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Abstract
Background: Air pollution is increasingly associated with cardiovascular events. As for ozone (O3) 
pollution, results are inconsistent though O3 levels are associated with hospital admissions, global 
mortality, and respiratory, and cardiovascular mortality.
Methods: In this time-stratified case-crossover study, the associations between short-term exposure 
to O3 (on an hourly and daily scale) and out-of-hospital cardiac arrests (OHCA) were investigated. 
Specific subgroups were explored by sex, age, diabetes status, for OHCA during non-holiday periods. 
Data were collected in the Nord-Pas-de-Calais region, France, in 2015. Data were statistically analyzed 
using conditional logistic regression (CLR).
Results: The study included 1039 cases of OHCA. Significant negative associations were found between 
OHCA and O3 levels measured in 3 or 4 days before the arrest for all the people, and 1, 2 or 3 days 
before the arrest for men. As for OHCA during non-holiday periods, there was no significant negative 
associations but a positive association was revealed for women between OHCA and O3 levels measured 
in 5 days before the arrest (OR=1.53, P = 0.008).
Conclusion: According to the results, OHCA should be investigated during non-holiday periods to 
control potential confounders that would lead to negative associations. Women might be a susceptible 
subgroup to O3 pollution.
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Introduction
Cardiac arrest refers to the abrupt loss of heart function 
and is an important public issue. The global incidence 
of sudden cardiac death (SCD) rates from 50 to 100 per 
100 000 in the general population, is between 180 000 
and 450 000 cases annually in the United States (1). 
Most cardiac arrests (85%) are out-of-hospital cardiac 
arrests (OHCA) (2), and the global incidence of OHCA 
is approximately 46 000 cases per year in France. Cardiac 

arrests survival rates remain low: 4.9% of OHCA patients 
survive for at least 30 days or to hospital discharge (3). 
Although the risk of SCD increases with age, OHCA is a 
socio-economic issue because the proportion of sudden 
deaths is larger among young people (4).
According to the World Health Organization (WHO), 
outdoor air pollution is a major environmental health 
problem and it was estimated to cause 4.2 million premature 
deaths worldwide in 2016. In the literature, short-term 
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exposure to air pollution is being increasingly associated 
with cardiovascular morbidity and mortality (5-9). In 
particular, positive associations were revealed between 
OHCA and fine particulate matter with an aerodynamic 
diameter under 2.5 μm (PM2.5) in some studies (10-
13). Results for ozone (O3), PM smaller than 10 microns 
(PM10), carbon monoxide (CO), sulfur dioxide (SO2), 
and nitrogen dioxide (NO2), were inconsistent (12-17). 
More specifically, O3 levels had a positive relationship with 
heart failure (18), hospital admissions, global mortality 
(19), and respiratory and cardiovascular mortality (19,20). 
Eight studies investigated the association between OHCA 
and short-term exposure to O3 levels (10-12,15,21-24). 
Three studies found positive associations between O3 
exposure and OHCA (15,21,24). 
The aims of this study were to evaluate the effects of short-
term exposure to O3 (on a daily and hourly scale) on the 
occurrence of OHCA in Nord-Pas-de-Calais (NPdC), 
France. The ratio of OHCA was investigated during non-
holiday periods and for susceptible subgroups (by sex, age, 
diabetes status) so as to arouse political commitment on 
air pollution control strategies for vulnerable populations. 
Subgroup analyses could be a good alternative to overcome 
the problem of the small population-wide relative risks 
usually observed and to control confounding effects of 
holidays.

Materials and Methods
Out-of-hospital cardiac arrest data
Data on OHCA were collected from the French Cardiac 
Arrest Registry ‘Registre électronique des Arrêts 
Cardiaques’ (RéAC). RéAC is an electronic, web-based 
data management system that includes patients with 
OHCA when a mobile medical team (MMT) is involved 
(25). According to the recommended guidelines for 
uniform reporting of data of OHCA (26), the RéAC form 
follows the Utstein universal style. Thus, this registry 
provides patients data, such as gender, age, location of 
the arrest, place of residence, and cardiac arrest history. 
The participants participated in the study voluntarily. The 
registry was approved as a medical assessment registry 
without a requirement for patient consent by the French 
Advisory Committee on Information Processing in 
Health Research (CCTIRS) and the French National Data 
Protection Commission (CNIL, authorization number 
910946). Ten mobile emergency and resuscitation services 
are involved in NPdC for a population representing 
71.45% of the 4.2 million inhabitants. In this study, data 
were collected from January 1 to December 31, 2015, in 
NPdC. Of 1408 cases obtained, 235 cases of the arrest that 
were not due to air pollution were excluded: 143 traumatic 
cardiac arrests, 56 pulmonary aspirations, 31 poisonings, 
and 5 drownings. Moreover, 134 cases were excluded 
because the arrest location was different from their place 
of residence, which was not consistent with the study 
design.

