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Abstract   

  

Early intervention strategies in psychosis would significantly benefit from the 

identification of reliable prognostic biomarkers. Pattern classification methods have 

shown the feasibility of an early diagnosis of psychosis onset both in clinical and familial 

high-risk populations. Here we were interested in replicating our previous classification 

findings using an independent cohort at clinical high risk for psychosis, drawn from the 

prospective FePsy (Fruherkennung von Psychosen) study. The same neuroanatomical-

based pattern classification pipeline, consisting of a linear Support Vector Machine 

(SVM) and a Recursive Feature Selection (RFE) achieved 74% accuracy in predicting 

later onset of psychosis. The discriminative neuroanatomical pattern underlying this 
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finding consisted of many brain areas across all four lobes and the cerebellum. These 

results provide proof-of-concept that the early diagnosis of psychosis is feasible using 

neuroanatomical-based pattern recognition. 

 

 

1. Introduction  

Over the past 10 years, the target of early intervention strategies has shifted from the 

early diagnosis of first episode of psychosis (Perkins et al. 2005, Marshall et al. 2005) 

towards the early identification and treatment of individuals exhibiting early signs of 

psychosis. Early detection and intervention centres, such as the Personal Assessment and 

Crisis Evaluation (PACE) in Australia (Yung et al. 1996), the Prevention through Risk 

Identification, Management and Education (PRIME) in the United States (McGlashan et 

al. 2003), and the Outreach and Support in South London (OASIS) clinic (Fusar-Poli et 

al. 2013) have been set up worldwide, aiming to provide case management and 

provisional treatment for individuals presenting with sub-threshold psychotic symptoms 

and/or a decline in functioning. Individuals with this clinical presentation are considered 

at increased risk for developing psychosis and are named as ultra high-risk (UHR) 

individuals or at an at-risk mental state (ARMS). 

The rationale for an ARMS stems from observations that psychosis and schizophrenia 

begin many years before the emergence of frank, psychotic symptoms, with nonspecific 

changes, perceptual alterations and often attenuated or transient psychotic disturbances 

(Riecher-Rössler et al. 2006). Currently, the identification of an ARMS relies on 

operationalized criteria that are based on a combination of trait and state risk factors 

(Yung et al. 2008, Yung et al. 1998). The predictive validity of these operationalized 

tools is however low, as transition rates show significant variation across clinical HR 

sites and recent studies reported a decline in the transition risk (Yung et al. 2007).   

Reliable prognostic biomarkers could complement current assessment tools and also aid 

in improving the prediction of conversion and reducing the number of false positives. A 

series of putative biomarkers have been recently identified, suggesting that the ARMS is 

characterized by abnormalities in the neurocognitive domain (Lencz et al. 2006, Fusar-
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Poli et al. 2012a, Koutsouleris et al. 2012a) and alterations at the neuroanatomical (Fusar-

Poli et al. 2011, Smieskova et al. 2010, Mechelli et al. 2011, Dazzan et al. 2012) and 

neurofunctional level (Fusar-Poli et al. 2007). Conversion to psychosis in ARMS subjects 

has been associated with reduced grey matter volume in the prefrontal and temporal 

cortices and other subcortical brain structures (Smieskova et al. 2010, Borgwardt et al. 

2007a, Borgwardt et al. 2007b, Borgwardt et al. 2008, Pantelis et al. 2003, Koutsouleris et al. 

2009, Mechelli et al. 2011, Dazzan et al. 2012, Fusar-Poli et al. 2011). 

Recently, multivariate pattern recognition approaches, including SVM, have provided 

important leads towards the translation of neuroimaging findings into clinical practice, by 

taking into account inter-regional correlations between brain regions and working at the 

single-subject level (Orru et al. 2012, Zarogianni et al. 2013). These methods may thus 

provide the means for an individualized risk assessment and prediction of psychosis 

conversion and possibly deliver increased sensitivity and specificity, both of which are 

essential for informing individualized prevention care (Phillips et al. 2006).  

Previous machine learning studies have shown that a neuroanatomical-based prediction 

of psychosis is possible at the single-subject level (Koutsouleris et al. 2009, Borgwardt et 

al. 2013), providing diagnostic accuracy up to 85% (Koutsouleris et al. 2012b, 

Koutsouleris et al. 2015). Based on our previous study (Zarogianni et al. 2016), we have 

shown that a linear MRI-based SVM classifier can predict with significant accuracy the 

later transition to schizophrenia in a cohort of familial high-risk individuals. Here, we 

aimed to examine the generalizability of our classification method in predicting transition 

to psychosis using baseline structural MRI data from an independent cohort of subjects 

with an ARMS.  

