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Star Schema Design for Concept Hierarchy in
Attribute Oriented Induction

Spits Warnars
Manchester Metropolitan University, United Kingdom

Abstract—The Concept Hierarchy in attribute oriented
induction is a powerful tool for saving the knowledge hierarchy
in data, which will be then used to generalize mining rules for
data mining. Database design influences the performance
applications when reading records in database. When building
the database table the allocation of fields will be decided by the
lowest and the highest concept within the concept tree.
Additionally, the number of hierarchy concept levels in a concept
tree will decide the quantity of fields in the table. The number of
record tables will be decided by the number of the lowest
concepts in concept tree. For numeric values the treatment is
different. For efficiency reasons the number of created table
records will instead depend on the amount of concepts at the next
generalization. All the tables from concept trees will become
dimensional tables and the data table will become a fact table,
All these tables in fact create a star schema. The Star schema is
recognized as data warehouse schema for multidimensional
analysis, and will give value add for attribute oriented induction
for multidimensional purposes.

Index Terms—Data Mining, concept hierarchy, attribute
oriented induction, rule, database.

I. INTRODUCTION

HE attribute oriented induction method integrates a

machine learning paradigm - especially learning-from-
examples techniques [3] — with database operations, extracts
generalized rules from an interesting set of data and discovers
high level data regularities [13]. The attribute oriented
induction method has been implemented in a data mining
system prototype called DBMINER [16,17] which was
previously called DBLearn [12,14], and has been tested
succes@Blly against a large relational database.

The attribute oriented induction approach was developed for
leaming different kinds of knowledge rules such as
characteristic rules, discrimination or classification rules,
quantitative rules, data evolution regularities [15], qualitative
rules [9]. association rules and cluster description rules [13].
Attribute oriented induction has the concept hierarchy as an
advantage, where a concept hierarchy as background
knowledge can be provided by knowledge engineers or
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domain experts [8,10,13]. Concepts are ordered in a concept
hierarchy by levels from specific or low level concepts into
general or higher level concepts. Generalization is achieved
by ascending to the next higher level concepts alongfflie paths
of concept hierarchy [11]. The most general concept is the null
description as the most specific concepts correspond to the
specific values of attribfles in the database described as ANY.

The concept hierarchy can be balanced or unbalanced, but an

unbalanced hierarchy must then be converted to a balanced

one.

There are 3 Types of concept generalization on concept
hierarchy [6] and in [5] number (2)-(4) as 3 types of rule based
concept hierarchy and number (1) as a non rule based concept
hierarchy. These ar
1) Unconditional concept generalization: the rule associated

with the unconditional IS-A type rules. A concept is
generalized to a higher level concept because of the
subsumption relationship indicated in the concept
hierarchy.

2) Conditional/deductive rule generalization: the rule
associated alh a generalization path as a deduction rule
where the type of rules is conditional and can only be
applied to generalize a concept if the corresponding
condition can be satisfied. For example, form : A(x) A
B(x) = C(x) has the meaning that for a tuple x, the
concept(attribute value) A can be generalized to concept
C if condition B can be satisfied by x. Or concept C can
be generalized if it can be satisfied by con@@pt A and B.

3) Computational rule generalization: each rule is
represented by a condition which is value-based and can
be evaluated against an attribute or a tuple or the database
by performing some computation. The truth value of the
condition would then determine whether a concept can be

generalized via the path.

4)  Hybrid rule-based concept generalization: a hierarchy can
have patassociated with all the above 3 different types
of rules. It has a powerful representation capability and is
suitable for many kinds of application.

An implementation needs a database for storing records,
while the application needs data mining tools for the user to
read records from database and get the rules in for
presentation. The database can be implemented using any kind
of database management system, such as Microsoft Access,
SQL Server, Oracle, MySQL and many other database
management systems. The application can be implemented
using any kind of language software, such as Java, Active
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Server Pages, Visual Basic and others. The choice of the
database and application will depend on a number of factors,
including on the organizational rules, monetary resources, and
the technology.

