Mo- and W-Fiber Reinforced SiCN Ceramic Matrix Composites based on PIP process

Martin Frieß¹, Bernd Mainzer¹, Dietmar Koch¹, Chaorong Lin², Ralf Riedel², Johann Riesch³, A. Feichtmayer³, Jürgen Almanstötter⁴

 ¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Structures and Design, Pfaffenwaldring 38-40, D-70569 Stuttgart
²TU Darmstadt, Institute of Material Science (Dispersive Solids), Darmstadt
³Max-Planck-Institut für Plasmaphysik, Garching
⁴OSRAM GmbH, Schwabmünchen

Knowledge for Tomorrow

2nd NSF-PIRE-PDC Workshop Boulder, CO (USA),

July 15-19, 2019

Overview

- Introduction and motivation
- Properties of Mo- and W-fibers
- Manufacture of Mo/SiCN and W/SiCN composites
- Mechanical properties of composites
- Microstructure and phase analysis of composites
- Thermodynamics and viable reactions during cristallisation
- First mechanical models of composites
- Summary and outlook

Introduction and motivation

- Monolithic ceramics are brittle, have high stiffness and low fracture strain, but show catastrophic failure when overloaded
- Ceramic fiber reinforced ceramic matrix composites show graceful failure when overloaded, but still have low fracture strain (compared to metals)
- Metal fiber reinforced ceramic matrix composites are very little known, however, could be interesting due to higher fracture strain of metallic fibers
- Ceramic matrices are more oxidation and corrosion resistant as well as lightweight compared to molybdenum and tungsten

Physical and mechanical properties of Mo- and W-fibers

Fiber type		Tungsten	Molybdenum
		BSD-OG-102045280100	MOA-B6144601XX42
Manufacturer		Osram	Osram
Diameter	μm	150	200
Density	g/cm³	19.250	10.220
Yield strength	MPa		1207±5
Tensile strength	MPa	2774±29 [Riesch2017]	1647±1
Tensile modulus	GPa		287±2
Fracture strain	%		1.9±0.1
Reduction in area	%	37±3 [Riesch2017]	70.2±0.2
K content	ppm	70-80	150-200

Tensile testing of single Mo- and W-fibers

a)

Preform Manufacture – Dry Filament Winding

Raw materials and equipment:

- → Mo- or W-fibers
- ✓ Filament winding machine controlling winding speed and angle
- → Graphite mandrel equipped with Teflon tape
- → Precursor PSZ10 (polysilazane resin) for RTM infiltration
- → Steel mould for RTM infiltration and curing under pressure

Manufacture of Mo- and W-fiber ceramic matrix composites

Polymer Infiltration

Properties of Mo/SiCN and W/SiCN composites

Composite type		W/SiCN	Mo/SiCN
Fiber volume content	%	25 (33*)	30
Tensile strength	MPa	206±27	156±50
Tensile modulus	GPa	172±19	144±7
Tensile fracture strain	%	0.126±0.018	0.164±0.086
Bending strength	MPa	427±105	312±50
Bending modulus	GPa	193±89	90±6
Bending fracture strain	%	0.24±0.08	2.02±0.93
Density	g/cm ³	7.72	4.44
Porosity	Vol%	6.86	10.07
Density (calculated)	g/cm³	6.38 (7.74)	4.44

*calculated by asuming 2.30 g/cm³ for density of SiCN

Tensile testing of Mo/SiCN and W/SiCN

Bending testing of Mo/SiCN and W/SiCN

Microstructure of Mo/SiCN (I) a 100 µm

Microstructure of Mo/SiCN (II)

Microstructure of Mo/SiCN (III)

Microstructure and EDX-analysis of Mo/SiCN

First XRD-analysis of Mo/SiCN

High-res investigation on crystallisation of Mo/SiCN

Microstructure of W/SiCN (I)

Microstructure of W/SiCN (II)

Microstructure of W/SiCN (III)

Microstructure and EDX-analysis of W/SiCN (I)

Microstructure and EDX-analysis of W/SiCN (II)

First XRD-analysis of W/SiCN

High-res investigation on crystallisation of W/SiCN

Thermodynamics: reactions of W or Mo with Si₃N₄

 \rightarrow Reactions of N₂ with Mo or W are neither favoured thermodynamically nor kinetically \rightarrow Reactions under N₂ release are preferred

Reactions of W or Mo with SiC

 \rightarrow Reactions of Mo and W with C-compounds are preferred

Reactions of W or Mo with SiC and Si₃N₄

Preference of reactions of W and Mo

Viable reactions of Mo and W with SiCN w.r.t. TG-analysis

- $Mo + Mo_5Si_3 + Mo_2C + N_2^{\uparrow}$ • Mo + SiCN \rightarrow 1300°C \rightarrow
- $4Mo + Mo_5Si_3$ 3Mo₃Si \leftrightarrow
- $5Mo + Si_3N_4$ $Mo_5Si_3 + 2N_2^{\uparrow}$ (mass loss! TG ok) \leftrightarrow
- Mo + SiCN \rightarrow 1500°C \rightarrow Mo₅Si₃ + Mo₃Si + Mo₂C + N₂^{\uparrow}

- W + SiCN \rightarrow 1300°C \rightarrow W + WC + SiCN + N₂[↑]
 - W + WC W_2C \leftrightarrow
 - $3W + 3SiC + 2N_2 \leftrightarrow 3WC + Si_3N_4$ (mass gain! TG ok)
- W + SiCN \rightarrow 1500°C \rightarrow W + W₂C + WC + Si₃N₄

First mechanical models of Mo/SiCN- and W/SiCN

- Application of the model of He and Hutchinson to the new composites Mo/SiCN and W/SiCN
- Comparison to other fiber reinforced SiCN composites based on C- and SiCfibers
- First estimations and explanations on fracture behaviour as well as damage tolerance of such composites can be foreseen

Tensile testing of various UD-fiber reinforced SiCN I [FVC: fiber volume content; FSU: fiber strength utilisation]

Tensile testing of various UD-fiber reinforced SiCN II [E_f: Young's modulus of fiber; E_{rel}: relative Young's modulus of fiber and matrix]

Damage-tolerant and brittle fracture behaviour of CMCs (Concept of He and Hutchinson)

Summary and outlook I

- Mo- and W-fiber reinforced CMCs can be easily manufactured via polymer infiltration and pyrolysis at 1300 °C (PIP)
- Mo/SiCN and W/SiCN composites are light-weight in comparison to Mo/Mo and W/W composites
- Mo/SiCN and W/SiCN show increased fracture strain compared to CMCs
- Mo/SiCN and W/SiCN can be considered as WMCs and thus need no weak interphase
- Microstructural and phase analyses have shown that Mo- and W-fibers are still present and thermally resistant in the SiCN matrix even at 1300 °C
- Thermodynamical calculations strongly recommend an additional fiber coating from C-attack!

Summary and outlook II

- Microstructural and phase analyses have shown that Mo- and W-fibers suffer from surfacial attack, mainly by C-based materials
- Applying a coating as reaction barrier (e.g. Y₂O₃) should provide further improvement in mechanical properties
- New applications are feasible due to:
 - increased fracture strain
 - good tensile and fracture strain
 - high stiffness
 - high thermal conductivity
 - low thermal expansion
 - high thermal shock resistance
 - anisotropic behaviour of composite according to tailor-made design

