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EFFECTS OF SUPPLEMENTAL VISCOUS DAMPING ON SEISMIC 
RESPONSE OF ASYMMETRIC-PLAN SYSTEMS 

RAKESH K. GOEL* 

Department of Civil and Environmental Engineering, Cal Poly State University, San Luis Obispo, CA 93407, U.S.A. 

SUMMARY 

Coupling between lateral and torsional motions may lead to much larger edge deformations in asymmetric-plan systems 
compared to systems with a symmetric plan. Supplemental viscous damping has been found to be effective in reducing 
deformations in the symmetric-plan system. This investigation examined how supplemental damping affects the edge 
deformations in asymmetric-plan systems. First, the parameters that characterize supplemental viscous damping and its 
plan-wise distribution were identified, and then the effects of these parameters on edge deformations were investigated. It 
was found that supplemental damping reduces edge deformations and that reductions by a factor of up three are feasible 
with proper selection of system parameters. Furthermore, viscous damping may be used to reduce edge deformations in 
asymmetric-plan systems to levels equal to or smaller than those in the corresponding symmetric-plan system. ( 1998 
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INTRODUCTION 

It is well known that asymmetric-plan buildings are especially vulnerable to earthquakes. It is therefore not 
surprising that numerous investigations in the past have focused on the earthquake behaviour of asymmet-
ric-plan systems; references are available in reports by Hejal and Chopra,1 Goel and Chopra,2 or in 
a state-of-the-art review paper by Rutenberg.3 As a result, there has been much improvement in our 
understanding of how plan asymmetry influences the response of buildings to earthquakes. Procedures to 
account for undesirable effects of plan asymmetry, such as increased force and ductility demands on lateral 
load-resisting elements, have been developed and incorporated into many seismic codes.4 However, addi-
tional research is needed to develop techniques that will control excessive earthquake-induced deformations 
in asymmetric-plan buildings. The excessive deformations may lead to premature failure in brittle, non-
ductile elements and may result in a sudden loss of the building’s strength and stiffness leading to eventual 
failure. Excessive edge deformation may also cause pounding between closely spaced adjacent buildings. 

In general, excessive deformation in asymmetric-plan buildings may be reduced by redistributing the 
stiffness and/or mass properties to minimize the stiffness eccentricity. For many new structures, such 
redistribution may be possible at an early design stage, but such redistribution may not always be feasible 
because of architectural or functional constraints. It may not be feasible for existing structures because of the 
significant inconvenience to the occupants. 
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In recent years, the role of supplemental damping or energy dissipation devices in reducing the earthquake 
response of structures has been the subject of many investigations;5~18 a comprehensive summary is 
available elsewhere.8 Although these investigation have led to much improvement in our understanding of 
how such devices improve the sesimic performance of structures, they were primarily focused on the seismic 
behaviour of symmetric-plan systems. A few recent investigations have been concerned with the seismic 
behaviour of asymmetric-plan systems with supplemental devices.19~22 However, there has been a lack of 
effort towards developing a fundamental understanding of how these devices and their plan-wise distribution 
influence the lateral—torsional coupling in asymmetric-plan systems. 

With this aim, the objectives of this exploratory investigation are (1) to identify the system parameters that 
control the seismic response of asymmetric-plan systems with fluid viscous dampers; and (2) to investigate the 
effects of the controlling parameters on edge deformations in asymmetric-plan systems. System behaviour is 
limited to the linearly elastic range. This simplifying assumption is suitable for investigating the seismic 
behaviour of asymmetric-plan systems with brittle, non-ductile resisting elements, that should remain nearly 
elastic during earthquake loading. The seismic response of asymmetric structures responding in the inelastic 
range will be investigated during a later phase of this research program. 

SYSTEM AND GROUND MOTION 

One-storey system 
The system considered was the idealized one-storey building of Figure 1 consisting of a rigid deck 

supported by structural elements (wall, columns, moment-frames, braced-frames, etc.) in each of the two 
orthogonal directions. In addition, the system included fluid viscous dampers (FVDs) incorporated into the 
bracing system. The mass properties of the system were assumed to be symmetric about both the X- and 
½-axis whereas the stiffness and the damper properties were considered to be symmetric only about the 
X-axis. 

The centre of mass (CM) of the system was defined as the centroid of inertia forces when the system 
is subjected to a uniform translational acceleration in the direction under consideration. Since the mass 
was uniformly distributed about both the X- and ½-axis, the CM coincided with the geometric centre of the 
deck. 

