Wine History Project Moving Pavilion

A Senior Project presented to the Faculty of the Architectural Engineering Department California Polytechnic State University - San Luis Obispo

In Partial Fulfillment of the Requirements for the Degree Bachelor of Science

By
Rachel Jakel
December 2019

Table of Contents

General Information
Background. 1
IPD 1
Constraints 1
Project Information
Project 1: In Bloom
Renders 4
Assembly/ Transportation/Cost Estimate 7
Project 2: Bivouacky Shack
Renders. 52
Assembly/ Transportation/Cost Estimate 54
Structural
Project 1: In Bloom 16
Project 2: Bivouacky Shack 58
Credits 93

Introduction to Project

Background:

The Wine History Project of San Luis Obispo documents and preserves the unique food and wine history of the area. They educate the community through inviting exhibits that teach people about the importance of viticulture and its impact on making San Luis Obispo what it is today. They came forth with a proposal for our studio to design a temporary moving pavilion that will showcase their displays and exhibits at various wineries in the county.

Integrated Project Delivery:

This was an interdisciplinary senior project class that was made up of architectural engineering, construction management and architecture students. We utilized the integrated project delivery method (IPD) to carry out the design process of this project. The class was also sponsored by LPA design firm as they practice IPD and were able to help us understand more about this method through several meetings. IPD is an emerging form of project delivery that includes engineers, contractors and owner as well as the architect in an iterative-opposed to linear- design process. This collaborative method is meant to make for a faster and more successful project delivery as communication between all parties should cut down on confusion and leave less room for error.

Constraints:

This project was very challenging in that it required the structure to be very flexible yet very portable. The pavilion must be initially built by construction management students utilizing the CAED shop then constructed by "unskilled labor" (i.e. movers, the clients, friends of the clients, etc.) as it moves from site to site. It must be transportable via typical moving truck and assembled without machinery. There should be little disturbance to the ground it sits on, yet it should be stable and have adequate foundations. There was little design direction but it should provide nearly unlimited display options as our clients exhibits change often with various artifacts and posters of various sizes.
[IN/BLOOM]
[IN/BLOOM]
[IN/BLOOM]
[IN/BLOOM]

Architectural Renders and Site Plan

SITE PLAN

 $3 / 8 "=1-0$

Assembly, Transportation and Cost Estimate

Material	Qty	Supplier	Unit Price	Total Price	Notes/Comments
2-1/2"x2-1/2"x1/8" HSS	447'	B\&B	\$ 61.00	\$ 1,403.00	Sold in 20' Lengths
$2-1 / 2^{\prime \prime} \times 2-1 / 2^{\prime \prime} \times 3 / 16^{\prime \prime} \mathrm{HSS}$	20'	B\&B	\$ 67.00	\$ 67.00	Sold in 20' Lengths
Schedule $401-1 / 2^{\prime \prime}$ Steel Pipe	445'	B\&B	\$ 50.40	\$ 1,108.80	Sold in 21' Lengths
Schedule 40 2" Steel Pipe	20'	B\&B	\$ 55.00	\$ 55.00	Sold in 21' Lengths
20 Gauge Sheet Metal	440 sq ft	B\&B	\$ 57.00	\$ 627.00	Sold in 4×10 sheets
1/8 X 3 Hot Rolled Steel Flat Bar	1	Metals Depot	\$ 29.80	\$ 29.80	20' Length
Seaman 8421 Architectural Fabric	43 yds	SLO Sail and Canvas	\$ 28.00	\$ 1,204.00	\$28/yard 72" wide roll
Structural bolts A325, Hot dipped galvanized steel, 1/2"-11 x 3"	200	Bolt Depot	\$ 81.80	\$ 163.60	Bulk Pricing
Structural washers F436, Hot dipped galvanized steel, 1/2"	500	Bolt Depot	\$ 62.20	\$ 62.20	Bulk Pricing
Structural nuts A194 grade 2H, Hot dipped galvanized steel, 1/2" -11	250	Bolt Depot	\$ 59.10	\$ 59.10	Bulk Pricing
Hex bolts, Zinc plated steel, 1/2" -18	100	Bolt Depot	\$ 7.91	\$ 7.91	Bulk Pricing
SAE flat washers, Zinc plated steel, 1/2"	100	Bolt Depot	\$ 2.18	\$ 2.18	Bulk Pricing
1x8 Oak Board	40 LF	Home Depot	\$ 5.92	\$ 236.80	Sold per LF
1-1/2 in. $\times 72$ in. Plain Steel Angle with 1/8 in. Thick	1	Home Depot	\$ 19.91	\$ 19.91	72" Length

ISOMETRIC VIEW: HSS STRUCTURAL FRAME

TOP/DOWN VIEW

- = Column
= Entrance

NORTH/SOUTH ELEVATIONS

Display Module

HSS Member Sizes/Weights

Weight: $6.23 \mathrm{lbs} / \mathrm{ft}$

Truss Dimensions/Weight

Quantity: 22.67 LF Weight: 88.4 lbs

Truss B

Quantity: 23.67 LF Weight: 92.3 lbs

Truss C

Quantity: 24.67 LF Weight: 96.2 lbs

HSS Member Sizes/Weights

Wall Panel Diagram/Portability

Notes:

- Wall panels will be prefabricated off-site.
- All members will be welded together, if panel requires cross bracing then custom fabricated connecting plates will be welded on.
-During transportation/construction cross brace will be left off until panel is set in place.
- Total weight of wall panel is $\sim 170 \mathrm{lbs}$, recommended to be carried by 2-3 people,

Notes:

- Final wall panel with cross bracing that will be used to construct the display module.

Notes:

- Wall panel that will be used at the entrance to the atrium.

Portability Diagram

Wine History Project Moving Pavilion: In Bloom

Site 1: Saucelito Canyon Winery Tasting Room
3180 Biddle Ranch Rd, San Luis Obispo, CA 93401

Rachel Jakel

Project: In Bloom
Client: Wine History Project
Calculated by: Rachel Jakel

Table of Contents
Description
Page Number

1. Project Description..D2
2. Load Takeoff...D3
3. Key Plan..D4-D5
4.Beam Design... B1-B2
4. Column Design...C1-C2
5. Lateral Design..L1-L3
6. Connections...J1-J9
7. Footing Design...F1-F3
8. Appendix...A1-A3

Project Description

The Wine History Project documents and preserves the unique food and wine history of San Luis Obispo County. This pavilion made for them will house their exhibits and travel from winery to winery in the San Luis Obispo County. The first site it will see is at the tasting room of Saucelito Canyon Winery. The design of the pavilion stemmed from a biomimetic structure of a mollusk. The use of biomimicry in the design helps it to live and function at any site by adapting the way that a mollusk would. Just as the shell of a mollusk is made up of several different layers of different structure types, In Bloom is made up of two different structures- one that comprises the gravity and lateral force resisting systems as well as an outer shell that provides architectural interest and protection from the elements with that together form the pavilion for the Wine History Project.