 

 

2 Materials and Methods 

 

2.1 Subjects 

 

Subjects included in this analysis were part of the prospective, early psychosis, FePsy 
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(Fruherkennung von Psychosen) study. Recruitment and screening strategies have been 

described in detail previously (Riecher-Rössler et al. 2006, Riecher-Rössler et al. 2007). 

Briefly, subjects were recruited through a specialized clinic for the early detection of 

psychosis at the Psychiatric Outpatient Department, University Hospital in Basel, 

Switzerland. All aspects of the study were approved by the Ethics Committee of Basel 

and written informed consent was obtained from each participant before study inclusion. 

Subjects were initially screened using the Basel Screening Instrument for Psychosis 

(BSIP, Riecher-Rössler et al. 2008), which is a 46-item checklist based on variables 

reported as risk factors or predictors of psychosis (Riecher-Rössler et al. 2006, Riecher-

Rössler et al. 2007). For psychosis items, the Brief Psychiatric Rating Scale (BPRS; 

expanded version (Ventura et al. 1993)) for assessing (pre)-psychotic phenomena were 

incorporated. The BSIP allows the rating of individuals regarding the inclusion/exclusion 

criteria, corresponding to the PACE criteria (Yung et al. 1998), and has been shown to have a 

good interrater reliability ( = .67) for the assessment of the main outcome category "at risk 

for psychosis" and a high predictability (Riecher-Rössler et al. 2008).  

Subjects were identified as at an ARMS if they manifested one (or more) of the following 

criteria, corresponding to the widely used PACE criteria (Yung et al. 1998): i) presence 

of attenuated psychotic-like symptoms (APS), ii) brief limited intermittent psychotic 

symptoms (BLIPS) or iii) a genetic risk of psycosis plus at least 2 further risk factors 

according to the BSIP checklist. Table 1 provides a detailed description of the inclusion 

requirements of the ARMS group.  

Additionally, negative symptomatology was assessed using the Scale for the Assessment of 

Negative Symptoms (SANS; Andreasen 1989), in combination with the BSIP. Briefly, the 

SANS assessment is a well-recognised rating scale that consists of 19 items assessing 

negative symptoms of psychosis, which are further grouped into five domains (affective 

flattening, alogia, avolition-apathy, anhedonia-asociality, and inattention). Exclusion criteria 

included age below 18 years, insufficient knowledge of German, IQ <70, previous 

episodes of schizophrenic psychosis (treated with major tranquillizers for more than 3 

weeks), a clearly diagnosed brain disease or substance dependency (except for cannabis 

dependency), or psychotic symptoms within a clearly diagnosed depression or borderline 
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personality disorder. 

Study inclusion started in March 2000 and continued until February 2004. Individuals 

were followed up at monthly intervals during the first year, at 3-month intervals during 

the second and third year and annually thereafter until transition to psychosis was 

established or until the end of the follow-up period (2007). In general, all ARMS subjects 

were followed up for over 4 years during which they were also offered supportive 

counselling and clinical management. 

In total, 37 ARMS individuals were recruited. Thirty of the 37 ARMS individuals never 

received antipsychotic medication while 7 participants were administered low doses of 

antipsychotic medication for behavioural control (2 participants on olanzapine, 2 

Chlorprothixene and 3 risperidone) prior to study inclusion, all for less than 3 weeks. 

Matched groups of healthy controls and first-episode patients were recruited as well. In 

short, 22 healthy controls (HC) with no history of any psychiatric disorder and 25 first-

episode (FE) individuals, who met operationalized criteria for first-episode psychosis as 

described in Yung et al. 1998, were recruited.  

Transition to psychosis was operationally defined by meeting PACE criteria (Yung et al. 

1998 - Table 1) and further determined by a diagnostic interview using the ICD-10 

criteria at the time of transition. Follow-up information for 2 ARMS subjects was not 

available. In this regard, 16 of the 35 ARMS individuals with retained follow-up 

information made a transition to psychosis (ARMS-T) and 19 did not convert (ARMS-

NT).  