The centre of supplemental damping (CSD) was defined as the centroid of damper forces when the system 
is subjected to a uniform translational velocity in the direction under consideration. The lack of symmetry in 
the damper properties about the ½-axis was characterized by the supplemental damping eccentricity, e

4$
, 

defined as the distance between the CM and the CSD. 
The centre of rigidity (CR) was defined as the point on the deck through which application of a static 

horizontal force causes no rotation of the deck.1 For the one-storey system considered in this investigation, 
CR was also the centroid of resisting forces in structural elements when the system is subjected to a uniform 
translational displacement in the direction under consideration. The lack of symmetry in the stiffness 
properties about the ½-axis was characterized by the stiffness eccentricities, e, defined as the distance between 
the CM and the CR. With both CM and CR defined, the edge that is on the same side of the CM as the CR 
was denoted as the stiff edge and the other edge was designated as the flexible edge (Figure 1(a)). 

The corresponding symmetric-plan system was defined as a system with no FVDs and coincidental CM 
and CR but with relative locations and stiffnesses of all resisting elements identical to those in the 
asymmetric-plan system. 

Ground motion 

The ground motion considered is the North—South (360°) component recorded at the Sylmar County 
Hospital parking lot during the 1994 Northridge earthquake. The peak values of the ground acceleration, 
velocity and displacement recorded at this site were 826·8 cm/s2, 128·9 cm/s, and 32·55 cm, respectively. 



Figure 1. One-storey system considered: (a) plan, (b) elevation 

Figure 2. Response spectra for 360° component of the ground motion recorded at the Sylmar County Hospital during the 1994 
Northridge earthquake ; f"0, 2, 5, 10 and 20 per cent 

Figure 2 shows linear elastic response spectra (f"0, 2, 5, 10 and 20%) for the selected ground motion and 
approximately identifies various spectral regions: acceleration sensitive region (¹ (0·4 s), velocity sensitive 

y
region (0·4 s(¹ (2·5 s), and displacement sensitive region (¹ '2·5 s); the procedure used to identify 

y y 
these regions is described elsewhere.23 It is apparent from Figure 2 that damping is most effective at reducing 
the system response in the velocity sensitive region of the spectrum. This effect spills over into adjoining 
portions of the acceleration sensitive region (0·05 s)¹ )0·4 s) and the displacement sensitive region 

y
(2·5 s)¹ )3 s). This indicates that it would be sufficient to investigate earthquake response of systems 

y
with periods in the range of 0·05 s)¹ )3 s for the purpose of evaluating the effects of damping. 

y
In general, details of earthquake response may vary from one ground motion to the next. However, a single 

ground motion was considered to be appropriate for this exploratory study because it is well established that 
overall response trends identified from various regions of response spectrum for one earthquake are generally 
valid for the corresponding spectral regions of other ground motions.23 

http:motions.23
http:elsewhere.23


EQUATIONS OF MOTION 

The one-way symmetric system (Figure 1) has two degrees of freedom (DOF) when subjected to ground 
motion along the ½-axis: translation along the ½-axis and rotation about a vertical axis. The displacement 
vector u for the system is defined by uT"Su auhT where u is the horizontal displacement relative to the 

y y 
ground of the CM along the ½-axis, uh is the rotation of the deck about a vertical axis, and a is the plan 
dimension of the system along the X-axis. 

Let m represent the total mass of the deck and let o denote the mass radius of gyration. Then the mass 
matrix of the system with respect to the DOF u is given by 

m 0 
M" (1) 

0 m A
o 

aB
2 

The o for a deck with mass uniformly distributed in its plan is given as 

o"S
a2#d2 

"aS
1#a2 

(2) 
12 12a2 

where a"a/d is the aspect ratio of the deck. Then the mass matrix can be expressed as 

m 0 
M" 

0 
1#a2 

12a2 
m 

(3) 

Let K represent the lateral stiffness and y the distance from the CM of the ith resisting element along the 
xi i 

X-axis; let K denote the lateral stiffness and x the distance from the CM of the ith resisting element along 
yi 

the ½-axis. Then 
i 
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i i i 
are the translational stiffness of the system along the ½-axis and the torsional stiffness of the system about 
a vertical axis at the CM, respectively. Location of the CR from the CM is defined by the stiffness eccentricity, 
e, as  

e"  

1  
+  x K (5) 
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It can easily be shown1 that 

Kh "e2K #KhR 
(6) 

y 

in which KhR 
is the torsional stiffness of the system about a vertical axis at the CR. The stiffness matrix of the 

system can now be expressed as 
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With both mass and stiffness matrices known, the stiffness-and-mass-proportional damping matrix of the 
system can be determined as 

