Wine History Project Moving Pavilion

A Senior Project presented to the Faculty of the Architectural Engineering Department California Polytechnic State University – San Luis Obispo

> In Partial Fulfillment of the Requirements for the Degree Bachelor of Science

> > By

Rachel Jakel

December 2019

© 2019 Rachel Jakel, Gannon Van Sickle, Albert Gutierrez, Erica David, Alex Urasaki, Jerome Deck, Mereck Palazzo, Moises De La Cruz

Table of Contents

General Information

Background	1
IPD	1
Constraints	1

Project Information

Project 2: Bivouacky Shack

	Renders	52
	Assembly/ Transportation/Cost Estimate	54
Structural		
Projec	t 1: In Bloom	16
Projec	t 2: Bivouacky Shack	.58

Credits
Credits93

Introduction to Project

Background:

The Wine History Project of San Luis Obispo documents and preserves the unique food and wine history of the area. They educate the community through inviting exhibits that teach people about the importance of viticulture and its impact on making San Luis Obispo what it is today. They came forth with a proposal for our studio to design a temporary moving pavilion that will showcase their displays and exhibits at various wineries in the county.

Integrated Project Delivery:

This was an interdisciplinary senior project class that was made up of architectural engineering, construction management and architecture students. We utilized the integrated project delivery method (IPD) to carry out the design process of this project. The class was also sponsored by LPA design firm as they practice IPD and were able to help us understand more about this method through several meetings. IPD is an emerging form of project delivery that includes engineers, contractors and owner as well as the architect in an iterative-opposed to linear- design process. This collaborative method is meant to make for a faster and more successful project delivery as communication between all parties should cut down on confusion and leave less room for error.

Constraints:

This project was very challenging in that it required the structure to be very flexible yet very portable. The pavilion must be initially built by construction management students utilizing the CAED shop then constructed by "unskilled labor" (i.e. movers, the clients, friends of the clients, etc.) as it moves from site to site. It must be transportable via typical moving truck and assembled without machinery. There should be little disturbance to the ground it sits on, yet it should be stable and have adequate foundations. There was little design direction but it should provide nearly unlimited display options as our clients exhibits change often with various artifacts and posters of various sizes.

[IN/BLOOM] [IN/BLOOM] [IN/BLOOM] [IN/BLOOM]

Architectural Renders and Site Plan

What is the Heart? A flower opening.

The intellectual quest is exquisite like pearls and coral, But it is not the same as the spiritual quest. The spiritual quest is on another level altogether, Spiritual wine has a subtler taste. The intellect and the senses investigate cause and effect. The spiritual seeker surrenders to the wonder.

~ RUMI

PROJECT GOALS

The Wine History Project of San Luis Obispo has entrusted Cal Poly Architecture, Engineering, & Construction Management majors with the task of designing a pavilion to function as a vital recordkeeping vessel. In their trust is over 200 years worth of artifacts showcasing the region's interlocked cultural traditions in the cultivation and consumption of wine. In an emergent "interdisciplinary" design studio format, students have been tasked with creating a transient home to this history, one which will feature a rotating public display of the WHP's hard work and dedication to preserving two centuries of winemakers' livelihoods, and which will see continuous cohabitation with an interchanging roster of local wineries & tasting rooms carrying the tradition forward.

"urchinesque explosion"

the in-between -

Early experiments in the architectural process revolved around research of the phylum Echinodermata, which includes sea stars, urchins, and the like. The exoskeletons of these organisms rely on the overlapping of rigid plates which are sutured tight by tensile collagen fibers in between. In Bloom seeks to redefine that "in-between" space, utilizing a purposeful explosion of loose-flowing tensile membranes from their rigid structural frame to create volumes for artifact display, light fixture, and ventilation.

SITE BLAN3/8" = 1'-0"

T + + + + + + E + + + + +++ + + + + + + + + × + + +++ + + + + + × + + + X + + + + + + + + + + + F + + + + + + + + + · + + X + + + + + + + + + + + + + X + + + + + + × + + + + + + × + + + + + + + +

Assembly, Transportation and Cost Estimate

Material	Qty	Supplier	Unit Pri	ce T	otal Price	Notes/Comments
2-1/2"x2-1/2"x1/8" HSS	447'	B&B	\$ 61.0	00 \$	\$1,403.00	Sold in 20' Lengths
2-½" x 2-½" x 3/16" HSS	20'	B&B	\$ 67.0	00 \$	\$ 67.00	Sold in 20' Lengths
Schedule 40 1-½" Steel Pipe	445'	B&B	\$ 50.4	10	\$1,108.80	Sold in 21' Lengths
Schedule 40 2" Steel Pipe	20'	B&B	\$ 55.0	00 \$	\$ 55.00	Sold in 21' Lengths
20 Gauge Sheet Metal	440 sq ft	B&B	\$ 57.0	00 \$	\$ 627.00	Sold in 4x10 sheets
1/8 X 3 Hot Rolled Steel Flat Bar	1	Metals Depot	\$ 29.8	30 \$	\$ 29.80	20' Length
Seaman 8421 Architectural Fabric	43 yds	SLO Sail and Canvas	\$ 28.0	00 \$	\$1,204.00	\$28/yard 72" wide roll
Structural bolts A325, Hot dipped galvanized steel, 1/2"-11 x 3"	200	Bolt Depot	\$ 81.8	30 \$	\$ 163.60	Bulk Pricing
Structural washers F436, Hot dipped galvanized steel, 1/2"	500	Bolt Depot	\$ 62.2	20 \$	\$ 62.20	Bulk Pricing
Structural nuts A194 grade 2H, Hot dipped galvanized steel, 1/2" -11	250	Bolt Depot	\$ 59.1	.0 \$	\$ 59.10	Bulk Pricing
Hex bolts, Zinc plated steel, 1/2" -18	100	Bolt Depot	\$ 7.9	91 \$	\$ 7.91	Bulk Pricing
SAE flat washers, Zinc plated steel, 1/2"	100	Bolt Depot	\$ 2.1	.8 \$	\$ 2.18	Bulk Pricing
1x8 Oak Board	40 LF	Home Depot	\$ 5.9	92 5	\$ 236.80	Sold per LF
1-1/2 in. x 72 in. Plain Steel Angle with 1/8 in. Thick	1	Home Depot	\$ 19.9	91 \$	\$ 19.91	72" Length
			TOTAL	0	\$5,04 <mark>6.30</mark>	

ISOMETRIC VIEW: HSS STRUCTURAL FRAME

TOP/DOWN VIEW

NORTH/SOUTH ELEVATIONS

HSS Member Sizes/Weights

*Members colored in **BLUE** are 3" x 2-1/2" x 3/16" HSS* Weight: 6.23 lbs/ft

Total Weight of HSS: 1135.2 lbs

Truss Dimensions/Weight

HSS Member Sizes/Weights

2-1/2" x 2-1/2" x 1/8" HSS Weight: 3.90 lbs/ft

Total Weight of HSS: 733.2 lbs

Wall Panel Diagram/Portability

Notes:

- Wall panels will be prefabricated off-site.

- All members will be welded together, if panel requires cross bracing then custom fabricated connecting plates will be welded on.

-During transportation/construction cross brace will be left off until panel is set in place.

- Total weight of wall panel is ~170 lbs, recommended to be carried by 2-3 people,

Notes:

- Final wall panel with cross bracing that will be used to construct the display module.

Notes:

- Wall panel that will be used at the entrance to the atrium.