 

Here, we were interested in contrasting the ARMS group that converted to psychosis 

(ARMS-T) against the ARMS group that did not (ARMS-NT; Table 2). 
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2.2 Image Acquisition and Preprocessing 

 

Subjects were scanned using a Siemens (Erlangen, Germany) Magnetom Vision 1.5 T 

scanner at the University Hospital Basel. Head movement was minimized by foam 

padding and velcro straps across the forehead and chin. A three-dimensional volumetric 

spoiled gradient recalled echo sequence generated 176 contiguous, 1 mm thick sagittal 

slices. Imaging parameters were: time-to-echo, 4 msec; time-to-repetition, 9.7 msec; flip 

angle, 12; matrix size, 200 x 256; field of view, 25.6 x 25.6 cm matrix; voxel dimensions, 

1.28 x 1 x 1 mm. 

Standard VBM procedures (Ashburner and Friston, 2000) were followed using SPM5 

(http://www.fil.ion.ucl.ac.uk/spm/). Study-specific templates and customized prior 

probability maps were constructed using data from all study groupds in order to represent 

the entire study population and therefore minimise bias for spatial normalization. The 

scans were normalised to the generic SPM T1 template using 12-point linear affine 

transformation to minimise the residual sum of squares differences between the images 

and the template. A study-specific T1 template was created from the mean image 

calculated from all the normalised T1 images and smoothed at 8-mm full-width at half 

maximum (FWHM). To generate study-specific brain tissue a priori maps, the normalized 

images were segmented and then mean images for the normalized GM, WM and CSF 

segments were produced and finally smoothed at 8-mm full-width at half maximum 

(FWHM). 

Then, the baseline T1 scans entered the same pre-processing pipeline, described 

previously (Zarogianni et al. 2016). Briefly, T1 brain scans were segmented in native 

space into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) and 

study-specific images for GM, WM and CSF, after which the SPM brain extraction 

function returned a tissue mask for each scan. These masks were, then, applied to the 

original T1 images to remove non-brain tissue. T1 brain images were, then, spatially 

normalized to the study-specific T1 template, using a 12-parameter linear affine 

transformation. Bilinear interpolation was used to resample the normalized images and 

write MNI-normalized images into the stereotactic space at a 1 × 1 × 1 mm voxel 

http://www.fil.ion.ucl.ac.uk/spm/
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resolution. Normalized images were again segmented using study-specific a priori 

templates and spatially normalized segments for GM, WM and CFS were returned. 

Finally, the spatially normalized, segmented imageswere smoothedwith an 8mmfull-

width at maximum (FWHM) isotropic Gaussian kernel. 

 

2.3 Multivariate Pattern Classification Analysis 

2.3.1 Support Vector Machine 

The SVM is a multivariate pattern recognition technique that has been widely used in 

neuroimaging-based studies because it can provide optimal decision rules for 

classification. Here, a linear SVM classifier was used for the classification task because it 

allows the straightforward extraction of the corresponding discrimination map. A detailed 

description of the SVM was given in our previous work (Zarogianni et al. 2016). 

2.3.2 Feature Extraction 

Prior to SVM, all smoothed and normalized GM maps were mapped to the Automated 

Anatomical Labeling (AAL) brain atlas (Tzourio-Mazoyer et al., 2002) and GM density 

volumes corresponding to the 116 brain regions of the template were returned. Features 

in the training set were also scaled to the [0 1] template before applying the same 

normalization template to the testing set. 

2.3.3 Recursive Feature Elimination 

To identify the most significant features in the classification task and simultaneously 

increase classification performance, the recursive feature elimination (RFE) method 

(Guyon et al., 2002) was embedded in a nested leave-one-out cross-validation (LOO-

CV), as described in Figure 1 and previously (Zarogianni et al. 2016).  

2.3.4 Permutation testing 

Permutation testing was performed in order to derive a p value for the accuracy of our 

classifier. We permuted the class labels 1000 times (randomly assigning patient and 

control labels to the training subjects) and repeated the entire nested LOO-CV procedure. 
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We then calculated the number of times in which the specificity (percentage of true 

negative) and sensitivity (percentage of true positive) for the permuted labels were higher 

than those obtained for the real labels. Dividing this number by 1000 we derived a p 

value for the classification accuracies. 