In considering databases, one important factor is the

performance of the database system since it influences the
performance of the application as a whole. A good database
design will increase the application performance, while a bad
database design will reduce the application performance. An
additional factor is whether the database is normalized. On
one hand the normalization of a database provides for the best
performance and is useful for transactional processing systems
with input, edit and delete operations. On the other hand, an
unnormalized database will provide the best approach for
online analytical processing where records need only to be
read. Moreover, the number of SQL join operations will also
influence performance as a whole. Typically, more join
operations will need to be made in a normalized database
compared to an unnormalized database. The expert knowledge
in the area of database design contributes towards obtaining
the best design and performance. Additionally, a distributed
database can also be used for handling large distributed
concept hierarchies.
In this paper we transform the concept hierarchy into tables
resulting in a new database design. The concept tree will be
used as data input and the rules will be built based on the
queries [23,26,28].

Using queries to build rules presents an efficient mechanism
n' understanding the mined rules ([22.25]). The use of the
threshold as a control over the maximum number of tuples
(within the target class in the [Eal generalized relation) will
no longer be needed. Instead, group by operator in the SQL
Select statement will limit the final result generalization.

Setting different thresholds will generate different
generalized tuples (needed of global picture of induction).
Doing this repeatedly is time-consuming and tedious work
[27]. Instead, all the interesting generalized tuples as a
multiple rule can be generated for the global picture of
induction by using group by operator in the SQL Select
statement.

In converting the concept hierarchy into a database table
and in order to obtain the best database design, there are a
number of questions that need to be answered. These
questions include how to perform the conversion (from the
concept hierarchy into a table), how many tables will be
created and based on which criteria. By answering these
questions, we hope that a standard method will emerge for the
conversion of concept hierarchies into good database designs.
In the first instance the first step will be to explore how to
convert the non-rule based concept hierarchy (as an
unconditional concept hierarchy). Future work will address the
conversion of from rule based concept hierarchy.

In this paper we discuss only the conversion of the non-rule
based concept hierarchy into tables in the star schema design.
The implementation of the current and proposed attribute
oriented induction, including the differentiation between them,

can be found in [29].

ISSN: 1942-9703 /

WARNARS

II. CONVERTING FROM CONCEPT HIERARCHY INTO TABLE

In order to aid the discussion and provide a link between the
current work with our previous research, we will use the
concept hierarchy based on data examples found in [2.8].
Figure 1 shows an example of a concept hierarchy from
university database.

Ccvrnp
Math

Physic Science
Biology
ANY(major)

Literature
Music
History

Burnaby
Victoria ritish Columbia

Edmonton Canada
o MAlber %
> ANY(Birthplace)

E°T'_”j_§’_>|ndia
Nanj
_____\-“- China

Foreign

Freshman

ﬁﬁﬁm? Undergraduate
Senior
ANY(Category)
MA
Ms > Graduate
PhD

0.0-199 — Poor

2.0-2.99 — Average E:

3.0-3.49 ——— Good AN{GRA]
3.5-4.0 Excellence

Fig. 1. Example of a Concept hierarchy

[Bascd on concept hierarchy in Figure 1 we will build
concept tree that represents a taxonomy of concepts of the
values in an attribute domain. The concept tree will be built
based on the most general concept which is described as ANY
in concept hierarchy. Based on Figure 1 there are four (4)
most general concepts with ANY, resulting in concept trees
[24]. These are:

1) (science, art) — ANY(major)

2) (graduate, undergraduate) c ANY/(category)
3) (Foreign, Canada) — ANY(birthplace)
4) (poor, average, good, excellence) < ANY(GPA)

The dotted-line symbol (...) in Figure 1 shows the
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possibility of other concepts. For example, there is the
possibility to extend the width of concept tree by extending

the “Major” beyond “Science” and “Art”. Similarly, the
“Birthplace” is not limited to just only “Canada” and
“Foreign”.

For the database implementation all the concept trees will
be implemented as tables in the database. The concept tree for
“Major” will be implemented as the table entitled
hierarchy major (see Table 1 and its explanation in Figure 2).
The lowest level concept tree for “Major” in Figure 2 like
comp, math, physics, biology, literature, music and history
become the first field name Major and has varchar data type
with length 15. The next and the last level concept tree for
major in figure 2 like science and art become the next field
name StudyProg and have varchar data type with length 15.