Ambient air quality and meteorological data
The air quality was provided by ATMO Hauts-de-France, 
an association approved by the Ministry of Environment, 
monitoring air quality with 41 stations in NPdC (11 
monitoring PM2.5, 32 for PM10, 26 for NO2, 21 for O3, 
14 for SO2, 2 for CO). Temperature levels were collected 
from Météo France’s website (from 16 stations in the 
region). In order to adjust the models, the levels of O3 as 
well as the levels of other regulated pollutants (PM2.5, 
PM10, NO2, SO2, CO) and temperature, were collected. 
Data were collected on a daily and hourly scale for the 
pollutants. In accordance with the air quality criteria 
for O3, the daily level of O3 refers to the daily maximum 
8-hour average for a day. PM2.5 and PM10 levels were 
obtained from gravimetric analyses, NO2 levels from 
chemiluminescence, O3 levels by UV absorption, SO2 
from fluorescence absorption, and CO by non-dispersive 
infrared absorption.

Study design
To control temporal trends of air pollution levels and 
OHCA incidence, this time-stratified case-crossover study 
was conducted. This design applies in the cases of brief 
exposures, transient changes in risk, and rare acute-onset 
diseases (27). It consists in confronting the exposure of 
the patients during a risk period to that during a reference 
period. The latter has to be chosen according to a number 
of constraints to control biases that could be resulted from 
long-term time trends, seasonal patterns, day-of-the-week 
effects, and autocorrelation of exposures. Thus, measures 
have to be assessed on the same day-of-the-week in the 
same month of the same year of the arrest (17,28-30). As 
an illustration, if the OHCA occurs on Saturday in March, 
the risk exposure will be measured on that day and will 
be compared to the reference exposures measured on all 
other Saturdays in March. As a result, stable personality 
traits are controlled over time. If a value was missing 
either for the risk exposure or for its reference exposures, 
therefore, the case was excluded.

Subgroups
Subgroup analyses were also conducted. In this study, it 
was focused on the occurrence of OHCA during non-
holiday periods at different levels of pollutants (31). Then, 
subgroups of sex, age (50 to 75 years old versus over 75 years 
old, following recommendations made in June 2010 by 
the French Center for Strategic Analysis, Centre D’Anlayse 
Stratégique), and diabetes status were investigated. In 
2015, there were six holiday periods: from January 1 to 
4, from February 21 to March 8, from April 25 to May 10, 
from July 4 to August 30, from October 17 to November 
1, and from December 19 to 31. OHCA events occurring 
during non-holiday periods were excluded whenever less 
than two values were available for the reference exposures 
or if the value for the risk exposure was missed.
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Lag times
In the present study, short-time effects of pollutants on 
the occurrence of OHCA were evaluated. Therefore, risk 
exposures were measured at different lag times close to 
the time of the OHCA: lag0h (for the hour of the OHCA), 
CA4h (from lag0h to lag3h, for the mean of the hour of 
the arrest and the three hours before the arrest), CAH12 
(mean from lag0h to lag11h), lag0d (for the day of the 
OHCA) to lag5d (five days before the OHCA). If more 
than 25% of the values needed to compute the exposure 
for CA4h or CA12h were missing, the exposure was 
considered as missing.

Statistical analyses
To estimate odds ratios (OR) with 95% confidence 
intervals (CI) per interquartile range (IQR) increase, 
conditional logistic regression was used. First, a single-
pollutant model with O3, which was adjusted on 
temperature using a nonparametric smoothing spline of 
degree 3 with 4 knots optimally chosen, was built (32-36). 
If the evaluated lag time was statistically significant at 
P = 0.01, which provides very strong evidence (37) because 
of the multiple statistical tests, a multi-pollutant model 
was used. This multi-pollutant model was built by adding 
pollutants with concentrations moderately correlated 
with O3 concentrations (absolute value of Spearman 
correlations, r = 0.40-0.60) as a bias-variance trade-off. 
Thus, multi-pollutant models included O3, PM2.5, NO2, 
and temperature. The same lag times were used for all 
concentrations within a model except for the hourly scale, 
in which the daily level was used for the temperature level. 
Data were statistically analyzed using the R statistical 
software (R Core Team, 2015).

