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Abstract—Real-time bidding (RTB) is a popular method to sell
online ad space inventory using real-time auctions to determine
which advertiser gets to make the ad impression. Advertisers can
take user information into account when making their bids and
get more control over the process.

The goal of an optimal bidding function is to maximise
the overall effectiveness of the ad campaigns defined by the
advertisers under a certain budget constraint. A straightforward
solution would be to model the bidding function in an explicit
form. However, such functional solutions lack generality in
practice and are insensitive to the stochastic behaviour of other
bidders in the environment.

In this paper, we propose to formulate the online auctions into
a general mean field multi-agent framework, in which the agents
compete with each other and each agent’s best response strategy
depends on its opponents’ actions. We firstly introduce a novel
Deep Attentive Survival Analysis (DASA) model to estimate the
opponent’s action distribution on the ad impression level which
outperforms state-of-the-art survival analysis. Furthermore, we
introduce the DASA model as the opponent model into the Mean
Field Deep Deterministic Policy Gradients (DDPG) algorithm for
each agent to learn the optimal bidding strategy and converge
to the mean field equilibrium.

The experiments have shown that with the inference of the
market, the market converges to the equilibrium faster while
playing against both fixed strategy agents and dynamic learning
agents.

Index Terms—Real-time bidding, Multi-agent, Deep Reinforce-
ment Learning

I. INTRODUCTION

Real-time bidding (RTB) is a common online advertisement
(ad for short in the rest of the paper) inventory trading
mechanism in which each ad display is sold through real-
time auctions. It allows the advertisers to target potential users
at the level of individual ad impressions. Upon each user’s
visit, each ad slot on the publisher’s site (or app) are sold
through auctions. Most market-places use a so-called second
price auction [1]. In such auctions, the bidder with the highest
bid price wins the opportunity to show its ad, which is also
called an ad impression and the winner observes and pays
the second highest price, known as the market price or the
winning price.

*Work conducted during a research visit at MediaGamma.

The market price is only really known by the highest bidder,
the winner. The other bidders, who lost the auction, only know
that the market price could be equal to or higher than their
bids. Therefore, the market price can be considered to be
right-censored. In addition, the bidding environment is highly
dynamic. In each auction, an unknown number of bidders
will participate and the set of bidders varies over different
auctions. To compete in such second price auctions, in theory,
bidders would benefit from bidding their estimation of each
impression’s true value as the bid price [1]. In this way, the
environment converges to the Nash equilibrium in which no
bidder can benefit more by unilaterally changing its strategy.

However, in practice, the market may not always maintain
the ideal equilibrium due to various reasons. For instance,
since the bidders are usually constrained by a certain budget, to
avoid running out of money quickly without observing more
valuable impressions, the optimal bid price usually deviates
from its true value. In addition, the number of participants in
each auction is unknown and from each bidder’s perspective,
it may compete with different opponents at every step during
its lifetime. To obtain an optimal bidding strategy in such a
stochastic game with a large number of unknown participants
is the major challenge in RTB.

The dynamics in the RTB market mostly come from the
heterogeneous behaviour of each bidder. It is important for
an intelligent bidding agent to try to infer its opponents’
strategy while optimising its own strategy. With the number
of opponents increasing, modeling every opponent’s action be-
comes implausible and computationally expensive. To analyze
such highly dynamic games with large number of participants,
recent research work [2, 3, 4] has been focused on using
Mean Field Equilibrium (MFE) to approximate the Nash
Equilibrium. Instead of estimating the interactive strategies
between each agent pair, it simplifies for one player to react
to the estimated average action from all other players.

We have designed, implemented and evaluated a bidding
algorithm which is opponent-aware but still requires no prior
assumptions on the opponents’ bidding distribution. To the
best of our knowledge, this is the first known such algorithm.

We firstly address the prediction of partially observable
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opponent actions and adopt a Deep Attentive Survival Analysis
(DASA) model which greatly outperforms the state-of-the-
art survival models. Furthermore, our solution integrates the
opponent model into the policy learning framework for actor-
critic based bidding agents. We take the second highest price
as the aggregated action of all the other bidders, which enables
each bidder to optimise its policy together with modeling
the uncertainty of the market. Our experiments shows that
we reach equilibrium under different budget constraints and
improved convergence in the multi-agent environment. Fur-
thermore, we demonstrate the performance improvements of
the optimal MFE strategy from a single agent’s perspective.