C"a
0
M#a

1
K (8) 

in which constants a and a depend on damping ratios, f and f , in the two vibration modes of the system. 
0 1 1 2

The damping matrix of equation (8) accounts for the natural capacity of the system to dissipate energy. 
Let C represent the velocity-proportional damping coefficient and y the distance from the CM of the ith 

xi i 
fluid viscous damper (FVD) along the X-axis; let C denote the damping coefficient and x the distance from 
the CM of the ith FVD along the ½-axis. Then 

yi i 

C 
y "+ C

yi
, and Ch "+ C

xi
y2
i #+ C

yi
x2
i (9) 

i i i 

are the translational damping coefficient of the system along the ½-axis and the torsional damping coefficient 
of the system about a vertical axis at the CM, respectively. Location of the CSD from the CM is defined by 
the supplemental damping eccentricity, e

4$
, as  

" 

1 
e + x C (10) 
4$ C i yi 

y i 

Using a transformation similar to that in equation (6), Ch can be expressed as 

"e2 C (11) Ch 4$ y 
#Ch4$ 

in which Ch4$ is the torsional damping coefficient of the system about a vertical axis at the CSD. The damping 
matrix of the system due to FVDs can now be expressed as 

C
e
4$ C 
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Let us define the supplemental damping radius of gyration, o , as  
4$

o "S
Ch4$ (13) 
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The damping matrix of equation (12) can then be expressed as 
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The equations of motion for the one-way symmetric system (Figure 1) subjected to ground acceleration 
ü along the ½-axis are 
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After dividing by m and some algebraic manipulations, equation (15) leads to 
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ü (16) 
y 4$ CeN

1 

eN 2 #oN 2 D Gau

u

R y Gauh 0H ' 
2#

1#a2 
4$ 4$ 4$ h eN eN )2

12a2 h 

in which u "JK /m"transverse vibration frequency; )h "uh/u "ratio of the torsional and transverse 
y y y 

frequencies with uh "JKhR/mo2"torsional frequency; f "C /2mu "supplemental damping ratio; 
4$ y y 

eN "e%a"normalized stiffness eccentricity; eN "e %a"normalized supplemental damping eccentri-
4$ 4$

city; and oN "o %a"normalized supplemental damping radius of gyration. 
4$ 4$

CONTROLLING SYSTEM PARAMETERS 

Equation (16) indicates that the linear elastic response of one-storey, asymmetric-plan systems with FVDs 
depends on two sets of parameters. The first set of parameters corresponding to the system without FVDs 
consists of (1) transverse vibration period, ¹ "2n/u (u "transverse vibration frequency) of the corres-

y y y 
ponding symmetric-plan system; (2) normalized stiffness eccentricity, eN ; (3) ratio of the torsional and 
transverse frequencies, )h; (4) aspect ratio, a; and (5) mass and stiffness proportional constants, a and a , 

0 1
which in turn depend on the natural damping ratios, f and f , in the two vibration modes of the system. The 

1 2
aspect ratio was included as one of the system parameters because it facilitated a more appealing definition of 
the stiffness eccentricity as a percentage (or fraction) of the plan dimension. If the stiffness eccentricity were 
normalized by the mass radius of gyration, the aspect ratio would not be an independent system parameter. 
Since physical interpretation of many of these parameters has been discussed in an earlier publication,1 they 
are not described in detail here. 

The second set of parameters corresponding to supplemental damping consists of (1) supplemental 
damping ratio, f ; (2) normalized supplemental damping eccentricity, eN ; and (3) normalized supplemental 
damping radius of gyration, oN is indicative of the amount of additional damping, as a fraction of the 

4$

4$
. f

4$ 
4$

critical value, provided by FVDs in the transverse vibration mode of the corresponding symmetric-plan 
system; and eN is indicative of how unevenly FVDs are located within the system plan. A zero value of 

4$ 
eN implies that FVDs are located symmetrically about the CM, whereas non-zero values (eN can take on 
4$ 4$ 



a positive as well as a negative value) indicate uneven distribution. Since FVDs cannot be located outside the 
system plan, the limiting values of eN

4$ 
are !0·5 and 0·5; these values correspond to all dampers located either 

on the flexible edge or on the stiff edge (Figure 1). oN indicates how much farther apart from the CSD the 
4$ 

FVDs are located. This parameter is also indicative of the damping in the torsional mode of vibration of the 
corresponding symmetric-plan system. Zero value of oN implies that all FVDs are located at the CSD and 

4$ 
that they provide zero damping in the torsional mode, whereas larger values indicate that FVDs are located 
farther from the CSD and that damping is increased in the torsional mode. 