Portability Diagram

Structural Calculation Package for

Wine History Project Moving Pavilion: In Bloom

Site 1: Saucelito Canyon Winery Tasting Room

3180 Biddle Ranch Rd, San Luis Obispo, CA 93401

Rachel Jakel

Description

Project: In Bloom Client: Wine History Project Calculated by: Rachel Jakel Date: Dec 6 2019

Sheet No. D1

Table of Contents

Page Number

 Project Description Load Takeoff Key Plan 	D2 D3 D4-D5
4.Beam Design	B1-B2
5. Column Design	C1-C2
6. Lateral Design	L1-L3
7. Connections.	J1-J9
8. Footing Design	F1-F3
9. Appendix	A1-A3

Project Description

The Wine History Project documents and preserves the unique food and wine history of San Luis Obispo County. This pavilion made for them will house their exhibits and travel from winery to winery in the San Luis Obispo County. The first site it will see is at the tasting room of Saucelito Canyon Winery. The design of the pavilion stemmed from a biomimetic structure of a mollusk. The use of biomimicry in the design helps it to live and function at any site by adapting the way that a mollusk would. Just as the shell of a mollusk is made up of several different layers of different structure types, In Bloom is made up of two different structures- one that comprises the gravity and lateral force resisting systems as well as an outer shell that provides architectural interest and protection from the elements with that together form the pavilion for the Wine History Project.

The structure itself stands 8 feet tall with protruding architectural elements up to 11 feet with a footprint of 150 square feet for the atrium module and 100 square feet for the optional addition module. The two modules are structurally independent and can be set up according to the needs of the Wine History Project. It is comprised of hollow structural steel for the gravity as well as lateral systems. From site to site the pavilion will be constructed on relatively flat ground and is connected to the ground via pressure treated wood bearing footings with earth anchors.

Design Criteria

- 1) Codes used:
 - International Building Code 2018
 - American Society of Civil Engineers 7-16
 - American Institute of Steel Construction 360-16
 - National Design Specification for Wood Construction 2015
- 2) Design Loads:
 - Dead Loads- weights of all materials as shown per calculations
 - Live Loads- uniformly distributed- assumed as 10 psf uninhabitable attic without storage per ASCE 7-16 Table 4.3-1
 - Wind Loads per IBC, Exposure C and wind speed V of 95 mph based off process in ASCE 7-16.
- 3) Foundation Design:
 - With no geotechnical report provided and soil class unknown, worst case soil bearing pressure of 1000 psf will be used.

Material Criteria

- 4) Steel
 - For framing members, HSS SQ A500 used for beams columns and braces
 - For canopy members, X-strong pipe
- 5) Aluminum
 - Auger anchors for foundations
- 6) Timber
 - Pressure treated lumber for foundation bearing pads.

Load Takeoff	
Material	Weight
HSS 2.5x2.5x1/8	3.90 plf
Pipe 1 ¹ / ₂ X-strong	3.63 plf
Architectural Fabric	~3psf

SAP2000 Modeling Criteria

The model uses the same member type throughout and is modeled under worst case conditions and a partially closed wind load. All connections are modeled as pinned though they will have more rigidity when constructed.

Dead loads are applied at worst case conditions and live as uniformly distributed based off of tributary area. Wind load is applied windward, leeward and as uplift pressure. LRFD load combinations were ran for design code checks and ASD combinations were ran for foundation design.

Key Plans

	Rachel Jakel	In Bloom for WHP	Dec 6 2019
	SAMPLE BM CA	LC	
	p=Deno	LIVE = IOBF X W= 50	5' TRIB WIGH
	4	1 P= 150# CONS 1	ERVATIVE LOAD FROM SHELL
	LOAD COMBOS (ASC.	÷ 7:16 2.3.1)	
	1.1.410 = 1.4(150)	= 210+	
-	2.1.2011.62 = 1.2(150))+ 1.6(50×5'(ENGITH) =	580# E- Compols
	[HSS 3×25×9/16] E=29000 Ksi, I=1	59.m ⁴	
	150#	c	
	E L L I	2 VALAX = .58%	= 1.029K,
	2704	200# MNIAX = WE +	PL
		- V(K) 1.6 (50(5)2) +	1.2 (150(5))
T		=.475X =	5.7K"
		> MULY DEFL (UNFAI	(agot
		DEFL SBAEI + PL	s 36.1
-		5(.0042)(5x12) 384(2900)(1.59)	$+ \frac{15(5\times12)^3}{48(2900)(1.59)}$
		.015 + .	015
		=03in	

	Rachel Jakel	In Bloom for WHP	Dec 6 2019	
	SAMPLE BIM CALC C	GNIVO		
	BENDING CHECK :			
	QMn = OF12 (Als	5c 360-10F)		
	\$14n = (.9)(50Ksi)(1.7	+3ins)		
	ØMn= 77,85 2"> 3,7	K"		
	d. 5.7	1.01		
	SHEAR CHECKS			
	dun = du (. 10 Fy Anch.)	(AISC 360-61)		
	own · .9(.6)(50x5:)(1	01(1.71)		
1	QVn = 46.17K >.29K			
	£ = 25.17 = 1.0063	<1.01		
	DEFLECTION CHECK: ROOF MEMBER NOT	SUPPORTING CEILING (1BC	2018 T1604.3)	
1	LIVE			
	JALLON = 2/180 = 5×12	180=03311		
	SACTURE = 5WL = , C	15in		
	L'OISIN AQUAL &	33in alow		
TT	PEAD + LIVE			
	Davon = -1/120 = 5x	2/120 =0.5in		
	$\Delta ACILAL = .031$ M	,		
	10311 ACTUAL < .5	in Alich V		

Rachel Jakel	In Bloom for WHP	Dec 6 2019
SHELL CHECK: P.5 X-STRONG I.	372 W= WEIGHT CAINVAS W= (2.150) U= (2.150) U= 5. L= 9' LEN	OF SHELL (SHEET METAL/) USE SHEET METAL, CONSERVATIVE PSF X 2.5' TRIB WIDTH) 391 p1F GTH CONSERVATIVE
W=5:301 PAF 7 24.260	J J 24.20# Vmax = 5.3 MMMAX = WL	39(9')/2 = 24.26#
V(K)	8	K' .
N(V)	DEFL = 5005 584 5(.00051 584(2	et ET (9×12) ⁹ 9000 ksi) (,372)
	A= ,053in	

Rachel Jakel	In Bloom for WHP	Dec 6 2019
SHELL CHECK CONNO:		
BENDING :		
OMn= of Fy Z	(AISC 360 -10F)
OMn = ,9(35+si)(.	549in ⁵)	
OMn= 17.29 K" =	1.44×' >.055×'	
d. 055K'.	0A < 1.0 V.	*
C' 1.444'		
SITEARS		
OUN = Ou LIDE ALC	(AISC 300-BI)	
(Jun = ,91,6)(35Kui)	(voinited)	
= 18.9K > 02	42	
d 024K .00	DISLOV	
C 18.94		
DEFLECTION CHECK:		
DEADY LINE (1)	or 2018 TILOAS)	
An = Olion = an	12/12x = 0.010	
SALOW 2/100		
MACIUM - U.SSIII		the second se

1.53 in ACTUAL C. 9 in ALLON,

Rachel	Jakel
--------	-------

In Bloom for WHP

 $\frac{SAMPLE COLUMN CHECK CONTR$ Pr < 0.2 (USE AISC EQN HI-16)Pr + (Mr) < 1.0 $<math>\frac{1.31}{2(12.9)} + \frac{16.82}{3.55} + \frac{10}{12} + \frac{10}{3.55} + \frac{10}{12} + \frac{10}{3.55} + \frac{10}{12} + \frac{10}{$

×

.