Results
This study included 1039 cases of OHCA, 60.1% of which 

were men (n = 624), 46.4% aged 50 to 75 years (n = 482), 
40.7% aged over 75 years (n = 423), and 16.4% were 
diabetic patients (n = 170). Air pollution and temperature 
data for OHCA in 2015 and during non-holiday periods 
are summarized in Table 1. On the day of the OHCA 
incidence, O3 levels were moderately correlated with 
PM2.5 levels (r = -0.44) and NO2 levels (r = -0.59); multi-
pollutant models were then obtained by adding PM2.5 
and NO2.
Table 2 shows the values for significant results at the 1% 
level of significance for single-pollutant models and then 
for multi-pollutant models. Figures 1 to 4 describe OR and 
95% CI of single-pollutant models for the OHCA all year 
long (Figures 1 and 3) or for non-holiday OHCA (Figures 
2 and 4) and for lag0h to lag0d (Figures 1 and 2) or for 
lag1d to lag5d (Figures 3 and 4).
While exploring the shortest lag times (on the day of the 
OHCA: lag0h, CA4h, CA12h, and lag0d), no significant 
association neither with OHCA all year long nor with 
non-holiday OHCA was found. While exploring longer lag 
times (from lag1d to lag5d), mainly negative associations 
were found with OHCA all year long (significant at lag3d 
and lag4d) and in men (significant at both lag1d and 
lag2d in multi-pollutant models, and at lag3d). The most 
significant associations were found in men at lag1d and 
lag2d (OR = 0.74, P = 0.004). The only positive association 
was found with non-holiday OHCA at the longest lag time 
(lag5d) in women (OR = 1.53, P = 0.008).

Discussion
In the literature, three studies found positive associations 
with lag times taking into account the exposure the day of 
the OHCA (CA2h, CA24h, and CA72h or mean of lag2h, 
lag3h, and lag0d) (15,21,24). In the present study, no 
significant association at those short lag times was found. 
Moreover, the significant associations were mainly negative, 

Table 1. Description of data (µg/m3 for pollutants, °C for temperature)

Mean (SDa) Median IQRb Number of OHCA (%)c Number of Non-holiday OHCA (%)c

Hour of the OHCA
PM2.5 15.03 (13.57) 11.10 12.00 560 (54%) 377 (36%)
PM10 22.24 (15.41) 18.60 15.50 580 (56%) 388 (37%)
NO2 21.95 (16.12) 18.10 20.82 614 (59%) 413 (40%)
O3 46.65 (25.19) 47.10 37.65 616 (59%) 401 (39%)
SO2 2.59 (6.85) 1.50 2.00 326 (31%) 307 (30%)
CO 0.24 (0.26) 0.20 0.17 425 (41%) 329 (32%)
Day of the OHCA
PM2.5 14.70 (10.52) 11.50 10.00 814 (78%) 529 (51%)
PM10 21.84 (11.96) 18.80 12.42 848 (82%) 555 (53%)
NO2 20.98 (11.80) 19.40 16.80 912 (88%) 584 (56%)
O3 64.51 (23.21) 64.85 27.94 850 (82%) 538 (52%)
SO2 2.15 (3.12) 1.50 1.80 610 (59%) 485 (47%)
CO 0.23 (0.16) 0.21 0.15 707 (68%) 516 (50%)
Temperature 11.08 (5.39) 11.30 7.50 1026 (99%) 609 (59%)

a Standard deviation; b Interquartile range; c Without missing values for the pollutant.
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which can be explained by confounding factors, such as 
PM2.5 levels and holiday periods. Indeed, PM2.5 and O3 
levels are negatively correlated (r = -0.44). Moreover, O3 is 
a secondary pollutant formed through a photochemical 
reaction requiring sunlight, and O3 local concentrations 
are reduced in the vicinity of heavy vehicular traffic due to 
scavenging by NO and volatile organic compounds (38), 
which could contribute to higher O3 levels during summer 
holidays. Thus, in this study, no negative association was 
found using multi-pollutant models or focusing on non-

holiday OHCA. Furthermore, in the literature, from 
lag0h to lag5d, studies on O3 positive associations showed 
no association between PM2.5 and OHCA (15,21), 
also studies on PM2.5 positive associations, showed 
no association between O3 and OHCA (10,12,22,23). 
Negative associations could also be due to a reduction in 
the number of people at risk, as O3 levels may increase 
respiratory mortality (19,20). Although confounding 
factors can account for the negative associations, some 
studies reported the association between heart protective 

Table 2. Significant associations (P < 0.01) between O3 levels and OHCA incidence

Lag Subgroup
O3 - Single-pollutant Model O3 - Multi-pollutant Model

OR per IQR (95% IC) P value OR per IQR (95% IC) P value
OHCA all year long
Lag1d Male 0.74 (0.60-0.91) 0.004 0.71 (0.55-0.91) 0.008
Lag2d Male 0.74 (0.61-0.91) 0.004 0.67 (0.52-0.87) 0.002
Lag3d All 0.81 (0.69-0.94) 0.006 - -

Male 0.75 (0.61-0.92) 0.005 - -
Lag4d All 0.81 (0.69-0.95) 0.008 - -
Non-holiday OHCA
Lag5d Female 1.53 (1.12-2.11) 0.008 - -

Figure 1. OR and 95% CI for OHCA versus O3 levels for lag0h to lag0d. Figure 3. OR and 95% CI for OHCA versus O3 levels for lag1d to lag5d.