 

2.3.5 Discrimination map 

 

A discrimination map was again generated based on the weight coefficients of the 

features that were selected by the RFE method (Figure 2). The discrimination map 

consists of brain regions that according to the RFE methodology are the most distinctive 

in the classification task and provides a spatial representation of the decision function in 

that every feature contributes with a certain weight to this function (or hyperplane). The 

SVM weight vector is a linear combination or weighted average of the support vectors 

and defines the decision boundary. The weight vector is therefore a spatial representation 

of the decision boundary. Every feature contributes with a certain weight to the decision 

boundary or classification function. Given a positive and a negative class (+1=ARMS-T; 

-1=ARMS-NT group), a positive weight means the weighted average in that region was 

higher for the ARMS-T group, and a negative weight means the weighted average was 

higher for ARMS-NT group. Since the SVM classifier is multivariate by nature, it should 

be noted that all brain regions constituting the decision function contribute to the 

classification. 

 

 

3 Results 

 

3.1. Socio-demographic and clinical findings 

 

The rate of conversion to psychosis was 45.7 % in this ARMS sample of 35 subjects. The 

mean interval between the baseline scan and disease conversion was 306 days (median: 

263, range: 25–1137 days). There were no significant differences between converters and 

non-converters to psychosis with regards to age, gender, educational level, verbal IQ, 

cannabis use at study entry, baseline global BPRS and SANS scores (Table 2). However, 
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there was a significant difference in the two groups in the use of antipsychotics, with 6 

ARMS-T subjects and 1 AMRS-NT having taken neuroleptics some time before study 

inclusion (Table 2).  

 

3.2 SVM classification analysis 

 

The application of our LOO-CV SVM-RFE methodology to baseline structural MRI data 

of the ARMS groups achieved 74% accuracy in predicting conversion to psychosis 

(Table 3). Six out of 16 subjects in the ARMS-T group were wrongly classified as 

ARMS-NT, while only 3 out of 19 subjects in the ARMS-NT group were incorrectly 

labeled as ARMS-T (sensitivity/specificity: 63%/84%; PPV/NPV: 77%/73%; 

permutation test p=0.002).  

The likelihood ratio of a positive test result was LR+= 3.95 (Table 6.3), meaning that a 

positive prognostic test in a given ARMS subject would increase the probability of a 

subsequent transition to psychosis from 45.7% to 77% (posttest probability=posttest 

odds/posttest odds+1, posttest odds=pretest odds*LR+).  

The misclassified ARMS-NT subjects did not significantly differ from the correctly 

classified ARMS-NT in any of the socio-demographic or clinical variables (Table 4). On 

the contrary, the misclassified ARMS-T subjects were significantly different from the 

correctly classified ARMS-T individuals in terms of gender distribution and use of 

antipsychotic medication before study entry (Table 4). This may partly explain the lower 

sensitivity of the SVM-RFE method, since the ARMS-T group consisted of a more 

inhomogenous group of individuals with regards to anti-psychotic medication, which in 

turn might have hindered the identification of a common neuroanatomical signature 

across subjects in this group. The effect of antipsychotic medication in brain structure is 

widely acknowledged by the scientific community (Smieskova et al. 2009, Navari and 

Dazzan 2009), and might have played a major role in the classification of the ARMS 

subjects here, despite the fact the exposure was before study entry and relatively brief. 
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The spatially distributed network that discriminated between the two groups was quite 

extensive and consisted of GM abnormalities in a spatially distributed network covering 

all four lobes and the cerebellum. Table 5 presents the most discriminating regions in the 

classification task, namely the brain regions with the highest (absolute) weight value that 

contributed relatively higher to the decision function. Specifically, the regions that 

contributed more in the classification of the ARMS-T subjects included the cerebellum, 

parts of the superior temporal pole bilaterally, the right anterior cingulate cortex, the right 

superior medial frontal and left orbitofrontal cortex and the insula bilaterally, whereas 

regions with a higher weighted average for the ARMS-NT group consisted of the right 

inferior parietal lobe, right medial temporal lobe, the right orbitofrontal cortex and the 

left pallidum. 

A discrimination map showing the spatial pattern by which the groups differ is also 

illustrated in Figure 2. We emphasize that this spatially distributed pattern should not be 

interpreted as a statistical map, but rather as a spatial representation of the decision 

boundary. 

 

 

4 Discussion 

 

The present findings replicate our previous ones in that MRI-based classification methods 

were able to predict transition to psychosis in subjects at high clinical risk for developing 

the disorder using neuroanatomical data at study inclusion. The SVM-RFE classifier 

achieved 74% accuracy in classifying ARMS-T against ARMS-NT subjects.  