II. RELATED WORK

Bid Optimisation. Bid optimisation is one of the key compo-
nents in the decision making process in RTB. It aims to op-
timise the bid price on the impression level which maximises
the potential profits under a certain budget constraint. Many
research works have formulated it as a functional optimisation
problem [5, 6]

Zhang et al. [6] models the optimal bidding function in a
concave form which nonlinearly correlates the bid price with
the predicted click through rate. However, the functional based
methods have strong assumptions of the model form and fail
to incorporate the dynamics in the bidding environment and
the bidder’s budget spending status into the model.

To address the above shortcoming, there has been some fo-
cus on Reinforcement Learning (RL) based methods [7, 8, 9],
which directly formulate the bidding strategy as a sequential
decision making process without a predefined function form.
These studies mainly address the bidding optimisation problem
for a single agent.

In [7], Cai et al. proposed a model-based Markov Decision
Process (MDP) to formulate the interaction between one
bidding agent and a stationary environment. It assumes that all
other bidders and the users are part of the same environment.
In this work, it is necessary to calculate the state transition
probability to derive the optimal policy. This calculation is
computationally expensive when the dataset is large. To avoid
the computational cost, other researchers have adopted model-
free reinforcement learning methods and also extended the
single agent learning to multi-agent learning [10, 11].

In multi-agent environments, from each agent’s view, when
its opponents adapt their behaviour, the changes affect each
other and the environment becomes non-stationary. To address
the non-stationary environment becomes the main challenge
in the multi-agent learning. It is essential for each agent to
account for how other agents react and take the joint behaviour
to learn its own strategy. Such scenarios are called stochastic
games, which require equilibrium-solving approaches for the
policy learning. These approaches can be categorized by how
the non-stationary behaviour are handled [12]. In most of these
studies, the learning agent assumes its opponents are acting in
a specific way, either using a fixed strategy to minimize each
other’s reward [13] or using a mixed strategy drawn from a set
of known strategies [14]. In case the strategy is not explicitly

defined, Nash-Q learning is introduced with the assumption
that all the agents are adapting their strategies to converge to
the Nash-Equilibrium [15], which is called the NE strategy.
In practice, the Mean Field Equilibrium (MFE) is used to
approximate the Nash Equilibrium when the number of agents
is large [2].

In RTB, the existence of MFE under budget constraints has
been theoretically proved in [3, 16]. Both studies showed that
to reach the MFE, each agent takes the known fixed market
price, budget, and the observed reward distribution (e.g. the
estimated click through rate) to estimate the value function.
In [10], Jin et al. aggregated bidders into clusters and applied
the Deep Deterministic Policy Gradients (DDPG) algorithm
on the cluster level (as one agent) to simulate the multi-agent
environment. It demonstrates the profit gain per bidding cluster
under the competing or the collaborating settings. The similar
assumption applies that each agent knows each other’s state,
action, and reward. In practice, the states (e.g. the budget,
the current obtained reward) of the other bidders are usually
unknown. The action of others are partially observable through
the market price only to the winner of each auction.

In our work, we provide a multi-agent bidding strategy
by extending the work in [10] with the generalization of
playing with partially observable opponents. Given that the
number of bidders in the bidding market is large and their
strategies remain unknown, inspired by the MFE theory, we
aggregate the set of bidders who bid the market price in
each auction as an virtual agent and introduce a market price
prediction model as the Opponent Model (OM). From each
agent’s view, we assume all the other agents adapting their
strategies towards the mean field equilibrium without any
irrational drastic changes.
Bid Landscape Forecasting. Market price prediction has been
widely studied in RTB [17, 18, 19]. One key challenge is
that in the second price auctions, the second highest price,
a.k.a the market price, is only shown to the winner and
remains unknown to the others. Thus, the market price is right-
censored. To address the data censorship, a survival model is
commonly applied to estimate the time until the occurrence of
a particular event, for instance, the survival time of patients in
the medical domain [20]. In RTB, the market price estimation
has been commonly addressed by adopting a non-parametric
Kaplan-Meier estimator for the entire dataset [18]. However,
one aggregated distribution for all the bid requests fails to
capture the divergence in the feature space. In [17], the
authors proposed to adopt the recurrent network to model the
sequential pattern in the feature space of the individual user
and estimate the market price distribution for each bid request.
However, the features may not only be limited to the sequential
dependencies. The transformer model [21] is the first model
relying entirely on self-attention to compute a representations
of its input without using convolutions or sequence aligned
recurrent neural networks [22]. It has fueled much of the latest
development, such as pre-trained contextualized word embed-
dings [23, 24, 25]. In this work, we adopt the transformer
model to generalize the sequential dependency in the feature



space by using the attention mechanism.