7. WIND PRESSURE p (ASCE 7-16 EQN 28.3-1) $P = qn(6Cap - GCpc) = 1/4^{2}$ B = 10.09(.50 + .55) = 18.53 psf B = 10.09(.21 + .55) = 12.08 psf B = 10.09(-4355) = -10.30 psf B = 10.09(-4355) = -15.35 psf P = 10.09(4555) = -10.09 psf P = 10.09(4555) = -20.09 psf P = 10.09(4555) = -15.35 psf P = 10.09(4555) = -10.09 psf P = 10.09(4555) = -14.02 psf P = 10.09(2155) = -14.02 psf P = 10.09(50) = -12.09(50) = -12.09(50) = -12.09(50) = -12.09(Rachel Jakel	In Bloom for WHP	Dec 6 2019	
B= 16.69(-4355) = -16.36 pst B= 16.69(4355) = -15.35 pst Po = 16.69(4555) = -15.35 pst Po = 16.69(4555) = -20.69 pst Po = 16.69(6955) = -20.69 pst Po = 16.69(4555) = -15.35 pst Po = 16.69(4555) = -15.35 pst Po = 16.69(4555) = -16.69 pst Po = 16.69(.40 + .55) = 15.85 pst Po = 16.69(40 + .55) = 15.85 pst Po = 16.69(2955) = -14.02 pst Po = 16.69(2955) = -14.02 pst Po = 16.69(2955) = -14.02 pst Po not to be less than 16 pst on malls & 2655 on records (Asce 7-16 28.3.4)	7. WIND PRESSURE P P= gn (6Cap - GC B= 10.69 (.56 t. 55) B= 16.69 (.21 t. 55)	(ASCE 7-16 2-pc) #/67 ² = 18.53 psf = 12,08 psf	EQN 28.3-1)	
$F_{0} = 10.01(-1.45 - 551 - 10.01 \text{ pst})$ $F_{0} = 10.04(09 - 55) = -20.04 \text{ pst}$ $F_{0} = 10.04(37 - 55) = -15.35 \text{ pst}$ $F_{0} = 10.04(45 - 55) = -10.04 \text{ pst}$ $F_{0} = 10.04(45 - 55) = -10.04 \text{ pst}$ $F_{0} = 10.04(45 - 55) = -10.04 \text{ pst}$ $F_{0} = 10.04(45 - 55) = -10.04 \text{ pst}$ $F_{0} = 10.04(45 - 55) = -14.02 \text{ pst}$ $F_{0} = 10.04(24 - 55) = -14.02 \text{ pst}$ $F_{0} = 10.04(24 - 55) = -14.02 \text{ pst}$ $F_{0} = 10.04(24 - 55) = -14.02 \text{ pst}$ $F_{0} = 10.04(24 - 55) = -14.02 \text{ pst}$	B= 16.69(-4355) = B= 16.69(3755) = D= 16.69(3755) =	-16.36 pst -15.35 pst	J WAO CASE A	
* P NOT TO BE LESS THAN 16 pst on WALLS & BASE ON ROOF (ASCE 7-16 28.3.9)	$F_{0} = 16.001(4555)$ $F_{0} = 16.09(6955)$ $F_{0} = 16.09(3755)$ $F_{0} = 16.09(4555)$ $F_{0} = 16.09(.40 + .55)$ $F_{0} = 16.09(2955)$	16.69 psf 20.69 psf - 15.35 psf - 16.69 psf 15.85 psf - 14.02 psf	LOAD CASE B	
	* P NOT TO BE LESS TH (ASCE 7-16 28.3.	AN 16 pst on	WALLS & BROF ON ROOK	

.

BEAM TO COLUMN DETAIL

In Bloom for WHP

BEAM TO COL CONNECTION:	
PXN FROM BINISSE BIN CALS (NOKSI CASE)	
PB= 150 #	
RUPTURE ON HESS:	
ORn= Q.6 FUANN (ABE EQN JA-A)	
·75(b)(62)(2.5-(42+48)X-116)	
DRn- 6.07K >.151	
d/c = :15 = .029 = 1.00	
GIGT	
Y IEUD ON HES.	
ORn= D. bFy Ag	
Q.0X.6)(56) (2.5X.116)	
dkn= 8.7 K	
d/c = 015K/8.7K=, 102 <1.0V	
UPTURE ON FLANCIE	
ORn D. bf. Anv	
·75(,6)(58K5))(2,5-(12+1/8))(125)	
den= 6.12k dic= .15 = .025 21.0,	
616	
TOUD ON FURNUIZ	
1.6(1)(30Ksi)(2.5)(.125)	
OPn= 6:754	
d/c: 15/6.75= 0221.01	

	Rachel Jakel	In Bloom for WHP	Dec 6 2019
	BEAM TO COL	Conto	
	BEARING :		
	DIMENSIONAL L	IMITATIONS PER AISC	CHID
	$L_{EH} \ge 2d$ =	2(2) = 110	
	Lev = lin	_	
	ty = diolit +	1/10 - 12/2+1/16=	.3125
	1/8" R	.1252.3125 V	
	BEARING OF BO	LT ON SHEAR TAB:	
B	AISC EQ J3-6	4	
-	drn= \$2 Adt	FU STEAR THB	SMALLER THAN HISY CONTROL
÷	=, 75(2.4)(1/2/1/8)(88/10/21	
	$\phi Rn = 65$	25 k d/c= 15/65.2	5-100221.01
	WELD: (FILLET	(maysalls	
	OFn= OFnwAwe	(AISC J2.4)	
	175(1707)	(116) (1.0) (.6) (70 ksi)	
	(PKN - 1.312	Kfin Mib" OF FLUET	2-10 444
-	3/16" WELD	25" 1 mb	al to FIN

	Rachel Jakel	In Bloom for WHP	Dec 6 2019	
	BEAM TO COL C	oup_=		
	WELD CONTO:			
	IN DIRECTION OF	CONDING ->		
	YIELD: ORN = OFN	Brn ABr		
	= 1.0(1	6Fy)(El)		
12	=1.0(.(~ (310ksi) (1/8")(2.5)		
	den= (0.75% d/c = 015/4	Fr - 0221.01	
÷	RUPMEE: ØRn=ØFn1	Bruffen		
	=.75(.6)(5	8Kar) (1/8") (25")		
	\$Kn = 8.15	be d/c = .15/pich	=,02<1.01	
	GRAVITY ON WELD 1	, SHEAR		
1.201	A36 1/8" PC SHA	EAR TAB		
	YEUD: OKn=, VFyADM			
-	=. 6(30 KS)	1(2.5°)(.125")		
	0 Kn= 6.7	sk dlc= 15/6.75k.	1.021.01	
	RUPTURE: \$\$ n= .75(.0)	(58 ksi)(2.5")(.125")		
	\$\$Pm= 8.190 k	- d/c = 15/8.156 = 10	221.0	

Rachel Jakel In Bloom for WHP Dec 6 2019 BEAM TO COL CONTO 1/2" BOLT IN SHEAR (A307) ORn= OFn Ab .75(27×5)(m)(1/2/2) \$Ph= 3984 d/c = . 15/398 - 1.04 <10% 1/2" ABOT BOLT IN 2'12+ 2'12+ 1/8 HOS WI 1/8 PR OKAY 1 BOLT SUFFICIENT, USE TWO TO CREATE A MORE FIGID CONNECTION
BRACE DETAIL

> Fx

FROM BRACE CALL Fo= 1.4k = O=tan='(3/5)=58°

Fx = 1.40058 = .74K Fy= 1.45in58 - 1.19k

CHECK BOLT FOR SHEAR . RUPTURE ON HSS: (AIX EQN J44) OFn= P. bFuAnu =.75(6)(62)(2.5-(1/2+1/2)(116) den= 6.07 x d/c= 1.1/6.07 = .2321.01 YIELD ON HISS: ORn = \$.6 Fy An $pe_{n} = 8.7k$ $d_{k} = 1.4|_{8.7} = .16 41.0$ PUPTURE ON FLANGE" PLn= 0, Ufi Anv (75)(.6)(58K5,)(2.5-(12+1/2))(.125) OPEN= 6.12k dk = 1.4/6.12 =: 23 <1.0V, YELD ON PLANGE: (1.0)(.6)(36451)(2.5)(.15")den= 10.754 d/c= 1.4/67 = 21410,