The neuroanatomical decision function that discriminated the two groups was associated 

with GM abnormalities relying on a distributed network of regions covering most cortical 

and sub-cortical brain structures and the cerebellum. Our present findings agree with 

findings from a recent voxel-based meta-analysis that reported GM volume reductions in 

subjects that convert to psychosis in the insular and superior temporal lobe cortices 

(Fusar-Poli et al. 2011) and also with previous VBM findings on the same dataset 

 



11 

 

(Borgardt et al. 2007a).  

Despite being significant, our classification accuracy here is lower than the accuracy 

observed in our familial high-risk group (Zarogianni et al. 2016) where the same 

classification pipeline was used. Additionally, previous studies using the same ARMS 

cohort achieved higher classification performances than reported accuracies here 

(Koutsouleris et al. 2012b, Koutsouleris et al. 2015). 

In the studies conducted by Koutsouleris and colleagues, (2012a and 2015), their MRI-

based classifier achieved 84.2% and 75% accuracy respectively, in correctly classifying 

ARMS-T against ARMS-NT individuals drawn from the FePsy study. Differences in the 

observed classification accuracies may be partly explained by differences in the 

preprocessing of the MRI scans (where RAVENS maps and the VBM 8 toolbox were 

used) and partly by the chosen implementation of the SVM classifier, which relied upon 

the construction of SVM ensembles that incorporated feature selection, model training 

and predictive learning wrapped together in a repeated nested cross-validation 

framework. Ensemble learning approaches are usually selected on the basis that they can 

achieve higher predictive performance than single classifiers, by combining multiple 

weak learning models that decide upon the classification of a new instance through 

majority voting (Polikar 2006).  

Compared to the diagnostic performance of our classifier in the familial high-risk cohort 

of the Edinburgh High Risk Study, the classification performance in the ARMS groups of 

the FePsy study was notably lower, contrary to what would be expected since the ARMS 

groups represent help-seeking individuals, most of whom already manifest putative 

transient and/or sub-threshold psychotic symptoms. Interestingly, 5 out of the 6 ARMS-T 

subjects that were misclassified received anti-psychotic medication some time before 

study inclusion (Table 4) while the other misclassified ARMS-T subject was prescribed 

tranquilizers (Lorazepam). Many studies have reported the effect of antipsychotic 

medication on grey matter volume in the direction of significant regional reductions 

(Navari and Dazzan 2009, Smieskova et al. 2009), thus possibly suggesting a 

neuroanatomical heterogeneity expressed with divergent pathophysiological trajectories 

https://en.wikipedia.org/wiki/Lorazepam
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between subjects receiving and subjects not receiving any anti-psychotic treatment.  

Despite the lower diagnostic performance, our MRI-based classifier managed to increase 

the diagnostic certainty from 45.7% to 77% in case of a positive test result, suggesting 

that an MRI-based pattern classification system could, with refinement, become a useful 

part of a multi-step diagnostic procedure that would reliably quantify the risk for 

conversion to psychosis and inform appropriate care and treatment strategies.  

Certain limitations of this study have to be considered. Again the sample size in this 

investigation is small. The rate of transition to psychosis amounted to nearly 46%, which 

is generally in keeping with other clinically at-risk cohorts (Koutsouleris et al. 2009, 

Yung et al. 2003, Klosterkotter et al. 2001). However, it is not clear how the classifier 

would perform if presented with an ARMS cohort with significantly lower conversion 

rates. Finally, the administration of antipsychotic and antidepressant medication might 

have confounded our results, despite the fact that any drug treatment was administered 

before study inclusion.  
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Figure 1. Representation of the nested LOO-CV SMV-RFE method. We employed a nested 

LOO-CV where we repeatedly excluded one subject to comprise the testing set and the remaining 

subjects were again repeatedly repartitioned in an internal validation loop where one subject was 

left out for validation and the rest formed the internal training group. In this loop, RFE was 

repeatedly performed and the mean accuracy on the validation group at each elimination level 

was recorded until all features were removed. The feature set that produced the maximum 

accuracy on the validation set was selected and applied to the testing set of the outer testing loop. 

Finally, mean accuracy was calculated across all outer CV loops. 

