene Ontology (GO) enrichment analysis are presented 

the upregulation of cell cycle related biological process (top 20 listed) by IFN-l3 in 

BCR- primed B-cells. (d) The intracellular Ki-67 expression was measured by flow 

cytometry after 4 days (n = 4) (e) CTV – labelled B-cells were cultured in the presence 

of IFN-l3 or a-IgM or a-IgM + IFN-l3 for total of 5 days, the proliferation of B-cells 

was analyzed by flow cytometry. The percentage of proliferating B-cells are shown in 

representative FACS plots and collective results in scatter dot plot at right (n = 6). Data 

are shown as median with IQR, statistical analysis by Wilcoxon signed-rank test.   

 
Figure 4. Effect of IFN-l on naïve B-cells to plasmablast differentiation    

(a) List of top 10 pathways were upregulated by IFN-l in B-cells over IgM stimulation 

from hallmark gene set enrichment analysis of Immunological signature categories. 

(b) Hallmark gene set enrichment barcode plot showing the candidate genes involved 

in differentiation of naïve to plasmablast process were strongly upregulated by IFN-l3 

in BCR-primed B-cells (FDR = 4.38E-163, a-IgM + IFN-l3 vs a-IgM). (c) Sorted naïve 

B-cells were stimulated with IFN-l3 or a-IgM or combination of a-IgM and IFN-l3 for 

4 days, flow cytometry analysis was performed to measure the upregulation of surface 

markers CD38, CD71 (in geometric mean fluorescence intensity). (d) For the cytokine 

release, the sorted naïve B-cells were cultured with indicated stimuli and supernatants 
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were harvested at 72 h. The cytokines were measured by human B-cell cytokines multi 

analyte flow assay kit. (e) Sorted naïve B-cells were treated with above indicated 

conditions and supernatants were collected at day 5. The released immunoglobulins 

were measurement by using human Ig isotyping multi analyte flow assay kit. Data are 

shown as median with IQR, statistical analysis by Wilcoxon signed-rank test: *p < 

0.05, **p < 0.01, ***p < 0.001.  

 
Figure 5. IFN-l synergizes with BCR signaling through the mTORC1 pathway  

Schematic diagram showed how IFN-l synergizes with BCR signaling through the 

mTORC1 pathway to enhance the differentiation of naïve B-cells into plasmablast and 

further follow up effector functions.  

 
Supplementary Figure 1. Responsiveness of immune cell subpopulations to 

IFN-l   

(a) PBMCs were stimulated with or without IFN-a2 or IFN-l1 for 30 min, 

phosphorylation of STAT1 was measured by flow cytometry (n = 5), responsiveness 

of CD4 and CD8 T-cells to IFN-a2 or IFN-l1 are shown. The statistical significance 

was measured using a paired two-tailed Student’s t-test. (b) The different 

responsiveness of B-cell and pDCs to IFN-a2 or IFN-l1 are shown (n = 4), the 

responsiveness differences of both populations to IFN-a2 or IFN-l1 was calculated by 

Wilcoxon signed-rank test. (c) Immunoblot analysis of pSTAT1 and b-actin (loading 

control). PBMCs were stimulated with or without IFN-a2 or IFN-l1 for 30 min, after 

fixation, T-cell, B-cell, NK- and Monocytes were separated via FACS sorting. The 

sorted immune cell populations were subjected to immunoblot analysis. (d) Induction 

of STAT1 phosphorylation in B-cells by IFN-l1-3 (n = 4). (e) The different 

responsiveness of B-cell subtypes to IFN-a2 or IFN-l1 are shown (n = 4). Geometric 

mean fluorescence intensity of pSTAT1 of each condition are shown in the graph, 

median with IQR, statistical analysis by Wilcoxon signed-rank test.   

 
Supplementary Figure 2. Modulatory effect of IFN-l on B-cells upon BCR- 

activation   

(a) The B-cells were sorted via following gating strategy. Partially enriched B-cells 

were gated based on forward and side scatters, then single cells to live cells were 

gated and CD19+ live B-cells were collected for B-cell transcriptomics experiment. (b) 
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Schematic plan diagram of B-cell transcriptomics experiment is shown. The B-cells 

were enriched from buffy-coat by using magnetic based negative selection enrichment 

kit and further purified via FACS sort. The pure viable B-cells were stimulated with 

IFN-l3 or a-IgM or combination of a-IgM with IFN-l3. (c) The number of significantly 

dis-regulated genes for each condition are shown (X-axis - log fold change, Y-axis – 

mRNA copies in counts per millions - CPM, red dots – significantly changed genes 

with FDR £ 0.01, blue dots – no significant changes) 

 
Supplementary Figure 3. Gating strategy used to sort naïve B-cells from 

enriched total B-cells 

Partially enriched B-cells were gated based on forward and side scatters, then single 

cells, live cells were gated. From live CD19+ CD38- cells naïve and memory B-cells 

were collected for the further experiment.  

 
Supplementary Figure 4. Enhancement of B-cell differentiation and follow up 

functions by IFN-l 

(a) The upregulation of PRDM1 (BLIMP1) in number of mRNA copies as CPM by 

different treatment conditions (at 72 h) (b) The isolated B-cells were stimulated with 

IFN-l3 or a-IgM or combination of a-IgM and IFN-l3 for 4 days, the upregulation of 

intracellular IRF4 was measured by FACS. (c, d) Sorted naïve B-cells were stimulated 

with above stimulation conditions for 4 days, upregulation of surface marker CD27 (in 

geometric mean fluorescence intensity) and percentage of CD38+IgM+ cells were 

quantified by FACS (n = 5). (e) The release of cytokines from IgM+ memory B-cells 

are shown. For cytokines measurement the cells were treated with IFN-l3 or a-IgM or 

combination of a-IgM and IFN-l3 for 72 h. (f, g) The release of immunoglobulins from 

naïve and IgM+ memory B-cells are shown, the cells were subjected to above 

mentioned treatments for 5 days. Data are shown as median with IQR, statistical 

analysis by Wilcoxon signed-rank test: *p < 0.05, **p < 0.01, ***p < 0.001.  

 
Table. 1 Pathways upregulated by IFN-l over BCR-primed B-cells 

List of top 10 pathways were upregulated by IFN-l in B-cells over IgM stimulation from 

hallmark gene set enrichment analysis. 
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Abbreviations: 4EBP1: Eukaryotic translation initiation factor 4E-binding protein 1; 

APRIL: A proliferation-inducing ligand; ASCs: Antibody-secreting cells; BAFF: B-cell 

activating factor; FACS: Fluorescence-activated cell sorting; GO: Gene Ontology; 

IFNLR1: Interferon lambda receptor 1; IQR: Interquartile range; Ig: Immunoglobulin; 

IL10Rb: Interleukin 10 receptor beta; ISGs: Interferon stimulated genes; JAK: Janus 

Kinase; NK-cells: Natural killer cells; PCA: Principal component analysis; PI3K: 

Phosphoinositide 3-kinase; STAT: Signal transducer and activator of transcription; 

TNF-α: Tumor necrosis factor alpha; USP-18: Ubiquitin specific peptidase;  
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Fig. 5 IFN-l synergizes with BCR-signaling through the mTORC1 pathway
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Table

Table. 1 Pathways up-regulated by IFN-l over IgM stimulation 
(Hallmark geneset enrichment analysis) 

Geneset pValue FDR
INTERFERON_ALPHA_RESPONSE 2.18E-147 1.09E-145
INTERFERON_GAMMA_RESPONSE 1.69E-80 4.22E-79

E2F_TARGETS 3.27E-20 5.44E-19
G2M_CHECKPOINT 9.34E-17 1.17E-15

MTORC1_SIGNALING 3.50E-07 3.50E-06
MYC_TARGETS_V1 3.57E-06 2.97E-05

INFLAMMATORY_RESPONSE 1.51E-05 1.08E-04
UNFOLDED_PROTEIN_RESPONSE 8.16E-05 5.10E-04

MYC_TARGETS_V2 1.66E-04 9.23E-04
COMPLEMENT 3.98E-04 1.99E-03
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 Supplementary Figure. 2 Modulatory effect of IFN-l on B-cells upon BCR-
activation  
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 Supplementary Figure. 3 Gating strategy used to sort naïve B-cells from enriched total B-cells 
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Interferon Lambda: Modulating 
Immunity in Infectious Diseases
Mohammedyaseen Syedbasha1 and Adrian Egli1,2*

1 Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland, 2 Clinical Microbiology, 
University Hospital Basel, Basel, Switzerland

Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections 
and autoimmune diseases, through a network of induced genes. IFN-λs act by bind-
ing to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation- 
dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, 
which modulate various immune functions via complex forward and feedback loops. 
When compared to the well-characterized IFN-α signaling cascade, three important 
differences have been discovered. First, the IFNLR is not ubiquitously expressed: in 
particular, immune cells show significant variation in the expression levels of and sus-
ceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR 
varies greatly and are generally lower compared to the binding affinities of IFN-α to 
its receptor. Finally, genetic variation in the form of a series of single-nucleotide poly-
morphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been 
described and associated with the clinical course and treatment outcomes of hepatitis B 
and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, 
however, reach far beyond viral hepatitis. Recent publications show important roles for 
IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, 
rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial 
colonization and infections as shown for Staphylococcus aureus and Mycobacterium 
tuberculosis. Although the immunological processes involved in controlling viral and 
bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate 
immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced sig-
naling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 
18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions 
via macrophage and dendritic cell polarization, and subsequent priming, activation, 
and proliferation of pathogen-specific T- and B-cells may also be important elements 
associated with infectious disease outcomes. This review summarizes the emerging 
details of the IFN-λ immunobiology in the context of the host immune response and 
viral and bacterial infections.

Keywords: interferon lambda, immunity, immune cells, virus, infectious diseases, bacteria, fungi, parasites
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FIGURE 1 | Type III IFN signaling pathway. Viral infection is sensed by pattern recognition receptors (PRRs), which induce IFN-λ production via various signaling 
pathways. IFN-λs bind to the heterodimeric IFN-λ receptor (IFNLR), which consists of IL28RA and IL10RB subunits. Upon binding, a JAK–STAT signaling cascade 
induces hundreds of IFN-stimulated genes (ISGs). RLR, RIG-1-like receptor; TLR, toll-like receptors; NF-κB, nuclear factor kappa-light-chain-enhancer of activated 
B cells; IL28RA, interleukin 28 receptor alpha; IL10RB, interleukin 10 receptor beta; JAK1, Janus Kinase 1; TYK2, tyrosine kinase 2; STAT, signal transducer and 
activator of transcription; IRF, interferon regulatory factor; ISRE, interferon-stimulated response element; MX1, interferon-induced GTP-binding protein Mx1; OAS1, 
2′-5′-oligoadenylate synthetase.
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IFN-λ EXPRESSION AND SIGNALING
PATHWAYS

Patients with infectious diseases often show heterogeneous clini-
cal courses with a range of associated morbidities and variable 
mortality. This is dependent on a series of factors covering the 
complex aspects of host–pathogen interactions (1–5). IFNs 
play a crucial role in these interactions—defining the outcome 
of many viral, bacterial, fungal, and parasitic infections (6–16) 
(see Figure 1). In addition, IFNs reduce tumor cell proliferation  
(17, 18) and show important immune regulatory functions in 
autoimmunity (19, 20). These broad effects are explained through 
the induction of hundreds of IFN-stimulated genes (ISGs) (21). 
Three types of IFNs have been described, which can induce 
ISG expression, and add further complexity: type I with mainly 
IFN-αs and -βs (22–26), type II with only IFN-γ (27), and type 
III with IFN-λs (28–31). Although most cells can induce and 
release various types of IFNs, specialized immune cells are the 
main producers during an inflammatory process. The effects 
induced by single or combined IFNs in exposed cells are very 
heterogeneous and range from differential patterns of ISG expres-
sion, regulation of cell proliferation (18), changes in cell surface 
molecules such as HLA DR (32), to the maturation of monocytes 
to dendritic cells (33). The effects depend on the plasticity of 

the various IFNs involved, including the peak concentrations, 
concentration changes over time, binding affinities of IFNs to 
the specific receptors, receptor expression, potentially induced 
feedback mechanisms, and the target cell type itself (34).

Four IFN-λ ligands have been described: IFNL1–4, with each 
family member having antiviral effects on various viruses within 
different cell types (28). IFNL1–3 share high amino acid sequence 
homologies, whereas IFNL4 is more divergent with only 40.8% 
amino acid similarity to IFNL3 (35). The expression of IFN-λs 
is induced in a broad range of cell types by pattern recognition 
receptors including toll-like mediated (36–41), Ku70 (21398614) 
and RIG-1-like (24952503). Type 2 myeloid dendritic cells have 
been described as the main producers of IFN-λ (42–48). In mice, 
commonly used as a model organism for infectious disease and 
immune function, only IFNL2 and IFNL3 are functional, as 
IFNL1 and IFNL4 are present as inactive pseudogenes (49).

After release, IFN-λ binds to its heterodimeric IFN-λ recep-
tor (IFNLR). The IFNLR consists of two subunits: α-subunit 
(IL28RA) and β-subunit (IL10RB) (35, 50–53). Despite high 
sequence homologies, binding affinities of the different IFN-λs 
to the IFNLR1 differ greatly. IFNL1 shows the highest binding 
affinity to IL28RA, and IFNL3 the lowest (54). The dimerization 
of the receptor subunits leads to activation of Janus Kinase 1 and 
tyrosine kinase 2 and phosphorylation of STAT-1 and -2, which 
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induces the subsequent downstream signaling with the induction 
of hundreds of ISGs (31) (see Figure 1). IFN-α and IFN-λ both 
show a complex mechanism of positive and negative feedback 
loops, mainly modulated via the suppressor of cytokine signaling 
1 and the ubiquitin-specific peptidase 18 (31, 55).

IFN-λ RESPONSIVENESS TO 
COUNTERACT PATHOGENS

Two aspects are crucial to understanding the role of IFN-λs in the 
context of infectious diseases: (i) IFNLR distribution in infected 
cells and tissues and (ii) single-nucleotide polymorphisms (SNPs) 
in and around the genes encoding IFN-λs and IFNLR. Both 
aspects show important differences between humans and mice, 
which complicate studies and conclusions drawn from infectious 
disease models (56).

IFNLR Receptor Expression
The IL10RB subunit is expressed in many cell types (57), whereas 
the IL28RA subunit expression is much more restricted. Expression 
of IL28RA mRNA has been detected in the lung, intestine, liver 
tissues, immune cells such as B cells, neutrophils, macrophages, 
and plasmacytoid dendritic cells (28, 29, 43, 58–62). Human NK 
cells seem not to express IFNLR (63), whereas mouse NK cells 
show deficient function in IL28R knockout animals (25901316). 
The effects of IFN-λ on cells and tissues are often measured in vitro 
via indirect markers, such as downstream expression of ISGs or 
changes in specific cellular phenotypes. Data on the induction 
of STAT phosphorylation, as the most direct measurement of 
signal induction, are still missing for some cell types and tissues. 
The IFNLR expression is regulated via transcription factors (31) 
and may show variability during an inflammatory process, which 
adds an additional level of complexity. Primary hepatocytes show 
relatively low baseline responsiveness to IFN-λs, yet upon IFN-α 
treatment a marked increase in IL28RA mRNA levels is observed 
(64, 65). Similarly, during cytomegalovirus (CMV) infection of 
fibroblasts, IL28RA mRNA levels increase by about twofold, but 
protein expression levels remain stable (66). A recent paper by 
Lazear et al. suggested that endothelial cells in the blood–brain 
barrier may be sensitive to IFN-λs, reducing permeability to West 
Nile virus in a mouse model (67).