The structure itself stands 8 feet tall with protruding architectural elements up to 11 feet with a footprint of 150 square feet for the atrium module and 100 square feet for the optional addition module. The two modules are structurally independent and can be set up according to the needs of the Wine History Project. It is comprised of hollow structural steel for the gravity as well as lateral systems. From site to site the pavilion will be constructed on relatively flat ground and is connected to the ground via pressure treated wood bearing footings with earth anchors.

Design Criteria

1) Codes used:

- International Building Code 2018
- American Society of Civil Engineers 7-16
- American Institute of Steel Construction 360-16
- National Design Specification for Wood Construction 2015

2) Design Loads:

- Dead Loads- weights of all materials as shown per calculations
- Live Loads- uniformly distributed- assumed as 10 psf uninhabitable attic without storage per ASCE 7-16 Table 4.3-1
- Wind Loads per IBC, Exposure C and wind speed V of 95 mph based off process in ASCE 7-16.

3) Foundation Design:

- With no geotechnical report provided and soil class unknown, worst case soil bearing pressure of 1000 psf will be used.

Material Criteria

4) Steel

- For framing members, HSS SQ A500 used for beams columns and braces
- For canopy members, X-strong pipe

5) Aluminum

- Auger anchors for foundations

6) Timber

- Pressure treated lumber for foundation bearing pads.

Load Takeoff	Weight
Material	3.90 plf
HSS $2.5 \times 2.5 \times 1 / 8$	3.63 plf
Pipe $11 / 2$ X-strong	$\sim 3 \mathrm{psf}$

Load Takeoff

Pipe $11 / 2 \mathrm{X}$-strong
3.63 plf

Architectural Fabric
~3psf

SAP2000 Modeling Criteria

The model uses the same member type throughout and is modeled under worst case conditions and a partially closed wind load. All connections are modeled as pinned though they will have more rigidity when constructed.
Dead loads are applied at worst case conditions and live as uniformly distributed based off of tributary area. Wind load is applied windward, leeward and as uplift pressure. LRFD load combinations were ran for design code checks and ASD combinations were ran for foundation design.

Key Plans

SHELL CHECK:
P. $5 x$-STRONG I:. 372

W. WGEIHT OF SHELL (SHEET METAL Canvas) les sheet neral, conservative $\omega=(2.156$ pst $)\left(2.5^{\prime}\right.$ iRis moth $)$
$\omega=5.39 \mathrm{plf}$
L- 9 Lengith COnservative
$V_{\text {max }}=5.39\left(9^{\circ}\right) / 2=24.26 \#$

$$
\begin{aligned}
M_{\text {Max }} & =\frac{\omega c^{2}}{8}=\frac{5.39\left(9^{2}\right)}{8} \\
& =.055 \mathrm{k}^{1}
\end{aligned}
$$

$$
\begin{aligned}
\text { DEL } & =\frac{5 \omega \rho^{4}}{584 E I} \\
& \frac{5(.0005 \mathrm{kli})(9 \times 12)^{4}}{584(21000 \mathrm{ksi})(.372)} \\
\Delta & =.053 \mathrm{in}
\end{aligned}
$$

SHELL CKCK CONND:
BENDING:

$$
\begin{aligned}
\phi M_{n} & =\phi F 4 z \quad \quad(\text { Alsc } 360-10 F) \\
\phi M_{n} & =.9(35 k s i)\left(.549 i^{\prime}\right) \\
\phi M_{n} & =17.29 k^{\prime \prime}=1.44 k^{\prime}>.055 k^{\prime} \\
\frac{d}{c} & =\frac{.055 k^{\prime}}{1.44 k^{\prime}}=.04<1.0^{v}
\end{aligned}
$$

SHEAR:

$$
\begin{aligned}
& \phi V_{n}=\phi_{1}\left(.6 E_{1} A_{n} C_{r}\right) \quad \text { (AIsC 360-31) } \\
& d v=.9(.6)(35 \mathrm{ks})\left(v 0 \mathrm{in}^{2}(1.0)\right. \\
& =18.9 k>.024 k \\
& \frac{d}{c}=\frac{.024 k}{18.9 k}=.001 \angle 1.0^{d}
\end{aligned}
$$

Defiection Check:
DCAD LLVE (IRC 2018 T1604.3)

$$
\begin{aligned}
& \Delta_{\text {ALCW }}=l / 120=9 \times 12 / 120=0.9 \mathrm{in} \\
& \Delta_{\text {ACRUR }}=0.53 \mathrm{in}
\end{aligned}
$$

$\angle .53$ in ACNOAL <.9in AUOW,

BEAM TO COLUMN DETAIL

HSS 2.5X2.5X1/8

1/2" BOLT TYP

BRAM TO COL CONAECTION:
RXN FKOM BMA SEE BMM CMS (WOYS CASE)

$$
R_{B}=150 \#
$$

Rupture on tiss:
$\phi R_{n}=\phi .6$ FUAnv (ARE 2QN J4-4)

$$
\begin{aligned}
& .75(6)(62)(2.5-(1 / 2+1 / 8) X .116) \\
& \phi R_{n}-6.07 k>.15 k \\
& d / c=\frac{.15}{6.07}=.024<1.0 v
\end{aligned}
$$

Y EUN ON HSS:

$$
\begin{aligned}
& \phi R_{n}=\Phi .6 F_{y} R g \\
& (1.0)(.6)(56)(2.5)(1116) \\
& \phi R_{n}=8.7 \mathrm{~K} \\
& d_{c}=.15 \mathrm{k} / 8.7 \mathrm{k}=.02<1.0 \mathrm{~V}
\end{aligned}
$$

RUPTVRE ON FLANEE
$\phi R_{n}=\Phi . b f_{\text {unv }}$

$$
\begin{gathered}
.75(.6)(58 k s i)\left(2.5-\left(y_{2}+1 / 8\right)\right)(12 x) \\
\phi k_{n}=6.12 k \quad d c_{c}=\frac{.15}{6.12}=.025<1.04
\end{gathered}
$$

YIELD ON FLANOK

$$
\begin{aligned}
& \Delta R_{n}= \Phi F y \text { Agv. } \\
& 1.0 \\
& \phi R_{n}=6.75 \mathrm{k} \\
&(36 \mathrm{ksi})(2.5)(125) \\
& d / c=.15 / 6.75=.02 \angle 1.0 \mathrm{~J}
\end{aligned}
$$

BEAM TO COL COMD:
WELD Conrn:
IN DIRECTON OF LOADING \rightarrow Yield:

$$
\begin{aligned}
\ddot{\Phi} R_{n} & =\phi F_{n} B_{m} A_{B M} \\
& =1.0\left(.6 F_{y}\right)\left(t_{2}\right) \\
& =1.0(.6)\left(3(0 \mathrm{ksi})\left(1 / 8^{\prime \prime}\right)(2.5)\right. \\
\phi R_{n} & =6.75 \% \quad d / c=.15 / 6.75=.02<1.0^{2}
\end{aligned}
$$

