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CAPACITY-DEMAND DIAGRAM METHODS BASED ON INELASTIC DESIGN 
SPECTRUM 

Anil K CHOPRA1 And Rakesh K GOEL2 

SUMMARY 

An improved capacity-demand-diagram method that uses the well-known constant-ductility design 
spectrum for the demand diagram is developed and illustrated by examples. This method estimates 
the deformation of inelastic SDF systems consistent with the selected inelastic design spectrum, 
while retaining the attraction of graphical implementation of the ATC-40 Nonlinear Static 
Procedure. The improved procedure differs from ATC-40 procedures in one important sense. The 
demand diagram used is different: the constant-ductility demand diagram for inelastic systems in 
the improved procedure versus the elastic demand diagram in ATC-40 for equivalent linear 
systems. 

INTRODUCTION 

The Nonlinear Static Procedure in ATC-40 and FEMA-274 documents is based on the capacity spectrum 
method (Freeman et al., 1975) which is used to determine the seismic deformation of an SDF system derived 
from the pushover curve. This method is based on the belief that the earthquake-induced deformation of an 
inelastic SDF system can be estimated satisfactorily by an iterative method requiring analysis of a sequence of 
equivalent linear SDF systems, thus avoiding the dynamic analysis of the inelastic SDF system. 

The principal objective of this investigation is to develop improved simplified analysis procedures, based on 
capacity and demand diagrams, to estimate the peak deformation of inelastic SDF systems. These improved 
procedures use the well-established inelastic response (or design) spectrum. The idea of using the inelastic 
design spectrum in this context was suggested by Bertero (1995), and introduced by Reinhorn (1997) and Fajfar 
(1999). 

EVALUATION OF NONLINEAR STATIC PROCEDURE 

The excitation is characterized by the elastic design spectrum of Fig. 1 which is the median-plus-one-standard-
deviation spectrum constructed by the procedures of Newmark and Hall (1982), as described in Chopra (1995; 
Section 6.9). The yield strength of each bilinear hysteretic system analyzed was chosen corresponding to an 
allowable ductility µ : 

g ) w (1) f y = ( Ay 

where w  is the weight of the system and Ay is the pseudo-acceleration corresponding to the allowable ductility 

and the vibration properties – natural period T n  and damping ratio ζ – of the system in its linear range of 

vibration. Given the properties T n , ζ , and f y and the elastic design spectrum, the earthquake induced 
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deformation of the system can be determined as described in Chopra (1995: Section 7.6). Utilized in such a 
procedure is a T n -dependent relation between yield strength reduction factor Ry  and µ . 
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       Figure 1. Newmark-Hall elastic design spectrum. 

Presented in Fig. 2 are the deformations determined by using three different Ry − µ − T n  equations: Newmark 

and Hall (1982); Krawinkler and Nassar (1992) for elastoplastic systems; and Vidic, Fajfar and Fischinger 
(1994) for bilinear systems. The equations describing these relationships are presented in Chopra and Goel 
(1999). Observe that the three recommendations lead to similar results except for T n < 0.3 sec , indicating that 

the inelastic design spectrum is a reliable approach to estimate the earthquake-induced deformation of yielding 
systems, reliable in the sense that different researchers have produced similar results. 

The deformation estimates by the ATC-40 method, as determined by Chopra and Goel (1999), are also included 
in Fig. 2. Relative to the deformation value from inelastic design spectra, the percentage discrepancy in the 
approximate result is plotted in Fig. 3. The approximate procedure underestimates the deformation significantly, 
except for very long periods ( T n > T f  in Fig. 1). 
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Figure 2. Deformation of inelastic systems (µµµµ= 4) determined from inelastic design spectra using ATC-40 
Procedure and three Ry − µ − T n equations: Newmark-Hall (NH), Krawinkler-Nassar (KN), and Vidic-

Fajfar-Fischinger (VFF). 

In passing, note that the ATC-40 procedure is deficient relative to even the elastic design spectrum in the 
velocity-sensitive and displacement-sensitive regions ( T n > T c ) . For T n in these regions, the peak deformation 

of an inelastic system can be estimated from the elastic design spectrum, using the well-known equal-
displacement rule (Veletsos and Newmark, 1960). However, the ATC-40 procedure requires analyses of several 
equivalent linear systems and still produces worse results. 
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Figure 3. Discrepancy in deformations computed by ATC-40 procedure relative to three different (NH, 
KN, VFF) inelastic design spectra; µµµµ = 4. 

IMPROVED PROCEDURES 

Inelastic Design Spectrum 

A constant-ductility spectrum for a bilinear hysteretic system is a plot of Ay  versus T n  for selected values of µ. 

The pseudo-acceleration Ay  is related to the yield strength f y , by Eq. (1). The yield strength reduction factor is 

given by 

f A (2) 
Ry = o = 

f y Ay 

where 

(3)  A  
f =     w 

g o 
  

is the minimum yield strength required for the structure to remain elastic during the earthquake; A is the pseudo-
acceleration ordinate of the elastic design spectrum at ( T n , ζ ) . 

A constant-ductility design spectrum is established by dividing the elastic design spectrum by appropriate 
ductility-dependent reduction factors that depend on T n . The earliest recommendation for the reduction factor, 

Ry (Eq. 2), goes back to the work of Veletsos and Newmark (1960), which is the basis for the inelastic design 

spectra developed by Newmark and Hall (1982). Starting with the elastic design spectrum of Fig. 1 and these 
Ry − µ  relations for acceleration-, velocity-, and displacement-sensitive spectral regions, the inelastic design 

spectrum constructed by the procedure described in Chopra (1995, Section 7.10), is shown in Fig. 4a. 