Understanding which immune cells and subsets are respon-
sive to IFN-λs in humans can be experimentally and technically 
challenging due to low target cell densities and less accessible cell 
types such as tissue resident cell types. In contrast, peripheral 
blood mononuclear cells (PBMCs) are relatively easy to access in 
order to explore responses to IFN-λs; therefore, most literature 
focuses on hepatocytes (from liver biopsies) and immune cells 
from the blood. The direct impact of IFN-λs on T-cells via 
surface expression of the specific IFNLR is subject to ongoing 
debate (58, 68–71). IFN-λs may also induce FOXP3-expressing 
regulatory T-cells (72), which may impact a series of immu-
noregulatory aspects during an infection as part of the inflam-
matory response. Several research groups confirm that IFN-λs 
influence the T-helper cell balance, which is shifted toward Th1 
(70, 71, 73–76). The Th1/Th2 balance might be important for 

controlling specific infections such as helminths (6, 77, 78). In 
addition, the B-cell-driven humoral immune responses are also 
modulated by the presence of Th2 cytokines, e.g., during vac-
cination. We have recently shown that IFNL3 is a key regulator 
of the influenza virus-specific B-cell proliferation and antibody 
production (76). The exact mechanism of how Th1/Th2 balanc-
ing and B-cell activation is modulated by IFN-λs and how this 
impacts infectious disease outcome has to be explored in more 
detail in the future.

Impact of SNPs
A series of SNPs in IFN-λ ligand and receptor genes have been 
described (see Figure 2). Most importantly, these SNPs have been 
associated with a series of important clinical phenotypes in the 
context of infectious diseases (see Table 1 for more details).

Modulation of IFNLR expression may have a great impact on 
the effects of a particular IFN-λ ligand, and thereby influence 
the subsequent signaling pathway and the outcome of infectious 
diseases. Multiple SNPs in the gene encoding IL28RA have been 
described (94–97). The rs10903035 SNP is located within the 
3′UTR of the IL28RA mRNA sequence, suggesting a potential 
microRNA binding site. This particular SNP was identified as an 
independent risk factor for IFN-α treatment failure against hepa-
titis C virus (HCV) (44, 98). In addition, this SNP has been asso-
ciated with insulin resistance in HIV/HCV coinfected patients 
(94). Another SNP in this gene, rs4649203, has been linked to 
the risk of psoriasis in four independent populations (96), and 
to the development of systemic lupus erythematosus (97). These 
observations suggest an important influence of IL28RA on infec-
tious and autoimmune diseases.

Expression of IFN-λ ligands is modulated by SNPs in both 
transcription factor binding sites and methylation sites of the 
promoter region, as well as frameshift mutations (99–102). The 
IFN-λ gene layout is shown in Figure 2. The clinical impact of 
SNPs in the IFNL3/4 locus was originally observed in the context 
of IFN-α treatment outcomes in patients with chronic HCV 
(79, 80, 87, 90, 103). SNPs within this locus are in high linkage 
disequilibrium, e.g., rs12979860 with ss469415590 (103, 104), 
which complicates the exploration of the effects of individual 
SNPs. Therefore, the impact of some SNPs on IFN-λ expression 
is still debated. Most studies have concluded that the minor 
alleles of SNPs rs12979860 (CT/TT) and rs8099917 (TG/GG) are 
associated with reduced IFNL3 expression during chronic HCV 
infection, observed in liver biopsies (80, 105–107), serum, and 
PBMCs stimulated with polyI:C-, CMV-, and influenza virus  
(66, 76, 108, 109). However, it has also been shown that the 
TT allele of rs12979860 in hepatocytes expresses higher levels 
of IFNL1 and IFNL3 (110). This minor allele genotype of 
rs12979860 (TT) has also been associated with a higher and pro-
longed ISG expression in HCV infection (79, 80, 87, 90, 103, 111). 
Interestingly, the same SNP of the IFNL3 gene is associated with a 
higher ISG expression in mothers after childbirth, suggesting that 
postpartum the normalization of physiological control of IFN 
signaling depends on the IFNL3 genotype (112). Although the 
rs12979860 SNPs have been specifically associated with IFNL3/
L4 expression, these SNPs might also affect the expression of the 
other IFN-λ genes (80, 87, 113).
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FIGURE 2 | Organization of IFNL genes in the human genome. The IFN-λ genes are located in tandem on chromosome 19. Key single-nucleotide 
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population possess the SNP rs368234815 with ΔG frameshift mutation in exon 1, producing an in-frame IFNL4.
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The impact of the ss469415590 SNP on the expression of 
IFNL4 is, in contrast, very well described: in the context of a 
delta-G polymorphism, a frameshift mutation generates a gene 
containing an alternative reading frame, which causes IFNL4 to 
be functionally expressed in about 40% of Caucasians (90). An 
amino acid substitution at residue 70 of IFNL4 (P70S) decreases 
the antiviral activity via a reduction in the ISG expression levels 
(111).

Beside the impact of SNPs on innate immune signaling via 
differences in ISG expression profiles, an important impact on 
adaptive immune functions has been noted. We have shown 
that IFN-λ decreases virus-induced B-cell proliferation and 
antibody secretion in a dose-dependent manner. In addition, 
IFN-λ increases influenza-induced Th1 cytokines (IFN-γ, IL6), 
whereas influenza-induced Th2 cytokines decrease (IL4, IL5, IL9, 
IL13). These effects can also be reproduced with specific allelic 
combinations. In particular, the TG/GG allele of rs8099917 shows 
significantly lower levels of IFN-α, IL2, and IL6 secretion in 
influenza-stimulated PBMCs. In an influenza vaccine cohort, vac-
cine recipients with the rs8099917 TG/GG (minor) allele showed 
significantly higher vaccine-induced humoral immune responses 
(76). Similarly, in a cohort of children vaccinated against measles, 
the post-vaccine antibody titers were significantly higher in the 
group with the rs10853727 SNP AG and GG (minor allele) (89). 
Both SNPs rs8099917 and rs10853727 lie within the IFNL3 
promoter region and have been associated with lower IFNL3 
expression (76, 89).

IFN-λ AND INFECTIOUS DISEASES

The dual role of IFN-λs, with direct antiviral effects (innate 
immunity) and more long-term immunomodulatory effects on 
T- and B-cell activation and modulation, can result in multiple 
possible interactions with different types of infectious disease. 
Table  2 summarizes the role of IFN-λs in several infectious 
diseases.

Viral Infections
IFNs protect cells against viral infections. In response, every 
virus has evolved specific ways to counteract IFN signaling and 
its effects (139–143). Only a few studies have explored this in the 
context of IFN-λs. Parainfluenza virus 3 blocks antiviral media-
tors downstream of the IFNLR signaling by modulation of the 
STAT1 phosphorylation in BEAS 2B cells, a bronchial epithelial 
cell line (144). Dengue virus was recently shown to induce IFNL1 
via its non-structural protein (NS1) in order to facilitate dendritic 
cell migration (114).

Using cell culture-based in  vitro models, IFN-λs have been 
shown to play a role in controlling viral replication. In most stud-
ies, cultured cells were treated with IFN-λs and the impact of viral 
infection was assessed. These studies investigated human (66) 
and murine CMV (59), dengue virus (114, 145), encephalomyo-
carditis virus (28, 29, 146), herpes virus type 2 (120), hepatitis B 
virus (115), HCV (37, 60, 113, 115, 116, 147), HIV (40, 117, 118), 
human meta pneumovirus (121), influenza virus (122, 148–152), 
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TABLE 1 | Single-nucleotide polymorphisms (SNPs) within the IFNL3/IFNL4 gene locus and impact on infectious diseases.

Gene SNP Allele type Effects of the allele on infectious diseases Reference

IFNL3 rs12979860 C/T and T/T (C-major, 
T-minor)

HCV: decrease of effective treatment for HCV (79, 80)

C/T and T/T (C-major, 
T-minor)

HTLV1: higher proviral load and higher risk of developing HTLV-1-associated myelopathy and tropical 
spastic paraparesis (TSP)

(81)

C/C (C-major) HBV: higher inflammation and liver fibrosis in chronic hepatitis B patients (82)
T/T (T-minor) EBV: observed higher level of EBV DNA in the plasma of EBV viremia patients (83)
T/T (T-minor) CMV: less CMV replication in solid-organ transplant recipients (66)
T/T (T-minor) CMV: lower incidence of active CMV infection and reduced CMV DNAemia in allogeneic stem cell 

transplant patients
(84)

C/T and T/T (C-major, 
T-minor)

HSV: increased rate of HSV-1-related herpes labialis and more clinical severity (85)

T/T (T-minor) ANDV: associated with mild disease progression (86)

rs8099917 T/G (T-major, G-minor) HCV: lower response to PEG-IFN-α/RBV treatment (87)
HTLV1: high risk for developing HTLV-1-associated myelopathy and TSP (88)
CMV: trend to show less CMV replication in solid-organ transplant recipients (66)

G/G (G-minor) ANDV: associated with mild disease progression (86)
T/G and G/G (T-major, 
G-minor)

Influenza vaccination: increased Th2 cytokine production and higher rate of seroconversion following 
influenza vaccination

(76)

rs4803217 C/T (C-major, T-minor) HCV: decreased response to PEG-IFN-α/RBV treatment (80)
rs10853727 A/G and G/G (A-major, 

G-minor)
Measles vaccination: increased post-vaccine titers against measles vaccination (89)

rs12980275 A/G (A-major, G-minor) HCV: failure to clear infection (null virological response: NVR) (80, 87)

IFNL4 ss469415590 ΔG/TT and ΔG/ΔG 
(frameshift variant from 
TT genotype)

HCV: creates a new IFNL4 gene and poorer response to PEG-IFN-α/RBV treatment (90)

(rs368234815) CMV: increases susceptibility to CMV retinitis among HIV-infected patients (91)
CMV: higher susceptibility to CMV infection in solid-organ transplant recipients (92)
HIV: higher prevalence of AIDS-defining illness and lower CD4 lymphocytes levels (93)

IFNLR1 rs10903035 A/G and G/G (A-major, 
G-Minor)

HIV/HCV: early treatment failure with HIV/HCV coinfected patients (94)

IFNL3, interferon lambda 3; IFNL4, interferon lambda 4; IFNLR1, interferon lambda receptor 1; HCV, hepatitis C virus; HTLV-1, human T-lymphotrophic virus type 1; HBV, hepatitis B 
virus; EBV, Epstein–Barr virus; CMV, cytomegalovirus; HSV, herpes simplex virus; ANDV, Andes virus; HIV, human immunodeficiency virus; PEG-IFN-α/RBV, pegylated-Interferon- 
α/Ribavirin.
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lymphocytic choriomeningitis virus (LCMV) (125), norovirus 
(124 ), respiratory syncytial virus (128, 153, 154 ), sendai virus 
(155–157 ), and vesicular stomatitis virus (131, 158, 159 ).

In vivo, the complexity of the role of IFN-λ within tissues 
and between various immune cells has been explored using an 
IL28RA− /−  mouse model, leading to the discovery of multiple 
important aspects of IFN-λ signaling (122, 130, 150).

A recent study by Lin et al. demonstrated that the effects of 
type III IFNs change with increasing age. Rotavirus was controlled 
by both type I and III IFN in suckling mice, whereas epithelial 
cells in particular were responsive. In adult mice, epithelial cells 
were responsive only to type III and not type I IFNs, suggesting 
an orchestrated spatial and temporal organization of the IFN-α 
and IFN-λ responses in the aging murine intestinal tract (160). 
However, there is some controversy regarding the rotavirus data, 
as other researchers have shown that rotavirus is specifically 
controlled by type III and not type I IFN (21518880). Mahlakoiv 
et al. showed that leukocyte-derived IFN-α/β and epithelial IFN-
λ constitute a compartmentalized mucosal defense system to 
restrict enteric viral infection in mice. The authors concluded that 
epithelial barriers to IFN-λ may have evolved to reduce frequent 
triggering of IFN-α/β and thus reduce exacerbated inflammation 

(161). A study by Baldridge et al. showed that antibiotics could 
prevent the persistence of enteric murine norovirus infection, but 
only in the presence of functional IFN-λ signaling. The IL28RA− /−  
mice showed a high rate of infection, despite the administration 
of antibiotics. This may suggest cross talk between the gut micro-
biota and IFN-λ signaling in modulating chronic viral infections 
(162). Important synergistic effects in the intestine have been 
described, with IL22-inducing IFN-λ expression in intestinal 
epithelial cells in a murine rotavirus infection model (163).

The role of IFN-λ during respiratory tract infections has also 
been explored using the IL28RA− /−  mouse model. The studies so 
far have concentrated on the classical role of IFNs as antiviral 
cytokines. The IL28RA− /−  mouse displayed a significantly higher 
burden of disease than wild-type mice during infections with 
influenza virus and SARS coronavirus (122, 130, 150). One study 
showed the immunoregulatory function of IFN-λ in an LCMV 
model. The authors noted that in an acute LCMV infection 
model, the IL28RA− /−  mouse showed a greater than normal CD4 + 
and CD8+ T-cell response compare to the wild type, whereas in 
a chronic LCMV infection model, the IL28RA− /−  mice showed a 
greater disease burden and a significantly reduced LCMV-specific 
T-cell response. The paper showed that germinal center B-cells 
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TABLE 2 | Described role of IFN-λσ in infectious diseases.

Pathogens Model Role of IFN-λ Reference

Viruses
Cytomegalovirus 
(CMV)

In vitro: HFF cell line and stimulated 
peripheral blood mononuclear cells 
(PBMCs)

IFNL3 reduces CMV-induced CD4 T cell proliferation in PBMCs (66)

Clinical study

Dengue virus In vitro: DC and human lung epithelial cell 
line A549

IFNL1 induce CCR7 expression and DC migration upon dengue virus infection (114)

HBV In vitro: murine hepatocyte cell line 
(HBV-Met)

IFNL induces IFN-α/β-like antiviral response and inhibition of HBV replication in murine 
heptocyte cell line

(115)

Hepatitis C virus 
(HCV)

In vitro: primary hepatocytes and HUH7 
cell lines.

