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Abstract

Summary: Single-cell RNA-sequencing is increasingly employed to characterize disease or ageing cell
subpopulation phenotypes. Despite exponential increase in data generation, systematic identification
of key regulatory factors for controlling cellular phenotype to enable cell rejuvenation in disease or
ageing remains a challenge. Here, we present SigHotSpotter, a computational tool to predict hotspots
of signaling pathways responsible for the stable maintenance of cell subpopulation phenotypes, by
integrating signaling and transcriptional networks. Targeted perturbation of these signaling hotspots
can enable precise control of cell subpopulation phenotypes. SigHotSpotter correctly predicts the
signaling hotspots with known experimental validations in different cellular systems. The tool is simple,
user-friendly and is available as web-server or as stand-alone software. We believe SigHotSpotter will
serve as a general purpose tool for the systematic prediction of signaling hotspots based on single-cell
RNA-seq data, and potentiate novel cell rejuvenation strategies in the context of disease and ageing.
Availability and implementation

SigHotSpotter is at https://SigHotSpotter.lcsb.uni.lu as a web tool. Source code, example datasets and
other information are available at https://gitlab.com/srikanth.ravichandran/sighotspotter.
Supplementary information

Supplementary data are available at Bioinformatics online.

factors that can enable cell rejuvenation. Here, we present a general
computational tool, SigHotSpotter, which relies on a probabilistic Markov
chain model of signal transduction, previously developed by our lab, for
the prediction of hotspots (key molecules) of signaling pathways that are
constantly activated/inhibited by the niche that maintain neural stem cells

1 Introduction

The ability to control cellular phenotypes offers a great potential for
developing novel regenerative medicine strategies. In particular,
rejuvenation strategies for counteracting the detrimental effect of the aged
or diseased niche that impairs normal cellular functioning are essential
(Cheung and Rando 2013; Lane et al. 2014; Neves et al. 2017; Del Sol et
al. 2019). Advances in single-cell RNA-seq that allows for profiling of

(NSC) in a quiescence state (Kalamakis et al. 2019). We define signaling
hotspots as those specific molecules that are involved in the sustained
transmission of the external niche signals for the stable maintenance of the
cell subpopulation phenotypes. Importantly, the tool aims at predicting
hotspots, that exhibit highest signal flux through them in a sustained
manner, rather than inferring the whole signaling pathways. Functionally,

distinct cell subpopulations could aid in this endeavor. However, despite
increasing amount of data generation, there is a lack of computational

approaches that leverages single-cell omics data to identify specific such hotspots are more likely to transmit the constitutive signals from the
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niche for phenotype maintenance, in contrast to strong but transient
signals which are usually associated with a change in cellular response or
phenotype (Wang and Wagers 2011). With the increasing amount of
single-cell RNA-seq data being generated, especially in the context of
ageing and disease, SigHotSpotter can be of general utility for predicting
signaling hotspots that that maintain cell subpopulation phenotypes.
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Further, this could aid the development of novel cell rejuvenation

strategies that aim to counteract the detrimental effect of the diseased or

aged niche.

Fig. 1. SigHotSpotter steps involved and case study application: (A) Series of steps
involved in SigHotSpotter. (B) Model of a toy-signaling network in two different
phenotypes. The node colors in the network represent the steady state probability of the
signal to be in a specific node (signaling molecule). Inhibitory edges are shown in red and
activation edges in green. The edge thickness represents the interaction probability of the
two molecules inferred from single-cell RNA-seq. The inverted triangle nodes represent
receptors/ligands, circles represent intermediate signaling molecules, and the squares
represent TFs. Nodes that exhibit both high steady state probability and compatibility with
the downstream TF expression are identified as signaling hotspots. The black dotted circle
indicates the higher compatibility of node 12 in niche condition 2. (C) Results of
SigHotSpotter for the case study applications, a comparison with other signaling
pathways/network inference and enrichment methods. Comparison of SigHotSpotter with
SPIA, Pathifier and differential expression based enrichment with Enrichr. Yes / No denote
if the pathway was found significant, pathway inhibition and activation are represented by
red and green color, respectively. If the pathways were not available for certain methods,
we looked up similar pathways from KEGG, these are marked in superscript with notation:
! PI3K-Akt signaling pathway, > TGF-beta signaling pathway, 3 Notch4 signaling pathway.

2 Methods

The key steps involved in SigHotSpotter is
represented in Fig. 1A. Detailed description of the
method is provided in the Supplementary Material. As
an input, SigHotSpotter requires single-cell RNA-seq
data. Further, it relies on a signaling interactome
network, constructed by combining Reactome,
Omnipath databases and transcriptional interactions
from Metacore (Clarivate Analytics) obtained from
Zaffaroni et al (Wu et al. 2010; Turei et al. 2016;
Zaffaroni et al. 2019). In the first step, a state
transition matrix is constructed based on the signaling
interactome and the input single-cell RNA-seq data.
The signal transduction process from the niche to
intracellular signaling pathways is modeled as a finite
discrete time-homogenous Markov chain (Kalamakis
et al. 2019). The stationary distribution of this Markov
chain enables shortlisting those signaling molecules
(defined as receptors, ligands, kinases, and
phosphatases) that exhibit high steady state
probability, which reflects the high signal flux through