RUPREE:
$\phi R_{n}=\phi F_{n} B_{n} A_{s m}$

$$
\begin{aligned}
& =.75(.6)(58 \mathrm{ksi})\left(1 / 8^{\prime \prime}\right)\left(25^{\prime \prime}\right) \\
& \phi_{1}=8.156 k \quad d / c=.15 / 8166=.02<1.0
\end{aligned}
$$

GRAVITT ONWELDV, SHEAK
A36 $1 / 8^{\prime \prime}$ R SHEAR tab
Yrun:

$$
\begin{aligned}
\Phi R_{n} & =.6 F_{y} A_{D M} \\
& =.6(36 \mathrm{ks})\left(2.5^{\prime \prime}\right)\left(.125^{\prime \prime}\right)
\end{aligned}
$$

$\phi k_{n}=6.75 k \quad d / c=15 / 6.75 k=.02<1.0^{1}$
RUPRE:

$$
\begin{aligned}
& \left.\Phi \dot{e}_{n}=.75(.6)(58) \mathrm{ksi}\right)(2.5)\left(.125^{\prime}\right) \\
& \phi 2 n=8.156 \mathrm{k} \quad d_{l c}=18 / 8.156=0241.0
\end{aligned}
$$

BRACE DETAIL

braç connaction:

From bracz calc

$$
F_{D}=1.4 k \quad \theta=\tan ^{-1}(8 / 5)=58^{\circ}
$$

$$
\begin{aligned}
& F_{x}=1.4 \cos 5 \%=.74 k \\
& F_{y}=1.4 \sin 58=1.19 k
\end{aligned}
$$

CHECK BOLT FOR SHEAR:
Ruprace on Hs: (AIX EQN J44)
$\phi R_{n}=\phi .6 F u A_{0}$

$$
\begin{aligned}
& =.75(6)(62)(2.5-(1 / 2+1 / 8)(.116) \\
& d k_{n}=6.07 \mathrm{k} \quad d / c=1.4 / 6.07=.2341 .01
\end{aligned}
$$

YIELD ONHSS:

$$
\begin{aligned}
& \Phi R_{n}=\$.6 F_{y} A_{9} \\
& \phi R_{n}=8.0 .7 \mathrm{k}\left(50 k_{5}\right)(2.5)(1116) \\
& \quad \text { dlc }=1.4187=.1641 .0
\end{aligned}
$$

RPTIRE ON FLANG:

$$
\begin{aligned}
& Q_{n}=\phi .6+0 A_{n} \\
& (275)(.6)(58 \mathrm{ks})(2.5-(1241 / 8))(.125) \\
& \phi R_{n}=6.12 \mathrm{k} \quad d_{c}=1.416 .12=.23<1.0^{1}
\end{aligned}
$$

YIEND ON PLANER:

$$
\begin{aligned}
& \phi R_{n}=\phi .6 F y \mathrm{Aqv} \\
& (1.0)(.6)(36151)(2.5)\left(.12 s^{\prime \prime}\right) \\
& \text { Sen=6.75k } \quad d_{c}=1.416 .75=2214.0^{J}
\end{aligned}
$$

SHELL TO COLUMN DETAIL

SHELL TO STRUCURE CONNECTION:

plyz OUsipe pla $1.9^{\prime \prime}$
$P 2 X$ insipe $9 a=194^{\prime \prime}$ $1.94>19^{\circ}$ SNG FIT

WIND UPLIFT $=20.69$ PSF

CHECK BOUS ($1 / 2^{\prime \prime}$) TEAROUT
spacing à epar pistanca
MIN apor DISTMNE = 3/4. (AISC J3.4)
 $\phi R_{n}=\phi \pi_{n} A_{0} \quad$ (AISC J3-1)

$$
\begin{aligned}
& \phi R_{n}=.75(27 \mathrm{ksi})\left(1 / 2 / 2^{2} \pi\right) \quad \text { (} 27 \mathrm{kgi} \text { from } T J 3.2 \mathrm{~A}(0 \mathrm{c}) \\
& \phi R_{n}=3.98 \mathrm{k}>600= \\
& d / c=16 / 3.98=.15<1.0 \%
\end{aligned}
$$

Min SPACINT

$$
2^{2 / 3} d=2^{2} / 3(1 / 2)=1.33^{11} \Rightarrow \text { Use } 1 . \text { s }^{11} \text { (N/A, ON BO2T) }
$$

\square

SHell to stricture contra:
LiviD of pipe:

$$
\begin{aligned}
& \phi P_{n}=\phi F_{4} \mathrm{Ag} \\
& \phi P_{n}=9(35 \mathrm{ks})(10) \\
& \phi P_{n}=31.5 \mathrm{k}>.6 \mathrm{k} \\
& d_{k}=.02<1.0^{1}
\end{aligned}
$$

RUPTURE of PIPE:

$$
\begin{aligned}
& d P_{n}=\phi F 0 \mathrm{Ag} \\
& . A 5(60 \mathrm{ksi})(1.0-1 / 2+1 / 8) \\
& \phi P_{n}=16.88 \mathrm{k}>.6 \mathrm{k} \\
& d / 6=.6 / 16.88=.05<1.01
\end{aligned}
$$

FOOTING DETAIL

FCoting desen
woks grpany case v:
$6.2 \% \downarrow$ From sap macrsels
use soll baneno prasclke Fay = looops (warsi CASE)
$\sigma=P / A=12000 A$

$$
A=6.2 \mathrm{ft}^{2}
$$

$2^{\prime} \times 1.3^{\prime}$ FTE FOR bCARING

A $2 \times 1.3^{\prime}=2.6 \mathrm{ft}^{2}<6.2$ BUT BEARING FROM earth anchtors is at least tearout value, will CONR pifference

Check Fe on timber.

$$
\text { Fet } \begin{aligned}
& \frac{\text { RAN }}{\text { ABARING }} \\
& \frac{6200^{\circ}}{6 \times 6 i^{\circ}} \\
= & 172.2 \text { psi }
\end{aligned}
$$

C_{1} GRapr 2DFL $=625 \mathrm{pSi}$ (NDS 205 T4A)
Fer Allow $625 \mathrm{psi}>$ Feas amal $172.2 \mathrm{psi} V$

CHECK BOLB ($1 / 2^{\prime \prime}$) TEAROKT:
spacino telge disimec
MIN EDGE AST = 3/4" (AISC 53.4)
$1 / 2^{\prime \prime}$ bOLT in DOUBLE STLAR (HSS) TRAADS EXCLudAD
$\phi R_{n}=\phi F_{n} A_{b} \quad$ (AISC $53-1$)
$\phi R_{n}=75(27 \mathrm{ksi})(1 / 2 / 2)^{2} \pi \quad(27 \mathrm{ksi}$ Fromm 153.2$)$
$\phi R_{n}=3.98 \mathrm{k} \quad d l_{c}=4.3 / 398=1.08>1.0 \mathrm{~N} . \mathrm{G}$.
use 3BOLD TO CRENTE MORE RAGIV CONNEATION WI
2" spacink

$$
\begin{aligned}
& \therefore 4.3 / 3 \text { beous }=1.43 \mathrm{~K} \\
& d_{c}=1.43 \mathrm{k} / \mathrm{s.9g}^{k}=0.36<1.0 \mathrm{~V}
\end{aligned}
$$