IFNL induces type-1 interferon-like antiviral response and blocks HCV infection in human 
primary hepatocyte and HUH7 cells

(59, 115, 
116)

HIV In vitro: monocyte-derived macrophages IFNL3 inhibits HIV infection of macrophage through the JAK-STAT pathway. (117, 118)
In vitro: T-cells and clinical study IFNL induce antiviral state in culture primary T-cells and supress HIV-1 integration and 

posttranscriptional events

HSV-1 In vitro: human lung epithelial cell line 
A549

Mediator complex (Med23) interacts with IRF-7 to enhance IFNL production and it inhibits 
HSV-1 replication

(119)

Clinical study

HSV-2 In vitro: human cervical epithelial cells IFNL contributes to TLR3/RIG-1-mediated HSV-2 inhibition (120)

Human 
metapheumovirus 
(HMPV)

In vitro: human lung epithelial cell line 
A549

Mice treated with IFNL prior to HMPV infection develop lower viral titer and reduced 
inflammatory responses

(121)

Influenza virus In vivo: mice IFNL restricts virus infection in epithelial cells of respiratory and gastrointestinal tracts (122, 123)
In vitro: cell lines IFNL reduced Influenza A virus-induced disease, with less inflammatory side effects in 

comparison to IFN alpha
In vivo: infected mice

Murine CMV In vitro: intestinal epithelial cell lines IFNL1 mediates antiproliferative and antiviral signals in intestinal epithelial cells (59)

Norovirus In vivo: infected mice IFNL cures persistent murine norovirus infection (124)

Lymphocytic 
chorimeningitis 
virus

In vitro: human lung epithelial cell line 
A549

IFNL2 showed more potent antiviral response to lymphocytic choriomeningitis virus than 
IFNL3

(125)

Rhinovirus In vitro: human bronchial epithelial cell line 
(BEAS-2B)

Increased IFNL production reduces rhinovirus replication in bronchial epithelial cells (126)

RSV In vitro: primary human and mouse airway 
epithelial cells

TLR-s mediates IFNL production in primary airway epithelial cells and induces the antiviral 
response

(127, 128)

In vitro: Hep-2 and Vero cells IFNL-1 shows prophylactic potential against RSV

Rotavirus In vivo: infected mice IFNL reduces viral replication in epithelia cells (129)

SARS coronavirus In vitro: human lung epithelial cell line 
A549

Ifnlr1− /−  mice exhibit increased susceptibility to SARS corona virus (122, 130)

In vivo: infected mice

VSV In vitro: mouse hepatocyte cell line IFNL attenuates VSV replication in immortal mouse hepatocytes (MMHD3 cells) (131)

West Nile virus In vitro: Huh7.5 and HeLa cells IFNL can efficiently prevent West Nile Virus infection in cell line (67, 132)
In vivo: infected mice IFNL knockout animals show increased viral load in brain. Treatment with IFNL reduced 

blood–brain permeability for the virus

Bacteria
Staphylococcus 
aureus and 
Pseudomonas 
aeruginosa

In vivo: infected mice Ifnlr1− /−  mice exhibits less pathology without changes in cell infiltrates (133)

Mycobacterium 
tuberculosis

In vitro: human lung epithelial cell line 
A549

Induces IFNL expression on A549 lung epithelial cells (134, 135)

Clinical study Observed increased concentration of IFNL2 in sputum of pulmonary tuberculosis patients
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Pathogens Model Role of IFN-λ Reference

Listeria 
monocytogenes

In vivo: infected mice IFNL-mediated immune response may control bacterial colonization (136 )

Salmonella 
typhimurium

In vitro: human monocyte-derived 
macrophages

The activation of type III interferon by live and heat killed bacteria in phagocytic dentritic 
cells, but role in pathogenesis is not clear

(137)

Borrelia 
burgdorferi

In vitro: stimulated PBMCs The ability of IFNL induction correlates with clinical isolates, type III IFN pathway in 
pathogenesis is yet to be determined

(138)

HSV-1, herpes simplex virus-1; HSV-2, herpes simplex virus-2; RSV, respiratory syncytial virus; VSV, vesicular stomatitis virus; murine CMV, murine cytomegalovirus; SARS, severe 
acute respiratory syndrome.

TABLE 2 | Continued
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were more frequent in peripheral blood in the IL28RA−/− mice 
than wild-type mice. However, the LCMV-induced memory 
B-cell response, in terms of frequencies and LCMV-specific 
antibodies, was comparable (164).

The immunoregulatory actions of IFN-λs have been explored 
in an ovalbumin (OVA)-induced asthma model. The IL28RA−/− 
mice showed a clear shift to increased Th2 cytokines and a more 
severe asthma phenotype. Importantly, IgE antibodies were also 
significantly increased (73). In this model, the IFNL2 (IL28A) 
immunoregulatory activity was dependent on lung CD11c+ 
dendritic cells to decrease OX40L, increase IL-12p70, and thereby 
promote Th1 differentiation (73). The potential role in infection-
triggered asthma has also been explored in humans (72, 126).

Although these conclusions from mice studies are very impor-
tant, a series of important differences to human effects have also 
been noted. In a human chimeric mouse model using human 
hepatocytes, the response rates of human and mice hepatocytes 
toward IFN-λs were very different, specifically in that mouse, 
hepatocytes did not respond to IFN-λ (56). In addition, the 
expression of IFNLR in immune cells seems to be strikingly differ-
ent. Whereas B-cells in humans respond to IFN-λs, in B-cells from 
mice there seems to be no direct effect from IFN-λs (69, 164).

Studies on the impact of IFN-λs in clinical scenarios have 
been dominated by the strong association of IFNL3/L4 SNPs with 
spontaneous clearance of HCV and IFN-α treatment response 
(79, 80, 87, 90, 103, 111). Details on this important association 
have been reviewed in detail elsewhere (165–167). The associa-
tion between IFN-λ SNPs and other infectious diseases is far less 
well explored. Not many studies have linked the genetic associa-
tions with mechanistic immunological assay.

Several studies have explored the association between SNPs 
in the IFNL3/L4 signaling and CMV replication. Transplant 
recipients with the rs8099917 GG allele demonstrate significantly 
less CMV primary replication. This SNP has been associated 
with reduced ISG expression upon infection (66). We postulate 
that this phenomenon has two reasons: (i) significant primary 
CMV replication is less likely due to a higher baseline ISG 
expression and (ii) naïve CMV-specific T cells from seronegative 
healthy blood donors show reduced proliferation capacity when 
pretreated with IFNL3 and stimulated with CMV lysate (66). In 
contrast, the rs368234815 ΔG SNP shows a higher risk for CMV 
retinitis in HIV-infected patients (91) and has been associated in 
a transplant cohort with an increased risk of CMV replication and 
disease, especially in patients receiving grafts from seropositive 

donors (92). Non-immunosuppressed patients with chronic 
periodontitis due to herpes virus infection show significant lower 
IFNL1 levels in gingival fluid compared to a healthy control group 
without viral replication (168), suggesting a protective effect of 
IFNL1 on virus replication, or CMV-induced antagonism of IFN-
λ expression. These results highlight the different roles of IFN-λs 
in acute or chronic infection scenarios and viral reactivation.

The impact of IFN-λs on human T-cell leukemia type-1 virus 
has also been explored in several independent cohorts. The first 
evidence came from Kamihira et  al. showing that the IFNL3 
mRNA expression level was significantly higher in HTLV-1 
mono-infection than HTLV-1/HCV coinfection. In addition, 
the high expression level was associated with the rs8099917 TT 
SNP (169). The impact of the rs8099917 GG SNP on the risk of 
HTLV-1 associated myelopathy/tropical spastic paraparesis (TSP) 
has since been confirmed (88). The impact of the rs12979860 SNP 
is more controversial. One study on the rs12979860 SNP showed 
that the CT/TT alleles were more frequent in patients with 
HTLV-1-associated myelopathy/TSP (81), although this finding 
was not replicated in two additional studies (170, 171). de Sa 
et al. reported that the major alleles of IFNL3 SNPs (rs12979860 
CC and rs8099917 TT) are associated with a shift in the Th1/
Th2 immune response toward a Th1 response (172). The Andes 
virus causes a hantavirus cardiopulmonary syndrome; in a cohort 
of Andes virus-infected patients, the minor alleles of rs12979860 
and rs8099917 (TT and GG) were linked to milder disease com-
pared to CT/CC and TG/TT (86).

The impact of the IFN-λ signaling on humoral immune 
function has been described in two vaccine cohorts: immuno-
suppressed patients vaccinated against influenza (76) and healthy 
children vaccinated against measles (89). These important obser-
vations hold promise for personalized vaccine strategies and 
adjuvant development (4).

Bacterial Infections
The cytokine microenvironment of a tissue may have an impact 
on the rate at which a particular infectious bacterium can 
colonize and also influence the rate of infections. Planet et  al. 
showed that IFN-λs might lead to important changes in the local 
microbiota during influenza infection. In a mouse model of influ-
enza infection, the authors observed that mice with functional 
IL28 signaling showed more profound changes in their respira-
tory microbiota and subsequent higher colonization rates with 
Staphylococcus aureus compared to IL28RA−/− mice (173). These 
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important findings should be confirmed in a human cohort, as 
S. aureus is an important source of bacterial superinfection after 
an influenza infection. In addition, microbiota changes upon 
common clinical scenarios such as antibiotic treatment may be 
modulated by IFN-λs and their genotypes.

Bacteria including M. tuberculosis induce IFN-α/β and 
IFN-γ; however, little is known about the effects of IFN-λs in 
epithelial immunity. Gram-positive bacteria such as S. aureus, 
Staphylococcus epidermidis, Enterococcus faecalis, and Listeria 
monocytogenes induce IFN-λs, whereas Salmonella enterica sero-
var Typhimurium, Shigella flexneri, and Chlamydia trachomatis 
do not substantially induce IFN-λs, in intestinal and placental 
cell lines (134). Others have reported that S. enterica serovar 
Typhumurium can induce IFN-λs in human DCs (137). IFN-λ 
gene expression can be increased within DCs upon stimulation 
with bacterial components such as lipopolysaccharide. In par-
ticular, during M. tuberculosis infection, IFN-α plays an impor-
tant regulatory role in the pathogenesis (12, 174). M. tuberculosis 
in A549 lung epithelial cells stimulates expression of IFN-λs. In 
addition, the IFNL2 concentration in sputum of patients with 
pulmonary tuberculosis is significantly higher than that in the 
sputum of healthy controls (135). Although the impact of IFN-
λs has not been explored in more detail, the cross talk between 
IFN-α and IFN-λs may play a crucial role in the pathogenesis of 
M. tuberculosis. The modulation of Th1/Th2 toward Th1 may be 
of additional importance.

Neutrophil functions are crucial in clearing bacterial infec-
tions and wound repair (175, 176). A major target of the effects 
of IFN-λs may be neutrophils (62, 177). A study by Blazek et al. 
showed that in a collagen-induced arthritis model, IFNL1 showed 
anti-inflammatory function by reducing the numbers of IL17-
producing Th17 cells and the recruitment of IL-1b expressing 
neutrophils, which is important to amplify the inflammatory 
process (62). Similar effects on neutrophil recruitment to the lung 
have been observed in an OVA-based asthma mouse model (73). 
Although somewhat speculative, this may suggest an important 
modulatory function of IFN-λs via neutrophil recruitment 
toward sites of bacterial infection.

So far, only one study has linked SNPs in genes involved in the 
IFN-λ signaling pathway with an increased risk of bacterial infec-
tions. Xiao et al. showed that SNP rs10903035 with G allele in the 
IL28RA was associated with significantly less frequent urinary 
tract infection (178).

Parasite and Fungal Infections
The role of IFN-λs in parasitic and fungal disease has not yet been 
explored. Although somewhat speculative, helminth infections 
in particular might be regulated by SNPs in the IFN-λ system, 
considering the profound evidence on the importance of Th1/
Th2 balance (6, 77, 78). Furthermore, for parasite infections of 
the liver such as Plasmodium spp. there is important evidence 
on the importance of the IFN-α signaling (13, 179–182). Due 
the regulatory interactions of IFN-α and IFN-λ and the clini-
cal importance of relevant SNPs (31), it is not unreasonable to 
postulate an impact.

SUMMARY

IFN-λs, and their modulation via SNPs, are increasingly recog-
nized as important players in a broad range of infectious diseases. 
Although the literature is still dominated by reports on HCV, 
work especially in mouse models has pointed out the important 
role in viral, respiratory, and gastrointestinal infections. Bacterial 
colonization and bacterial infections may also be modulated by 
IFN-λs. The important diversity in IFNs and the large number of 
SNPs adds a difficult-to-address layer of complexity. Therefore, 
further research on IFN-λs outside the HCV field is required to 
understand their roles and diagnostic and therapeutic potential. 
Most importantly, predictions of risks associated with infectious 
diseases have to be confirmed in independent cohorts to allow 
personalized medicine strategies.
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Abstract

A comprehensive understanding of signaling pathways requires detailed knowledge regarding ligand-receptor interaction. This article describes
two fast and reliable point-by-point protocols of enzyme-linked immunosorbent assays (ELISAs) for the investigation of ligand-receptor
interactions: the direct ligand-receptor interaction assay (LRA) and the competition LRA. As a case study, the ELISA based analysis of the
interaction between different lambda interferons (IFNLs) and the alpha subunit of their receptor (IL28RA) is presented: the direct LRA is used for
the determination of dissociation constants (KD values) between receptor and IFN ligands, and the competition LRA for the determination of the
inhibitory capacity of an oligopeptide, which was designed to compete with the IFNLs at their receptor binding site. Analytical steps to estimate
KD and half maximal inhibitory concentration (IC50) values are described. Finally, the discussion highlights advantages and disadvantages of the
presented method and how the results enable a better molecular understanding of ligand-receptor interactions.

Video Link

The video component of this article can be found at http://www.jove.com/video/53575/

Introduction

A comprehensive understanding of signaling pathways requires detailed knowledge about the ligand-receptor interaction. Most methods for
assessing the interaction of a particular ligand with its specific receptor are expensive, time consuming, labor intensive and require specific
equipment and expertise 1.

This article describes two fast and reliable point-by-point protocols to investigate the ligand-receptor interaction based on an enzyme linked
immunosorbent assay (ELISA): the direct ligand-receptor interaction assay (LRA) and the competition LRA. ELISA is a highly sensitive, specific
and readily available technique, routinely used in almost every laboratory. ELISA can be performed and adapted in various fashions. The
presented protocols are optimized for the investigation of the interaction between different lambda interferons (INFLs) and their receptor.

The direct LRA allows for a quantification of ligand-receptor binding with respect to ligand concentration and thus yields a binding curve. Using
an appropriate model for the ligand-receptor interaction, the data can be further analyzed to estimate the dissociation constant (KD).

In the presented protocol, the commonly used Hill equation is applied to model the ligand-receptor binding. Although other methods such as the
surface plasmon resonance technology 2,3 allow the determination of the binding affinities between two proteins, this technology is often labor
intensive, expensive, and requires special laboratory equipment.

The competition LRA enables the screening of inhibitory peptides: The ligand-receptor binding is quantified with respect to peptide concentration.
This yields a dose-response curve describing the inhibitory effect of the peptide. The data can be further analyzed to estimate the half maximal
inhibitory concentration (IC50) of the blocking peptide.

Both ELISA protocols are easy to use and can be adapted to a broad range of research questions. Recombinant proteins of any kind can be
used to reliably and fast determine the interaction parts. In addition, the competition LRA can be used to determine critical interaction sites of
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ligands and receptors by using blocking peptides, which are designed to mimic either the ligand or the receptor. If the blocking peptide shows
efficient and specific inhibition, the peptide occupies a critical interaction site of the ligand (if the peptide mimics the receptor) or of the ligand (if
the peptide mimics the ligand).