III. PROBLEM FORMULATION

In RTB, when a user visits a website, an online auction
is held by an ad exchange to sell the ad slots available on
the web page. A bid request containing the context of the ad
slot, the user’s and the publisher’s profile will be distributed
to the Demand Side Platforms (DSPs). On behalf of the
advertisers, each DSP selects the best match of the ad from
its inventory and sends a bid price back to the exchange.
The DSP with the highest bid price wins the auction and the
selected ad will be shown to the user as an ad impression. The
winner of the auction pays the second highest price among
the submitted bids, which is also called the market price.
In the bidding environment, each bidder is unaware of the
status of other bidders and can decide whether to participate
the auction or not. Consequently, in each auction, the set of
competing bidders may vary and remain unknown to each
other. The only information each bidder can know about others
is through winning the auction and observing the market price.
The market price remain censored to all the bidders except
the auction winner. Each bidder usually starts with a limited
budget and the goal is to bid optimally which maximises its
profit.

In this section, we formulate the sequential second price
auctions as a n-player stochastic game represented by a tuple
Γ =< S,A,R,P, γ >. Here, the players are the bidders
who share the same bidding environment. The environment
dynamics come from the simultaneous actions, a.k.a the bid
prices sent by the bidders. We refer the bidders as the agents
interchangeably in the rest of the paper. At each time t,
the state of all agents is denoted as st = (s1

t . . . s
n
t ) ∈ S.

Correspondingly, the joint action of all agents at time t is
represented as at = (a1

t . . . a
n
t ) ∈ A. The policy of an agent

is defined as: πi : Si 7→ Ai. After taking an action ait, agent
i transits to the next state: sit+1 ∼ Pit(sit,ait) and receives a
reward rit ∼ Rit(sit,at). We note that the transition probability
and the reward are determined by the joint action a. Since all
the agents set their price simultaneously, from each agent’s
point of view, only the winner pays the market price and the
others keep their budget to the next auction. Correspondingly,
only the winner has the chance to get the user behaviour
dependent reward, e.g. the click through rate (CTR) and the
others get zero benefits.

Unlike in other n-player games, where the environment state
is usually considered in the equations above, in RTB, each
agent only observes its own state sit at each step. The agents
are coupled only through their actions.

The value function of a certain policy π is defined as:

viπ(s) =

∞∑
t=0

γt Eπ,P [ri(st,at)|s0 = s, π], (1)

where γ ∈ [0, 1) denotes the reward discount factor over time.
As stated in [2], a common assumption of such a n-player

game is that each agent is unaware of the game dynamic or
the reward function, but it observes the previous actions and

the immediate reward of other agents. For a single agent, the
Q-function is extended by taking the joint actions of all agents
a =∆ [a1, . . . , an] as the formulation below:

Qiπ = ri(s,a) + γ Es′∼P [Ea∼π[Qiπ(s′,a)]]. (2)

The objective of each agent in an n-player game is to derive
an optimal policy π∗ which maximises its value function as
shown in Eq.1. However, since each player has its own reward
function, which is dependent on the other players. Hence, it is
not a clear concept defining an optimal policy as in single-
agent problems to only maximise the state value given in
Eq.1. It is may be ineffective due to players have different
reward and one agent might hamper the objective of another,
the bidding environment becomes non-stationary as well.