TABLEI
HIERARCHY MAJOR TABLE

Field Name Type
Major varchar(15)
StudyProg varchar(15)
ANY Field Name| Type
. Major — varchar(I3
Science J I ,}
\ StudyProg  varchar(I5)
Cfmpnfath Physics bclogy™. . efture music history .

Fig. 2. The transformation of the concept tree for Major into hierarchy _major
table

For example, if there are 10 lowest level concepts in the
concept tree “Major™ (Figure 2) then 10 records or tuples will
be created in the table hierarchy major based on field
“Major™ as the first field in that table. Each of the records will
fill the next field studyprog based on generalization the lowest
level concept tree major. For example for the record where the
major field is “Computing”, its next field studyprog will be
filled with “Science” because the computing as the lowest
level concept tree major in Figure 2 has a generalization into
Science. Table 2 is the result from the data from the concept
tree “Major” in Figure 2.

TABLETI
RECORDS FOR HIERARCHY MAJOR TABLE

Major StudyProg
Computing Science
Math Science
Biology Science
Chemistry Science
Statistics Science
Physics Science
Music Art
History Art
Literal Arts Art
Literature Art
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As another example, the concept tree for “Category” will be
implemented as table Aierarchy cat (see Table 3 and Figure
3). The lowest level concept tree for “Major™ in Figure 3 such
as “Freshman”, “Sophomore”, “Junior”, “Senior”, “MS”,
“MA” and “PhD” become the first field named “Category”
and has varchar data type with length 15. The last level
concept tree for “Category” in Figure 3, such as
“Undergraduate™ and “Graduate™ becomes the next field name
“Study” and has varchar data type with length 15.

TABLEIII
HIERARCHY CAT TABLE

| Field Name
Category
Study

Type
varchar(15)
varchar(15)

Field Name{ Type |
Category  varchar(15)
Study varchar(15)

ANY
Graduate

Undergraduate
menmr W

Fig. 3. The transformation of the concept tree for Category into hierarchy caf
table

In Figure 3 there are seven (7) lowest level concepts from
concept tree “Category”, which will create seven (7) records
or tuples in table hierarchy caf based on field Category as the
first field in the table. The records filling next field “Study”
will be based on the generalization the lowest level concept
tree “Category”. For example the record where the category
field contains “Freshman™ will fill the next field (“Study™)
with “Undergraduate” because the concept “Freshman™ as the
lowest level concept tree (in “Category” in Figure 3) has a
generalization into “Undergraduate”. Table 4 shows this based
on the data from concept tree “Category” in Figure 3.

TABLE IV
RECORDS FOR HIERARCHY CAT TABLE

nategor)‘ Study
Freshman undergraduate
Sophomore undergraduate
Junior undergraduate
Senior undergraduate
MS graduate

MA graduate

PhD graduate

The concept tree for “Birthplace™ will be implemented as
the table hierarchy birth (see Table 5 and Figure 4). The
lowest level concept tree for birthplace in Figure 4 (such as
Bumaby, Victoria, Edmonton, Bombay and Nanjing) will
become the first field name “Birthplace” and has a varchar
data type with length 15. The next level concept tree for
birthplace in Figure 4 (namely British Columbia, Alberta,
India and China) will become the next field name “City” and
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has varchar data type with length 20. Note that this tree is
different from the previous concept due to the fact that it has
three (3) levels. As such, the next and the last level concept
tree for birthplace in Figure 4 (namely Canada and Foreign)
will become the next field name “Country” and has a varchar
data type with length 10. Thus, the number of hierarchy levels
will determine the number of the fields that will be created. In
the case of the previous concept tree, because there are two (2)
hierarchy levels, therefore two fields will be created for each
concept tree. Similarly, since the concept tree “Birthplace™ has
three (3) hierarchy levels, therefore three fields will be created
in the table.