The first protocol describes the KD value determination of different INFLs and the alpha subunit of their receptor, i.e., the interleukin-28 receptor
(IL28RA) using the direct LRA. Next, the second protocol shows how to determine the capability of a 20 amino acid long peptide to inhibit
the INFL-IL28RA interactions. The peptide is designed to compete with IFNLs at their receptor binding site and thus enables a molecular
understanding of the interaction. Furthermore, this peptide can be used to block IL28RA in in vitro experiments to determine the impact on
downstream signaling effects4.

Protocol

1. Reagent Preparation

1. To prepare carbonate coating buffer, dissolve 0.36 g Na2CO3 and 0.84 g NaHCO3in 100 ml distilled water; sterile filter the buffer by using a
vacuum driven 0.22 µm polyethersulfone (PES) membrane filter and store at RT until usage.

2. Prepare washing solution by adding 0.05% v/v Tween 20 in Phosphate buffered saline (PBS).
3. Prepare a 5% Bovine Serum Albumin (BSA) (blocking solution) in PBS solution by dissolving 5 g BSA (≥98%) in 100 ml PBS and store at 4

°C.
4. Recombinant Receptor, Ligands and Blocking Peptides

1. Reconstitutethe recombinant human interleukin receptor alpha subunit (IL28RA) and recombinant His-tagged ligands of human
IFN (IFNL1-3) according to the manufacturer's instructions and store at -80°C. Synthetize blocking peptides and used as previously
described 4. Use PBS to prepare different concentrations of ligands and peptides for use in the assays.

5. To prepare the primary antibody, dilute 6x His Mouse monoclonal antibody in PBS with 0.1% BSA at 1:1,000 dilution. To prepare the
secondary antibody, dilute horseradish peroxidase (HRP) conjugated goat anti-mouse IgG (H+L) in PBS with 0.1% BSA at 1:10,000 dilution.

6. Prepare TMB solution by mixing the reagents A and B according to the manufacturer's instructions.
7. Prepare stop solution by adding 5 N sulphuric acid (H2SO4) in distilled water and store at RT.

2. Enzyme-linked Immunosorbent Assays (ELISAs)

NOTE: The direct ligand-receptor interaction ELISA (direct LRA, Figure 1) can be used to measure the receptor-ligand dissociation constant
(KD), as a measure of the receptor-ligand binding affinity. The competition ligand-receptor interaction ELISA (competition LRA, Figure 2) allows
screening of peptides (and other blocking compounds), which act to interfere with the interaction between ligand and receptor. The basic protocol
that was previously published 5 was further optimized.
NOTE: In both ELISA methods use multichannel pipette for adding solutions to the wells of 96-well plate in each step. In solution decant or
washing steps, throw out the solutions directly into the sink.

1. Direct Ligand-Receptor-Interaction Assay (direct LRA)
NOTE: For an illustration of the workflow (see Figure 1).

1. Coating Plate with Recombinant Receptor
1. Dilute the recombinant receptor in carbonate buffer to a final concentration of 100 ng/µl. Coat wells of 96-well microtitre plate with

fixed receptor concentration (100 ng/µl) by pipetting 100 µl to each well using a multichannel pipette. Exclude outer walls of the
plate to avoid well edge artifact. Cover the plate with a lid and incubate the plate at 4 °C O/N.

2. Blocking and Addition of Ligands
1. The next day, remove the coating solution by tilting the plate against the sink and wash the plate 3 times with washing solution

(PBS + 0.05% v/v Tween 20).
2. Block the free receptor-binding sites in the coated plate using 200 µl of 5% BSA solution to each well using a multichannel

pipette and incubate the plate for 2 hr at RT.
3. Discard the blocking solution (see step 2.1.2.1.) and wash the plate 3 times with washing solution.
4. Prepare the recombinant His-tagged ligands at different concentrations (e.g., 8 µg/ml, 4 µg/ml, 2 µg/ml, 1 µg/ml, 0.5 µg/ml, 0.25

µg/ml, 0.125 µg/ml, 0.063 µg/ml, 0.031 µg/ml, 0.0 µg/ml) in PBS. Add only PBS in the blank wells.
5. Add 100 µl of each ligand concentration to the wells in duplicate and incubate the plate for 2 hr at RT allowing receptor-ligand

interaction.

3. Incubation with Antibodies
1. Following incubation with the ligands, wash the plate 3 times with washing solution.
2. Pipette 100 µl of primary anti-His mouse monoclonal antibody solution (1:1,000) to each well.
3. Incubate the plate at RT for 2 hr; after incubation, discard the antibody solution (see step 2.1.2.1.) and wash the plate 3 times

with washing solution.
4. Add 100 µl of HRP coupled goat anti-mouse IgG secondary antibody solution (1:10,000) to each well. Incubate the plate for 45

min at RT.
5. Discard the antibody solution (see step 2.1.2.1.) and wash the plate 3 times with washing solution.

4. Addition of Substrate and Development
1. Bring the TMB substrate solutions to RT and prepare TMB substrate solution A and B at 1:1 ratio. Add 100 µl freshly prepared

substrate to each well and keep the plate at RT for 15-30 min. After sufficient color development add 50 µl stop solution.
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5. Reading the Plate and Data Analysis
NOTE: The described protocol is based on the assumption that the measured signal rises from specific binding. It might be necessary
to estimate the contribution of unspecific binding to the signal but this is out of the scope of this protocol.

1. Read the absorbance (optical density, OD) directly at 450 nm.
2. Subtract the background signal from the measured OD values and normalize them. Transform all values of the ligand

concentration to logarithmic scale (base 10, log10).
3. Plot the normalized and background corrected OD values (Y-axis, corresponds to the fraction of occupied receptor binding sites)

against the logarithm of the ligand concentration (X-axis, log10 scale).
4. To estimate the KD value, fit the data to the following form of the Hill equation:

NOTE: Here Y denotes the fraction of occupied receptor binding sites and Ymax the maximal binding; [L] denotes the
concentration of free ligand and the Hill coefficient. If there is only one binding site for the ligand, the Hill coefficient is n = 1.
For systems with more than one ligand binding site, the binding exhibits positive cooperativity if n >1, negative cooperativity
if n<1 and no cooperativity if n = 1. The microscopic dissociation constant is termed and corresponds to the half maximal
effective concentration EC50

6. The apparent dissociation constant is Kd = (KD)n. In the simplest case where n = 1, the dissociation
constant corresponds to the ligand concentration at which half of the receptor binding sites are occupied and Kd = KD. This model
assumes mass action binding under equilibrium conditions, as well as that only a small fraction of the added ligand is bound to
the receptor, i.e., [L] >> [RL].

Figure 1. Direct ligand-receptor-interaction assay (direct LRA). Step-by-step protocol for direct LRA. Please click here to view a larger
version of this figure.

2. Competition Ligand-Receptor-Interaction Assay (competition LRA)
NOTE: For an illustration of the workflow see Figure 2. The competition LRA procedure follows the same steps as the direct LRA (coating the
plate, antibody incubation, plate development) except for important changes in the ligand and peptides addition step. Proper negative controls
are essential for this assay. In a previous screening study 4, the scrambled blocking peptide did not show antagonistic effects.

1. Blocking - Addition of Ligands and Blocking Peptides
1. The next day, remove the coating solution and wash the plate (see 2.1.2.1).
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2. Block the coated plate by adding 200 µl of 5% BSA solution to each well and incubate the plate for 2 hr at RT.
3. Prepare the recombinant His-tagged ligands (IFNL1-3) at a fixed concentration (2x-20 ng/ml) in PBS.
4. Prepare the blocking peptide (cf. Table 3) with different concentrations ranging from 10 nM to 100 µM in PBS to guarantee a

dose-response curve.
NOTE: This enables subsequent determination of the IC50 value for the blocking peptide. In control wells, add only fixed ligand
concentration without peptide to derive the maximum (100%) binding. In the blank, add only PBS without ligand or peptide.

5. Add 50 µl of the ligands (IFNL1-3) and 50 µl of each peptide concentration to the wells in duplicates.
6. Incubate the plate for 2 hr at RT.

2. Reading the Plate and data Analysis
NOTE: The described protocol is based on the assumption that the measured signal rises from specific binding. It might be necessary
to estimate the contribution of unspecific binding to the signal but this is out of the scope of this protocol.

1. Read the absorbance (optical density, OD) directly at 450 nm.
2. Subtract the background signal from the measured OD values and normalize them. Transform all values of the peptide

concentration to logarithmic scale (base 10, log10).
3. Plot the normalized and background corrected OD values (Y-axis, corresponds to the fraction of occupied receptor binding sites)

against the logarithm of the ligand concentration (X-axis, log10 scale).
4. To estimate the IC50 value, fit the data to the following equation:

NOTE: Here [P] is the peptide concentration and the Hill slope. The Hill slope describes the steepness of the dose-response
curve. The IC50 corresponds to the inhibitor concentration at which 50% inhibition of binding between ligand and receptor is
observed.

Figure 2. Competition ligand-receptor-interaction assay (competition LRA). Step-by-step protocol for competition LRA. Please click here to
view a larger version of this figure.

Representative Results

The dissociation constants between INFL1-3 and their receptor alpha subunit IL28RA were determined using the direct LRA. The results are
shown in Figure 3: The fraction of occupied binding sites is plotted against the logarithm of the respective IFN concentration. The Scatchard plot
of the data is shown in the bottom right corner. The results illustrate that the direct LRA yields a binding curve, which can be further analyzed to
estimate the KD value. The KD value was determined by fitting the data to the Hill equation (Equation 1).

IFNL1 has the highest binding affinity, followed by IFNL2 and IFNL3. The Hill coefficient n >1 suggests increased affinity for additional ligands
after the initial ligand-receptor interaction (see Discussion). The estimated dissociation constants and Hill coefficients are summarized in Table 1.
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Competitive LRA was used to quantitate the impact of a blocking peptide on the interaction between IFNL1-3 and the IL28RA (Figure 4). The
fraction of occupied binding sites for a ligand concentration of 10 ng/ml is plotted against the logarithm of the peptide concentration. To estimate
the IC50 values, the data is fitted to Equation 2.

The blocking peptide inhibited the interaction between IFNL3 and IL28RA (IC50 = 0.26 μM) to the greatest extent. The IC50 is twice as high for the
IFNL2-IL28RA interaction (IC50 = 0.50 μM) and one order of magnitude higher for the IFNL1-IL28RA interaction, indicative the peptide was less
effective at disrupting IFNL1-IL28RA interactions. The determined IC50 values and Hill slopes are summarized in Table 2.

Proper data analysis is essential for understanding the ligand-receptor interaction. The shown results were generated using a scientific
graphing software such as GraphPad PRISM. For the KD value determination, the data was fitted to the 'One site - specific binding with Hill
slope' (corresponds to Equation 1 in Sec. 2.2.1). For the IC50 value determination, the data is fitted to the function 'log(inhibitor) vs. normalized
response - variable slope' (see Equation 2 in Sec. 2.2.2). However, any software for non-linear regression analysis can be used.

Figure 3. Results of the direct ligand-receptor assay (direct LRA). Binding curves for the binding of IFNL1 (green), IFNL2 (red) and IFNL3
(blue) to IL28RA. The respective Scatchard plot in the bottom right corner suggests positive co-operativity of the binding. Please click here to
view a larger version of this figure.
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Figure 4. Results of the competitive ligand-receptor assay (competitive LRA). Dose-response curves showing inhibition of the binding of
IFNL1 (10 ng/ml, green), IFNL2 (10 ng/ml, red) and IFNL3 (10 ng/ml, blue) to IL28RA by the 20 aa peptide. Please click here to view a larger
version of this figure.

Table 1: Estimated dissociation constants (KD) and Hill coefficients of IFNL1-3 binding to IL28RA. The standard error (SE) is given for a
sample size of four replicates per data point.

Table 2: Estimated half maximal inhibitory concentrations (IC50) of the blocking peptides and the Hill slope of the dose-response curve
for the binding of IFNL1-3 to IL28RA. The IFN concentration is 10 ng/ml. The number of replicates is three.

Discussion

ELISA is a standard and well-established method for many laboratories. We have further modified and improved a previously published method
5,7. The demonstrated step-by-step protocol shows how it can be used in a simple way to determine the KD values of ligand-receptor interactions.
In addition, the IC50 of a blocking peptide that interferes with the ligand-receptor interaction can be determined.

Major advantages are the rapid setup, easy preparation of reagents and familiar handling, as most researchers have used an ELISA protocol
before. The direct LRA protocol is highly flexible and can be adapted to measure many protein-protein interactions. Recombinant proteins with
His6- or alternative tag should be used as the binding partner to an immobilized partner. The competition LRA can be exploited as a screening
tool to (i) determine the inhibitory potential of blocking compounds (peptides, antibodies, or small molecules) and to (ii) determine the critical
interaction sites by using blocking peptides designed to mimic the receptor or the ligand.

Negative controls are essential for a proper interpretation of the presented assays. In a previous screening study 4, the scrambled sequence of
the used blocking peptide did not show antagonistic effects. However, other peptides showed a blocking capacity also after scrambling, likely due
to unspecific electrostatic interactions.

78

http://www.jove.com
http://www.jove.com
http://www.jove.com
https://www.jove.com/files/ftp_upload/53575/53575fig4large.jpg
https://www.jove.com/files/ftp_upload/53575/53575fig4large.jpg


Journal of Visualized Experiments www.jove.com

Copyright © 2016  Journal of Visualized Experiments March 2016 |  109  | e53575 | Page 7 of 10

A potential limitation is that this assay reflects an in vitro situation. In particular, heterodimeric receptors often form a more complex structure.
It is not possible to distinguish whether the ligand just binds to the receptor or whether the ligand also activates the receptor by triggering a
conformational change or a dimerization, which in turn leads to an intracellular signal. In the presented assay, we used a recombinant receptor,
which is immobilized to a solid phase. This setup does not work to test the activation or to investigate the interaction of receptors, which require
the membrane environment or membrane cholesterol such as G protein coupled receptors (GPCRs). Also the use of recombinant protein
raises caveats. For example, the folding and tertiary structure of a recombinant protein may be different compared to an in vivo situation. The
binding of ligand and receptor usually occurs at RT, however in humans the optimal temperature would be 37 °C. Finally, the use of commercial
recombinant ligand and receptor can prove expensive. Despite these limitations, these two ELISA protocols show potential to rapidly explore the
ligand-receptor interaction.