To address this problem, one common solution is
equilibrium-based approaches. We start from one agent’s view,
the stochastic formulation of RTB can be simplified as a two
players game, where the other player is the one with the second
highest price in the market. The winning price can be modeled
as the joint action from all the other opponents and is partially
observable. Then, we adopt equilibrium-based policy is also
called the Nash equilibrium (NE) policy [26] which satisfies

vi(s,π∗) > vi(s;πi, π−i∗ ). (3)

where π∗ is the NE optimal joint policy of all the agents and
no agent can further improve its value function while other
agents keep their policies unchanged. Here π−i∗ denotes the
optimal joint policy of all the other agents except agent i:
π−i∗ =∆ [π1

∗, . . . , π
i−1
∗ , πi+1

∗ . . . , πN∗ ].
When the number of agents n→∞, the classic multi-player

game becomes intractable, thus in [27], the authors proposed
the Mean Field Game (MFG) to model the large number n-
player game. The conventional MFG assumes the agents have
complete information of the actions and the rewards of other
agents [2]. On the contrary, in RTB, the actions of other
agents are not observable unless the agent wins the auction
and the highest bid from the other bidders is revealed. To
generalize the conventional MFG to the MFG with incomplete
information, in this study, we propose an opponent model
to infer the unobservable actions of other players. From one
agent’s perspective, at each time t,

sit+1 ∼ P(·|sit,at) = P(·|sit, ait,a−it ). (4)

where a−it denotes the actions taken by the other agents other
than agent i. If here all the other agents follow their optimal
policies, so that a−i = a−i∗ . It suggests the bid distribution of
other agents is fixed. Therefore, Eq.3 can be written as

vi(s, πi∗,a
−i
∗ ) > vi(s;πi,a−i∗ ). (5)

To learn an equilibrium joint policy, updates of Q-values
rely on the computation of an equilibrium metrics, Nash-Q,
defined in [15]:

QNash(s,a) = Es′∼P [r(s,a) + γvNash(s′)]. (6)

The Q-function in Eq.6 is approximated by neural networks
and parameterized with the weights ω. As discussed above, we
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Fig. 1: The architecture of the DDPG-DASA model.

replace the joint actions of other bidders a−it by a virtual and
aggregated competitor whose bids are always the market price.
Thus, the Q-function can be expressed as

Qi(s,a) =

∫
a−i

Q(s, ai, a−i)φ(a−i) da−i (7)

In the ideal MFE scenario, it supposes that all the agents
take a fixed and steady bid distribution and their own belief
of the bid valuation as the prior knowledge to optimise their
strategy[16]. The policy that each agent follows is stationary.
In practice, the bid valuation is estimated by the CTR predic-
tion model and the opponent bid distribution can be estimated
as the market price model. Thus, in this work, we adopted
two pre-trained models into the framework to fulfill the above
assumption.

Fig. 1 depicts the architecture of the components used in
this work. The CTR model takes the feature vector x in the
historical bid requests as input and binary labels 1 and 0
indicating an ad click or no click respectively. The predicted
Click Through Rate (pCTR) is later used to construct the agent
state s and the reward r in the updated DDPG model with
the opponent model DASA (DDPG-DASA). In the following
sections, the opponent model (DASA) and the bidding model
DDPG-DASA are described in details.

A. Opponent Modeling

In this section, we focus on modeling the opponents actions,
a.k.a the market price distribution. The opponent model is
defined as the market price distribution at an impression level.
We use a−i to represent the action taken by the opponents,
a.k.a the highest price from all the other participants in the
auction. In this section, we denote a−i = z, where z is the
market price. The probability density function (P.D.F) of z is
pz(z).

pz(z) = P (a−i = z|xi, θ) = hz
∏
j<z

(1− hj). (8)

As is shown in Eq. 8, the P.D.F of the market price can be
calculated from the instant hazard function hj which indicates
the probability of the instant occurrence of the event at time
j conditioned on the event has not happened prior to time
j. In the RTB setting,

∏
j<z(1 − hj) represents the losing

probability of bidding less than the market price and hz shows
the probability of observing the market price z.

We take the features in the bid request xi as the input and
predict the hazard function h over the discretized bid price
space at each impression level. The pz can be easily derived
from Eq. 8. We use bmax to represent the upper bound of the
bid price. For the uncensored data, the true label is an one-hot
encoded vector of size bmax with the element indexed by the
market price as 1.

We followed the loss functions in [17], for the uncensored
data, the loss of the observed market price is defined as:

Lz = −
∑

xi,a−i∈Duncensored

[loghz +
∑
j<z

log(1− hj)].