 

 

Figure 2. Discrimination maps for the classification of ARMS-T vs ARMS-NT. The colours 

represent the weight of each feature in the classification function (the red scale represents positive 

weights and the blue scale represents negative weights). The SVM weight vector is a linear 

combination or weighted average of the support vectors and defines the decision boundary. The 

weight vector is therefore a spatial representation of the decision boundary. Every feature 

contributes with a certain weight to the decision boundary or classification function. Given a 

positive and a negative class (+1=ARMS-T; -1=ARMS-NT group), a positive weight means the 

weighted average in that region was higher for the ARMS-T group, and a negative weight means 

the weighted average was higher for ARMS-NT group. Note: features correspond to GM volume 

measures in the AAL-defined brain regions, and not voxels. 
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Table 1. ARMS inclusion and transition to psychosis criteria. 
 

 

ARMS Inclusion criteria 

 

Inclusion into the study was based on the BSIP checklist and required one or more of the 

following: 

1. Attenuated psychotic-like symptoms: at least several times a week and for more 

than 1 week duration (a score of 2 or 3 on the Brief Psychiatric Rating Scale 

(BPRS) 

2. Brief limited intermittent psychotic symptoms (BLIPS): scores of 4 or above on 

the hallucination item or 5 or above on the unusual thought content, 

suspiciousness, or conceptual disorganization items of the BPRS, with each 

symptom lasting less than 1 week before resolving spontaneously 

3. Genetic risk: a first or second-degree relative with a psychotic disorder plus at 

least 2 further risk factors for or indicators of beginning psychosis according to 

the BSIP screening instrument. 

 

Criteria for transition to psychosis 

1. BPRS scores of 4 or above on the hallucination item or scores of 5 or above on 

the unusual thought content, suspiciousness, or conceptual disorganization items  

2. Symptoms had to occur daily and persist for more than 1 week. 

 

 

BSIP, Basel Screening Instrument for Psychosis; BPRS, Brief Psychiatric Rating 

Scale 
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Table 2. Socio-demographic and clinical information of the ARMS-T and ARMS-NT 

study groups 

           Study Groups   
  

ARMS-T ARMS-NT          P  

    Socio-demographic variables    

N 16 19  

Mean age at baseline, y (sd) 26.8 (6.5) 23.9 (6.2)        ns
a
 

Sex (male), n (%) 11 (69) 10 (52)        ns
b
 

Educational level          ns
b
 

     <9 y, n (%) 3 8  

        9-11 y, n (%) 7 7  

         12-13 y, n (%) 5 2  

      <13 y, n (%) 1 2  

Mean verbal IQ (MWT-B) (sd) 109.6 (12.6) 107.3(15.4)       ns
a
 

Cannabis use at baseline         ns
b
 

none 10 11  

rarely 1 1  

   Several times/month 0 2  

  Several times/week 4 0  

daily 1 5  

Antipsychotics before entry, n (%) 6 (37.5) 1 (5)      <0.05
b
 

Antidepressants at baseline, n (%) 7 (44) 5 (26)        ns
b
 

Family History          ns
b
 

No relative 15 16  

One 1rst degree 1 2  

One 2
nd

 degree 0 1  

   Clinical variables    

Mean BPRS total score at baseline (sd) 42.3(10.6) 35.7 (7.1)        ns
c
 

Mean SANS global score at         

baseline (sd) 9.75(5.8) 7.7(4.2)        ns
c
 

Mean interval between MRI and 

disease onset, d (sd)              306.3 (318.3) na  

 

ARMS-T: at-risk mental state individuals that later developed psychosis; ARMS-NT: at-

risk mental state subjects that did not make a transition. BPRS: the Brief Psychiatric 

Rating Scale; SANS: the Scale for the Assessment of Negative Symptoms. Verbal IQ 

Mehrfach-Wortwahl-Test-B 
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a
 Student’s T-test.  

b
 Fisher’s exact test. 

c 
 Mann-Whitney U-test 

 

 

 

 

 

 

 

 

 
Table 3. Classification performance 

 TP TN FP FN Sens 

(%) 

Spec 

(%) 

BAC 

(%) 

FPR 

(%) 

PPV 

(%) 

NPV 

(%) 

LR+/LR- 

ARMS-T vs 

ARMS-NT 

 

10 

 

16 

 

3 

 

6 

 

62.5 

 

84.2 

 

74.2 

 

15.7 

 

77 

 

73 

 

3.9/0.45 

The diagnostic performance was evaluated by means of sensitivity (Sens), specificity (Spec), 

balanced accuracy (BAC), false positive rate (FPR) and positive/negative predictive value 