It should be noted that the system damping was specified as sum of (1) the stiffness and mass proportional 
classical damping depending on f and f ; and (2) the supplemental damping due to the FVDs characterized 

1 2
by f N and oN . Clearly, systems without FVDs would possess only classical damping. Also note that the 

4$
, e

4$ 4$
locations of dampers in this investigation were not necessarily restricted to system edges; they are shown to 
be on edges only for the purpose of clarity (Figure 1(b)). 

The damping coefficient of an FVD, in general, depends on the frequency and amplitude of motion as well 
as on the operating temperature.8 Furthermore, FVD may also exhibit some viscoelastic force-deformation 
behaviour, i.e., the force in an FVD depends not only on the velocity but also on the displacement. However, 
due to exploratory nature of this investigation, these parameters were not considered; they will be included at 
a later stage. 

SELECTED SYSTEM PARAMETERS 

Responses are presented for the following values of system parameters. Values of ¹ were selected in the 
y 

range of 0·05—3 s to represent many low-rise and mid-rise buildings for which supplemental damping is 
expected to significantly influence the response. The selected value of )h "1 represents systems with strong 
coupling between lateral and torsional motions in the elastic range. In order to investigate how the effects of 
supplemental damping differ for torsionally-very-flexible and torsionally-very-stiff systems, values of 
)h "0·5 and 2·0 were also considered. The normalized stiffness eccentricity eN was selected as 0·2 which 
represents an eccentricity of 20 per cent of the plan dimension. The aspect ratios, a, of the selected systems 
were fixed at two. The constants a and a in equation (8) were selected such that damping ratios in both 

0 1 
vibration modes of the system with eN fixed were equal to 5 per cent, i.e., f

1 
"f

2 
"f"5 per cent. 

The value of f was fixed at 10 per cent for most cases; for a limited number of cases, however, variations 
4$ 

of f in the range of 0—50 per cent were considered. In general, three values of eN "0·2, 0 and !0·2 
4$ 4$ 

were selected. The first corresponds to the supplemental damping eccentricity equal to and in the same 
direction as the selected stiffness eccentricity, i.e., coincidental locations of the CR and CSD. The second 
value corresponds to even distribution of FVDs about the CM and thus the identical location of the CM and 
CSD. The last value corresponds to equal values of the two eccentricities, but with the CSD located on the 
opposite side of the CM from the CR. For selected cases, variations of e6 

4$ 
in the range of !0·5—0·5 were also 

considered. The selected values of oN
4$ 

"0, 0·2 and 0·5 represent low, medium, and large spread of FVDs 
about the CSD. 

RESPONSE QUANTITIES 

The response quantities of interest were the peak deformations u and u at the flexible and the stiff edge, 
& 4 

respectively, of the system. If the system plan were symmetric, these deformations would be identical, i.e., 
u "u "u . The deviations in u and u from u are indicative of the effects of plan asymmetry. Therefore, the 
& 4 0 & 4 0 

response quantities selected in this investigation were the deformations of the flexible and stiff edges in 
asymmetric-plan system normalized by the deformation of the corresponding symmetric-plan system, 
uN "u %u and uN "u %u . A value of the normalized edge deformation by more than one indicates 
& & 0 4 4 0

a larger edge deformation in the asymmetric-plan system as compared to the corresponding symmetric-plan 
system; conversely, a value of normalized edge deformation smaller than one implies a smaller edge 



deformation in the asymmetric-plan system. It is useful to note that no FVDs were included in the 
corresponding symmetric-plan system; the system possessed only classical damping with f

1 
"f

2 
"f"5%. 

The peak values of edge deformations were selected to be the response quantities of interest, rather than 
peak values of translational and rotational displacements at CM or CR,1 because they are indicative of (1) 
deformation demands on outermost lateral load resisting elements of the system, (2) deformation demands on 
the cladding system, which generally consists of brittle, non-ductile elements sensitive to excessive deforma-
tions, and (3) clear spacing required between adjacent buildings in order to avoid pounding. Peak values of 
the translational and rotational deformations at CM (or CR) may occur at different times and cannot be 
combined directly to obtain deformation demands at some other location on the system plan. 