MIN SPACING

$$
2^{2} / 3 d=2^{2} / 2(1 / 2)=1.33^{11}
$$

\Rightarrow Use $2^{\prime \prime}$ wI 3 Bolts for mare RGID connsction

FOOTING CONTD
COL ON PTG
COL ON $6^{\prime \prime} \times 6^{\prime \prime}$ BASE R BEARING

$$
\begin{aligned}
t_{\text {min }} & =\sqrt[L]{\frac{2 p_{u}}{9 f y N B}} \quad(\text { AIS } 14-7 a) \\
1.25 & \sqrt{\frac{2(60.2 k)}{.9\left(36 k s_{1}\right)\left(60^{*} 6\right)}} \\
t_{\text {min }} & =.157^{\prime \prime} \Rightarrow \text { USS } 1 / 4^{\prime \prime} R \text { BEARING }
\end{aligned}
$$

CHICK BOLT THROAt R: NEOD
6.2 K IN TENSION
$1 / 2$ A307 BOLT $F_{n t}=45 \mathrm{ksi}$ (MISC $T J 3.2$)
$\phi R_{n}=\phi F_{n} A_{b} \quad(3-1)$
$.75(45 \mathrm{ksi})(1 / 2 / 2)^{2} \pi$
$6.62 \mathrm{k} \quad d / c=6.2 / 6.62-.9<1.0 \mathrm{~V}$ close to 1.0,
LS TWO BOLB FOR EVEN DISTR BUTION ANIMAl


```
Project: In Bloom
Client: Wine History Project Calculated by: Rachel Jakel
Date: 11/27/2019
Sheet No. A1
```

TABLE: Joint Reactions								
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	Kip	Kip	Kip	Kip-in	Kip-in	Kip-in
-9	COMB4asdx	Combination	-0.116	-0.001277	-0.0046	0	0	0
-12	COMB1asd	Combination	-0.000765	-0.001272	0.395	0	0	0
-12	COMB2ASDx	Combination	-0.092	-0.014	6.222	0	0	0
-12	COMB3ASDY	Combination	-0.002446	-0.069	1.812	0	0	0
-58	COMB2asdy	Combination	0.022	-0.209	0.13	0	0	0
58	COMB3asdx	Combination	-1.941	0.017	-2.753	0	0	0
-58	COMB4asdx	Combination	-2.588	0.026	-4.298	0	0	0
-66	COMB1asd	Combination	-5.383E-05	-0.001143	0.34	0	0	0
66	COMB2ASDx	Combination	-0.109	0.002051	-0.129	0	0	0

Project: In Bloom
Client: Wine History Project Calculated by: Rachel Jakel
Date: 11/27/2019

Sheet No. A2

Penetrator Load Capacity Chart - US Ibs

Penetrators

Notes about Penetrator Load Capacity

- Field-tested vertical PULLOUT strength
- PUSHDOWN strength (as when Penetrators are used for footings) is typically equal to or greater than pullout strength because of unlimited undisturbed soil below the Penetrator
- When installed through asphalt, pullout strength is increased because of the Penetrator's grip in the asphalt and in the compacted soil directly below the asphalt

Load Case B

Notation

a 10% of least horizontal dimension or $0.4 h$, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft t $(0.9 \mathrm{~m})$.
Exception: For buildings with $\theta=0$ to 7° and a least horizontal dimension greater than $300 \mathrm{ft}(90 \mathrm{~m}$), dimension a shall be limited to a maximum of 0.8 h .
h Mean roof height, in feet (meters), except that eave height shall be used for $0 \leq 10^{\circ}$
θ Angle of plane of roof from horizontal, in degrees.
FIGURE 28.3-1 Main Wind Force Resisting System, Part $1[h \leq 60 \mathrm{ft}(h \leq 18.3 \mathrm{~m})]$: External Pressure Coefficients, $\left(G C_{p i}\right)$, for Enclosed and Partially Enclosed Buildings-Low-Rise Walls and Roots

[BI]VOUAC(k)y SHACK [BI]VOUAC(k)y SHACK
 [BI]VOUAC(k)y SHACK
 [BI]VOUAC(k)y SHACK

Architectural Renders and Site Plan

【［sanceelitio carnyom］】 3080 bidele ronch rood
san tuis 0 bipon ca 93401

三wa

FTा

Assembly, Transportation and Cost Estimate

Module 1-4 Bay

Material	Qty	Unit	Unit Price		Total
HSS Super Strucuture					
2 1/2"x1/8" HSS	300	LF	\$69.00	per 20'	\$1,035.00
2"x 1/8" HSS	40	LF	\$55.00	per 20'	\$110.00
$1 / 2$ in. -13×4 in. Galvanized Hex Bolt	168	Count	\$2.16	each	\$362.88
6 in. x 16 in. x 8 ft. Hem-Fir Brown Stain Ground Contact PressureTreated Lumber	104	LF	\$18.27	per 8'	\$237.51
1/2 in.-13 $\times 4$ in. Galvanized Hex Bolt	336	count	\$0.46	each	\$154.56
1/2 in. Galvanized Lock Washer	336	count	\$0.31	each	\$104.16
4"x8"x1/4" Plate Steel (A36)	5	counts	\$258.76	each	\$1,293.80

SUM $\$ 3,297.91$

Form	Qty	Unit	Unit Price		Total
1"x 1/16" Square Steel Tube	2600	LF	\$11.00	per 20'	\$1,430.00
1/4" Sqaure Bar	60	LF	\$5.00	per 20'	\$15.00
Stainless Steel Uncoated Wire Rope 3/32 in. x 200 ft	200	LF	\$53.98	per 200'	\$53.98
48 in. x 96 in. x 0.157 in. Clear Corrugated Plastic Sheet (10-Pack)	6	Count	\$208.49	per pack	\$1,250.94
Stainless Steel Hook and Eye Turnbuckle (5-Pack)10-24 x 5-5/8 in.	1	Count	\$1.68		\$1.68
$3 / 8$ in. x 4 in. Zinc-Plated Eye Bolt with Nut	4	Count	\$0.95		\$3.80
3/8 in. Zinc-Plated Flat Washer	6	Count	\$0.17		\$1.02
3/8 in.-16 Zinc Plated Hex Nut	5	Count	\$0.15		\$0.75
$3 / 32$ in. Aluminum Ferrule and Stop Set	4	Count	\$1.62	2 per pack	\$6.48
Spray Paint/Primer	25	Count	\$12.00		\$300.00
Caulking	5	Count	\$5.00		\$25.00
				SUM	\$3,088.65

Wall	Qty	Unit	Unit Price		Total
1/2 $4 \mathrm{ft} . \times 8 \mathrm{ft}$. Oriented Strand Board	10	Count	\$17.55		\$175.50
2"x4"x96" Stud	400	LF	\$3.00	per 8'	\$150.00
3 in. Construction Screw (10 lb.-Box)	2	Count	\$33.57	per 10lb box	\$67.14
4'x8' x 5/8' Dens Deck	10	Count	\$49.00		\$490.00
Thermo Plastic Membrane	120	SF	\$6.00	Per SF	\$720.00
				SUM	\$1,602.64