The presented results show that IFNL1 has a slightly higher affinity for IL28RA compared to IFNL2, and the affinity of IFNL3 is three-fold lower
than IFNL2. This is remarkable considering the similarity between IFNLs. IFNL1 and IFNL2 differ in 33 amino acids while IFNL2 and IFNL3
differ only in seven amino acids 8. The interaction between IL28RA and IFNLs involves Helix A and the AB-loop of IFNL 9. Alignment of IFNL
sequences reveals four significant differences in Helix A and the AB-loop between IFNL1 and IFNL3 (Figure 5A). One affects the salt bridge
Arg54-Glu119. The amino acid residues in this section are enumerated according to the UniProt entries Q8IU54 (IFNL1), Q8IZI9 (IFNL3), Q8IZJ0
(IFNL2) and Q8IU57 (IL28RA), which has been found in the crystal structure of the IFNL1-IL28R1 complex (Figure 5B). Structural alignment
shows that Arg57 in IFNL1 is replaced by Lys57 in INFL3, which is also able to form a salt bridge with Glu118 (Figure 5C). Consistent with the
decreased affinity of IFNL3 and IL28RA, computational 10,11 and mutational 12 analyses show, that Lys-Glu salt bridges are in general less stable
than Arg-Glu salt bridges.

However, the differences in Helix A do not satisfactorily explain the lower affinity of IFNL3, since the amino acid sequence of Helix A is identical
for IFNL2 and IFNL3. It is thought that the main difference arises from the mutations in the AB-loop, where Arg74 and His76 in IFNL2 are
replaced by Lys70 and Arg72 in IFNL3 8.

Moreover, differences in stability and solubility between IFNLs may also affect the outcome of the assay. Since the direct LRA assay uses
concentrations from nM to M and the physiological concentration of cytokines in serum lies in the pM to nM range, aggregation of IFNL cannot be
excluded. We can assume that the observed positive cooperativity of the IFN binding is caused by a specific or non-specific increase in ligand-
receptor binding, e.g., a dimerization of the recombinant IL28RA receptor in solution, or a binding of a second ligand or ligand fragment with
higher affinity. However, further studies are required to verify this.

The blocking peptide used in the competition LRA mimics the AB-loop of IFNL3 (Figure 6). As previously described, the AB-loop plays an
essential role in the interaction between IFNLs and IL28RA 9, particularly IFNL2 and IFNL3. Homology modeling of IFNL3 with the IL28RA/IFNL1
crystal structure shows that the region, which corresponds to the blocking peptide lies in close spatial proximity to the interaction interface with
IL28RA (Figure 6). Supposed that the peptide blocks the interaction of the AB-loop of IFNL and IL28RA. The results of the competition LRA
support this: The peptide has an inhibitory effect on the binding of all IFNLs, however the peptide is a more effective inhibitor of the interaction
between IL28RA and either IFNL3 or IFNL2 than of the interaction of IFNL1 and IL28A. As expected, the peptide blocks the binding of IFNL3
most effectively since it occupies exactly the same binding pocket as the AB-loop of IFNL3.

As shown in Table 3, the AB-loops of IFNL1 and IFNL2 aligned to the blocking peptide differ. Consistent with the lower IC50 value of the peptide
for inhibition of the IFNL1/IL28RA interaction, twelve amino acids differ between IFNL1 and the peptide whereas and only two amino acids differ
between IFNL2 and the peptide. This indicates that there are slightly different binding modes for interaction between the AB-loops of the IFNLs
and IL28RA and predicts that peptides which mimic IFNL1 would be more effective at blocking the interaction between IFNl1 and IL28RA than
the interaction between IFNL3 and IL28RA.

Further, the peptide is overall positively charged (four arginine and two lysine residues but only two aspartate residues) and computational
analysis shows that the peptide has no defined secondary motifs. Due to its coiled, flexible structure the peptide might also bind to other regions
of the receptor. This could potentially block glutamate and aspartate residues such as D118, which forms a salt bridge to stabilize the ligand-
receptor complex (Figure 5B and 5C).
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Figure 5. Structural comparison of IFNL1 (green) and IFNL3 (blue). Oxygen atoms are shown in red, nitrogen atoms are shown in blue.
(A) Superposition of the IL28RA-bound IFNL1 and IFNL3 (IL28RA not shown). The root mean square deviation (RMSD) of all aligned atoms is
0.672 Å. Side chains of IFNL3 that differ from IFNL1 are highlighted in light-pink. (B) Salt bridge between Arg54 and D118. (C) IFNL3 aligned to
IL28RA-bound IFNL1 (IL28RA is shown in grey). The alignment shows that the Arg-Glu salt bridge is probably replaced by a less stable Lys-Glu,
a salt-bridge between Lys57 and D118. PyMol was used for the preparation of figures and for the alignment. Please click here to view a larger
version of this figure.
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Figure 6. Alignment of IFNL3 and the IFNL1-IL28RA complex (IFNL1 not shown). IFNL3 is shown in blue and the IL28RA in grey. The
regions corresponding to the blocking peptide are highlighted in purple. Please click here to view a larger version of this figure.

Table 3: Sequence alignment of IFNL1-3 and inhibitory peptide. The peptide mimics the AB-loop of INFL3. Amino acid mismatches are
highlighted in red.
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Materials

Name Company Catalog Number Comments

Nunc-Immunoplate (F96 Maxi
sorp)

Thermo Scientific 442404 ELISA plate

Sodium carbonate (Na2CO3) Merck 497-19-8 For ELISA plate coating buffer

Sodium hydrogen
carbomnate(NaHCO3)

Merck 144-55-8 For ELISA plate coating buffer

Bovine Serum Albumin (BSA) Sigma A7030-100G 5% BSA in PBS for Blocking

rhIL-28Rα/IFNλR1 R&D systems 5260-MR Recombinant human interlukin-28
Receptor alpha

rhIL-29/IFNλ1 R&D systems 1598-IL/CF Recombinant human interlukin-29/
Carrier free/C-terminal 10-His tag

rhIL-28A/IFNλ2 R&D systems 1587-IL/CF Recombinant human
interlukin-28A/Carrier free/C-
terminal 6-His tag

rhIL-28B/IFNλ3 R&D systems 5259-IL/CF Recombinant human
interlukin-28B/Carrier free/C-
terminal 6-His tag

6x His Monoclonal antibody
(Mouse)

Clontech 631212 Primary antiboy to capture His
tagged Ligands

Goat anti-Mouse igG (H+L) Jackson Immuno Research 115-035-166 Horseradish Peroxidase
conjucated secondary antibody

BDoptEIA TMB reagent set BD Biosciences 555214 ELISA - TMB substrate solution

Sulfuric acid (H2SO4) Fulka 84720 5 N H2SO4 (Enzyme reaction stop
solution)

Synergy/H1 - Microplate reader BioTeK ELISA plate reader
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Abstract

Antibody titers are commonly used as surrogate markers for serological protection against influenza and other pathogens. Detailed knowledge
of antibody production pre- and post-vaccination is required to understand vaccine-induced immunity. This article describes a reliable point-by-
point protocol to determine influenza-specific antibody titers. The first protocol describes a method to specify the antigen amounts required for
hemagglutination, which standardizes the concentrations for subsequent usage in the second protocol (hemagglutination assay, HA assay). The
second protocol describes the quantification of influenza-specific antibody titers against different viral strains by using a serial dilution of human
serum or cell culture supernatants (hemagglutination inhibition assay, HI assay).

As an applied example, we show the antibody response of a healthy cohort, which received a trivalent inactivated influenza vaccine. Additionally,
the cross-reactivity between the different influenza viruses is shown and methods to minimize cross-reactivity by using different types of
animal red blood cells (RBCs) are explained. The discussion highlights advantages and disadvantages of the presented assays and how the
determination of influenza-specific antibody titers can improve the understanding of vaccine-related immunity.

Video Link

The video component of this article can be found at https://www.jove.com/video/55833/

Introduction

Infection with influenza virus is associated with considerable morbidity, mortality, and high healthcare costs1,2,3,4. In particular, elderly, newborns,
pregnant women, and patients with chronic disease are at risk for more severe clinical outcomes. Therefore, vaccination against circulating
influenza virus strains is the primary measure to decrease the burden of disease in these high-risk populations. The increase of the individual
immune response after vaccination, e.g., influenza-specific antibodies above a protective threshold, reduces the individual risk of infection and
in general the likelihood of viral transmission within a population5. A detailed understanding of the vaccine-induced humoral immune response in
different populations and across various age groups is a key element to answer important clinical questions6,7,8,9, such as: Why do some elderly
patients have infections despite previous vaccination? What is a "good" and "sufficient" vaccine-induced protection? How often should a vaccine
be applied to an immunosuppressed patient to reach protective titers? What is the most effective dosage? What is the impact of a novel adjuvant
on post-vaccination antibody titers? The measurement of the vaccine-specific antibody production may help answer these important questions
and improve vaccination outcomes.

The quantification of virus-specific antibody titers can be performed with various immunological methods. This includes solid-phase10 or bead-
based ELISA11 assays, the HI assay12, and neutralizing assays13. ELISA-based methods allow the screening of relatively large amounts of
serum samples against various antigens. Also, pathogen-specific Immunoglobulin (Ig)M and IgG can be separately explored. Although the
characteristics of an antigen, e.g., the linear amino acid sequence or virus-like particle may influence the binding of antibodies, the spectrum of
potential epitopes is very broad and does not provide information on whether an antibody response has functional relevance.

In contrast, the neutralization assay determines the potential of antibodies to functionally inhibit the infection of cells and therefore reflects the
neutralization potential. However, this method is very labor intensive, requires culturing of specific cell lines and live viruses, and therefore, it is
time-consuming, expensive, and requires special equipment.
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This article describes a step-by-step the World Health Organization (WHO)-based HI protocol12 to quantify influenza-specific antibody titers.
Hemagglutination is a characteristic effect of some viruses leading to the agglutination of erythrocytes. The inhibition of this effect with patient
sera allows the measurement of inhibitory antibody concentrations, which reflects a neutralizing effect.

We have modified the workflow of the WHO-protocol to allow a more efficient handling of multiple samples at the same time and thereby
reducing the required time. The first protocol describes the determination of the agglutination potential of a particular influenza antigen. In doing
so, the correct influenza antigen concentration is determined for the second protocol. This part should be repeated with every new viral antigen,
as well as each batch of blood.

The second protocol describes the determination of influenza-specific antibody titers. The presented protocols are optimized for the investigation
of influenza virus and human serum samples however, it can also be applied for mouse serum samples or cell-culture supernatants from
stimulated immune cells, e.g., virus-specific B-cells. Results can be determined as absolute measured titers. In many vaccine studies,
the geometric mean titers and the 95% confidence interval are shown for each particular population. For interpretation, seroprotection or
seroconversion are often used to describe the susceptibility of a population to a certain virus. Seroprotection is defined as a titer of ≥1:40, and
seroconversion as a more than 4-fold titer increase with achievement of seroprotective titers between two time points (most commonly pre-
vaccination and 30 days post-vaccination are used).

Both protocols are easy to use and they can be adapted to a broad range of research questions. In particular, they can be used to determine
reliably and quickly the antibody titers against various other viruses with the capacity for hemagglutination, such as measles, polyomaviruses,
mumps, or rubella14,15,16.

Protocol

The study protocols were approved through the local ethical review board (www.EKNZ.ch) and written informed consent was obtained from all
participants.

1. Serum Collection

1. Collect serum samples from humans at time points of interest. For this study, we collected sera at days 0 (time of influenza vaccination), +7,
+30, +60, and +180 after vaccination.

2. To obtain the serum, centrifuge the sample tubes at 1,200 x g for 10 min at room temperature (20 - 25 °C).
NOTE: Non-centrifuged blood samples should be stored at 4 °C, and for no longer than 24 h.

3. Aliquot the serum into different tubes (cryo-vials) and freeze at -80 °C until use.
4. Perform the subsequent assays batch-wise, including all the time-points of one person to reduce variability within a patient.

2. Preparation of Antigens

CAUTION: Five different antigens are used (see Table of Materials). Prepare antigens in a Biosafety Level 2 (BSL-2) laboratory.

1. According to the manufacturer's instructions, reconstitute the total contents of one lyophilized influenza antigen ampoule with 1.0 mL of
distilled water and allow the dissolved antigen to stand for a minimum of 5 min at room temperature before proceeding.

2. Aliquot the antigen solution to 1.5 mL tubes and freeze at -80 °C until further use.

3. Preparation of Cholera Filtrate

NOTE: Cholera filtrate is used as a receptor destroying enzyme (RDE) according to the WHO protocol12. This removes innate inhibitors from the
serum which would interfere with the assay17.

1. Reconstitute the lyophilized RDE according to the manufacturer's instructions.
2. Store the RDE solution in a 15 mL tube at 4 °C until further use.

4. HA Assay

NOTE: To ensure that the HI assays are comparable between several plates, the same amount of virus particles must be used for each plate.
The HA assay (also called HA titration) is performed to quantify the virus particles necessary for hemagglutination, and is recorded in HA units. A
"unit" of hemagglutination is an operational unit dependent on the method used for HA titration and is not a measurement of an absolute amount
of virus. Thus, an HA unit is defined as the amount of virus needed to agglutinate an equal volume of a standardized RBC suspension. According
to the WHO, the standard amount used for the HI assay is 4 HA units per 25 µL. For an illustration of the principle of the HA assay see Figure 1.
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Figure 1: Principle of hemagglutination and hemagglutination inhibition. No hemagglutination occurs in a negative control situation without
viruses and antibodies (left column), and erythrocytes hemagglutinate only in the presence of influenza virus (middle column). However, when
the hemagglutinin of the influenza virus is blocked by virus-specific antibodies then no hemagglutination can occur (right column). Please click
here to view a larger version of this figure.

NOTE: The RBCs used are dependent on the type of influenza virus in the assay (Table 1). Further, for various types of 96-well micro titer plates,
the incubation time as well as the appearance of the non-agglutinated cells differ (Table 2).

Influenza
antigen

A/California/7/09
(H1N1)

A/Switzerland/9715293/2013
(H3N2)

A/Texas/50/2012
(H3N2)

B/
Brisbane/60/08

B/Massachusetts/02/2012

RBC species Chicken Guinea Pig Guinea Pig Turkey Turkey

Table 1: Influenza antigens and corresponding species of RBCs. According to the manufacturer's instructions (NIBSC).

RBC species Chicken Turkey Guinea pig Human type O

Concentration of RBCs (v/v) 0.75% 0.75% 1% 1%

Type of microtiter plate V bottom V bottom U bottom U bottom

Incubation time, RT 30 min 30 min 1 hour 1 hour

Appearance of non-
agglutinated cells

Button* Button* halo halo

Table 2: Assay conditions with different species of RBCs. According to the WHO protocol. (* flows when tilted).

1. Preparation of the RBC Suspension
1. Dilute the RBC stock suspension (10%, v/v; except human type O) (see Table of Materials) with phosphate buffered saline (PBS) to

make the proper concentrations for avian and mammalian RBCs of 0.75% and 1%, respectively.

Figure 2: Plate design of the HA assay.  The HA titration is performed in duplicates. No antigen was added to the control rows. Also see
Figure 4 for the determination of the best antigen concentration. Please click here to view a larger version of this figure.

2. Preparation of the 96-well Micro Titer Plate
NOTE: See Figure 2 for an overview of the plate design.

1. Add 25 µL of PBS to wells 1 to 12 of each used row of a 96-well micro titer plate by using a multichannel pipette (Figure 2). Use the V-
shaped micro titer plate when working with avian RBCs, like chicken and turkey. Use the U-shaped micro titer plate when working with
mammalian RBCs, like guinea pig and human type O (Table 2).
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2. Add 25 µL of influenza antigen to the first well of the antigen-rows, which are arranged in duplicates. No antigen is added to the control
rows. The control rows should not show a hemagglutination effect and serve as negative controls (Figure 2).