TABLE V
HIERARCHY BIRTH TABLE
Field Name I Type ]
Birthplace varchar(15)
City varchar(20)
Country varchar(10)
ANY

C/Ca”{*da\ }rﬂf Birhplace_ archar(13)
British Columbia #]berta Inclia China City varchar(20)
' Country  varchar{10)

/
Burhaby Victoria Edmonton .. Bombay .. Manjina

Fig. 4. The transformation of the concept tree for Birthplace into
hierarchy _birth table

Following the previous example, there are eleven (11)
lowest level concepts in the concept tree “Birthplace™ as
shown in Figure 4. This will create eleven records or tuples in
table hierarchy birth based on field “Birthplace™ as the first
field in the table. In each record the next field entry will be
based on the generalization on concept tree “Birthplace™.

TABLE VI
RECORDS FOR HIERARCHY BIRTH TABLE
Birthplace 1 City Country

Bombay India Foreign
Bumaby British Columbia | Canada
Calgary Alberta Canada
Edmonton Alberta Canada
Nanjing China Foreign
Ottawa Ontario Canada
Richmond British Columbia  Canada
Shanghai China Foreign
Toronto Ontario Canada
Wancouver British Columbia | Canada
Victoria British Columbia  Canada

For example the record where the birthplace field contains
the value “Bombay™ will have the next field (“City”) filled
with the value “India” because the concept “Bombay™ as the
lowest level in the concept tree “Birthplace™ (see Figure 4) has
a generalization into the India concept. Furthermore, the next

WARNARS

field “Country” (which is the last field) with have the value

“Foreign” because the concept “India” has a generalization
into “Foreign™ concept. Table 6 shows the resulting data from
concept tree “Birthplace™ as shown in Figure 4.

The concept tree “GPA”™ will be implemented as table
hierarchy gpa (see Table 7 and Figure 3). Different to the
previous concept trees, here there are a large range data for
hierarchy levels. For example, the generalization for concept
“Poor” comes from the value range between 0 and 1.99, and
thus there will be 199 values possible (covering from 0.00 to
1.99). For efficiency reasons we just record the first value and
last value in the range for each of hierarchy levels. As result,
we will add one field containing the last value implying that
“The number of hierarchy levels will decide the number of
fields will be created”. We use this notation here because
although the concept tree “GPA”™ (Figure 5) has only two
levels (and thereby creating two fields in the database), adding
199 records to each field will result in a table with a total of
400 records. Thus for efficiency reasons we treat concept trees
with numeric values differently [11,21.19,20]. Therefore, here
we have created only 3 fields with 4 records.

In the case of the GPA, the first field is GPA start and will
have a range a values using the float(3.2) data type. Next is
field name GPA_fin that will also have a range a values using
the float(3.2) data type. The last field name “Range” will be
the same as the other concept trees where it has “the highest
level before the most general concept ANY is the last field”.
The field range has varchar data type with length 15.

TABLE VII
HIERARCHY GPA TABLE
[ Field Name | Type I
GPA_start float(3.2)
GPA fin float(3.2)
range varchar(15)
o ]

GPA sart falf32)
K ES
3034 35 g k(1)

Fig. 5. The transformation of the concept tree for GPA into hierarchy gpa
table

Because GPA concept tree in Figure 5 handles numeric
values, then the number of created records will not depend on
the number of concepts at the lowest level in concept tree.
Instead for efficiency it will depend on the number of concepts
at the next generalization. Now at the next generalization
(after the lowest level concept) there are four (4) concepts,
namely “Poor”, “Average”, “Good”, and “Excellent”.
Different to the other cases, the handling of numeric values in
the concept tree will be via specialization. For example the
first data at the level after the first low level is “Poor” and we
assign the GPA start value of 0 and the GPA fin with the
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value of 1.99. We do this also for the other fields. The result is
shown in Table 8 using the concept tree in Figure 5.

TABLE VIII
RECORDS FOR HIERARCHY GPA TABLE

_ start | GPA_fin

range
0.0 1.99 Poor

20 299 Average
30 349 Good

3.5 4.0 Excellent

Based on the previous explanation, below are the summary
of the assumptions that we have used to convert a concept
hierarchy into a table:

1) The lowest level concept tree maps to the first field and
the highest level (before the most general concept ANY)
is mapped to the last field.