Rachel Jakel	In Bloom for WHP	Dec 6 2019	
BRACE CONNECTION CC WELD: FILLET WELD S PRn= OFnwAwe > ORn= 10.99K	MD TREAGHT (AISCJ24) FOR 3/16" FILLER WELLD	1.19k 1.19k 1.19k 2.5" LONG	
(10) DIRECTION OF 4182100 4182100 4182100000000000000000000000000000000000	TO COL FUE FUL CALL = LOADINDO -> Bon Arm 36 KSII (1/8")(25) 36 KSII (1/8")(25) 37 KSII (1/8")(25) 37 KSII (1/8")(25) 36 KSII (1/8")(25) 36 KSII (1/8")(25) 36 KSII (1/8")(25) 37 KSII (1/8")(25) 37 KSII (1/8")(25) 36 KSII (1/8")(25) 36 KSII (1/8")(25) 37 KSII (1/8")(25) 37 KSII (1/8")(25) 37 KSII (1/8")(25) 37 KSII (1/8")(25) 36 KSII (1/8")(25) 37 KSII (1/8")(25) 3	011×1.0V	
PLANGE PLATE	BmArgm 6)(58Ksi)(1/8")(2.5") Slok >.74k c/L= i ELO J F210 1/8" PE	1/8150 = -1<1.01	
PRELID ARN= , UFY ANN =, 6(36851) ARN= 6,75X PRM= ,75(.6)(58K51) ARN= 8,156K >	(2.5'')(.125'') (2.5'')(.125'') (2.5'')(.125'') (.125'')(.125'') (.125'')(.125'') (.125'')(.125'')	H -18<1.0V	

	Rachel Jakel	In Bloom for WHP	Dec 6 2019
	SHELL TO STRU	OURE CONNECTION :	
	1 - 19.112X - 51Konen	PHZX OUTSIDE DIA	1.9"
	P2N-STRAK	P2X INSIDE OA =	194"
	fund to take	1.94 >1.9" SW	6 FIT
	WIND UPLIFT = 20	. GA PSF	
	WORST CASE - (201	0173F)(525 50FT) - 517	1.25 # \$ USE 600# T
-	CHECK BOUTS (1/2")	TEAKOUT	
-	SPACING & ERGE A	DISTANCE	
	MIN EXOE DI	SMALE = 3/4," (AIS	C J3.4)
	1/2" ABOT BOUT IN) pouble sitear uping	WI THREADS EXCLUDED
	PRn= PFnAp &	AISC J3-1)	
-	9kn= + + + + + + + + + + + + + + + + + + +	$si (\frac{1/2}{2}\pi)$ (27)	isi from TJ3:2 Aloc)
	4Kn 3.48K	> 000 #	
	MIN) SOACHYS	10/3.98 0152100	s
	22/3 d = 72/3 (1/2) = 1.32" = ING 115	M (ANA DNS BOLS)
	200 601		s (nyn, one over)
	Tis		
	<u> </u>		

	Rachel Jakel	In Bloom for WHP	Dec 6 2019
	SHELL TO STRUCTURE 412LD OF PIPE OPA = AF. A	E CONTO:	
		5 KSIJ (10] SK > . 10K 02 21.0'	
	PUPTURE OF PIP DIPn = OFU AG	22:	
	.75(60¥ OPn = 16.8	si)(1.0-1/2+1/8) BK >.6K	
	d/c =	1688: 205<1.01	
-1			

FOOTING DETAIL

	Rachel Jakel	In Bloom for WHP	Dec 6 2019						
	FOOTING DZOGN								
	WORST CIPANITY	CASE V:							
	6.2% & FROM	sap analysis							
	USE SOIL BEA	e into pressure for =	1000 PSF (MOKST CASE)						
	5= P/A = 10200/	4							
	A-6.28+2								
	2'11.3' FTG FO	r beaking							
	USE LON 16 PRE	Soure tranzo limbe	P ~1 6"SQ R						
	A $2x1.3' = 2.0$ ft ² < 6.2 But BEARING FROM								
1	CONT & DIPP	erence	VALUE, NILL						
	CHECK C. d	N TIMBER							
	En PXN								
	ABEARING								
	6100+ 6×610								
-	= 1722p	6							
	CI GRAPZ 20	FL = 625 PSi (NDS	2015 T4A)						
-	FCI ALLOW 1	025 psi > ELIMANNI	172.7 psi V						

	Rachel Jakel	In Bloom for WHP	Dec 6 2019								
	FOOTING CONTR)									
	morst uplift	CAS2'									
	4.2×1 PROM :	SAP ANALYSS GAPPEN	(xigu								
	UNKNOWN SOIL	CLASSIFICATIONS									
	ASSUME SILLY	layey sand									
	WE AMERICA	th epileth muches, se	E CAPACITES IN APPENDA								
	16" p16-Hex										
-	TENSON CAPAC	UTY ~3.34 PER THIS	SOIL CONDITION								
	use tho										
	CAPACITY 3:3(2) - 6.6K dlc = 4.2/0.6 - 6 41.0V										
	CHECK JUANO	18									
	Rund L.3P	·3 COEFFICIENT C	OF PRICTION								
	VEKS RXIN FRI	on sap = , do k = (HRAVITY								
	X RXN000	ABE ZHIND									
	4 KM = .00										
	103(.06) = 0	18K > ,000918K									
	10	18K3 10008K									
+											

-	Rachel Jakel	In Bloom for WHP	Dec 6 2019
	Caro File		
	171	UPLIFT -> SEE SAP	REGULTS
	THE I	SAP $RXN = -4.31$	worst case
	H55 21/2×21/2	ex'la COL DIM	-25"
-	TEP MSS SAST	FIG CAS	E DIM = 3-2 (3/16) = 2.625"
	1	2.625" > 2.5"	-> SNG BUT FITS
-	CHECK BOUR ('/2") TEAPOLT:	
	SPACINO \$866	e distance	
	MIN EDGE	ast = 3/4 (AISC J	3.4)
	1/2" BOLT IN	POUBLE STEAP (HSS) TE	SAPS EXCLUDED
1	$\Phi Fn = \Phi Fn A_b$	(ATISC 53-1)	
	(DRn = +5(27)=	si)(12/2) Ti (27 ksi	FROM TJ3.2)
	QKn = 3,984	alc = 9.3/398 = 1.09	3 > 1.0 N.G.
	2" 20120LD 10	CREATE MORE KIGID	CONNECTION WI
	· 4.34	432	
	13 Bous		
H	a/c= 1,43K/	5.984 - 136 21.0	
	MIN SPACING $2^{2}/3$ d = $2^{2}/3$	(12) =1.33"	
	> USS 2" WI	3 BOUTS FOR MORE	21GID CONNECTION