3. Perform a serial 2-fold dilution by transferring 25 µL from the first well of the antigen-rows to successive wells by using a multichannel
pipette. Mix each dilution step by pipetting up and down gently 10 times.

4. Discard the final 25 µL of the last wells.
5. Add 25 µL of PBS to wells 1 to 12 of each used row by using a multichannel pipette, in order to reach a total volume of 50 µL per well.
6. Add 50 µL of the RBC suspension to each used well by using a multichannel pipette.
7. Tap the plate carefully 10 times on all four sides to mix.
8. Cover the plate with a lid and incubate at room temperature for the appropriate amount of time depending on the RBC species used

(see Table 2). Do not move the plate while incubating.

Figure 3: Agglutination patterns of avian and mammalian RBCs. V-shaped micro titer plates are used when working with avian RBCs. The
readout is performed in a tilted plate position, and non-agglutinated RBCs start to run down forming a tear-like shape. U-shaped microtiter plates
are used when working with mammalian RBCs. The readout is then performed in a non-tilted position, and non-agglutinated RBCs form a small
halo. Please click here to view a larger version of this figure.

3. Reading the plate
NOTE: The readout is slightly different when using avian RBCs compared to mammalian RBCs, because of the different shaped micro titer
wells (Figure 3).

1. Readout of avian RBCs
1. Tilt the plate 90° for 25 s.

NOTE: Tilting the plate is crucial for the differentiation of avian patterns, because all three different types of agglutination patterns
(completely agglutinated, partially agglutinated, and non-agglutinated) appear as a button when not tilted.

2. Mark the results immediately, while the plate is still in a tilted position, on a printed scheme of the 96-well plate. The agglutination
patterns of the avian RBCs are shown in Figure 3.

2. Readout of mammalian RBCs
1. Mark the results on a printed scheme of the 96-well plate, without tilting the plate (horizontal position on the bench).

NOTE: When hemagglutination occurs, the agglutinated cells do not settle to the bottom, whereas non-agglutinated cells appear
as a halo at the bottom of the well. The halo of the partially agglutinated cells is less intense and has a larger diameter (Figure
3).

3. Determination of 4 HA units.
NOTE: The HA titration end point is the last well where complete hemagglutination occurs. This well contains 1 HA unit of virus.
Because of the 2-fold dilutions of the antigen, two wells ahead of the HA titration endpoint is the well that contains 4 HA units of virus
(Figure 4).

Figure 4: Readout of the HA titration with avian RBCs to determine the titer of 4 HA units.  The optimal antigen amount required for
hemagglutination is measured by the hemagglutination assay (antigen titration assay). The last well where complete hemagglutination occurs is
the HA titration endpoint and contains 1 HA unit. Because of the 2-fold dilutions of the antigen, two wells ahead of the HA titration endpoint, the
titer corresponds to 4 HA units. Please click here to view a larger version of this figure.
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5. HI Assay

NOTE: The work-flow of the protocol has been optimized to allow a more efficient handling of multiple samples at the same time, by using PCR
tube stripes and a thermo cycler (see below).

1. Preparation of the Serum Samples
NOTE: Prepare serum samples in a BSL-2 laboratory.

1. Thaw the frozen serum samples of each time point of every person (see step 1.2) at room temperature.
2. Add an aliquot of 10 µL of each thawed serum sample to a tube of a PCR tube strip (10-tubes in one strip).

NOTE: The big advantage of using PCR tube strips is that a multichannel pipette can be used for the following steps in the HI assay;
this saves a lot of time when testing a large amount of serum samples and when performing repeated measures of the same samples
for antibody titers against different virus strains.

3. Store the aliquoted serum samples in the PCR tube strips at -80 °C until use.
4. One day before the HI assay is performed, thaw the serum sample aliquots of interest at room temperature.
5. Add 10 µL of the appropriate anti-serum to an empty PCR tube.

NOTE: To serve as a positive control, the anti-serum against a specific virus must match the used virus. The positive control allows for
standardization of plate performance over multiple plates.

6. Add 30 µL of cholera filtrate solution to each serum aliquot and to the anti-serum (3 volumes of cholera filtrate to 1 volume of serum) by
using a multichannel pipette.

7. Keep the PCR tubes in a PCR 96-well rack or an empty tip-box and vortex for 5 s.
8. Incubate the samples overnight at 37 °C using a thermo cycler.
9. Incubate the samples at 56 °C for 30 min to inactivate the cholera filtrate using a thermo cycler.

NOTE: Depending on the thermo cycler, this step can be programmed to further automate the process.
10. Keep the PCR tubes in a PCR 96-well rack or an empty tip-box and vortex for 5 s.
11. Store the samples at 4 °C in the fridge until use for the HI assay.

Figure 5: Plate design and workflow of the HI assay. Five time points of two people can be measured on one plate. The HI titer ranges from 8
to 1,024. An anti-serum of the used antigen served as a positive control and a back titration was performed to check if the antigen dilution equals
4 HA units. The serial dilution of the serum sample is shown for 2 individual vaccine recipients.  Please click here to view a larger version of this
figure.

2. HI assay
NOTE: For an illustration of the principle of the HI assay see Figure 1. Depending on the virus, different species of RBCs are used for the
assay (Table 1). The different species of RBCs are used in various types of 96-well plates, and the incubation time as well as the appearance
of the non-agglutinated cells differs (Table 2). For the HI assay, 4 HA units of virus or antigen are added to the 2-fold dilution series of the
samples.

1. Preparation of the antigen solution
1. Calculate the volume of antigen solution needed according to the number of 96-well plates used (25 µL antigen per well × 96 =

2,400 µL antigen per 96-well plate; add 100 µL per plate extra due to the usage of a reservoir for the multichannel pipette; a total
2.5 mL of antigen per plate).
NOTE: For example, if measuring 100 serum samples then 10 plates are needed (10 samples per plate): 2.5 mL x 10 = 25 mL of
antigen solution needed in total.

2. Prepare the proper dilution of 4 HA units for the calculated volume using PBS.
NOTE: 4 HA units are determined for the HA assay. For the appropriate amount of antigen, divide the calculated volume by the
titer corresponding to 4 HA units. For example, 4 HA units correspond to a dilution of 1/64, and we needed 15,000 µL of antigen
solution are needed: 15,000/64 = 234.4 µL of the dissolved lyophilized influenza antigen are added.

2. Preparation of the RBC suspension
1. Calculate the volume of RBC suspension needed according to the number of 96-well micro titer plates used (50 µL RBC

suspension per well × 96 = 4,800 µL RBC suspension per 96-well plate; add 200 µL per plate extra due to the usage of a
reservoir for the multichannel pipette).

2. Dilute the RBC stock suspension (normally 10%, v/v; except human type O) with PBS to make the proper concentrations for
avian and mammalian RBCs of 0.75% and 1%, respectively.
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3. Preparation of the 96-well micro titer plate
1. Label the 96-well micro titer plates (sample ID, positive control, and back titration). Please check the plate orientation in Figure 5

carefully.
2. Add 25 µL of PBS to every well except to the first well of the "back titration" row (Figure 5, 12th row) using the multichannel

pipette.
NOTE: A back titration was performed to check if the used antigen dilution equals 4 HA units. An antigen titer of 4 HA units is
indicated if hemagglutination occurs in the first three wells of the "back titration" row, but not in the fourth well.

3. Add 50 µL of the prepared antigen solution (described in 5.2.1) to the first well of the "back titration" row (12th row).
4. Add 25 µL of the RDE-treated serum samples to the first wells of rows 1 to 10 on each plate, using the multichannel pipette.
5. Add 25 µL of the appropriate anti-serum to the first well of the 11th row as a positive control.
6. Perform serial 2-fold dilutions by transferring 25 µL from the first well of each row (1 - 12) to successive wells by using a

multichannel pipette. Mix by pipetting up and down 10 - 15 times for each dilution step. The same tips can be used for each
dilution step per sample.

7. Discard the final 25 µL of the last wells.
8. Add 25 µL of the antigen solution by using a multichannel pipette to each well of rows 1 to 11 (serum samples and anti-serum).

The same tips can be used if they do not touch the wells.
9. Add 25 µL of PBS instead of antigen to each well of the "back titration" row (12th row).
10. Tap the plate carefully 10 times on all four sides to mix.
11. Cover the plate with a lid and incubate at room temperature for 30 min. Do not move the plate while incubating.
12. Add 50 µL of the RBC suspension to every well.
13. Tap the plate carefully 10 times on all 4 sides to mix.
14. Cover the plate with a lid and incubate at room temperature for the appropriate amount of time depending on the RBC species

used (see Table 2). Do not move the plate while incubating.

4. Reading the plate
NOTE: The HI titer is the reciprocal of the last dilution of (anti-) serum that completely inhibits hemagglutination. It is important to
consider that the RDE-treated sera were already diluted 1:4 and after the serial dilution step, the sera in the first wells are diluted 1:8,
which corresponds to a HI titer of 8.

1. Readout of avian RBCs
1. Tilt the plate 90° for 25 s.

NOTE: Tilting the plate is crucial for the differentiation of avian patterns, because all three different types of agglutination
patterns (completely agglutinated, partially agglutinated, and non-agglutinated) appear as a button when not tilted.

2. Mark the results immediately, while the plate is still in a tilted position, on a printed scheme of the 96-well plate. The
agglutination patterns of avian RBCs are shown in Figure 3.

2. Readout of mammalian RBCs
1. Mark the results on a printed scheme of the 96-well plate, without tilting the plate.

NOTE: When hemagglutination occurs, the agglutinated cells do not settle down whereas non-agglutinated cells appear
as a halo at the bottom of the well. The halo of the partially agglutinated cells is less intense and has a larger diameter
(Figure 3).

2. Determine the HI of each sample and transfer it to a computer-based table (Figure 6)
3. NOTE: Partially agglutinated wells were determined as a lower titer. For example, if a serum sample completely inhibits

hemagglutination up to the 4th well (1:64 dilution) and the 5th well (1:128 dilution) is partially agglutinated, then the HI titer
is set to the lower titer 64 for the final analysis (Figure 6, 4th row).

90

https://www.jove.com
https://www.jove.com
https://www.jove.com


Journal of Visualized Experiments www.jove.com

Copyright © 2017  Journal of Visualized Experiments December 2017 |  130  | e55833 | Page 7 of 10

Figure 6: Readout of the HI assay with avian RBCs. The pre- and post-vaccination induced influenza specific antibody response is
determined by HI assay. In this example, person one has higher HI titers than person two. Both persons show an antibody response after
vaccination; 180 days after the vaccination the antibody titers of both persons are decreased again. Please click here to view a larger version of
this figure.

Representative Results

Pre- and post-vaccination induced antibody response against Influenza A H3N2
The vaccine-induced antibody response was assessed in 26 healthy volunteers who received an inactivated trivalent subunit influenza vaccine
containing Influenza A/H1N1/California/2009, A/H3N2/Texas/2012, and B/Massachusetts/02/2012 prior to the 2014/2015 influenza season.
Figure 6 shows a representative example of 2 vaccine recipients. Interestingly, during that particular influenza season, A/H3N2/Texas/2012
was not circulating, and instead the season included the somewhat different viral strain: A/H3N2/Switzerland/2013. The viral hemagglutinin of
A/H3N2/Texas/2012 and A/H3N2/Switzerland/2013 show 97% sequence identity and differ in only eleven amino acids (see Table 4), whose
positions are highlighted in Figure 7.

Figure 7: Hemagglutinin comparison of A/H3N2 influenza strains. We compared the hemagglutinin of the viral strains A/Texas/50/2012 and
A/Switzerland/9715293/2013. Since there are no hemagglutinin crystal structures of these strains, we used the crystal structure of the highly
similar hemagglutinin of the influenza strain A/Victoria/361/201118, which shows 98% sequence identity with the Texas strain and 95% sequence
identity with the Switzerland strain. The amino acid positions in which the Texas and Switzerland strains differ are highlighted. Please click here
to view a larger version of this figure.

We observed a cross-reactive immune response for the viral strains A/H3N2/Switzerland/2013 and A/H3N2/Texas/2012. HI titers against
Influenza A/H3N2/Switzerland/2013 were significantly lower in terms of geometric mean titers and induced seroprotection (Figure 8A) in
comparison to Influenza A/H3N2/Texas/2012 (Figure 8B).
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Figure 8: Geometric mean antibody-titers of healthy donors. The geometric mean antibody-titers (GMTs) of 25 healthy donors pre- and
post-vaccination are determined using two different antigens. The mean titers of A/H3N2/Switzerland/2013 (A) and A/H3N2/Texas/2012 (B)
are shown. An immune response due to the vaccination can be observed as increasing titers after the vaccination (d7-d60), compared to the
GMTs before the vaccination (d0). 180 days after the vaccination, the GMTs decrease again. Of note, only A/H3N2/Texas/2012 (which was in
the vaccine) reaches protective titers. Bars indicate geometric mean titers, and whiskers indicate the 95% confidence intervals. The dashed
line indicates the seroprotection threshold. The % of seroprotected people (titer >1:40) is shown in the graph. Please click here to view a larger
version of this figure.

After vaccination, the antibody titers against A/H3N2/Texas/2012 increased in most subjects; although the A/H3N2/Switzerland/2013 strain
was not present in the vaccine, the titer against A/H3N2/Switzerland/2013 increased in some subjects as well. Figure 9 shows the correlation
between both titers over all time points with an R2 of 0.745 for a linear regression model. As one would expect, the induction of the antibody
response against A/H3N2/Switzerland/2013 was less potent.

Figure 9: Cross-reaction between A/H3N2 influenza strains. The A/H3N2/Texas titers of every individual and time point are plotted against
the corresponding A/H3N2/Switzerland titers. A linear regression model shows an R2 of 0.745. Please click here to view a larger version of this
figure.

Hemagglutination potential is based on the type of blood used
The viral hemagglutinin shows different species-dependent potential to hemagglutinate erythrocytes. This species-dependent effect also impacts
the hemagglutination inhibition assay. To improve the specificity of measured anti-viral titers, we evaluated the best suited type of erythrocytes for
five viral antigens (Influenza B/Brisbane/60/2008 and B/Massachusetts/02/2012, Influenza A/H1N1/California/2009, A/H3N2/Texas/2012, and A/
H3N2/Switzerland/2013) to achieve the maximum hemagglutination but also the lowest cross-reactivity. We used positive control sera from the
National Institute for Biological Standards and Control (NIBSC) against each antigen to perform these assays.

For Influenza B, we could observe that the B/Massachusetts/02/2012 induced antibody response does not provide protection against B/
Brisbane/60/2008. In contrast, antibodies against B/Brisbane/60/2008 showed cross-reactivity against B/Massachusetts/02/2012 at a 4-fold lower
titer across different erythrocytes (see Table 3). Of interest, guinea pig blood did not properly hemagglutinate with Influenza B. Turkey blood did
best in showing the potential to hemagglutinate and the highest titers with relative low cross-reactivity apart from the previously mentioned A/
H3N2/Texas and /Switzerland strains.