Module 1 Total	$\$ 7,989.20$
Module 2 Total	$\$ 3,994.60$
6 Bays	
Module 3 Total	$\$ 3,994.60$
8	8 Bays
IUIAL WIth 8 Days	$\$ 15,978.40$

PORTABILITY DIAGRAM

INSIDE USEABLE DIMENSIONS

Length: 23'5"

Width: 7'3"
Inside Height: 8'3"
Door Height: 6'10"

STEEL FRAME PORTABIITY

Members:
\square
NOTE

1. Heaviest Steel Member is 60\#

WALL PORTABILITY

DEMENSION OF MODULAR WALL

FORM PORTABILITY

DESRIPTION

This is depicting the mobility of the form. The plan is to build wood framed structures that hold and protect forms for transportation. There are 8 different frames that will be built for the different parts of the form. This form shows the largest shipping size, which can fit within the U haul. The heaviest mobility structure including the form is 120\#.

Wine History Project Moving Pavilion: Bivouacky Shack

Site 1: Saucelito Canyon Winery Tasting Room
3180 Biddle Ranch Rd, San Luis Obispo, CA 93401

1. Project Description. D2
2. Load Takeoff. D3
3. Key Plan D4-D5
4.Beam Design B1-B2
4. Column Design. C1-C2
5. Lateral Design L1-L3
6. Connections. J1-J9
7. Footing Design F1-F3
8. Appendix A1-A3

Project Description

The Wine History Project documents and preserves the unique food and wine history of San Luis Obispo County. This pavilion made for them will house their exhibits and travel from winery to winery in the San Luis Obispo County. The first site it will see is at the tasting room of Saucelito Canyon Winery. The design of the pavilion stemmed from a biomimetic relationship of the army ant and how they create shelter- the bivouac. The use of biomimicry in the design helps it to live and function at any site by adapting the way that the army ant would. Just as the army ant uses each individual member of the colony to create their bivouac, the Bivouacky Shack is made up of several different but similar elements that come together to form the pavilion for the Wine History Project.

The structure of the pavilion stands 10 feet tall and 12 feet wide with a length that can be adjusted to either 12, 18 or 24 feet with total square footage of 144,216 or 288 respectively to fit the client's desires. It is comprised of hollow structural steel for the gravity as well as lateral systems. From site to site the pavilion will be constructed on relatively flat ground and is connected to the ground via pressure treated wood bearing footings with earth anchors.

Design Criteria

1) Codes used:

- International Building Code 2018
- American Society of Civil Engineers 7-16
- American Institute of Steel Construction 360-16
- National Design Specification for Wood Construction 2015

2) Design Loads:

- Dead Loads- weights of all materials as shown per calculations
- Live Loads- uniformly distributed- assumed as 10 psf uninhabitable attic without storage per ASCE 7-16 Table 4.3-1
- Wind Loads per IBC, Exposure C and wind speed V of 95 mph based off process in ASCE 7-16.

3) Foundation Design:

- With no geotechnical report provided and soil class unknown, worst case soil bearing pressure of 1000 psf will be used.

Material Criteria

1) Steel

- For framing members, HSS SQ A500 used for beams columns and braces

2) Aluminum

- Auger anchors for foundations

3) Timber

- Pressure treated lumber for foundation bearing pads.
Load Takeoff
Material Weight
HSS 2.5x2.5x1/8 3.90 plf
1 " SQ Steel Tube $\quad 1.20$ plf
Corrugated Plastic $\sim .5 \mathrm{psf}$

SAP2000 Modeling Criteria

The model uses the same member type throughout and is modeled under worst case conditions with point loads at the midpoint of each beam and a partially closed wind load. All connections are modeled as pinned though they will have more rigidity when constructed.
Dead loads are applied at worst case conditions and live as uniformly distributed based off of tributary area. Wind load is applied windward, leeward and as uplift pressure.
LRFD load combinations were ran for design code checks and ASD combinations were ran for foundation design.

LIVE LOPSF \times TRIB WIOHH 6^{\prime}
$\omega=$ Gople
P= 500% ($1 / 2$ of wores case Form whi)个 vele conservante

LOAD COMBOS (ASCE 7 H6 2.3.1)

$$
1.1 .4 D=1.4(500)=700
$$

$2.1 .2 D+1.01=1.2(500)+1.6(60 \times 6)=1176 \pm \leftarrow$ conrrols HSS $2.5 \times 2.5 \times 1 / 8$
$E=29000 \mathrm{ksi}$
I. $.998 \mathrm{in}^{4}$

$$
\begin{aligned}
& V_{\text {MAX }}=.45 k \\
& M_{\text {max }}=\frac{w l^{2}}{8}+\frac{p L}{4} \\
& 1.6\left(\frac{\left.60(6)^{2}\right)}{8}\right)+\left(\frac{500(6)}{4}\right) 1.2 \\
& =1.33 w^{\prime}=15.96 k^{\circ} \\
& D E F L=\frac{5 W L^{4}}{38 A E 1}+\frac{P L^{3}}{4 B E 1} \quad \text { (UNFACTUEED) } \\
& =\frac{5(0.05)(6 \times 2)^{4}}{384(.998)(29000)}+\frac{.5(6 \times 12)^{3}}{48(.998)(29000)} \\
& =.19 \mathrm{in}
\end{aligned}
$$

SAMPE BM CONTD
BENDING CHECK:

$$
\begin{gathered}
\phi M_{n}=\phi F_{y} z \quad(\text { AISC } 360-10 F) \\
\phi M_{n}=.9\left(50 k k_{i}\right)\left(.977 n^{3}\right) \\
\phi M_{n}=42.615 k^{\prime \prime}>15.90 k^{\prime \prime} \\
\frac{d}{c}=\frac{15.96}{42.615^{\circ}} .37<1.0^{J}
\end{gathered}
$$

SHEAR CHECK:

$$
\begin{aligned}
\phi V_{n} & =\phi_{1}\left(.6 F_{y A_{w}} C_{v_{1}}\right) \quad(\text { Alsc } 360-01) \\
\phi V_{n} & =9(.6)(50 \mathrm{ks})(1.0)(1.07 . \mathrm{in}) \\
\phi V_{n} & =28.89 \mathrm{k}>.45 \mathrm{k} \\
\frac{d}{C} & =\frac{.45}{28.89}=.015<1.0
\end{aligned}
$$

DEFLECTION CHECK:
ROOF MEMBEK NOT SUPPORTWS CEILING (IBC 2018 T T1604.3)
LIVE

$$
\begin{aligned}
& \Delta_{\text {AuION }}=l / 180=6 \times 12 / 180=0.4 \mathrm{in} \\
& \Delta_{\text {ACTMAL }}=\frac{5141^{4}}{384 E 1}=\frac{5(00544 i)(6 \times 12)^{4}}{384(29000 \mathrm{sisi})\left(.998 \mathrm{in}^{4}\right)}=.00 \mathrm{in}
\end{aligned}
$$