EFFECTS OF PLAN ASYMMETRY 

Although the effects of plan asymmetry in linearly elastic systems without supplemental damping have been 
extensively investigated,1 it is useful to summarize them here prior to a detailed examination of the effects of 
supplemental damping. For this purpose, the normalized deformations at the flexible and stiff edges, uN and 

& 
uN , respectively, of asymmetric-plan systems without FVDs were computed and are presented in Figure 3 for 
4

three values of )h "0·5, 1 and 2. Described first are the effects of plan asymmetry in strongly coupled 
asymmetric-plan systems ()h "1). Subsequently, responses for torsionally-very-flexible ()h "0·5) and tor-
sionally-very-rigid ()h "2) systems are compared with those for strongly coupled ()h "1) systems in order 
to point out how these effects are influenced by )h. 

As expected, the results for strongly coupled systems ()h "1) show that plan asymmetry significantly 
influences edge deformations. In particular, deformations of the flexible edge may be much larger in 
asymmetric-plan systems as compared to the corresponding symmetric-plan system (Figure 3(a)). For many 
asymmetric-plan systems, this deformation may exceed the deformation of the same edge in the correspond-
ing symmetric-plan system by a factor of over two. The deformations of the stiff edge, on the other hand, are 
smaller in asymmetric-plan systems as compared to the corresponding symmetric-plan systems (Figure 3(b)). 
These effects of the plan asymmetry tend to be more pronounced for short-period systems. 

The effects of plan asymmetry depend significantly on )h. For torsionally-very-stiff systems ()h "2), the 
flexible edge deformations are only slightly larger and the stiff edge deformations slightly smaller as 
compared to deformations of the corresponding symmetric-plan systems. Furthermore, the effects of plan 

Figure 3. Normalized edge deformations in asymmetric-plan systems (eN "0·2; a"2; f"5 per cent) 



asymmetry are essentially independent of the system period. For torsionally-very-flexible systems ()h "0·5), 
however, deformations at both edges may be significantly larger as compared to the corresponding 
symmetric-plan systems, and these effects show strong dependence on the system period. These observations 
are consistent with previous findings.1 

It becomes apparent from the summary presented in this section that brittle, non-ductile elements 
(structural or non-structural), which are sensitive to excessive deformations, when located near the edge may 
experience much larger damage in asymmetric-plan systems as compared to the same elements in the 
corresponding symmetric-plan systems. This may occur primarily for elements near the flexible edge of 
asymmetric-plan systems; for torsionally-very-flexible systems ()h "0·5), elements located near the stiff edge 
may also be vulnerable. 

EFFECTS OF SUPPLEMENTAL DAMPING 

Effects of various system parameters related to the supplemental damping — eN N , and f — are evaluated 
4$
, o

4$ 4$ 
by comparing the normalized edge deformations, uN and uN , of systems with supplemental dampers with those 

& 4
of systems without supplemental dampers; the later is denoted as the f

4$ 
"0 case. Following is a detailed 

discussion of these effects. 

Supplemental damping eccentricity 

Presented in Figure 4 are the normalized edge deformations, uN , and uN , in asymmetric-plan systems against 
& 4

the period ¹ 
y 
for three values of eN

4$ 
"0·2, 0 and !0·2 along with the results for asymmetric-plan systems 

without FVDs (denoted as f
4$ 

"0). These results show that the supplemental damping has the effect of 
reducing deformations at both edges. However, the degree of reduction depends significantly on the 
normalized supplemental damping eccentricity, eN

4$
. For the flexible edge, eN

4$ 
"!0·2 led to the largest 

reduction and eN
4$ 

"0·2 resulted in the smallest reduction (Figure 4(a)). These trends are reversed for the stiff 
edge, for which eN "0·2 led to the largest reduction and eN "!0·2 resulted in the smallest reduction (Figure 

4$ 4$ 
4(b)). For both edges, eN

4$ 
"0 led to an intermediate reduction. 

In order to further examine the variation of the above-noted effects with eN , the normalized edge 
4$

deformations were computed for a range of eN
4$ 

values between !0·5 and 0·5 for systems with ¹ 
y 
"1 s and 

Figure 4. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "1; a"2; f"5 per cent) with supplemental 
damping (f "10 per cent and oN "0·2) and without supplemental damping (f "0) 

4$ 4$ 



Figure 5. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "1; a"2; f"5 per cent; ¹ "1 s) with supple-
y 

mental damping (f
4$ 

"10 per cent) 

are presented in Figure 5; the extreme values of eN
4$ 

"!0·5 and 0·5 correspond to all FVDs located either at 
the flexible or at the stiff edge, respectively. Although the results are presented for three values of oN

4$ 
"0, 0·2 

and 0·5, the discussion in this section will focus on systems with oN
4$ 

"0·2, the value selected for systems 
considered in Figure 4; results for oN

4$ 
"0 and 0·5 will be utilized in the next section, where the effects of 

oN are discussed. These results show that deformation of the flexible edge decreases and that of the stiff edge 
4$ 

increases as eN
4$ 

decreases from 0·5 to !0·5, i.e., the CSD moves from the right to the left of the system plan 
(Figure 1(a)). These results also show that uN