Rachel Jakel

In Bloom for WHP

ECOTING CONTR
COL ON PTG
COL ON O'X G' BASE & BEARING

$$trin = \frac{1}{2} \frac{2e_v}{2(0.2k)}$$
 (AISC 14-7a)
 $1.25 (\frac{2(0.2k)}{2(0.2k)})$
 $t_{min} = .157" \Rightarrow USE 1/4" R BEAKING
CHECK BOLT THEOGRA R & NOOD
 $125 (157")$
 $125 (200.2k)$
 $t_{min} = .157" \Rightarrow USE 1/4" R BEAKING
CHECK BOLT THEOGRA R & NOOD
 1224 IN TENSION
 $1/2"$ ADO7 BOLT $F_{ht} = .45451$ (AUSC TJ3.2)
 $\phi Rn^2 \phi F_{ht} A_{b}$ (J3-1)
 $.75(.45451)(12/2)^2 TT$
 $16.1024 d/C = .612/.6.62 = .941.07$
CLOSE TO 1.0,
USE TWO BOLTS FOR EVEN DISTRIBUTION ANYMATH$$

Project: In Bloom Client: Wine History Project Calculated by: Rachel Jakel Date: 11/27/2019 Sh

Sheet No. A1

		TABL	E: Jo	oint	Rea	acti	on	s																								
\downarrow		Jo	int	Ou	Itp	utC	ase	(Case	eTyp	e			F1				F 2				F3		Μ	1		N	12			M3	
+	+	Te	ext		Te	ext			Te	ext			ł	۲ip	,,		k	(ip			I	Кір		Кір	-in		Kip)-in		K	p-in	-
	-	9		CC	M	B4a	sd)	x (Com	bina	atio	n		-(0.1	16	-0	.00	127	7	-0	.00	46	 	0		•	(D	· ·	(o-
+	+	12		CC	M	B1a	sd	(Com	bina	atio	n	-(0.00	076	55	-0	.00	127	2		0.3	95		0			(D		(0
		12		CC	M	B2A	\SD	x (Com	bina	atio	n		-	0.0	92		-0	0.01	4		6.2	22		0			(0			0
+	-	12		CC	M	B3A	SD	y (Com	bina	atio	n	-(0.00	244	46		-0	.06	9		1.8	12		0			(D		-	0
		58	1 1	co	M	B2a	sd	ilo	Com	bina	atio	n			0.02	22	1 1	-0	.209	Ð	1 1	0.	13	 1 1	0	<u> </u>	I)		(j-
		58		СО	M	B3a	sd	((Com	bina	atio	n		-1	1.94	11		0	.017	7	-	2.7	53		0			()		(ו
		58		CO	M	B4a	sd)		Com	bina	atio	n		- 1	2.58	38		0	.026	5	-	4.2	98		0			()			<mark>)</mark> -
_		56		CO	M	B1a	sd	C	Com	bina	atio	n	-5	.383	BE-C)5	-0.	00	1143	3		0.	34		0			()		(ב
+	+	56		CO	M	B2A	SD	xC	Com	bina	atio	n		-(0.10	9	0.	00	2051	1	-	0.1	29		0			()		(-כ
+	+									•										I												- _
1					\square										\square			\square			\square	\square				\square			\square	\square		F
+	-					_		+				+			$\left \right $	++	+			-	+	+			+	+				++		-
																														\square		
+	-							+												-			_							++		+
+	_					_		+				-											_		+		_		$\left \right $	++		-
1																											_			\square		
-	_	+++				_		+		_					$\left \right $	++				-	++	+	_		+		+		$\left \right $	++	\rightarrow	╞
								+							$\left \right $								_				_			++		╞
+								+												-		+			++		+		$\left \right $	++		+
																														\square		T
+	-	+++				_		+		_													-				-			++		+
																														\square		F
+	-							+								++							_		++					++	++	+
+						_		+													++		_		++	++	_		$\left \right $	++		_
																				1			\perp						Ħ	\ddagger		t
+	_	$\left \right $							_			+			$\left \right $	+		+	++	_	++	+	+		++	+	+		$\left \right $	++	++	╞
																													Ħ	\pm		\pm
+	+	$\left \right \right $				+		+	+						$\left \right $	++	++	+	++	+	++	+	_		+	+	_		$\left \right $	++	++	+
+	+	+++	++	$\left \right $	$\left \cdot \right $	+		+	+		$\left \right $			$\left \right $	$\left \right $	++	+	+	++	+	+	+	+	$\left \right $	++	+				+		+
																														\square		Ļ
	1			1																1				11		1 1						1

Project: In Bloom Client: Wine History Project Calculated by: Rachel Jakel Date: 11/27/2019 Sheet No. A2

Notes about Penetrator Load Capacity

- · Field-tested vertical PULLOUT strength
- PUSHDOWN strength (as when Penetrators are used for footings) is typically equal to or greater than pullout strength because of unlimited undisturbed soil below the Penetrator
- When installed through asphalt, pullout strength is increased because of the Penetrator's grip in the asphalt and in the compacted soil directly below the asphalt

h Mean roof height, in feet (meters), except that eave height shall be used for $\theta \le 10^\circ$.

 θ Angle of plane of roof from horizontal, in degrees.

FIGURE 28.3-1 Main Wind Force Resisting System, Part 1 [$h \le 60$ ft ($h \le 18.3$ m)]: External Pressure Coefficients, ($GC_{\rho I}$), for Enclosed and Partially Enclosed Buildings—Low-Rise Walls and Roofs

continues

[BI]VOUAC(k)y SHACK [BI]VOUAC(k)y SHACK [BI]VOUAC(k)y SHACK [BI]VOUAC(k)y SHACK

Architectural Renders and Site Plan

[BI]VOUAC([k])y SHACK

Assembly, Transportation and Cost Estimate

Module 1 - 4 Bay				
Material	Qty	Unit	Unit Price	Total
HSS Super Strucuture				
0.4/01-4/01-1100			#00.00 max 201	¢4.005.00

				SUM	\$3,297.91
4"x8"x1/4" Plate Steel (A36)	5	counts	\$258.76	each	\$1,293.80
1/2 in. Galvanized Lock Washer	336	count	\$0.31	each	\$104.16
1/2 in13 x 4 in. Galvanized Hex Bolt	336	count	\$0.46	each	\$154.56
6 in. x 16 in. x 8 ft. Hem-Fir Brown Stain Ground Contact Pressure- Treated Lumber	104	LF	\$18.27	per 8'	\$237.51
1/2 in13 x 4 in. Galvanized Hex Bolt	168	Count	\$2.16	each	\$362.88
2"x 1/8" HSS	40	LF	\$55.00	per 20'	\$110.00
2 1/2"x1/8" HSS	300	LF	\$69.00	per 20'	\$1,035.00

Form	Qty	Unit	Unit Price		Total
1"x 1/16" Square Steel Tube	2600	LF	\$11.00	per 20'	\$1,430.00
1/4" Sqaure Bar	60	LF	\$5.00	per 20'	\$15.00
Stainless Steel Uncoated Wire Rope					
3/32 in. x 200 ft					
	200	LF	\$53.98	per 200'	\$53.98
48 in. x 96 in. x 0.157 in. Clear					
Corrugated Plastic Sheet (10-Pack)	6	Count	\$208.49	per pack	\$1,250.94
Stainless Steel Hook and Eye					
Turnbuckle (5-Pack)10-24 x 5-5/8 in.					
	1	Count	\$1.68		\$1.68
3/8 in. x 4 in. Zinc-Plated Eye Bolt with					
Nut	4	Count	\$0.95		\$3.80
3/8 in. Zinc-Plated Flat Washer	6	Count	\$0.17		\$1.02
3/8 in16 Zinc Plated Hex Nut	5	Count	\$0.15		\$0.75
3/32 in. Aluminum Ferrule and Stop					
Set	4	Count	\$1.62	2 per pack	\$6.48
Spray Paint/Primer	25	Count	\$12.00		\$300.00
Caulking	5	Count	\$5.00		\$25.00
·			-	SUM	\$3,088.65