. Din actuac <, Ain Alvon V
DEAD + LIVE

$$
\begin{aligned}
& \Delta_{\text {ALION }}=l / 120=6 \times 12 / 120=0.6 \mathrm{in} \\
& \Delta_{\text {ACNAL }}=.19 \mathrm{in}
\end{aligned}
$$

19in acrar <ibin ncom

BEAM ON TOP OF COLUMN DETAIL

BEAM ON TOP OF COWMN
RXN FKOM BM \rightarrow SEE BM CALCS
$R_{B}=450 \#$ WORS CASE, MDPRL COL $=28 \mathrm{H}$ RRNS
$P_{U}=450 *(2)=.9 \mathrm{~K}$
bearent:

$$
\begin{aligned}
& \sigma \frac{p}{A}=\frac{9 k}{1.97 i^{2}}=A s k s i \\
& \text { fyltss }=50 k s i>
\end{aligned}
$$

BOLB FOR SHAAR:
WIND ~ITPSF FKOM WIND CAICS

USE $1 / 2$ "ASOT PEOT
RUPIffe ON ITSS

$$
\begin{aligned}
& \phi k_{n}=\phi 6 F_{u} A_{n} \\
& \text { i7sc.6)(62ks)(2.5-(k2+1/8)(.116)} \\
& \phi k_{n}=6.1 k \quad d k=.51 k / k=.08<1.0 \mathrm{~V}
\end{aligned}
$$

MELD ON HS

$$
\begin{aligned}
& \phi e_{n}= \text { d.bf yAMv } \\
& 1.0(.6)(50 \mathrm{k})\left(2 s^{\prime \prime}\left(.116^{\prime \prime}\right)\right. \\
& \Phi t_{n}=8.7 k \quad \text { d } k=51 / 8.7=106 \angle 1.0^{\prime}
\end{aligned}
$$

BEAM ON COL CONID
SHEAR:
Rupura $O N$ STIEAR $A B$:

$$
\begin{aligned}
\phi R_{n} & =\Phi .6 F_{U A n_{v}} \\
& =.75(.6)(58 k s)(2.5-(1 / 2+1 / 2))\left(.125^{\prime \prime}\right) \\
& =6.12 k \quad d / c=.516 .12=.08<1.0^{\circ}
\end{aligned}
$$

4rad on shear Tab:

$$
\begin{aligned}
& \phi R_{n}=\phi .6 F y A g r \\
& 1.0(.6)(3 d d s)\left(2.5^{\prime \prime}\right)\left(125^{\circ}\right) \\
& \phi R_{n}=6.75 \mathrm{k} \quad d_{c}=.51 / 6.75=.08<1.0^{\mathrm{J}}
\end{aligned}
$$

$1 / 2$ 'A307 bat in shtiar
$d_{n}=d F_{n} A_{p}$

$$
\begin{aligned}
& (.75)(27 \mathrm{ki})(\pi)(1 / 2 / 2)^{2} \\
& \text { thr }=3.98 \mathrm{~K} \quad d / c=.51 / 3.98=. .13<1.0^{V}
\end{aligned}
$$

$1 / 2^{\prime \prime}$ A307 BOLT IN $2 / 2 \times 21 / 2 \times 1 / 8$ HSS W $1 / 8^{\prime \prime} R$ OKAYV
1 BOLT SUFFICIENT USE TWO TO CREAF A MORE RIGID CONNECTION

BEAM TO COLUMN DETAIL

HSS 2.5X2.5X1/8

1/2" BOLT TYP

BRAM TO COL CONAECTION:
RXN FKOM BMA SEE BMM CMS (NOYS CASE)

$$
R_{B}=150 \#
$$

Ruptura on hss:
$\phi R_{n}=\phi .6$ FUAnv (ARC EQN J1-4)

$$
\begin{aligned}
& .75(6)(62)(2.5-(1 / 2+1 / 8))(.116) \\
& \phi R_{n}-6.07 k>.15 k \\
& d / c=\frac{.15}{6.07}=.024<1.0 \mathrm{v}
\end{aligned}
$$

4 KUN ON HSS:

$$
\begin{aligned}
& \phi R_{n}=\Phi .6 F_{y} A g \\
& (1.0)(.6)(50)(2.5)(116) \\
& \phi R_{n}=8.7 \mathrm{~K} \\
& d /=.15 \mathrm{k} / 8.7 \mathrm{k}=.02<1.0 \mathrm{~V}
\end{aligned}
$$

RUPTVRE on flanear
$\phi R_{n}=\phi . b f, A_{n}$

$$
\begin{gathered}
.75(.6)(58 k s i)\left(2.5-\left(y_{2}+1 / 8\right)\right)(12 x) \\
\phi k_{n}=6.12 k \quad d_{c}=\frac{.15}{6.12}=.025<1.04
\end{gathered}
$$

YIELD ON FLANGE

$$
\begin{gathered}
\phi R_{n}=\Phi F y \text { Agv. } 6 \\
1.0(6)(36 \mathrm{ksi})(2.5)(.125) \\
\Delta R_{n}=6.75 \mathrm{k} \\
d / c=.15 / 6.75=.02 \Delta .0^{2}
\end{gathered}
$$

BEAM TO COL CONTD
bGARING:
PIMENSIONR UMMITATIONS PZR AISC CHIO

$$
\begin{aligned}
& L_{\varepsilon H} \geq 2 d=2(1 / 2)=\ln \\
& L_{\varepsilon 4}=\operatorname{lin} \\
& t_{p} \leqslant \frac{d \text { bott }}{2}+1 / 16=1 / 2 / 2+1 / 16=.3125 \\
& 1 / 8 \cdot R=.1252 .3125
\end{aligned}
$$

BEARING of BOT ON SHEAR SAB:
AISC \&Q J3-6A
$\phi R n=\$ 2$ AdtFu

$$
\begin{aligned}
& =.75(2.4)(1 / 2)(y 8)(58 \mathrm{ksi}) \\
& \phi R_{n}=65.25 \mathrm{~K} \quad d / c=.15 / 65.25=.002<1.0^{1}
\end{aligned}
$$

WELD: (FIUET STRENOTHE)
$\phi r_{n}=\phi F_{n \omega} A_{\text {we }}(\operatorname{AlsC} T 2.4)$

$$
\begin{aligned}
& .75(.707)\left(1 / 16^{11}\right)(1.0)(.6)(70 \mathrm{ksi}) \\
& \phi R_{n}=1.392 \mathrm{k} / \mathrm{in} / 1 / 16^{11} \text { of FuLst }
\end{aligned}
$$

use MIN 3/10"Weld $=1.392(3)(2.5106)=10.44 \mathrm{k}$ 3116" WeLD $2.5^{\prime \prime}$ LONG