them for a given phenotype (Fig. 1). This information
alone is not sufficient to infer whether these molecules
are in an active or inactive state to maintain the
phenotype. In the second step, SigHotSpotter
attempts to delineate the potential regulatory activity
status of the high probability signaling molecules by
employing a topological characterization of their
compatibility with differential expression status of the
downstream transcription factors (TFs) (Fig. 1)
(Supplementary Fig. S1 & S2). A compatibility score is
calculated for each high probability signaling molecule based on their net
effect on the differentially expressed downstream TFs, via all the shortest
paths in the network. This score relies on the steady state probabilities
from the Markov chain model and serves to both classify and rank, the
active and inactive signaling hotspots by their importance to maintain the
corresponding phenotype (Fig. 1). Finally, we use Igraph (Gabor Csardi
and Nepusz 2006) implementation of Dijkstra’s shortest paths algorithm
(Dijkstra 1959) to extract the subnetwork controlled by the predicted
hotspots. A screenshot of SigHotSpotter web tool is shown in

Supplementary Figure S3.

3 Restlts

We demonstrate SigHotSpotter as a case study in four different cellular
systems based on single-cell RNA-seq data from embryonic stem cells
(ESCs) (Kolodziejezyk et al. 2015), hematopoietic stem cells (HSCs)
(Kowalczyk et al. 2015), hair-follicle stem cells (HFSc) (Yang et al. 2017)
and oligodendrocyte progenitor cells (OPCs) (Marques et al. 2016). The
list of computational predictions and associated literature support is listed
in Supplementary Table S1. Embryonic stem cells (ESCs) maintained
under in vitro culture conditions serve as good model system to initially
assess the performance of SigHotSpotter, since these cells can be stably
maintained in different defined culture conditions such as 2i or LIF, and
also exhibit condition dependent differences in their phenotypes (Ying et
al. 2008). The culture conditions employing 2i (inhibition of Gsk3b and
Mek) is known to maintain the mESCs in a naive pluripotency state,
whereas, the LIF alone maintain the mESCs in a relatively
primed/metastable pluripotency state (Ying et al. 2008). Importantly,
sustained inhibition of Gsk3b and Mek is required for stable maintenance
of naive pluripotency. In the example of mESCs (Kolodziejczyk et al.
2015), where exact signaling molecules that are constantly inhibited by
the niche (culture conditions in this case) are clearly known,
SigHotSpotter could correctly predict the inhibition (i.e. as inactive) of
Gsk3b and Mek (Map2k1) under 2i conditions (Supplementary Table S1,
Fig S1). Although, to our knowledge no general method currently exists
for the task of identifying signaling hotspots that control cellular
phenotypes, we compared the performance of SigHotSpotter with other
general methods for signaling pathway/network inference and enrichment
analysis that rely on only differential expression or network topology
characterization (Tarca et al. 2009; Drier et al. 2013; Kuleshov et al.
2016). Notably, these methods were not able identify either Wnt signaling
or Map kinase signaling along with their deregulation status for mESCs
phenotype control (Fig. 1). Other case study applications (Fig. 1,
Supplementary Table S2) and the comparison of SigHotSpotter with 4
other pathways/network inference and enrichment methods, namely, SPTIA
(Marques et al. 2016), GSEA (Subramanian et al. 2005), EnrichR (Wu et
al. 2010) and Pathifier (Drier et al. 2013) are described in the
Supplementary Material.
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4 Discussion and Conclusion

Computational methods that combine molecular interaction databases and
genomics data have been very useful for the inference of dysregulated
signaling pathways and networks, especially in the context of cancer
(Leiserson et al. 2015). However, these methods are not specifically built
for the prediction of key molecules or hotspots that constantly mediate
cell-extrinsic niche cues for the stable maintenance of the cellular
phenotype. Furthermore, this is a challenge, since signal transduction
involves several post translational modifications, and is not a deterministic
linear cascade of biochemical interactions (as often depicted in pathway
diagrams), but rather a probabilistic process involving multiple protein-
protein interactions (Ladbury and Arold 2012). In this regard, although
SigHotSpotter is based on transcriptomics data, it benefits from the
heterogeneity of single-cell gene expression, and attempts to overcome
some of these challenges by relying on a probabilistic model to infer
signaling hotspots that most likely transmit the sustained niche-induced
signals, rather than inferring the entire dysregulated signaling pathways.
Hence, SigHotSpotter is qualitatively different from the plethora of
methods for pathway enrichment or inference of functional signaling
networks (Amadoz et al. 2018), as it predicts specific signaling molecules
and their regulatory effect on the cellular phenotype. In addition, the
ranking of the hotspots along with their associated network controlling the
downstream TFs will serve as a guide experimentalists to prioritize the
predicted targets for further study.

In summary, SigHotSpotter employs single-cell RNA-seq data to serve as
a general purpose tool for predicting signaling hotspots that control cell
subpopulation phenotypes. Importantly, this can enable the development
of cell rejuvenation strategies for counteracting the detrimental effect of
the niche due to disease or ageing, where endogenous stem cells lose their
activation potential.
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