For the censored data, it is certain to still lose the auction
by bidding lower than the current price. The corresponding
loss is defined as:

Lcensored = −
∑

xi,ai∈Dcensored

∑
j<ai

log(1− hj).

In addition, for the winning auctions, by bidding at any
price higher than the observed market price, it is guaranteed
to win the auction. Such information can be shared with the
censored data. The loss function is defined as followed:

Luncensored = −
∑

xi,ai∈Duncensored

log[1−
∏
j<ai

(1− hj)].

The total loss of the model takes the combination of the
above losses as below where α balances the loss values.

Ltotal = αLz + (1− α)(Lcensored + Luncensored).

B. Bidding Model

Under our repeated second-price auctions setting, in every
auction, all the agents are facing the same bid request. The
agents bid for the same ad campaign upon different requests
with unknown number of opponents at each auction. The RL
agent adopts the framework of Deep Deterministic Policy Gra-
dient (DDPG) [28] method to learn the policy in a continuous
space.

State. For the DDPG agent, we take the budget left in an
episode Bi and the pCTR as the state s =< Bi, pCTR >

Action. Following the settings in [10], the action ai is set
to be a scaler which controls the bid price and is bounded to
be in the range of [0, 1]. The final bid price is calculated by
bf = min(bmax × ai, Bi), where bmax is the upper bound of
the bid price. The market price or the aggregated actions from
the opponents are denoted as a−i.

Reward. The reward is usually the Key Performance Indi-
cator (KPI) defined by the advertisers, for instance, a click, a
purchase or the profits. But such reward signal is usually too
sparse for the agent to learn. Therefore, in this study, we assign
the pCTR as the Shaped Reward for all the winning auctions,
even without the real click [9]. For the losing auctions, since no
price is paid, the reward remains as zero. For agent i, the actor
network takes state s, which consists of the predicted CTR and
the budget left in the current episode, and parameterized with



θπ for a deep neural network which provides an action to take
in the range of [0, 1].

Action function

ai = πi(si, θπ) = πi([bi, pCTRi], θπ). (9)

In the vanilla version of DDPG algorithm, the critic function
Q(si, ai) takes the state and action pair from a single agent.
In our model, the Q-function is approximated by the mean
field theory by integrating the opponent’s action distribution.
As is shown in Eq. 10, φ(a−i|xi, θz) is the market distribution
obtained from the opponent model. The action a−i is not
directly observed from the environment, since the result of
the auction can only be see after placing a bid price. The
market distribution provides the agent’s belief of the opponents
actions. The indicator function allows the agent to account for
the Q value only in the case of bidding higher than the market
price. Since when the action ai is lower than a−i, the agent
cannot win such auctions, thus, the Q value should be zero.

Critic function

Q(s,a) =
∫
a−i

Q(s, ai, a−i)φ(a−i|xi, θz)1[a−i < ai] da−i.

(10)
The pseudo code of the DDPG-DASA algorithm is shown

in Algorithm 1.

Algorithm 1: DDPG-DASA.
Initialize actor network π(s, θπ) = ai and critic
network Q(s, a|ω) with weights θπ , ω

Initialize target network π′ and Q′ with θ′π ← θπ and
ω′ ← ω

Initialize replay memory with size K;
for episode = 1 to E do

receive state s0 and sample a0 ∼ π(s0, θπ);
Initialize a noise generator N for action exploration
while si not terminate do

Select an action ai = π(si, θπ) +Ni and
execute ;

Observe ri, si+1;
Store (si, ai, ri, si+1) in the replay memory;
if t ≡ 0 mod K then

sample a minibatch M from the replay
memory
yj = rj + γQ′(sj+1,a

′
j+1, |ω′)

update critic by minimizing the loss
L = 1

M
∑
j(yj −Q(sj ,aj |ω))2 ;

update actor θ ← θ + 1
M

∑
j

∇aQ(sj ,aj |ω)|s=sj ,a=π(sj)∇θππ(sj |θπ)|sj ;

update target network:
θ′ ← τθπ + (1− τ)θ′π;
ω′ ← τω + (1− τ)ω′

end
end

C. Multi-Agent Mean Field Approximation

The mean field equilibrium in RTB requires a consistency
check of the bid distribution [16]. Let φ be a bid distribution
and πi denote a stationary policy for an agent facing bidding
decision. The mean field equilibrium is achieved if it satisfies
the following definition:

Definition 1: The repeated second-price auction Mean Field
games admit at least one mean field equilibrium (MFE)[16],
with strategy π, if:

1) π(·|φ) is an optimal strategy given φ.
2) φ is the steady state bid distribution given π.