(PPV/NPV). LR+ was also calculated as sensitivity/1-specificity and LR- = 1-

sensitivity/specificity. 
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Table 4. Misclassification analysis 

 

 
a
 Student’s T-test.  

b
 Fisher’s exact test. 

c 
 Mann-Whitney U-test 

 

 

 

 

 

 

 

 

 ARMS-T → 

ARMS-NT 
ARMS-T → 

ARMS-T 
P ARMS-NT → 

ARMS-T 
ARMS-NT → 

ARMS-NT 
P 

Socio-demographic 

variables 
      

N 6 10  3 16  

Mean age at baseline, y 

(sd) 

29.2(9) 25.4(4.5) ns
a
 24.8(7.2) 23.8(6.2) ns

a
 

Sex (male), n (%) 2(33) 9(90) <0.05
b
 1 (33) 9(56) ns

b
 

Educational level   ns
c
   ns

c
 

<9 y, n (%) 1 2  2 6  

9-11 y, n (%) 2 5  1 6  

12-13 y, n (%) 2 3  0 2  

<13 y, n (%) 1 0  0 2  

Cannabis use at baseline   ns
c
   ns

c
 

none 4 6  2 9  

rarely 1 0  0 1  

Several times/month 0 0  1 1  

Several times/week 1 3  0 0  

daily 0 1  0 5  

Antipsychotics before 

entry 

5 1 <0.05
b
 0 1 ns

b
 

Anti-depressants at 

baseline 

3 4 ns
b
 2 3 ns

b
 

Clinical variables       

Mean BPRS total score 

at baseline (sd) 

45.7(11.5) 40.2(10.2) ns
c
 38.3(12.9) 37.5(6.2) ns

c
 

Mean SANS global 

score at baseline (sd) 

9.7(7.7) 9.8(4.8) ns
c
 10.3(5) 6.3(4.7) ns

c
 

Mean interval between 

MRI and disease onset, 

d (sd) 

427.5(483.6) 245.7(215.3) ns
a
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Table 5. List of the most discriminative regions for the classification of ARMS-T vs 

ARMS-NT. 

 

Lobe 

 

Region/Hemisphere 

 
w 

 

Negative weights   

Cerebellum   

 Cerebellum_Crus2_R -0.0128 

 Cerebellum_3_R -0.0194 

 Cerebellum_4_5_R -0.0207 

 Cerebellum_6_L -0.0127 

 Cerebellum_7b_R -0.0146 

 Cerebellum_10_L -0.0247 

 Vermis_8 -0.0147 

Temporal   

 Temporal_Sup_R -0.0067 

 Temporal_Pole_Sup_L -0.0084 

 Temporal_Mid_L -0.0075 

Frontal   

 Frontal_Sup_L -0.0197 

 Frontal_Sup_Orb_L -0.0166 

 Frontal_Mid_R -0.0089 

 Frontal_Inf_Tri_R -0.0106 

 Frontal_Sup_Medial_R -0.0084 

 Frontal_Med_Orb_R -0.0098 

 Precentral_R -0.0176 

Parietal   

 Postcentral_R -0.0102 

 Paracentral_Lobule_R -0.012 

Limbic   

 Cingulum_Ant_R -0.017 

 Cingulum_Post_L -0.0081 

Basal ganglia   

 Putamen_R -0.0172 

Perisylvian   

 Insula_L -0.0134 

 Insula_R -0.0206 

Positive weights   

Temporal   

 Temporal_Mid_R 0.0069 

 Heschl_R 0.0069 

Frontal   

 Frontal_Sup_Orb_R 0.0101 

Parietal   

 Parietal_Inf_R 0.0137 

Basal ganglia   
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 Pallidum_L 0.0072 

 
Ant, anterior; Crus, crust; Inf, inferior; L, left hemisphere; Mid, middle; Med, medial; Orb, 

orbital; Post, posterior; R, right hemisphere; Sup, superior; w, weight vector of corresponding 

features in the classification process. Note: The SVM weight vector is a linear combination or 

weighted average of the support vectors and defines the decision boundary. The weight vector is 

therefore a spatial representation of the decision boundary. Every feature contributes with a 

certain weight to the decision boundary or classification function. Given a positive and a negative 

class (+1=ARMS-T; -1=ARMS-NT group), a positive weight means the weighted average in that 

voxel was higher for the ARMS-T group, and a negative weight means the weighted average was 

higher for ARMS-NT group. 
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