BEAM TO COL COMD:
WELD Conrn:
IN DIRECTION OF LOADING \rightarrow Yield:

$$
\begin{aligned}
\ddot{\Phi} R_{n} & =\phi F_{n} B_{m} A_{B m} \\
& =1.0\left(.6 F_{y}\right)\left(t_{2}\right) \\
& =1.0(.6)\left(3(0 \mathrm{ksi})\left(1 / 8^{\prime \prime}\right)(2.5)\right. \\
& \phi R_{n}
\end{aligned}=6.75 \% \quad d / c=.15 / 6.75=.02<1.0^{2}
$$

RUPMEE:
$\phi R_{n}=\phi F_{n} B_{n} A_{g m}$

$$
\begin{aligned}
& =.75(.6)(58 \mathrm{ksi})\left(1 / 8^{\prime \prime}\right)\left(25^{\prime \prime}\right) \\
& \phi_{1}=8.156 k \quad d / c=.15 / 8166=.02<1.0
\end{aligned}
$$

GRAVITT ONWELDV, SHEAK
A36 1/8" R SHEAR tab
Yrup:

$$
\begin{aligned}
\Phi R_{n} & =.6 F_{y} A_{D M} \\
& =.6(36 \mathrm{ks})\left(2.5^{\prime \prime}\right)\left(.125^{\prime \prime}\right)
\end{aligned}
$$

$\phi k_{n}=6.75 k \quad d / c=.15 / 6.75 k \quad .02<1.0^{1}$
Ruprue:

$$
\begin{aligned}
& \left.\phi \dot{e}_{n}=.75(.6)(58) k s i\right)(2.5)\left(.125^{\prime}\right) \\
& \phi 2-n=8.156 k \quad d_{C}=15 / 8.156=.0241 .0
\end{aligned}
$$

BRACE DETAIL

BRACR COUNECTION

$F_{x}=1.95 \cos 59=1.004 k$
$F_{y}=1.95 \sin 59^{\circ}-1.67 k$

SHEAR:
RupTuer on HSS (AISC EQN J4.4)
$\phi h^{\prime}=$ Q. 6 FuAn

$$
\begin{aligned}
& .75(.6)(62 \mathrm{ksi})\left(2.5-(/ 2+1 / 8)\left(.116^{11}\right)\right. \\
& d f_{n}=10.11 \mathrm{k} \quad d / c=1.95 / 10.11=0.2<1.0 \mathrm{~V}
\end{aligned}
$$

YELD ON THS

$$
\begin{aligned}
& \Phi R_{n}=\Phi .6 \mathrm{Fy} \mathrm{Ag}_{9} \\
& 110(6)(50 \mathrm{ksi})\left(2 s^{\prime \prime}\right)\left(1116^{\prime \prime}\right) \\
& \Phi R_{n}=8.7 \mathrm{k} \quad \text { dlc }=1.95 / 8.7=. .22<1.0^{\mathrm{V}}
\end{aligned}
$$

rupTre on stear tab:
$\phi R_{n}=\phi .6 F_{u} A_{n v}$

$$
\begin{aligned}
& 7 s(6)(58 \mathrm{ks})(2.5-(1 / 2+1 / 8))(125) \\
& \Phi f_{n}=6.1 \quad d / c=1.95 / 16.1=.32<1.01
\end{aligned}
$$

YIELD ON SHEAR TAbi

$$
\begin{aligned}
& \Phi R_{n}=\$ 6 F_{4} \mathrm{Aq} \\
& 1.0(.6)(3045 i)\left(25^{\prime}\right)\left(125^{\circ}\right) \\
& \phi e_{n}=6.75 k \quad d_{k}=1.95 / 6.75=03 \angle 1.0 \mathrm{~V}
\end{aligned}
$$

| Rachel Jake | Bivouacky Shack for WHP | Dec 62019 |
| :---: | :---: | :---: | :---: |

FORM TO BEAM DETAIL

FupM TO ERAM connection

RXN OF FORM : $500 \mathrm{H} / 2=250{ }^{\circ}$

$$
\text { BM RXN }=\frac{250 \%}{2}=125
$$

SHEAR:
RPDRER ON RPBC

$$
\begin{gathered}
.75(6)(62451)\left(1-\left(12_{2}+1 / 2\right)\right)(.0240) \\
\phi k_{n}=.257 k \quad d_{k}=.125 / 1.257=.49<1.00 .
\end{gathered}
$$

HELD ON TVRE

$$
\begin{aligned}
& \phi R_{n}=\phi .6 F_{y} A_{q} v \\
& 1.0(.6)\left(50 k k_{1}(1.0)\left(.0246^{n}\right)\right. \\
& d R_{n}=.738 k^{\prime} \quad d_{c}=1251.738=.17 \angle 1.0^{2}
\end{aligned}
$$

RUPRRE ON SHAR TAB:

$$
\phi R_{n}=\Phi .6 F u A_{n}
$$

$$
\begin{aligned}
& =17(6(16)(58 k 51)(1-(12+1 / 8))(.125) \\
& d R_{n}=.815 \mathrm{~K} \quad \text { d/c }=.12 \mathrm{~s} / .815=415<1.0 \mathrm{~J}
\end{aligned}
$$

YiELD ONSHEAR TAB:

$$
\begin{aligned}
& \phi R_{n}=\phi .6 F_{y} A q^{2} \\
& =1.0(66)(30145)(1.0)(.125) \\
& \phi 8=2.7 k \quad d_{k}=12.25 .7=0.05<1.05
\end{aligned}
$$

ECOM TO BAM CONAECTON CONDO
$1 / 2$ "Bolt in shetr
$\phi_{n}=\phi \sin _{n}$

$$
\begin{aligned}
& \left.175(54 k s i)(\pi)^{1 / 2 / 2}\right)^{2} \\
& d_{R_{n}}=7.95 k \quad d_{c}=.125 / 7.95-.015<1.0^{2}
\end{aligned}
$$

BEARINA:
DIMENSIONAE LIMITATONS PER AISC CH 10

$$
\begin{aligned}
& L_{\varepsilon H} \geq 2 d=2(1 / 2)=1^{\prime \prime} \\
& t_{\varphi} \leq \frac{d_{\text {bolt }}}{2}+\frac{1_{1}^{\prime \prime}}{16} \\
& =1 / 2 / 2+\frac{1}{16}=.3125^{\prime \prime} \\
& 1 / 8^{\prime \prime}<.3125^{\prime \prime} \\
& 1 / 8^{\prime \prime} R \alpha_{4}
\end{aligned}
$$

brarino of bot on sitzar tab:
(AISL EQJ3-6A)

$$
\begin{aligned}
& \phi R_{n}=\Phi 2.4 \text { dtFu } \\
& =.75(2.4)(1 / 2)(1 / 8 ")(58 k s) \\
& \phi R_{n}-6.525 k \quad d_{c}=.125 / 6.525=.02<1.0^{1}
\end{aligned}
$$

FOOTING DETAIL

FOOTNG DESKON
worst gravity case:
$2.3 \mathrm{k} \downarrow$ FROM SAP ANtLYIS (SEE APPRNDKX)
lose soll brarinu presurer F_{b} - 1000 yof (wolst oass)

$$
\begin{aligned}
& \sigma=\frac{P}{A} \quad 10008 F=\frac{2300}{A} \\
& A=2.3 \mathrm{ft}^{2}
\end{aligned}
$$