1) Single-agent Steady Market Distribution: We start from
the simplest scenario: a single agent bids against the steady
market price distribution. In this setting, we assume the linear
bidders have fixed strategies which means they do not update
their strategies upon other bidders’ actions. In addition, given
the dynamic attributes of the bidders, from agent i’s point
of view, the bids from its opponents are identically and
independently distributed. As we discussed in I, in practice,
the opponent sets in every auction changes over time. Here
we assume the departure and the arrival rate of bidders
remains steady, which guarantees the stationary of the bid
price distribution of the opponents. Even that the opponent
bids are partially observable, this allows us to approximate a
fixed opponent model and use it in the mean field model.

2) Multi-agent Dynamical Market Distribution: From the
above single agent scenario, here we extend to discuss the
mean field equilibrium. Instead of considering only one agent,
we focus on the multi-agent environment, where all agents
assume to share one steady bid distribution φ. Taken φ as the
prior knowledge, each agent optimises their bidding strategy
which in turn induces dynamics in the overall bid distribution.

In this game, we assume that the number of competing
agents is large. For each auction, a finite number of agents is
randomly selected (through Gaussian noise randomly selected
a competing agent, the agent with the largest noise added one
is effectively selected). Each agent has a random life-time,
which is exponentially distributed with unit mean. It optimises
the utility over its lifetime. The unit mean is effectively the
fact that each agent starts with the same budget, however the
varying lifetime depends on the pCTR values estimated and
also the exponentially distributed additive noise. At either the
end of the episode or when the budget has been exhausted,
agents are replaced by new ones whose initial budget, valua-
tion distribution and income is sampled. In most experiments,
instead of randomly sampling budget we initialized this to
the same value, and noticed no difference in convergence
guarantees. Due to a learning rate decay, eventually the DDPG
agent will converge to a stationary agent (learning rate ≈ 0),
thus the normal theorem by [16] holds.

In the MFE, each bidder are facing i.i.d highest opponent
bids and has no incentive to change her bidding strategy.
However, it is important to note that before the equilibrium
is reached, the bid distribution would change as the market



evolves. Thus it is important for the agents to infer the bid
distribution over time.

IV. EXPERIMENTS

In this section, we firstly demonstrate the significant im-
provement of the DASA model over the state-of-the-art market
modeling methods. Then, we integrate the DASA model as
the opponent model into the modified DDPG algorithm, we
present the empirical study of the DDPG-DASA bidding
algorithm in both single-agent and multi-agent scenarios on
the large-scale real-world bidding dataset. We have published
the implementation code the experiments1.

A. Opponent Model

We first conduct experiments to compare the general be-
haviour of the DASA model with other survival analysis mod-
els. The DASA model consists of one transformer encoding
layer. A transformer encoder layer has two sub-layers. The
first is a multi-head attention mechanism, the second is a fully
connected feed-forward network. Residual connections [29]
are used around each of the two sub-layers, followed by
layer normalization [30]. All sub-layers in the model produce
outputs of dimension 512 in order to facilitate residual con-
nections. We use a fixed learning rate of 0.001, state size of
128, batch size of 256 and 8 heads of multi-head attention.

The experiments are conducted on 3 datasets: Clinic[31],
Music[32], and Bidding dataset. The statistics of the datasets
can be found in [17]. We reproduced the results in [17] by
using the publicly available code2 and datasets3 as the baseline
results with * in Table I. The evaluation metric is the average
negative log probability (ANLP) of the market price which
corresponds to the true market price likelihood loss. It is
defined as:

A = − 1

|Dtest|
∑

(xi,zi)∈Dtest

logp(zi|xi) (11)

where zi is the market price from the simulation, xi is the
feature vector of a bid request. The lower the ANLP value
gets, the better.

The result shows the DASA model significantly outperforms
other methods across all three datasets. Thus, we select DASA
model as our opponent model for the experiments in the
following sections.