Wall	Qty	Unit	Unit Price		Total
1/2 4 ft. x 8 ft. Oriented Strand Board	10	Count	\$17.55		\$175.50
2"x4"x96" Stud	400	LF	\$3.00	per 8'	\$150.00
3 in. Construction Screw (10 lbBox)	2	Count	\$33.57	per 10lb box	\$67.14
4'x8' x 5/8" Dens Deck	10	Count	\$49.00		\$490.00
Thermo Plastic Membrane	120	SF	\$6.00	Per SF	\$720.00
				SUM	\$1,602.64

Module 1 Total	\$7,989.20	4 Bays
Module 2 Total	\$3,994.60	6 Bays
Module 3 Total	\$3,994.60	8 Bays
TOTAL WITH 8 DAVS	\$15.978.40	

PORTABILITY DIAGRAM

STEEL FRAME PORTABIITY

Members:

- Length: 23'5"
- Width: 7'3"
- Inside Height: 8'3"
- Door Height: 6'10"

NOTE 1. Heaviest Steel Member is 60#

WALL PORTABILITY

FORM PORTABILITY

DESRIPTION

This is depicting the mobility of the form. The plan is to build wood framed structures that hold and protect forms for transportation. There are 8 different frames that will be built for the different parts of the form. This form shows the largest shipping size, which can fit within the U haul. The heaviest mobility structure including the form is 120#. Structural Calculation Package for

Wine History Project Moving Pavilion: Bivouacky Shack

Site 1: Saucelito Canyon Winery Tasting Room 3180 Biddle Ranch Rd, San Luis Obispo, CA 93401

Rachel Jakel

Description

Project: Bivouacky Shack Client: Wine History Project Calculated by: Rachel Jakel Date: Dec 6 2019 Sheet No. D1

Table of Contents

Page Number

1. Project Description	D2
2. Load Takeoff.	D3
3. Key Plan	D4-D5
4 Poom Dosign	B1 B2
4. Dealin Design	
5. Column Design	
6. Lateral Design	L1-L3
7. Connections	J1-J9
8. Footing Design	F1-F3
9 Appendix	A1-A3

Project Description

The Wine History Project documents and preserves the unique food and wine history of San Luis Obispo County. This pavilion made for them will house their exhibits and travel from winery to winery in the San Luis Obispo County. The first site it will see is at the tasting room of Saucelito Canyon Winery. The design of the pavilion stemmed from a biomimetic relationship of the army ant and how they create shelter- the bivouac. The use of biomimicry in the design helps it to live and function at any site by adapting the way that the army ant would. Just as the army ant uses each individual member of the colony to create their bivouac, the Bivouacky Shack is made up of several different but similar elements that come together to form the pavilion for the Wine History Project.

The structure of the pavilion stands 10 feet tall and 12 feet wide with a length that can be adjusted to either 12, 18 or 24 feet with total square footage of 144, 216 or 288 respectively to fit the client's desires. It is comprised of hollow structural steel for the gravity as well as lateral systems. From site to site the pavilion will be constructed on relatively flat ground and is connected to the ground via pressure treated wood bearing footings with earth anchors.

Design Criteria

- 1) Codes used:
 - International Building Code 2018
 - American Society of Civil Engineers 7-16
 - American Institute of Steel Construction 360-16
 - National Design Specification for Wood Construction 2015
- 2) Design Loads:
 - Dead Loads- weights of all materials as shown per calculations
 - Live Loads- uniformly distributed- assumed as 10 psf uninhabitable attic without storage per ASCE 7-16 Table 4.3-1
 - Wind Loads per IBC, Exposure C and wind speed V of 95 mph based off process in ASCE 7-16.
- 3) Foundation Design:
 - With no geotechnical report provided and soil class unknown, worst case soil bearing pressure of 1000 psf will be used.

Material Criteria

- 1) Steel
 - For framing members, HSS SQ A500 used for beams columns and braces
- 2) Aluminum
 - Auger anchors for foundations
- 3) Timber
 - Pressure treated lumber for foundation bearing pads.

Load Takeoff	
Material	Weight
HSS 2.5x2.5x1/8	3.90 plf
1" SQ Steel Tube	1.20 plf
Corrugated Plastic	~ 5 psf

SAP2000 Modeling Criteria

The model uses the same member type throughout and is modeled under worst case conditions with point loads at the midpoint of each beam and a partially closed wind load. All connections are modeled as pinned though they will have more rigidity when constructed.

Dead loads are applied at worst case conditions and live as uniformly distributed based off of tributary area. Wind load is applied windward, leeward and as uplift pressure. LRFD load combinations were ran for design code checks and ASD combinations were ran for foundation design.

	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019
0	SAMPLE BIM CONTD_ BENDING CHECK: HMn = & F. 7.	ALSC $2(m-10F)$	
		ANDE 500 10: 5	
	SHEAR CHECK: $\phi V_n = \phi_1(.6)FyAwCui)$ $\phi V_n = .9(.6)(50ksi)(1.0)(1.0)$ $\phi V_n = 28.89K > .45$	(AISC 360-61) 07:n)	
	$\frac{d}{c} = \frac{113}{28.89} = \frac{.015}{.015} \frac{2}{2}$ $DEFLECTION CHECK:: KOOF MEMBER NOT LIVE \Delta_{NIGN} = \frac{1}{180} = \frac{9}{.005} \Delta_{ACIUME} = \frac{5101}{38461} = \frac{51005}{.005}$	SUPPOPTING CEILING (180 180 = 0.4in $\frac{11}{16x12}^{4}$ $\frac{11}{29000151}(1998in^{4})^{-1} = .00in$	C 2018 T1604.3)
	DEAD + LIVE DEAD + LIVE DANON = P/120 = WXI	2/120 = 0.010	
0	MAGUAL = . 19 in . 19 in Actual <1	bin Allon V	

SAMPLE BM CALC COUTD

Pr 20.2 (USE AISC EON HI-1b) Pr + (Mr) =1.0 1.35K, 451K" 15.0K (3.55K)×12"%+ - AISCT3-13 = 10,44 - 1.0 V

	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019
	LATERAL WIND LOADS PARTIALLY ENCLOSED BLDG, LOW RISE BLDG 1460' ASCE 7-10 CH 28 1. RISK CATEGORY: II (ASCE 7-16 TI.S-1) 2. BASIC WIND SPEED V=95MPH (ASCE 7-16 FIG 26.S-1B) 3. EXPOSURE CATEGORY: C. (ASCE 26.7) TOROGRAPHIC FACTOR K24: 1.0 (FLAT) (ASCE 7-16 26.81)		
	ENCLOSURE: PARTIALUY WIND DIRECTIONALITY CROWN ELEVATION FACTOR INTERNAL PRESSURE COR	ENCLOSED + HIGH INTERNA Kol: .85 (ASCE 7-16 OK Ke: 1 (ASCE 7-16 EFFICIENT GCDI: ±.5	T. 26.6-1) 26.97 5 (ASCE 7-16 [26.13-1]
-	4. VELOCITY PRESSURE EXP 5. VELOCITY PRESSURE 8 877 : . 0025 6 K2 K2 K = . 0025 6 (185) = . 10. 69 #/Ff ²	$205052 \ (0.85)(1.0)(95)^{2}$.85 (ASCE7-16 TZ6.10-1) RN 26.10-1)

Rachel Jakel

Bivouacky Shack for WHP

Dec 6 2019

* P NOT TO BE LESS THAN IN BSF ON WALLS & SPSF ON ROOF (ASCE 7-16 28.3.4)