Turkey Guinea Pig Chicken Human type O

B/Brisbane 1024 - 1024 1024

B/Massachusetts 1024 384 768 1024

A/H3N2/Switzerland 1024 1024 - 1024

A/H3N2/Texas 1024 1024 512 1024

A/H1N1/California 1024 1024 768 768

Table 3: Positive control titers against the respective influenza HA antigen across different species.
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No  A/H3N2/Texas/2012 strain  A/H3N2/Switzerland/2013 strain Position

1 Asparagine (N) Alanine (A) 128

2 Alanine (A) Serine (S) 138

3 Isoleucine (I) Arginine (R) 140

4 Arginine (R) Glycine (G) 142

5 Asparagine (N) Serine (S) 145

6 Phenylalanine (F) Serine (S) 159

7 Glycine (G) Valine (V) 186

8 Proline (P) Serine (S) 198

9 Serine (S) Phenylalanine (F) 219

10 Asparagine (N) Aspartate (D) 225

11* Lysine (K) Arginine (R) 326

*not shown in the crystal structure in Figure 8, because the hemagglutinin was cutted at residue 325. 

Table 4: List of different amino acids of hemagglutinin between A/H3N2/Texas/2012 and A/H3N2/Switzerland/2013 strains

Discussion

Quantification of pre- and post-vaccination influenza virus specific antibody titers is an important tool necessary for vaccine studies. Based on
the surrogate measures of protection against virus infection, such as seroprotection (>1:40) or seroconversion (4-fold titer increase), vaccination
strategies can be optimized9. Using the provided protocols can determine: (i) the hemagglutination potential of a particular virus, and (ii) the
antibody titers for a virus of interest.

Modification and Troubleshooting:

This protocol is based on the WHO standard12. We modified the protocol by using PCR tube strips for serum preparations (see step 5). This
modification helped to significantly reduce the workload and to increase the throughput of the assay. Further, we reduced the antigen amount
by one fourth in the antigen titration step, which is cost effective overtime. A lower amount of serum (10 µL) can be used for the RDE treatment,
which helps especially when the sample amount is limited (e.g., mouse sera). The back titration and positive control are included in the antibody
measurement plate to serve as a proper internal control and to monitor the aging of erythrocytes.

In addition, we used different erythrocyte concentrations than those in the WHO standard12 to set the optimal size of the erythrocyte clot for a
good visual readout. To guarantee this we suggest checking the erythrocyte concentration before the assay. Although, we have not optimized this
part in our protocol, methods such as absorbance measurement with OD or cell counting could be used.

If the RDE is not completely inactivated, RBCs can be desialylated and reverse HA-positive wells when hemagglutination is measured at room
temperature. Although we never observed this problem, in this case, we suggest performing the HI at 4 °C, since RDE activity is significantly
lower at 4 °C. However, performing the HI assay at 4 °C is slower.

Limitations of the Technique:

A few critical aspects of the HI assay include the following points: Interestingly, the hemagglutination is strongly dependent on the particular
type of erythrocyte (e.g., turkey or guinea pig RBC). The optimal type of blood should be tested before a particular virus strain is evaluated
and the same type of blood should be used throughout the assay. Although the induction of cross-reactivity between viruses may generate
an immunological advantage in the case of a slightly new virus19,20, this may cause some problems from a diagnostic point of view due to low
specificity. Therefore, cross reactivity between similar viruses should be carefully addressed and discussed in studies. By choosing erythrocytes
from a specific species, the amount of cross-reactivity can be somewhat lowered.

Significance with Respect to Existing Methods:

The HI is a well-established gold standard method providing highly reproducible and reliable results. Other techniques such as ELISA may detect
non-neutralizing antibodies, whereas the HI only detects antibodies which bind to the HA stem loop and thereby correlate with neutralization.

Critical Steps Within the Protocol:

The most critical steps include the serum treatment with RDE to inactivate unspecific inhibitors and binding to the HA of the virus. Another critical
step is to control for hemolysis of the erythrocytes as they age over time.

Future Applications:

The protocol may be used for other viruses with hemagglutination potential. Although we have only shown results on human sera samples here,
the assay can also be used to measure antibody titers in mouse sera or in cell culture supernatant with stimulated B-cells (data not shown). In
summary, the HI allows a rapid and reproducible assessment of vaccine-induced antibody titers.
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Materials

Name Company Catalog Number Comments

25 ml Disposable Multichannel
Pipette Reservoirs

Integra 4312

8-well PCR tubes Brand GMBH 781332 For serum aliquots

96-well microtiter plate, U-shaped TPP 92097 For HI assay when using
mammalian RBCs

96-well microtiter plate, V-shaped Corning Costar 3897 For HI assay when using avian
RBCs

Aqua ad iniect. Steril Bichsel AG 1000004 For preparing influenza antigen
and cholera filtrate solutions

Chicken RBC (10%) Cedarlane CLC8800 10% suspension of chicken red
blood cells in Alsever's solution

Cholera filtrate Sigma-Aldrich C8772 Used as receptor destroying
enzyme (RDE)

Dulbecco's PBS Sigma-Aldrich D8537 For diluting the serum samples,
RBCs and antigens

Eppendorf Multichannel pipette,
12-channel, 10-100 µl

Sigma-Aldrich Z683949

Eppendorf Multichannel pipette, 8-
channel, 10-100 µl

Sigma-Aldrich Z683930

Guinea Pig RBC (10%) Cedarlane CLC1800 10% suspension of guinea pig red
blood cells in Alsever's solution

Influenza Anti-A/California/7/09 HA
serum 

NIBSC 14/134 Used as positive control at the HI
assay

Influenza Anti-A/
Switzerland/9715293/2013-like HA
serum 

NIBSC 14/272 Used as positive control at the HI
assay

Influenza Anti-A/Texas/50/2012-
Like HA Serum 

NIBSC 13/178 Used as positive control at the HI
assay

Influenza Anti-B/Brisbane/60/2008-
HA serum 

NIBSC 13/254 Used as positive control at the HI
assay

Influenza Anti-B/
Massachusetts/02/2012 HA serum 

NIBSC 13/182 Used as positive control at the HI
assay

Influenza antigen A/California/7/09
(H1N1)(NYMC-X181) 

NIBSC 12/168 Inactivated, partially purified A/
California/7/09 (H1N1)(NYMC-
X181)  virus (ca. 46µgHA/ml)
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Influenza antigen A/
Switzerland/9715293/2013 (NIB88)

NIBSC 14/254 Inactivated, partially purified A/
Switzerland/9715293/2013 (NIB88)
virus (ca. 55µgHA/ml)

Influenza antigen A/Texas/50/2012
(H3N2)(NYMCX-223)

NIBSC 13/112 Inactivated, partially purified
A/Texas/50/2012 (H3N2)
(NYMCX-223) virus (ca. 74µgHA/
ml)

Influenza antigen B/
Brisbane/60/2008

NIBSC 13/234 Inactivated, partially purified
B/Brisbane/60/2008 virus (ca.
42µgHA/ml)

Influenza antigen B/
Massachusetts/02/2012

NIBSC 13/134 Inactivated, partially purified B/
Massachusetts/02/2012 virus (ca.
35µgHA/ml)

Serum-Tubes S-Monovette, Sardstedt 01.1601.100 For serum extraction with clotting
activator

Single Donor Human RBC, Type 0 Innovative Research IPLA-WB3 Suspension of single donor human
red blood cells in Alsever's solution
(ca. 26%)

Turkey RBC (10%) Cedarlane CLC1180 10% suspension of turkey red
blood cells in Alsever's solution

Phosphate Buffered Saline (PBS) Gibco

96

https://www.jove.com
https://www.jove.com
https://www.jove.com


5.5  IL-28B is a key regulator of B- and T-cell vaccine responses against 
influenza 

Adrian Egli1,2*, Deanna M. Santer2, Daire O’Shea2,3, Khaled Barakat2,4, 

Mohammedyaseen Syedbasha1, Madeleine Vollmer1, Aliyah Baluch5, Rakesh Bhat2, 

Jody Groenendyk6, Michael A. Joyce2, Luiz F. Lisboa2, Brad S. Thomas2, Manuel 

Battegay1,7, Nina Khanna1,7, Thomas Mueller8, D. Lorne J. Tyrrell2, Michael 

Houghton2, Atul Humar9¶, Deepali Kumar9¶ 

1 Infection Biology, Department of Biomedicine, University of Basel, Basel, 

Switzerland; 2 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, 

Canada; 3 Division of Infectious Diseases, University of Alberta, Edmonton, Canada; 
4 Faculty of Pharmacy, University of Alberta, Edmonton, Canada; 5 Division of 

Infectious Diseases, Moffitt Cancer Center, Tampa, United States of America; 6 

Department of Biochemistry, School of Translational Medicine, Faculty of Medicine & 

Dentistry, University of Alberta, Edmonton, Canada; 7 Division of Infectious Diseases 

and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland; 8 Division 

of Nephrology, University Hospital of Zurich, Zurich, Switzerland; 9 Department of 

Medicine and Multi-Organ Transplant Program, University Health Network, Toronto, 

Canada 

* Corresponding author: a.egli@usb.ch
¶ These authors are joint senior authors on this work.

Manuscript has been published in PLOS Pathogens, 2014; 11;10(12) 

doi: 10.1371/journal.ppat.1004556.  

Contribution of my work: 

Design and performance of in vitro ELISA experiments to screen antagonistic peptides 

to block the binding of IFN-λs to IL28RA. 

Figure 5C; Supplementary figure 5C and 5D 

Note: The following part contains the paper abstract/ summary 
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5.5.1..Abstract/Summary 
Influenza is a major cause of morbidity and mortality in immunosuppressed persons, 

and vaccination often confers insufficient protection. IL-28B, a member of the 

interferon (IFN)-l family, has variable expression due to single nucleotide 

polymorphisms (SNPs). While type-I IFNs are well known to modulate adaptive 

immunity, the impact of IL-28B on B- and T-cell vaccine responses is unclear. Here 

we demonstrate that the presence of the IL-28B TG/GG genotype (rs8099917, minor 

allele) was associated with increased seroconversion following influenza vaccination 

(OR 1.99 p = 0.038). Also, influenza A (H1N1)-stimulated T- and B-cells from minor-

allele carriers showed increased IL-4 production (4-fold) and HLA-DR expression, 

respectively. In vitro, recombinant IL-28B increased Th1-cytokines (e.g. IFN-γ), and 

suppressed Th2-cytokines (e.g. IL-4, IL-5, and IL-13), H1N1-stimulated B-cell 

proliferation (reduced 70%), and IgG-production (reduced.70%). Since IL28B 

inhibited B-cell responses, we designed antagonistic peptides to block the IL-28 

receptor a-subunit (IL28RA). In vitro, these peptides significantly suppressed binding 

of IFN-λs to IL28RA, increased H1N1-stimulated B-cell activation and IgG production 

in samples from healthy volunteers (2-fold) and from transplant patients previously 

unresponsive to vaccination (1.4-fold). Together, these findings identify IL-28B as a 

key regulator of the Th1/Th2 balance during influenza vaccination. Blockade of 

IL28RA offers a novel strategy to augment vaccine responses.
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Contribution of my work: 

Partly involved in the sample (PBMCs, EDTA Blood, Serum, Swabs) collection from 

HSCT patients and healthy controls after influenza vaccination (from season 2014-15 

and 2015-16), maintaining of electronic database, establish HIA and ELISA methods 

to measure the antibody titers. Partly measured the antibody titers of the collected 

samples for the computational modeling to predict the vaccine responders. 

Partly contributed to Figure 1A, 1B, 1C; Figure 2A, 2B, 2C  

Note: The following part contains the paper abstract/ summary 
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5.6.1  Abstract/ Summary 
Sequential models have been introduced by Tutz (1991) in categorical regression 

where response categories are reached successively step by step. Since then, 

sequential models have been successfully applied in social sciences, e.g. to model 

educational levels or career development. In biology and medicine, however, these 

models remain largely unknown. We propose that sequential models are a powerful 

tool for the regression of antibody titers – a commonly used outcome variable in 

vaccine trials. Antibody titers reflect a coarse-grained measure of antibody abundance 

in serum samples.  They are obtained from serial dilution experiments and correspond 

to the minimal dilution of antibodies that is still able to perform certain functions against 

viruses, e.g. virus neutralization or hemagglutination inhibition. However, the standard 

approach to link patient characteristics to antibody titer response is based on 

dichotomization: patients are classified in responders and non-responders according 

to conventional thresholds on the titer response. This loss of information is particularly 

problematic if the sample size is small. Motivated by our vaccination trial in an 

immunosuppressed patient population consisting of stem cell transplant recipients (n 

= 144), we performed a simulation study to investigate how the size of effects (e.g. 

immunosuppressive drugs, time after transplantation), sample size, and unexplained 

variability in antibody response affect the power of sequential models in comparison 

with conventional classification methods. We show that the conventional methods 

identify only large effects for a sample size like ours, while sequential models are also 

able to detect moderate effects and require much smaller sample sizes to identify 

small effects. To facilitate the evaluation and interpretation of sequential models, we 

provide the R package titer for performing simulation studies for balanced and 

unbalanced designs, varying effect size and varying unexplained variability modelled 

by random effects. In addition, it allows for sample size and power calculation to guide 

the design of vaccination trials. We hope to encourage the application of sequential 

models in regression of antibody titers, and their extension to data obtained from 

similar serial dilution experiments. 
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5.7.1  Abstract/ Summary 

Background: Immune checkpoint inhibiting antibodies were introduced into routine 

clinical practice for cancer patients. Checkpoint blockade has led to durable 

remissions in some patients, but may also induce immune-related adverse events 

(irAEs). Lung cancer patients show an increased risk for complications, when infected 

with influenza viruses. Therefore, vaccination is recommended. However, the efficacy 

and safety of influenza vaccination during checkpoint blockade and its influence on 

irAEs is unclear. Similarly, the influence of vaccinations on T cell-mediated immune 

reactions in patients during PD-1 blockade remains poorly defined. 

Methods: We vaccinated 23 lung cancer patients and 11 age-matched healthy 

controls using a trivalent inactivated influenza vaccine to investigate vaccine-induced 

immunity and safety during checkpoint blockade. 

Results: We did not observe significant differences between patients and healthy 

controls in vaccine-induced antibody titers against all three viral antigens. Influenza 

vaccination resulted in protective titers in more than 60% of patients/participants. In 

cancer patients, the post-vaccine frequency of irAEs was 52.2% with a median time to 

occurrence of 3.2 months after vaccination. Six of 23 patients (26.1%) showed severe 

grade 3/4 irAEs. This frequency of irAEs might be higher than the rate previously 

published in the literature and the rate observed in a non-study population at our 

institution (all grades 25.5%, grade 3/4 9.8%). 