2) The number of hierarchy levels in a concept tree will
decide the number of fields in the table, with the
exception of numeric values for efficiency reasons.

3) The number of concepts at the lowest level in a concept
tree will become the number of records or tuples in the
table, with the exception of numeric values for efficiency
reasons.

4) For the efficiency handling numeric values in a concept
tree, the number of created table records will not depend
on the number of concepts at the lowest level in concept
tree, but instead it will depend on the number of concepts
at the next generalization.

III. LoGICcAL DATA MODEL

Based on data examples found in [2.8], Table 9 shows the
corresponding student table.
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concept slice, dice and pivot [4, 18] The aggregate count
function and group-by-operator in the SQL Select statement
can represent the roll up process [1, 7].

!

! Categoy
Student 1L* / ',;d,
SiudyProo name
® |
L Category _z/
jor

1 1* Bithplace LI

(oo @8

Birthplate
GPAshA T
_ﬁm,ﬁ,l: Country
range

Fig. 6. A Logical data model

To improve the performance the logical data model in
Figure 6, it can be changed to become one (1) table (as only
one fact table) as shown in Table 10. The data as the
representative all the data in Figure 6 is shown in Table 11 and
12. The performance can be improved by using unnormalized
tables. This is because using one table is faster rather than
using 5 tables through the decrease in the number of needed
Join operations. However, the limitation of using only one
fact table is that it poorly represents the concept hierarchy. For
efficiency needs these two options can be used together, where
queries will be directed at the single fact table and the concept
hierarchy is used as the basis for the logical data model as

exemplified by Figure 6.

TABLE X
ONE FACT TABLE
TABLEIX Student
STUDENT TABLE Name
Name Category Major Birthplace GPA Category
Anton M.A. History Vancouver 335 Study
Andi Junior Math Calgary 3.7 Major
Amin Junior Liberal arts Edmonton 26 Studyprog
Anil M.S. Physics Ottawa 39 Birthplace
Avin Ph.D. Math Bombay B3 City
Amir Sophomore Chemistry Richmond 27 Country
Acai Senior Computing Vietoria 35 GPA
Abdi Ph.D. Biology Shanghai 34 Range
Afun Sophomore Music Bumaby 3.0
Agung Ph.D. Computing Victoria 38 TABLE XI
Ahing M.S. Statistics Nanjing 3.2 DATA IN ONE FACT TABLE
Akuan Freshman literature Toronto s
Name Category Study Major StudyProg
All the tables that represent a concept hierarchy can be Anton A graduate History art
connected to the student table. Figure 6 shows a class diagram Andi Filfiige npderpcadiiate || Math —
with the connectivity between tables. In the context of the Amin ] ]
D . ) Junior undergraduate Literal Arts arl
ata Warehouse concept, Figure 6 shows a star schema, e
where the student table is viewed as a fact lble and the other M8 graduate Physics science
tables from the concept tree are viewed as a dimensional table. | ¥ PhD araduate Math science
As a result, the multi dimensional concept in Data Warehouse Amir . - .
" - Sophomore undergraduate Chemistry science
can be applied here, where the data can be roll up and drill Al
down and the data can be viewed in multiple dimensions with Seaior undergraduate | Computing | science
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Abdi : .

PhD graduate Biology science
Afun .

Sophomore undergraduate Music art
Agung . .

PhD graduate Computing science
Ahing " .

MS araduate Statistics science
Akuan i .