~	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019	
SAMPLE BRACE CALCULATION W $U = 160.607 \text{plf}(6^{\circ} \text{TRIB wrDTH})(10^{\circ} \text{HT}) = 1001.$ $W = 160.607 \text{plf}(6^{\circ} \text{TRIB wrDTH})(10^{\circ} \text{HT}) = 1001.$ $W = 160.607 \text{plf}(6^{\circ} \text{TRIB wrDTH})(10^{\circ} \text{HT}) = 1001.$ $W = 160.607 \text{plf}(6^{\circ} \text{TRIB wrDTH})(10^{\circ} \text{HT}) = 1001.$ $F_{Dare} = \frac{W}{0^{\circ}} = \frac{F_{0}}{11.66^{\circ}}$ $F_{0} = 1.95.\text{K}. (T & C For W BOH DRECRU P_{0} = 500 \text{H} (From BM CALC)W_{1} = 600 \text{Plf}(From BM CALC)$				
	LOAD COMBOS (ASCE7-16	2,3.1)		
	4. 1.20 + 102 + 1.02 = 1.	$2(\frac{55}{2}) + 1.95.k + .00(3)$ $2(\frac{5}{2}) - 1.95.1k + .00(3)$) = 2.43K ONBRACE C -1.47K ON BRACE T	
1	PU= 2.43K CONTROLS (C)		
	PPn= 10,94 (CONSERVATIVE C	121 (AISC360 T.4-4)		
	$d = \frac{2.43}{10.9} = \frac{.22 \times 1.0}{.22 \times 1.0}$			

BEAM ON TOP OF COLUMN DETAIL

	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019	
	BEAM ON TOP O	SF COUMN		.e
	PYN FROM BM	-> SEE BIM CALOS		
1	RB = 450 #	WORST CASE, MIDDLE	COL = 2 BM RKNS	
	$P_{U} = 450 \pm (2) =$,7k		
	BEARING:			
	0= P = 1.97 m2	= Asksi		
	fythis = Sokal >	> ORGARING V		
	BOLTS FOR SHEAR	:		
	WIND CIT PSF FROM CBM (10/2 × 6')CT	HOF SION		
	USE 1/2" A307	ROLT		
	RUPTURE ON ITSS OPEN= PUEFU	Arm		
50	175C.6/Kió	245 (25-(2+16) (.116)		
_	dr.	n= 6.12 dk= .51%.	Nº 10821.01	
	GIELD ON HOS			
-	den= d. lof	1 Aar		
	1.0(.1	a)(soka)(25")(.11(")		
	the = 9	3.7 k dic = 51/8.7 =	,0621.0V	
BEAM ON COL CONTO STEAR'S RUPURE ON STEAR TAB: OPn= A.6F.Anv =.75(16)(58Ks)(2.5-("hr"/6))(.125") = W12K d/c = .51/6.12 = .08 41.01 YELD ON SHEAR TAB: ORn : O. WEY Aqu 1.0(.6)(3) dks (2.5")(125") OPATE 6.75K dk - 51/675 - 08<1.01 1/2" ABOT BOLT IN STRAK ORn= OFnAp AKC TJ3.2 (35) X27K51)(TX"2/2)2 den: 3,984 de= .51/398 = .1321.01 12" A307 BOLT IN 2'2 x2'2 x 1/8 HSS W/ 1/8" PL OKAY BOLT SUFFICIENT, USE TWO TO CREATE A MORE RIGHP CONNECTION

BEAM TO COLUMN DETAIL

	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019
	BEAM TO COL	CONTO	
	BEARING?		
	DIMENSIONAL L	IMITATIONS PER AISC	CHIO
	Len > 2d =	2(12) = 11h	
	Lew = lin		
	the direct +	1/110 - 12/2+1/4 =	2125
	1/8" R	1252.3125 V	• 51 6 5
-	BEARING OF BO	et on shear tab:	
	AISC EQ J3-6	A	
	drn= \$2.Adt	FU STEAR THB	SMAULER THAN HIS CONTROL
L	=, 75(2.4)	1/2/1/8)(58/61)	
-	$\phi e_n = 65$	25 K dlc= 15/65.2	5-1002 < 1.01
	WELD: (FILLET	STIBERSHITH)	
	\$Kn= \$FnwAwe	(AISC J2.4)	
	175 (1707)	(116) (1.0) (.6) (70 ksi)	
	ØRn = 1.392	Kfin Mib" OF FLUET	
-	USE MIN 3/16" WELD	04n=1.392(3)(2.510)	a)= 10.44k
	3/16" WELD	2.5" Lond	

BEAM TO COL CONTD: WELD CONTO: IN DIRECTION OF LOADING -> YIELD: OFP = OFNBm ABM = 1.0(16Fy)(E.) =1.0(.6(310451)(1/8")(2.5) den: 6.754 d/c - 15/675 -02/01 RUPMEE: DEn= OFnBrArm =.75(.6)(58Ka)(1/8')(25') den= 8.1562 d/c=.15/8166 = 02-1.04 GRAVITY ON WELD &, SHEAR ASIO 1/8" PL SHEAR TAB YEUD: ORn=, VFyADM =, 6(310 kg) (2.5°) (,125") OKn= 6.75k dlc= "5/6.75k =1.021.01, RUPTURE: DEn=,75(.w)(58 ksi)(2.5")(.125") OPEN= 8.190K d/c= 15/8.156 = 0221.0

Bivouacky Shack for WHP

BEAM TO COL CONTO 1/2" BOLT IN SHEAR (ABORT) OKN = OFN Ab .TS(2745)(T)(1/2/2) OKN = 3984 O/C = .15/298 - 1.04 <10" 1/2" ABOT BOLT IN 2/12 2/2×1/8 HOS WI 1/8PR OFAY 1 BOLT SUFFICIENT, OSE TWO TO CREATE A MORE PIGID CONNECTION

BRACE DETAIL

	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019	
	BRACE CONNECTION	3		
	The	FROM BRACE CALC F_b = 1.95k O = to	in-1(196) -5910	
	FY 195K	Fx = 1.915 COS 59 " = 1,	COAK	
	>	Fy = 1.9531159 - 1.	UTK	
	E			
	SITEAR :			
	RUPTURE ON HSS ORn= O.6FUA	nv (AISC 8QN J4.4)		
1	.75(.6)(62451 225 - (2+ V8) (.11	6")	枚
	OP1- 10.	11K dlc - 1.95/10.1	1 = LoZ < 1.0V	
	YELD ON ITSS	OFY AG		
	1.0(.6)	(50Ksi)25" X.116")		
	\$2n= 87	14 d/c = 1.95/8.7	= 1.22 - 1.0	
-	RUPTURE ON STEAR ORN = O. 6 F	TAB:		
11	75666	58+5) (2.5 -(1211/8))(12	s)	
	\$\$Fn= 6.1	d/c = 1.95/6.1 =	13221.01	
e l	91ELD ON STEAR ORn = O 6F	TABE		
	1.0(.6)	(310ksi) (25")(125")		
	\$Pm = 10.75	k dic: 195/675 2.03	, 21.0%	

Rachel Jakel TH **Bivouacky Shack for WHP** Dec 6 2019 1.674 NELDO mo - IK FILLET WELD STRENGTH \$Phy = OFMY Awe (AISC J2.4) = ORn= 10,444 FOR 3/16" FILLET WELD 25" LONG G SEE BM TO COL FOR ALL CALL IN DIRECTION OF LOADING >> YIELD ORn= OFnBr ABM (1.0)(10)(36)×51)(1/8")(2.5) den= 10.75k > 12 d/c= /10.75= 1.15 < 1.01 ORn= OFINBA ARM 175(16)(58451)(1/8")(2.5") OFn= 8, HOL>IK d/c= 1/8156 =, 12 21.01