& 
is the smallest for eN

4$ 
"!0·5 (Figure 5(a)), indicating that the 

largest reduction in deformation of the flexible edge would be obtained by concentrating all FVDs at the 
flexible edge. A reduction by a factor of nearly two, when compared to the symmetric distribution (eN

4$ 
"0), 

can be achieved for the selected system. The stiff edge deformation, on the other hand, is the smallest for 
eN
4$ 

"5·0, implying that the largest reduction would be obtained by locating all FVDs at the stiff edge (Figure 
5(b)). The reduction for this edge by a factor one-and-a-half compared to the symmetric distribution (eN

4$ 
"0), 

while smaller than that for the flexible edge, it is still significant. 
Since the effects of plan asymmetry depend significantly on the uncoupled lateral-to-torsional frequency 

ratio, )h, results were also generated for torsionally-very-flexible ()h "0·5) and torsionally-very-stiff 
()h "2·0) systems and are presented in Figures 6 and 7. It is apparent from these figures that the effects of 
supplemental damping and damping eccentricity tend to be more pronounced on the flexible edge of 
torsionally-very-flexible systems ()h "0·5) as compared to strongly coupled systems ()h "1) (Figures 6(a) 
and 4(a)). In particular, providing supplemental damping (curve for f

4$ 
"0 compared to other curves) and 

a changes in eN from 0·2 to !0·2 (curve for various values of eN ) resulted in a much larger reduction in the 
4$ 4$

flexible edge deformations of torsionally-very-flexible systems. This effect is more pronounced for systems 
with ¹ "0·5—1·5 s. As noted previously (Figure 3(b)), the stiff edge deformations of torsionally-very-flexible 

y 
systems may exceed those in the corresponding symmetric-plan systems. The supplemental damping reduces 
the deformation of this edge as well; however, this reduction is not very sensitive to eN (Figure 6(b)). 

4$ 
While supplemental damping reduces edge deformations in torsionally-very-stiff systems ()h "2), the 

reductions tend to be smaller than those for systems with )h "1 (Figures 7 and 4). Furthermore, these 
reductions are not very sensitive to eN

4$
, as is apparent from nearly identical curves for eN

4$ 
"0·2, 0 and !0·2 

(Figure 7). 



Figure 6. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "0·5; a"2; f"5 per cent) with supplemental 
damping (f "10 per cent and oN "0·2) and without supplemental damping (f "0) 

4$ 4$ 4$ 

Figure 7. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "2; a"2; f"5 per cent) with supplemental 
damping (f "10 per cent and oN "0·2) and without supplemental damping (f "0) 

4$ 4$ 4$ 

The results presented so far clearly show the importance of a plan-wise distribution of FVDs for 
controlling edge deformations in asymmetric-plan systems. While a plan-wise uniform (or symmetrical) 
distribution of FVDs, i.e., eN

4$ 
"0, led to a reduction in edge deformations when compared to systems without 

FVDs (f
4$ 

"0), it did not result in the largest possible reduction. In particular, deformations of the flexible 
edge are most reduced by distributing FVDs such that the CSD is on the opposite side of the CM from the 
CR, whereas deformations of the stiff edge are most reduced by distributing FVDs such that the CSD is on 
the same side of the CM as the CR. In either case, an additional reduction, compared to the symmetric 
distribution (eN

4$ 
"0) of FVDs, by a factor of up to two may be achieved by appropriately selecting the CSD 

location; the total reduction may be by a factor of up to three when compared to systems without FVDs 
(f

4$ 
"0). 



Figure 8. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "1; a"2; f"5 per cent) with supplemental 
damping (f "10 per cent and eN "!0·2) and without supplemental damping (f "0) 

4$ 4$ 4$ 

It is also apparent that the same distribution of FVDs does not lead to the most reduction in deformations 
of both edges: the distribution that results in the largest reduction in the flexible edge deformation leads to 
the smallest reduction in the stiff edge deformation and vice versa. For asymmetric-plan systems, the flexible 
edge is generally the most critical edge because of higher earthquake-induced deformations. Therefore, FVDs 
should be distributed such that the CSD is as far away from the CM, on the side opposite to the CR, as 
physically possible — a distribution that leads to the largest reduction in deformation of the flexible edge. 
Although this distribution does not lead to the largest possible reduction in deformation of the stiff edge, it 
nonetheless leads to a reduction in deformations of this edge as compared to deformations of the same edge is 
systems without FVDs. 