B. Bidding Experiments

1) Datasets and Experimental Setup: In this work, the
bidding experiments are conducted over the public real-world
dataset, iPinYou, one of the leading ad companies in China.
The dataset records more than 15 million impressions in the
original bid logs and the labels of click and purchase as the
user feedback. The data are from 9 ad campaigns over a
week in 2013 and the training and test data are separated
by time [33]. In each bid request, it contains features of

1https://github.com/manxing-du/Know-your-enemies.git
2https://github.com/rk2900/drsa.
3https://www.dropbox.com/s/q5x1q0rnqs7otqn/drsa-data.zip?dl=0.

TABLE I: Performance comparison on and ANLP. DASA gets
significantly improvement over strong baselines.

Models ANLP
CLINIC MUSIC BIDDING

KM* 9.012 7.270 14.012
Lasso-Cox* 5.307 28.983 34.941

Gamma* 4.610 6.326 5.941
STM* 3.780 5.707 4.977

MTLSA* 17.759 25.121 9.979
DeepSurv* 5.345 29.002 35.405
DeepHit* 5.027 5.523 5.513
DRSA* 3.337 5.132 4.598

DASA (One Stack Transformer) 2.786 4.912 3.465

TABLE II: Dataset Statistics.

campaign ID Impressions Clicks CTR # Discrete Feature Values
2259 (Trainning Set) 835,556 280 0.034% 40347
2259 (Test Set) 417,197 131 0.031% 40347

users (e.g. time stamp, segmentation label, and browser) and
publishers (domain, ad slots, and URL). The statistics of the
ad campaigns selected in the study are shown in Table II.

We follow the data pre-processing and feature engineering
procedure in [34]. Since in the iPinYou dataset, it records the
original market price of the impressions, we initiate all the
agents with the budget to be proportional to the total cost
in the training data. In this way, it allows us to simulate the
auctions offline. Given each bid request, each agent places a
bid price and follows the second-price auction principles to
decide the winner of the auctions and the click labels in the
log are used to train the CTR model. We compare the bid price
generated by the agents in our experiment, thus the original
market price in the iPinYou bidding log is not included.

As is shown in Fig. 1, the CTR estimator is trained offline
by adopting the widely used FTRL-logistic regression model
[35]. In both single and multi-agent scenarios, we begin with
running the bidding simulation over the training set and log
the bid price of each agent and select the second highest price
as the market price. The opponent model in Fig. 1 takes the
simulated bid log and the features in the original bid requests
as input to predict the impression level market distribution as
described in Section III-A.

Once the CTR model and the opponent model are trained,
we repeat the bidding simulation on both training and test
sets. In this round, the DDPG agent learns the policy while
having the prediction of the distribution of its opponent.
We begin with setting one DDPG agent in the environment
and keep the other bidders using simple and static bidding
strategies, for instance, linear bidding function. In this setting,
we demonstrate the advantage of the learning agent over the
static agent without the learning process. Furthermore, we
extend to the multi-agent scenario where all the agents learn
their strategies with its estimated opponent model.

In this study, we consider the bidding process as an episodic
task and each episode consists of K = 1000 auctions. Each
episode has a fixed budget B = CPMtrain ×10−3 × K × c0,
where CPMtrain is the cost per mille impressions in the training



data and c0 is the budget constraint ratio: c0= 0.125, 0.25, and
0.5.

2) Single DDPG agent with Steady Market Distribution: In
this section, we assume that there is one learning agent running
DDPG algorithm and competing against N bidders with fixed
strategies, for example, a linear bidding function: bi = pCTR
∗αi, where αi is a fixed linear ratio. In practice, N is always
unknown and in each auction, a random set of the N bidders
is selected. In the second-price auction, the most important
opponent is the bidder with the second highest price among
all the bidders. In this study, we set up two linear bidders
and one DDPG bidder. The bidders take the same pCTR from
the CTR prediction model. By injecting Gaussian noises into
the pCTR, we simulate the stochastic environment of random
bidders with different pCTR as their states in each auction.
Comparing the bid price generated by the three bidders, we
log the market price and use it for training the DASA model
offline as described in Sec.IV-A.