Bivouacky Shack for WHP Dec 6 2019

32

BRACE CONNECTION CONTO
J BRAVITY ON WELD, SHEAR
FLANDE PLATE A36 1/8" R
415LD BRN = , 10FyApm , 10F10Ksi) (2.5")(,125")
ORn= 6.75K > 1.67K
d= 1107 . 25 21.0 ,
PUPILIE OFEN= 175(.6)(58 ks;)(2.5")(,125") OFEN=8.156 K>1.67k
d= 1.67 8,156 = .2<1.0V

FORM TO BEAM DETAIL

	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019
	FORM TO BEAM	CONNECTION CONTO	
	1/2" BOLT IN SITE	AE	
	\$Ph= \$FnA0		
	175(54 Ksi	211/12/2)	
	\$Pm= 7.9	sk d c= .125/7.95	- L. 615 21.0V
	BEARINO:		
	DIMENSIONAL	LIMITATIONS PER AS	C CHID
	$l_{\text{EH}} \ge 2d = 2$	2(1/2) = 1"	
	to s dealt	+ 111	
	= 1/2/2 + 1	·= ·3125"	
	1/8" 4.312	5" 1	
	1/8" PL 04	RY .	
	BEAKING OF BO	s on shear tab:	
-	(AISL 20 J3-	6p)	
	pen= \$2.4 d	ltFu	
	=,75(2.4)(12) (18') (58 ksi)	,
	open- 6,5	25k dk= .125/6.525	= .02 K1.0V

FOOTING DETAIL

	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019
	FOOTING DESIGN		
1	WORST GRAVITY CI	NSE :	
	2.3KJ FROM	SAP ANALYIS (SEE	APPENDIX)
	USE SOIL BEARIN	-10 PROSURE F6- 1000 K6 F	(WOKST CASE)
	0= & 1000 PS	$F = \frac{2200}{A}$	
	A=2.3 Ft ²		
	USE 1.6x 1.3' FT	6 PRESSUES TREATED	LUMBER
	(px16 w) 6	"So REAKING PL	
	1.6 × 1.3' = 2.08 EARTH ANCIES	15ft ² <2.3ft ² But Be B WILL COVER .22	ARING FROM EXTRA SF.
	Clitick Fey on	TIMBER	
	fer = EKN		
	ABEAKING		
	2300 H		
	~ 63.80	(P)	
	(1 C-12A-102)	DEL = LOSUS (A	123 2015 440
	For	25051 78 0000	L2.2.0 PSI
	1 CT ALLON U	rcl actuac	USICH NT
1			

	Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019
	FOOTING CONTO		
	WORST UPLIFT C	1527	
	1.4KT FROM	SAP ANACHSIS	
	UNKNOWN SOLL	CLASSIFICATIONS	
	ASSUME SILTY	KUKURY SMUP	
	USE AMERICAN 36" PE36	EMPETH ANUIOKS, SEE	APPEN DIX FOR CAPACINES
	PENSION CAPACITY.	200 # VEK THIS S	soir compition
	USE TWO -> OVE	restimate for un	thomas soll
	CAPPEILLA - 420	Off -	
	de= 1.44.	2= 133 41.0	
the sur	CHECK SUDING	6	
Ē	Philip Z. 30	13 COEFFICIENT ON	e priction
Ľ	vert ran from	u sap .24 - ciravi	77
	X RXN = ,0000 Y RXN = ,0000	526 × 3 WIND	
	1362) = , 00K	> .0000786 × 1	
	. Olo¥ :	> ,000053/dx V	

Rachel Jakel	Bivouacky Shack for WHP	Dec 6 2019
	UPLIFT >> SEE SAV RE SAP RXN = 1.4K W	SULIS Orst Case
21/2 21/2 1/1 3×3×8/	8 HISS COL DIM 16 HISS FIG CASE 2.625">2	= 2.5" OTH = 3-2(3/16)=2625" .5" > SNG FIT
CHECK Bass ('h'')	TEAPOUT:	
QPACING 18852 MIN EDG2 DI 1/2" BOLT IN 0/2"	DSTANCE 51 - 3/4" (AISC J3.4) POUBLE SHEAR (HSS) THP (AISC J3-1) SI) ($\frac{1}{2}/2$) TT (27.1) $d_{k} = 1.4$ /3.93 = 1 $d_{k} = 1.4$ /3.93 = 1 ($\frac{1}{2}$) = 1.33" ANG & 8 BOLTS TO CHE MINECTION	THE A MORE

Rachel Jakel

FOOTING CONTO CBL ON FTGI COL ON 10 X6" BASE R BEARING thin = 4(2R) (AISC 14-7a) 1.25 (2(2.3k) .9(36ksi) (6)(6) tmin= . 678 in \$ USE 18" R BEARING CHECK BOLT THROUGH BEARING R & WOOD 1.4 × IN TENSION 1/2" ABOT BOLT FILE ASKSI (AIGC TJ3.2) ORn= \$ FnAb (J3-1) =.75(45ksi) (1/2) T = 6.62× dk= 1.4/6.62 -221.01 USE TWO BOLD FOR EVEN DISTRIBUTION

Project: Bivouacky Shack Client: Wine History Project Calculated by: Rachel Jakel Date: 11/27/2019 Sheet No. A1

Joint OutputCase CaseType F1 F2 F3 M1 Text Text Text Kip Kip Kip Kip-in	M2	M3
Text Text Text Kip Kip Kip Kip-in	IVIZ	IVI.5
Text Text Text ND ND ND ND ND-11	Vin in	Vin in
	Kip-in	Kip-in
58 COMB3asdx Combination -0.557 0.008486 0.426 0	0	0
58 COMB3asdy Combination -0.066 -0.025 1.304 0	0	
58 COMB4asdx Combination -0.751 0.009184 -1.377 0	0	(
58 COMB4asdy Combination -0.096 -0.036 -0.206 0	0	(
36 COMB4asdx Combination -0.001999 0.006155 0.353 0	0	C
36 COMB4asdy Combination 0.0004483 -0.346 0.295 0	0	C
37 COMB1asd Combination 0.017 0.003015 2.271 0	0	0
37 COMB2asdx Combination -0.755 0.008333 -0.652 0	0	0
37 COMB2asdy Combination -0.085 -0.059 0.452 0	0	0
	++++++++++++++++++++++++++++++++++++	┟┼┼┼╴╴
	$\frac{1}{1}$	
	+ + + + + + + + + + + + + + + + + + +	
	+	
	$\frac{1}{1}$	
	++++	
	$\frac{1}{1}$	
	++++	

Project: Bivouacky Shack Client: Wine History Project Calculated by: Rachel Jakel Date: 11/27/2019 Sheet No. A2

Notes about Penetrator Load Capacity

- Field-tested vertical PULLOUT strength
- PUSHDOWN strength (as when Penetrators are used for footings) is typically equal to or greater than pullout strength because of unlimited undisturbed soil below the Penetrator
- When installed through asphalt, pullout strength is increased because of the Penetrator's grip in the asphalt and in the compacted soil directly below the asphalt

h Mean roof height, in feet (meters), except that eave height shall be used for $\theta \le 10^\circ$.

 θ Angle of plane of roof from horizontal, in degrees.

FIGURE 28.3-1 Main Wind Force Resisting System, Part 1 [$h \le 60$ ft ($h \le 18.3$ m)]: External Pressure Coefficients, ($GC_{\rho I}$), for Enclosed and Partially Enclosed Buildings—Low-Rise Walls and Roofs

continues

Credits

Renderings and Site Plan

Project "In Bloom"

Moises De La Cruz

Mereck Palazzo

Project "Bivouacky Shack"

Erica David

Jerome Deck

Alex Urasaki

Assembly, Transportation and Cost Estimate	
Project "In Bloom"	Albert Gutierrez
Project "Bivouacky Shack"	Gannon Van Sickle