Supplemental damping radius of gyration 

Presented in Figures 8—10 are the normalized deformations, uN and uN , in asymmetric-plan systems against 
& 4

the period ¹ 
y 

for three values of oN
4$ 

"0, 0·2 and 0·5, along with the results for asymmetric-plan systems 
without FVDs (f "0). The first value of oN corresponds to all FVDs located at the CSD, implying no 

4$ 4$ 
spread in the supplemental damping, whereas the second and the third values correspond to moderate and 
large spreads in the supplemental damping from the CSD. The presented results are for a fixed value of 
eN "!0·2. 
4$ 
It is apparent from these results that a larger values of oN leads to a larger reduction in edge deformations. 

4$ 
This trend applies to deformations at both edges and is also supported by results presented earlier in Figure 
5. Furthermore, these effects are the most pronounced for torsionally-very-flexible systems (Figure 9); the 
edge deformations of torsionally-very-rigid systems are essentially unaffected by oN (Figure 10). 

4$ 
The results presented so far indicate that in order to obtain the largest reduction in deformation of the 

flexible edge, FVDs should be distributed in the system plan such that both eN and oN take on the largest 
4$ 4$ 

possible values; the value of eN should also be negative. However, eN and oN cannot physically take on the 
4$ 4$ 4$ 

largest possible values simultaneously. For example, the largest possible negative values of eN occurs when 
4$ 

all FVDs are located at the flexible edge; however, oN becomes zero for such a distribution. Therefore, an 
4$ 

optimization problem would have to be solved in order to obtain the combination of values for the eN and 
4$ 

oN that results in the largest reduction without violating the physical constraints. However, the following 
4$ 

simple guidelines may be used to establish a near-optimal solution. 



Figure 9. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "0·5; a"2; f"5 per cent) with supplemental 
damping (f "10 per cent and eN "!0·2) and without supplemental damping (f "0) 

4$ 4$ 4$ 

Figure 10. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "2; a"2; f"5 per cent) with supplemental 
damping (f "10 per cent and eN "!0·2) and without supplemental damping (f "0) 

4$ 4$ 4$ 

First, as few FVDs as possible should be used in the direction under consideration and the outermost 
dampers should be located at the two edges. These FVDs should be proportioned such that the damping 
eccentricity is nearly equal to the structural eccentricity, but opposite in sign (i.e., CSD is located on the 
opposite side of the CM from the CR). Although an arrangement with just two FVDs is preferable from the 
theoretical point of view because it leads to the largest possible value of the oN , at least three FVDs should be 

4$
used in order to provide some redundancy in the system. Second, FVDs should also be included in the 
perpendicular direction. Although the perpendicular FVDs do not affect eN (equation (10)), they increase the 

4$ 
value oN (equations (9), (11), (13)). 

4$ 



Figure 11. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "1; a"2; f"5 per cent; ¹ !"1 s) with 
y 

supplemental damping (oN
4$ "0·2) 

Figure 12. Normalized edge deformations in asymmetric-plan systems (eN "0·2; )h "1; a"2; f"5 per cent; ¹ "1 s) with supple-
y 

mental damping (eN
4$ "!0·2) 

Supplemental damping ratio 

Presented in Figures 11 and 12 are the normalized deformations, uN and uN , in asymmetric-plan systems 
& 4

against f ; values of f in the range of 0—0·5 are considered. The results presented in Figure 11 are for three 
4$ 4$ 

values of eN "0·2, 0 and !0·2 and a fixed value of oN "0·2, whereas those in Figure 12 are for three values 
4$ 4$ 

of oN "0, 0·2 and 0·5 and a fixed value of eN "!0·2. In each of the two figures, the responses were 
4$ 4$ 

computed for systems with ¹ "1 s.  
y 

These results show that edge deformations become smaller as supplemental damping f increases, an effect 
4$ 

that is stronger for smaller values of f . This means that the reduction in edge deformation is greater due to 
4$



the initial 5% supplemental damping (i.e., increase in f from 0 to 5%), compared with the reduction due to 
4$ 

an increase in supplemental damping by the same amount at a later stage (i.e., increase in f from 10 to 15%). 
4$ 

This is also apparent from the reduction in the slope (or flattening) of the curves as f increases. These 
4$ 

observations are consistent with previous ones.23 
The stiff edge deformations are affected to a lesser degree by supplemental damping than the flexible edge 

deformations, which becomes apparent from the relatively flat curves for uN (Figures 11(b) and 12(b)). In a few 
4 

cases, for example, eN "!0·2 and oN "0, the stiff edge deformation is reduced very little as the value of f
4$ 4$ 4$

increases from 0 to 50 per cent (solid curve in Figure 12(b)) compared to a reduction by a factor of nearly five 
in deformation of the flexible edge over the same range of f (solid curve in Figure 12(a)). The variations of 

4$ 
the edge deformations with eN (Figure 11) and oN (Figure 12) are consistent with the ones noted in the 

4$ 4$ 
preceding sections. 