Conclusions: Although this is a non-randomized trial with a limited number of 

patients, the increased rate of immunological toxicity is concerning. This finding should 

be studied in a larger patient population. 
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6  Discussion  
 
In this thesis, first, we developed sensitive in vitro ELISA assays to study the 

IFN-l ligands and receptor interaction. Second, there are discrepancies in published 

data about the expression of the IFN-l receptor in immune cells. The study of IFN-l 

signaling in immune cells is very challenging due to low level of receptor expression 

in immune cells compared to epithelial cells, and the lack of tools such as: specific 

antibodies to detect functional IFN-l receptor, and sensitive assays techniques. We 

established a highly sensitive phospho-flow cytometry and immunoblot assays to 

screen the specific responsiveness of various immune cells populations to IFN-l. 

Next, we used the combination of in vitro assays and advanced transcriptomics 

techniques to investigate the immune modulatory role of IFN-l in B-cells. 

 

6.1  In vitro ELISA assays to study IFN-l1, -l2, -l3 and the IFNLR1 interactions  
 

We have established two ELISA based assays: a direct ligand-receptor 

interaction assay and a competition ligand-receptor interaction assay to study IFN-ls 

and the receptor (IFNLR1) interactions 

 
First, we evaluated the binding affinities or disassociation constants (KD values) 

of IFN-l1-3 to IFNLR1 by direct ligand-receptor interaction assay. Our data indicates 

that IFN-l1 has a higher binding affinity (KD = 15.7 nM) for IFNLR1 compared to IFN-

l2 (KD = 19.3 nM) and IFN-l3 (KD = 64.7 nM). This is mainly due to the differences in 

IFN-ls amino acid sequences. IFN-l1 and IFN-l2 have 33 amino acids difference 

while IFN-l2 and IFN-l3 have only 7 amino acid difference 40. The helix A and the AB-

loop of IFN-l is involved in the interaction between IFN-l and IFNLR1 195.  The 

sequence alignment showed the significant differences in helix A and the AB-loop 

between IFN-l1 and IFN-l3. A strong salt bridge forms in the IFN-l1-IFNLR1 complex 

between Arg54 and Glu119 (Fig. 6-A), whereas in IFN-l3-IFNLR1 complex arginine 

is replaced by lysine 57, forming a less stable salt bridge between Lys-Glu (Fig. 6-B). 

This might be a reason why IFN-l1 shows higher affinity compared to IFN-l3 196-198. 

Since the amino acid sequence of helix A is identical in IFN-l2 and IFN-l3, the 

differences in helix A do not adequately explain the lower affinity of IFN-l3 compared 

to IFN-l2 for IFNLR1. It is thought that the main difference comes from changes in the 
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AB-loop, where Arg74 and His76 in IFN-l2 are replaced by Lys70 and Arg72 in IFN-

l3 40.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 6: Structural comparison of IFN-l1 (green) and IFN-l3 (blue).  A) Salt bridge between Arg54 

and D118. B) IFN-l3 aligned to IFNLR1-IFN-l1 complex (IFNLR1 is shown in grey). The alignment 

shows that the Arg-Glu salt bridge is replaced by a less stable Lys-Glu, a salt-bridge between Lys57 

and D118. Syedbasha M., et al, 2017, J Vis Exp, 1 (130).  

 

Next, we studied the competition of antagonistic peptides against the ligand-

receptor interaction assay at the receptor (IFNLR1) binding sites. Short 14-20 amino 

acid (aa) length peptides were generated to inhibit IFN-ls and the potential receptor 

interaction sites. The inhibitory activity of antagonistic peptides was described in Egli 

A et al, PLoS Pathog, 2014. The interaction specificity was examined with peptide 15, 

which mimics the AB-loop of IFN-l3. As mentioned before, the AB-loop plays an 

important role in the interaction of ligand and receptor, particularly in IFN-l2 and IFN-

l3 195. The peptide more effectively blocks IFN-l3 interactions to IFNLR1 than IFN-l1 

or IFN-l2, occupying the binding pocket of the AB-loop of IFN-l3 (peptide occupied 

region indicated in purple colour, Fig. 7). The amino acid alignment of peptide 15 and 

the AB-loop of IFN-ls shows the differences between each IFN-l (see below table): 

12 aa differ in IFN-l1 while only 2 aa differ in IFN-l2 (indicated in red colour). 

 

 

A B 
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Fig. 7: The alignment of IFN-l3 and the IFN-l1-IFNLR1 complex (IFN-l1 is not shown). IFN-l3 in 

blue and IFNLR1 in grey colour. The regions corresponding to the blocking peptide are highlighted in 

purple. Sequence alignment of IFN-l1-3 and inhibitory peptide with differing amino acids highlighted in 

red (in the right-side table). Syedbasha M., et al, 2017, J Vis Exp, 1 (130). 

 

The blockade of IFN-l signaling might be an interesting drug target for broad 

range of applications based on the immune modulatory functions. So, we have further 

performed the small molecules screen with an in vitro ELISA assay to identify the 

potential drug candidates to block the IFN-l ligand-receptor interaction. These small 

molecules were in silico predicted, which are specific for IFNLR1 binding pocket. A 

series of small molecules were blocked the binding of IFN-l ligand to IFNLR1 (Fig. 8). 

The small molecules compounds were further evaluated with cytokine release 

functional assay and MTT viability assay (data not shown in the thesis).  

 

 
Fig. 8: Screening of small molecules with competition ligand-receptor interaction: The selected 

small molecules are shown the blocking of IFN-l2 binding to IFNLR1. The IC50 inhibitory concentration 

of those selected small molecules are shown in the right-side table (data not published yet). 
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6.2  Responsiveness of immune cell populations to IFN-l  

In human immune cells, many conflicting data have been reported on the 

expression of IFNLR1. To resolve the discrepancies in the reported data, we 

performed extensive analysis to identify which immune cells directly respond to IFN-

l. We optimized a sensitive phospho-flow cytometry and immunoblot assays to 

measure IFN-a or IFN-l induced STAT1 phosphorylation.   

Our results showed that NK-cells, monocytes, CD3 (including CD4 and CD8) 

T-cells, and B-cells (including naïve, class switched and non-class switched memory

B-cells) all respond to IFN-a stimulation and expressed pSTAT1, indicating that the

receptor of IFN-a is expressed nearly by every cell type 75. In contrast, IFN-l did not

induce any STAT1 phosphorylation in NK-cells, monocytes and T-cells including CD4

and CD8+ T-cells. Previously, NK-cells were shown not to be directly affected by IFN-

l, rather being activated by IFN-l stimulated alveolar macrophages during influenza

infection 83,91. In addition, we observed pDCs strongly respond to IFN-l as previously

reported 88,89.

Next, the expression of IFNLR1 mRNA was described on B-cells 85,88.  We 

clearly showed that IFN-l directly induces STAT1 phosphorylation in total B-cells and 

its subtypes (naïve, non-class switched and class switched memory B-cells). Based 

on JAK inhibitor assay and MX1 measurement assay, we confirmed that IFN-l 

activates the classical JAK-STAT pathway to induce ISG expression in B-cells. 

Furthermore, IFN-l induced ISG expression increased over 72h, which suggests that 

IFN-l signaling is steady and prolonged compared to IFN-a signaling. The kinetic 

differences of both signaling pathways may be explained through specific feedback 

mechanisms 73,108,199. 

6.3  IFN-l increases mTORC1 activity in B-cells  

B-cell transcriptomics in response to IFN-l have been performed for the first

time, to explore the immune modulatory role of IFN-l in B-cells. The first evidence 

from gene set enrichment analysis indicates that the genes involved in mTORC1 

signaling are significantly upregulated by IFN-l in BCR-activated cells. This specific 
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IFN-l effect was previously unknown. The activated mTORC1 phosphorylates its two 

downstream targets S6K and 4E-BP1, by which mTORC1 elicits numerous biological 

functions 143,155,200. Our in vitro experiments showed that IFN-l increases the BCR 

induced phosphorylation of mTORC1, S6 and 4E-BP1. In addition, IFN-l prolongs S6 

phosphorylation over 16h; blocking IFN-l signaling using a JAK inhibitor (with 

ruxolitinib) specifically reduces the IFN-l induced enhancement of mTORC1 activity. 

Further blocking of PI3K (with wortmannin) confirms the engagement of mTORC1 by 

BCR and IFN-l receptor takes place via PI3K upstream. Similarly, IFN-a or IFN-g can 

engage the mTOR/p70 kinase axis to generate of IFN responses through mRNA 

translation of interferon-stimulated genes 201-203. However, it requires further 

evaluation to understand if IFN-l increase the mTORC1 indirectly via its ISGs. 

6.4  IFN-l enhances cell cycle/proliferation of the BCR-activated B-cells 

mTORC1 regulates cell proliferation and cell growth by modulating mRNA 

translation through the phosphorylation of its downstream targets 4E-BP1,2,3 and S6 

kinases 1, 2 159,204,205. As IFN-l increased mTORC1 activity, we investigated the effect 

of IFN-l on B-cell proliferation or cell cycle progress. IFN-l increased the expression 

of Ki-67 up to 2-fold in the BCR-activated state, the expression of Ki-67 actively 

increases during the S phase of cell cycle progression 204,206. Similarly, IFN-l 

increased the proliferation of BCR-activated B-cells. However, IFN-l alone did not 

induce any proliferation. Additionally, hallmark gene set enrichment and Gene 

Ontology (GO) analysis signified that IFN-l amplifies the expression of gene sets 

involved in G2M, E2F and other cell cycle related biological process in BCR-activated 

cells. Overall, our data suggest that IFN-l enhances cell cycle progress by increasing 

mTORC1 activation. Because mTORC1/S6 axis plays an important role in cell cycle 

progression, it is shown that IFN-g can mediate vesicular smooth cell proliferation in 

association with mTORC1/S6 phosphorylation; further blocking of mTORC1 with 

rapamycin was able to suppress the IFN-g induced outcome 201,203. 
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6.5  IFN-l boosts naïve B-cells into plasmablasts differentiation through 
mTORC1  
 

 Activation of mTORC1 signaling and cell cycle progression can promote 

cellular differentiation. The mTORC1 pathway is known to be involved in immune cell 

differentiation 207,208. Our data showed that BCR-activation of naïve B-cells with IFN-l 

greatly upregulates the expression of transcription factors such as IRF4 and PRDM1, 

which are essential for plasmablast differentiation.  In addition, we observed changes 

in phenotypic markers (increase of CD38, CD71) and gaining effector functions like 

cytokine (IL-6, IL-10) and antibody (IgM) release. Overall, observations suggest that 

IFN-l enhances the process of plasmablast differentiation.  Further inhibition of PI3K 

or mTORC1 completely blocked IgM release, whereas inhibition of IFN-l signaling 

blocked only IFN-l induced boost of IgM release, independently of BCR response. 

This indicates that IFN-l boosts the differentiation of naïve B-cells into IgM releasing 

plasmablasts by enhancing the mTORC1 pathway.  

 
6.6 Overall conclusion 
 

Taken together, in my thesis, the different binding affinities of IFN-l1-3 to 

IFNLR1 and screening of blocking peptides to compete the binding of IFN-l1-3 to 

IFNLR1 have been described. We have shown that B-cells and subtypes (naïve and 

non-class switch and class switch memory B-cells) directly respond to IFN-l and 

activate the JAK-STAT pathway to induce ISG expression. Next, our work 

demonstrated how IFN-l boosts naïve B-cells into plasmablast differentiation by 

enhancing the mTORC1 pathway and cell cycle progression in activated B-cells, which 

is a previously unknown immune modulatory role of IFN-l.  

 
The following schematic figure describes our working model (Fig. 9). These 

findings are particularly relevant for understanding the molecular mechanisms behind 

the immune modulatory function of IFN-l signaling in B-cells. It may allow the 

optimization of strategies to target the immune cells involved in autoimmunity and 

infectious disease treatment and improve vaccine efficacy. 
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Fig. 9: IFN-l synergizes with BCR signaling through the mTORC1 pathway
Schematic diagram demonstrates how IFN-l and BCR signaling engage the mTORC1 axis to boost

cell proliferation and differentiation of naïve B-cells into plasmablasts.
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7  Outlook 

To understand the role of IFN-l in adaptive immunity 

Future studies show focus on the mechanistic role of IFN-l in adaptive 

immunity. In this thesis, we have shown the direct immune modulatory role of IFN-l in 

human B-cells in vitro. In the mouse system, B-cells do not directly respond to IFN-l, 

though IFN-l indirectly triggers a GC reaction and enhances the antibody production 

through a thymic stromal lymphopoietin (TSLP) dependent mechanism 139. Another 

mouse study described how an IFN-l adjuvanted HIV vaccination lowers the number 

of regulatory T-cells and reduces Th2 cytokine IL-4 production; however, IFN-l 

adjuvanted HIV vaccination increases IgG2a response compared to IL-12 adjuvanted 

vaccine 140. In humans, IFN-l augments the TLR mediated B-cell functions in vitro 85. 

On the other hand, IFN-l modulates Th1/Th2 balance and shifts the balance towards 

Th1 response 93,136,138. In a human influenza vaccination cohort study, IFN-l3 SNP 

rs8099917 TT allele correlated with high IFN-l3 expression and a lower 

seroconversion rate. Also in vitro recombinant IFN-l3 was found to increase Th1 

cytokines (IFN-g) and suppress Th2 cytokines (IL-4, IL-5 and IL-13) from H1N1 primed 

PBMCs, further it reduces the B-cell antibody production 93. Overall, these 

observations from mouse and human suggest that the role of IFN-l in adaptive 

immunity seems to be substantially different and context dependent. In such a 

complex setting, systematic studies of the human IFN-l system is very a challenge, 

as controlled experiments cannot be transferred to animal models. Nevertheless, it will 

be tremendously important to further study the mechanistic role of IFN-l in adaptive 

immunity. Especially how IFN-l affects B-cells mechanistically during the complex 

interaction with migratory dendritic cells and T-cells in humans. To continue this 

evaluation, humanized mouse models may lead the path to even more profound 

insights. 
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To understand the extended role of IFN-l in infectious diseases 

In a series of infectious diseases IFN-l plays an important role. One more 

recent discovery focuses on Plasmodium spp. The important role of IFN-a/b in 

Plasmodium spp infection has been explored 209-213. In this thesis, we showed that 

IFN-l enhances the differentiation of naïve or memory B-cells into plasmablasts and 

increases IgM release in vitro. In mice, Plasmodium specific IgM+ memory B-cells 

rapidly react and release somatically hyper mutated immunoglobulins IgM+ (IgM+) 

and provide early response during secondary plasmodium re-challenge 214. It may be 

noteworthy to examine the role of IFN-l in the host’s IgM response to Plasmodium 

infection (and to other pathogens). 

To understand the impact of IFN-l signaling in SLE disease 

B-cells play a major role in autoimmunity. The role IFN-l signaling in

autoimmune diseases is not clearly understood and should be examined, especially 

in hyperactive B-cell in systemic lupus erythematosus (SLE) patients. IFN-l signaling 

might be a potential target for controlling mTOR activity. As the level of p-mTORC1 in 

CD19+ B-cells positively correlated with the amount of peripheral plasmablasts and 

SLE disease activity score index 215. Therefore, modulation of the IFN-l signaling 

pathway may be an interesting target for selected auto-immune diseases such as SLE. 
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