USE 1.6× 1.3: FTO PRESSKE TREATED LIMBGK 6416 W) 6 " sa zenkma Re
$1.6^{\prime} \times 1.3^{\prime}=2.08 \mathrm{ft}^{2} \angle 2.3 \mathrm{ft}^{2}$ BUT BCARING FROM EARTT ANCHGES WILL COVER . 22 EXTRA SF.
CHECK FC, on timber

$$
\begin{aligned}
f_{C L}= & \frac{R \times N}{A_{B E N A N O}} \\
& \frac{2300 \text { A }}{6 i n^{2}} \\
= & 63.89 p_{0} i
\end{aligned}
$$

CL GRAPE 2DFL $=625$ PS $\operatorname{CNDS} 201514 \mathrm{~A}$
FC\&ALCON 625ps: > FCA ACTUAL 63.89 PSiV

Footing comm
worst upuft case:
l.Ak prom sap matesis
unkoown soll classifications
rssime sury kleriey smp
USE AMERICIN EARTH ANCIOKS, SEEAAPENDIX FOR CAPAEMES $36^{\prime \prime}$ P836
FEAGON CAPNATT ~ 2 bo \# PEK SHIS SOL CONDITINW WE WOO \rightarrow OVRESTIMARE FOR unfNown SOIL CAPPEITY $\sim 4200 \mathrm{H}$

$$
d_{c}=1.4 / 4.2=.33<1.0^{1}
$$

CHect SUDING:
PNIND L.SD is COEFFICEAT OF FRCCION
Vart RXN PROM SAP . $2 k \leftarrow$ QRANIT

$$
\left.\begin{array}{rl}
\text { XRKN } & =.0000786 k \\
\text { YRXN } & =.0000526 k
\end{array}\right\} \text { WiNp } \quad \begin{aligned}
13(2) & =.06 k>.0000786 k V \\
& .06 k>.0000526 k
\end{aligned}
$$

UPLIFT \rightarrow SEE SAP RESULTS
SAP RKN = 1.4K horst cask

CO $D M=25^{\circ}$
FIB CAST DIM $=3-2(3 / 16)=2625^{\prime}$
$2.625^{\prime \prime}>2.5^{\prime} \rightarrow$ sNug Fir
CHECK BOTS ($1 / 2$ ") TAROT:
spacing legfie potanea
MIN EnGr DIst - 3/4" (AISC J3.4)

$$
\begin{array}{ll}
\phi R_{n}=\phi F_{n} A_{b} & (A 1 s(J 3-1) \\
\phi R_{n}=75(27 \mathrm{ksi}) & (1 / 2 / 2)^{2} \pi \quad(27 \mathrm{kii} \text { from T53.2) } \\
\phi R_{n}=3.98 \mathrm{k} \quad d_{c}=1.4 / 3.98=0.35 \angle 1.0^{2}
\end{array}
$$

Min SPACING

$$
2^{2} / 3 d=2^{2} 3(1 / 2)=1.33
$$

 2knio connection

Footing conio
CQL ON FTG
COL ON 6×6 "BASE RE BLARING

$$
\begin{aligned}
& \operatorname{tmin}^{2}=\sqrt[4]{\frac{2 P_{v}}{9 / 1^{N B}}} \quad(\text { AlSC } 14-7 a) \\
& 1.25 \\
& \sqrt{\frac{2(2.3 k)}{.9(36 k s i)(6)(6)}}
\end{aligned}
$$

$$
t_{\text {min }}=.078 \text { in } \Rightarrow \text { use } 1 / 8^{*} \text { R BGARINO }
$$

CHECK Boer THKOGT BFARING $R \geqslant$ WOOD:
$1.4 K$ in EENSION
1/2"A3OT BOLT Fne" 43ksi (AISC TJ3.2)

$$
\begin{aligned}
\phi R_{n} & =\phi F_{n} A_{6} \quad(J 3-1) \\
& =75(45 k s)(1 / 2 / 2)^{2} \pi \\
& =6.62 \mathrm{~K} \quad d k=1.4 / 6.62 \div 2<1.0
\end{aligned}
$$

USE TWO BOLS FUR EVEN DISTRIBUTION

TABLE: Joint Reactions								
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
Text	Text	Text	Kip	Kip	Kip	Kip-in	Kip-in	Kip-in
58	COMB3asdx	Combination	-0.557	0.008486	0.426	0	0	0
58	COMB3asdy	Combination	-0.066	-0.025	1.304	0	0	0
58	COMB4asdx	Combination	-0.751	0.009184	-1.377	0	0	0
58	COMB4asdy	Combination	-0.096	-0.036	-0.206	0	0	0
-36	COMB4asdx C	Combination	-0.001999	0.006155	0.353	0	0	0
36	COMB4asdy	Combination	0.0004483	-0.346	0.295	0	0	0
37	COMBlasd Con	Combination	0.017	0.003015	2.271	0	0	0
37	COMB2asdx Co	Combination	-0.755	0.008333	-0.652	0	0	0
-37	COMB2asdy	Combination	-0.085	-0.059	0.452	0	0	0

Project: Bivouacky Shack Client: Wine History Project Calculated by: Rachel Jakel Date: 11/27/2019

Penetrator Load Capacity Chart - US Ibs
Penetrators

Notes about Penetrator Load Capacity

- Field-tested vertical PULLOUT strength
- PUSHDOWN strength (as when Penetrators are used for footings) is typically equal to or greater than pullout strength because of unlimited undisturbed soil below the Penetrator
- When installed through asphalt, pullout strength is increased because of the Penetrator's grip in the asphalt and in the compacted soil directly below the asphalt

Notation

Load Case B
a. 10% of least horizontal dimension or 0.4 h , whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft $(0.9 \mathrm{~m})$
Exception: For buildings with $\theta=0$ to 7° and a least horizontal dimension greater than $300 \mathrm{ft}(90 \mathrm{~m})$, dimension a shall be limited to a maximum of 0.8 h .
h Mean roof height, in feet (meters), except that eave height shall be used for $\theta \leq 10^{\circ}$
θ Angle of plane of roof from horizontal, in degrees.
FIGURE 28.3-1 Main Wind Force Resisting System, Part $1[h \leq 60 \mathrm{ft}(h \leq 18.3 \mathrm{~m})]$: External Pressure Coefficients, ($G C_{p i}$), for Enclosed and Partially Enclosed Buildings-Low-Rise Walls and Roofs

Credits

Renderings and Site Plan

$$
\begin{array}{ll}
\text { Project "In Bloom" } & \text { Moises De La Cruz } \\
& \text { Mereck Palazzo }
\end{array}
$$

Project "Bivouacky Shack"
Erica David Jerome Deck

Alex Urasaki

Assembly, Transportation and Cost Estimate Project "In Bloom"

Project "Bivouacky Shack"
Albert Gutierrez

Gannon Van Sickle