Freshman undergraduate Literature art

TABLE XII
CONTINUE DATA IN ONE FACT TABLE

Birthplace City Country GPA Range
WVancouver British Columbia Canada 3.5 | Excellent
Calgary Alberta Canada 3.7 | Excellent
Edmonton Alberta Canada 2.6 | Average
Ottawa Ontario Canada 3.9 | Excellent
Bombay India Foreign 3.3 | Good
Richmond British Columbia Canada 2.7 | Average
WVictoria British Columbia Canada 3.5 | Excellent
Shanghai China Foreign 34 | Good
Burnaby British Columbia Canada 3 | Good
Victoria British Columbia Canada 3.8 | Excellent
Nanjing China Foreign 3.2 | Good
Toronto Ontano Canada 3.9 | Excellent

Another option for efficiency is by the appropriate coding

of the student data which can provide storage space savings,
better query performance and easier data management. The
following is an example of assigning codes to the field entries:

1)

2)

3)

4)

6)

7

Coding for entries in the field studyprog: science=> 01, art
=02

Coding for entries in the field major: computing=>01,
Math=>02, Biology=>03, Chemistry=>04, statistics=>03,
physics=>06, Music=2>07, History=>08, Literal arts=09,
Literature = 10.

Coding for the field Study: undergraduate=>01,
graduate—>02,

Coding for the field Category: Freshman—>01,
Sophomore=02, Junior=03, Senior=04, MS=>05,
MA=06, PhD=07.

Coding for the field Birthplace: Bombay=>01,
Bumnaby— 02, Calgary=>03, Edmonton—=04,
Nanjing—=>03, Ottawa—> 06, Richmond=»07,
Shanghai—08, Toronto—=09, Vancouver=*10,
Victoria=> 11.

Coding for the field Cin: India—=01, British

Columbia—=>02, Alberta=03, China—=04, Ontario—=05.
Coding for the field Country: Canada=>01, foreign=>02.

Note that the table representing hierarchy gpa cannot be

coded because of its numeric data. Table 13 shows the coding
result for hierarchy birth table, Table 14 for the hierarchy cat
table, Table for the student table, and Table 16 shows the
coding result for hierarchy major table.

WARNARS

TABLE XIII
CODING FOR HIERARCHY BIRTH TABLE

BirthID | Birthplace | City Country
010102 Bombay India Foreign
020201  Burnaby British Columbia  Canada
030301  |Calgary Alberta Canada
040301  Edmonton  Alberta Canada
050402  |Nanjing China Foreign
060501  Ottawa Ontario Canada
070201  Richmond  British Columbia  Canada
080402 Shanghai China Foreign
090501 Toronto Ontario Canada
100201 Vancouver  British Columbia
110201 Victoria British Columbia
TABLE XIV
CODING FOR HIERARCHY CAT TABLE
CatID Btegﬂry [stuay
0101 Freshman undergraduate
0102 Sophomore undergraduate
0103 Junior undergraduate
0104 Senior undergraduate
0205 MS graduate
0206 MA araduate
0207 PhD graduate
TABLE XV
CODING FOR STUDENT TABLE
name Category ] Major ] Birthplace
Anton 0206 0208 100201
Andi 0103 0102 030301
Amin 0103 0209 040301
Anil 0205 0106 060501
Ayin 0207 0102 010102
Amir 0102 0104 070201
Acai 0101 0101 110201
Abdi 0207 0103 080402
Afun 0102 0207 020201
Agung 0207 0101 110201
Ahing 0205 0105 050402
Akuan 0101 0210 090501
TABLE XVI
CODING FOR HIERARCHY MAJOR TABLE
[MajorID  [Major [stadyProg
0101 Computing  Science
0102 Math Science
0103 Biology Science
0104 Chemistry Science
0105 Statistics Science
0106 Physics Science
0207 Music Art
0208 History Art
0209 Literal Arts  Art
0210 Literature Art
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IV. CONCLUSION

In order to convert a mnon-rule based concept hierarchy,
there are some guidance which can help in the conversion.
First, the lowest level concept is mapped to the first field and
the highest level before the most general concept ANY is
mapped to the last field. Secondly, the number of hierarchy
levels will determine the number of fields except for numeric
value (for efficiency reasons). Thirdly, the number of concepts
at the lowest level in concept tree will become the number of
records or tuples in the table (again with the exception of
numeric values for efficiency reasons). Finally, for the
efficiency handling numeric values in a concept tree, the
number of created table records will not depend on the number
of concepts at the lowest level in concept tree, but instead on
the number of concepts at the next generalization. From an
implementation perspective, there is the option of using one
fact table or several combined tables, and there is also the
option of using coding to improve efficiency and performance.
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