As mentioned previously, deviations in value of the normalized edge deformation from unity are indicative 
of the effects of plan asymmetry. This implies that if the effects of plan asymmetry are to be reduced, the 
asymmetric-plan systems should be modified such that the normalized deformations for both edges are 
nearly the same and equal to one. In other words, edge deformations in asymmetric-plan systems should be 
close to deformations of the same edges in the corresponding symmetric-plan systems. The results presented 
in this paper indicate that the effects of plan asymmetry may be minimized by incorporating FVDs without 
redistributing the stiffness and/or mass properties. However, a careful selection of the supplemental damper 
parameters is required for this purpose. For example, for a structure with ¹ "1 s,  )h  

"1, a"2, and 
y 

structural eccentricity of 20 per cent of the plan dimension, the flexible edge deformation prior to any 
modification is more than 2·5 times the deformation of the same edge if the system plan were symmetric, i.e., 
uN
&
+2·5 (Figure 11(a)). This deformation may be reduced such that uN

&
+1 by providing f

4$ 
"20% through 

FVDs and distributing them such that eN "!0·2 and oN "0·2. The deformation of the stiff edge, which was 
4$ 4$ 

about 80 per cent of the deformation of the same edge in the corresponding symmetric plan system, is affected 
very little by the addition of FVDs for this system. 

CONCLUSIONS 

This investigation was focused on seismic behaviour of linearly-elastic, one-storey, asymmetric-plan systems 
with supplemental viscous damping devices. Identified first were three additional system parameters related 
to the supplemental damping and its plan-wise distribution: (1) the damping ratio due to supplemental 
damping devices, f ; (2) the normalized supplemental damping eccentricity, eN ; and (3) the normalized 

4$ 4$
supplemental damping radius of gyration, oN . Subsequently, the effects of these parameters on the flexible 

4$
and stiff edges of asymmetric-plan systems were investigated. It was shown that supplemental damping 
reduced edge deformations. Reductions by a factor of up to about three are feasible, however, the degree of 
reduction strongly depends on the plan-wise distribution of the supplemental damping. In particular, it was 
found that: 

1. For the same amount of supplemental damping, an asymmetric distribution led to a higher reduction in 
edge deformations as compared to a symmetric distribution; an additional reduction in the edge 
deformation by a factor of nearly two, as compared to the symmetric distribution of the supplemental 
damping, is possible. 

2. The large reduction in edge deformations occurred when the CSD was as far away as physically possible 
from the CM; the CSD should be on the opposite side of the CR (negative eN ) to obtain a reduction in the 

4$
flexible edge deformation, whereas it should be on the same side as the CR (positive eN ) for reduction in 

4$
the stiff edge deformation. 

3. The largest reduction in edge deformations was also obtained when the supplemental damping is 
distributed as far away from the CSD as possible. 



4. Since eN and oN cannot physically take on the largest possible values simultaneously, a near optimal 
4$ 4$ 

reduction may be obtained by using (a) as few dampers as possible in the direction under consideration 
and locating the outermost dampers at the two edges, and (b) dampers in the perpendicular direction. 

5. The effects of the plan-wise distribution of supplemental damping were much more significant for strongly 
coupled ()h "1) and torsionally-very-flexible ()h "0·5) asymmetric-plan systems. Furthermore, these 
effects were more pronounced for the flexible edge. Although edge deformations of torsionally-very-stiff 
()h "2) asymmetric-plan systems were reduced due to supplemental damping, they were essentially 
unaffected by its plan-wise distribution. 

It has also been shown that edge deformations in asymmetric-plan systems can be reduced to levels equal 
to or smaller than those of the same edges in the corresponding symmetric-plan system by proper selection of 
the supplemental damping parameters alone, without redistributing the stiffness and/or mass properties of 
the system. 

The findings in this paper are based on the responses of simple, one-storey systems computed for single 
earthquake excitation. It would be useful to investigate the response behaviour of more complex systems, 
such as multi-storey buildings, and consider an ensemble of earthquakes in order to gain further confidence 
in these findings. 
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