In the next round, we replay the bidding game again to train
the same DDPG agent from scratch with the opponent model
integrated, a.k.a the DDPG-DASA model. We run the same
experiment with three random seeds and show the averaged
results as follows. In Fig. 2, the number of clicks obtained by
the three bidders are listed for one selected ad campaign, 2259.
In general, the agent with the DDPG-DASA model obtains
more clicks than the vanilla DDPG model when competing
with the fixed linear bidders. In Fig. 3, it shows the number
of impressions each agent obtains. Same as in Fig. 2, the rows
represents three budget settings, where c0= 0.125, 0.25, and
0.5. The left column shows the results from DDPG agent
without the opponent model as the baseline while the right
column shows the results of the agent with the DDPG-DASA
model. The DDPG-DASA agent converges to the equilibrium
faster than without the opponent model. The learning curve of
the Q function shown in Fig. 4 confirms the faster convergence.
The result suggests the benefits for the bidding companies who
newly join the auctions.

We need to note that, the budget was set by referring to
the original market price in the iPinyou bidding log. But the
new market price generated by the agents are different and
lower. At the beginning of their campaign lifetime, without
any information of the market, the learning agent converges
to a steady but sub-optimal strategy. However, if they infer
the opponents model quickly and the opponents have fixed
strategy, the DDPG-DASA model facilities the bidder to
converge to a more dominant strategy which obtains more
clicks in the market. If the other agents adopt learning process
into their strategies which evolves the bid distribution, the
challenge would be to show the asynchronous best response
from all the agents and converge to the MFE which is shown
in the next section.

3) Multi-agent game: In this section, the experiment is
extended to have multiple learning agents in the same en-
vironment. Assume the number of agent N = 3, same as in
the previous section, the three agents have the same budget
setting for every 1000 auctions as one episode. As is shown
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Fig. 2: The number of clicks won by every bidder of Campaign
2259, where Lin * refers to the linear bidders.
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Fig. 3: The number of impressions won by every bidder of
Campaign 2259.

in the first row in Fig. 5, the three agents start with bidding by
only learning from its own reward without referring to other
bidders’ behaviour. After 200 episodes, the game converges to
the equilibrium where the number of impressions won by each
agent roughly evenly distributed. We continue the experiment
by introducing a random market distribution as the opponent
model for each agent. For each auction, the market distribution
is sampled from a uniform distribution. The second row in
Fig. 5 shows that the random opponent model increased the
variance of the number of winning impressions for each agent
and some agent may converge to a dominating strategy. To
equipped the correct opponent model, we take the bidding
log generated by the first game and trained a market model
separately for each agent based on the set of impressions they
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Fig. 4: Learning curves over Campaign 2259 under different
budget settings.
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Fig. 5: Three DDPG agents bidding game. Row 1: DDPG
without opponent model. Row 2: DDPG with random market
model. Row 3: DDPG-DASA model on the training set Row
4: DDPG-DASA model on test set.

won. With the information of the market, we reset the game
for the training set, as is shown in the third row in Fig. 5. The
agents converge to the optimal strategies within 100 episodes
which is 50% less than the results in the first row. We further
test the model on the test set, which shows the model is
generalized well and the equilibrium is reached.

Fig. 6 shows the number of clicks each agent won, which
stays roughly the same. It demonstrates that since the reward
function is not changed, once the equilibrium is reached,
the multiple learning agents do not gain more profits. The
benefits introduced by using the DDPG-DASA model is the
fast convergence speed. In Fig. 7, it shows the DDPG-DASA
model for each learning agent converges faster than the DDPG
model.
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Fig. 6: The number of clicks each learnign agent gets in the
multi-agent secenario.
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Fig. 7: Learning curves of DDPG-DASA model for each
learning agent.

V. CONCLUSIONS

In this paper, we propose a general opponent aware bidding
algorithm with no prior assumptions on the opponents bidding
distribution. To the best of our knowledge, it is the first ex-
perimental implementation in the real-time bidding domain to
infer the partially observable opponents in the policy learning
process. We proposed a deep attentive survival model as the
impression level opponent model. The multi-agent bidding
simulations show the benefits of improved convergence rates
for the DDPG model across all budgets with augmented with
an opponent model. For the future work, instead of using pre-
trained model, we will investigate the adaptive training for
both the opponent model and the reward function in the multi-
agent bidding game.
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