Figure 2. OR and 95% CI for non-holiday OHCA versus O3 levels for lag0h 
to lag0d.

Figure 4. OR and 95% CI for non-holiday OHCA versus O3 levels for lag1d 
to lag5d.
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effects of O3 with an increase in vasodilation (39), and 
an infarct size reduction (40). In the present study, a 
positive association was found when considering non-
holiday OHCA in women. No significant associations 
were found among men, the 50-75 year old age group, 
and patients with diabetes. Indeed, we have previously 
shown positive associations between PM2.5 and OHCA 
among men, the 50-75 year old age group, and patients 
with diabetes whereas there were no associations between 
PM2.5 and OHCA among women (41). Two studies 
have found positive associations between O3 and OHCA 
among women, suggesting hormonal cause (42,43). It is 
worth mentioning that there are various mechanisms of 
O3 toxicity. An increased airway permeability reported by 
the measure of the pulmonary clearance of radioisotope-
labeled organic molecule, (99mTC-DTPA), could increase 
the uptake of other toxicants or the release of inflammatory 
cells (44,45). Some studies have shown inflammatory 
processes with changes in cyclooxygenase metabolites 
of arachidonic acid (46), and with neutrophil influx 
into the airways (46-48). A stimulation of fibrinogenic 
processes was reported with higher levels of fibronectin, 
factor VII, and urokinase plasminogen activator (47). In 
a study, ultrafine carbon particles increased sympathetic 
nervous system activity and more so with added O3 (48). 
O3 may also lead to an increase in myocardial work and 
impairment of pulmonary gas exchange (49). In the study 
of O3 effects, special consideration should be given to 
healthy people who exercise regularly outdoors, because 
of higher O3 exposure, and those with asthma, because of 
increased symptomatic responses (19,50).
Most of the significant associations were found with 
OHCA occurring all year long. The significance of 
those associations may be due to temporal trends of O3 
pollution with different levels during holidays. However, 
by considering non-holiday OHCA, the periods in which 
O3 pollution may impact health differently, were excluded. 
In addition, we have to be cautious when drawing 
conclusions with single-pollutant models because a 
pollutant level serves as a surrogate term for a complex 
mixture of pollutants, and ozone pollution may better 
reflect particulate matter personal exposure than exposure 
to O3 itself (51). However, results from multi-pollutant 
models are also limited by overfitting (of correlated 
pollutant levels) or interactions (synergistic effects of O3 
and particulate matter) (52). Wherever the OHCA occurs 
(indoor, outdoor), the individual pollution exposure is 
given by measures of ATMO Hauts-de-France monitors 
which could result in imprecise results. Interpretation of 
the results of this study compared to the results of other 
studies is limited. The precision of the results depends on 
the number of monitors available, the number of cases 
included, and criteria used to define a case and pollution 
levels. Variability in pollution levels and composition 
makes it difficult to compare results obtained from 
different study periods and regions.

Conclusion
The investigation of the relationship between O3 levels 
and the occurrence of OHCA showed mainly negative 
associations on the daily scale. There were no negative 
associations between O3 levels and the occurrence of 
OHCA during non-holiday periods, but a positive 
association was reported between the occurrence of 
OHCA during non-holiday periods and O3 levels five days 
before the OHCA, among women. Therefore, it would 
be interesting to analyze non-holiday OHCA to estimate 
health impact of exposure to ozone, in order to control 
for confounders, such as temporal trends and PM2.5 
levels. The negative associations could also be due to the 
heart protective effect of O3 and further investigation is 
necessary. Moreover, a special attention should be paid 
to the subgroup of women, for which the only positive 
association was found. Analyses of susceptible subgroups 
might show associations that do not usually appear 
because of the small population-wide relative risks and 
could lead to revised recommendations for the subgroups. 
Further studies under similar conditions are needed to 
assess the significance of the results of the present study. 
As a final point, models taking into account confounders 
should be further developed so as to evaluate the impact 
of O3 itself.
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