In recent years, several recommendations for the reduction factor have been developed (e.g., Krawinkler and 
Nassar, 1992; Vidic, Fajfar, and Fischinger, 1994). Based on two of these recommendations, the inelastic design 
spectra are also shown in Fig. 4a. 

Inelastic Demand Diagram 

The inelastic design spectra of Fig. 4a will be plotted in the A-D format to obtain the corresponding demand 
diagrams. The peak deformation D of the inelastic system is given by: 
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Using Eq. (4), D is determined corresponding to the three inelastic design spectra in Fig. 4a. Such data pairs 
( Ay ,D) are plotted to obtain the demand diagram for inelastic systems (Fig. 4b). 
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Figure 4. (a) Inelastic design spectra and (b) Inelastic demand diagrams, based on three different (NH, 
KN, VFF) recommendations. 

Improved Procedure 

This procedure, which uses the demand diagram for inelastic systems (Fig. 4b), will be illustrated with reference 
to six elastoplastic systems defined by two values of T n  = 0.5 and 1.0 sec and three different yield strengths, 

given by Eq. (1) corresponding to µ = 2, 4, and 6, respectively. For systems with T n = 0.5 sec, f y ÷ w = 

1.5624, 0.8992, and 0.5995 for µ = 2, 4, and 6, respectively. The corresponding values for systems with T n  = 1 
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sec are f y ÷ w =  0.8992, 0.4496, and 0.2997. Superimposed on the demand diagrams are the capacity diagrams 

for three inelastic systems with T n  = 0.5 sec (Fig. 5a) and T n  = 1.0 sec (Fig. 5b). The yielding branch of the 
capacity diagram intersects the demand diagram for several µ values. One of these intersection points, which 
remains to be determined, will provide the deformation demand. At the one relevant intersection point, the 
ductility factor calculated from the capacity diagram should match the ductility value associated with the 
intersecting demand curve. Determined according to this criterion, the deformation for each system is noted in 
Fig. 5. This result will be essentially identical to that given by Eq. (4). Implementation of this procedure is 
illustrated for two systems. 

Examples 

The yield deformation of System 1 is uy = 3.724cm . The yielding branch of the capacity diagram intersects the 

demand curves for µ = 1, 2, 4, 6, and 8 at 133.93 cm, 66.96 cm, 33.48 cm, 22.3 cm, and 16.5 cm, respectively 
(Fig. 5a). Dividing by uy , the corresponding ductility factors are: 133.93÷3.724=35.96 (which exceeds µ = 1 for 

this demand curve), 66.96÷3.724=17.98 (which exceeds µ = 2 for this demand curve), 33.48÷3.724=8.99 (which 
exceeds µ = 4 for this demand curve), 22.3÷3.724=6 (which matches µ = 6 for this demand curve), and 
16.5÷3.724=4.43 (which is smaller than µ = 8 for this demand curve). Thus, the ductility demand is 6 and the 
deformation of System 1 is D = 22.3 cm. 

For System 3, u y = 9.681cm . The yielding branch of the capacity diagram intersects the demand curve for µ = 1 

at 51.34 cm (Fig. 5a). The corresponding ductility factor is 51.34÷9.681=5.3, which is larger than the µ = 1 for 
this demand curve. The yielding branch of the capacity diagram also intersects the demand curve for µ = 2 
continuously from 9.681 cm to 25.2 cm, which correspond to ductility factors of 1 to 2.6. The intersection point 
at 19.29 cm corresponds to ductility factor = 19.39÷9.681=2 which matches µ = 2 for this demand curve. Thus, 
the ductility demand is 2 and the deformation of System 3 is D = 19.39 cm. 

Observe that for the presented examples, the ductility factor at the intersection point matched exactly the 
ductility value associated with one of the demand curves because the f y  values were chosen consistent with the 

same µ values for which the demand curves have been plotted. In general this is not the case and interpolation 
between demand curves for two μ values would be necessary. Alternatively, the demand curves may be plotted 
at a finer μ interval avoiding the need for interpolation. 

Comparison with ATC-40 Procedure A 

The improved procedure just presented gives the deformation value consistent with the selected inelastic design 
spectrum, while retaining the attraction of graphical implementation of the ATC-40 Procedure A. The two 
procedures are similar in the sense that the desired deformation is determined at the intersection of the capacity 
diagram and the demand diagram. However, the two procedures differ fundamentally in an important sense; the 
demand diagram used is different: the constant-ductility demand diagram for inelastic systems in the improved 
procedure (Fig. 5) versus the elastic demand diagram in ATC-40 Procedure A for equivalent linear systems. 

IMPROVED PROCEDURE: NUMERICAL VERSION 

The improved procedure presented in the preceding section was implemented graphically, in part, to highlight 
the similarities and differences relative to the Nonlinear Static Procedure in the ATC-40 report. However, this 
graphical feature is not essential and the procedure can be implemented numerically. Such a procedure using 
Ry − µ − T n equations is outlined in this section. While space limitation does not permit presentation of these 

equations (Chopra and Goel, 1999), they are plotted in Figures 6a and 6b. Plots of Ry  versus T n  for selected 

values of µ are shown in Fig. 6a and of µ versus T n  for selected values of Ry  in Fig. 6b. Observe the similarity 

among the three sets of results, indicating consensus among different researchers. 

The peak deformation of systems 1 to 6 (Table 1) are determined using Ry − µ − T n  relations. Detailed 

calculations are presented in Chopra and Goel (1999: Appendix B) and the results are summarized in Table 1. 
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Observe that the deformation values computed using Ry − µ − T n  equations are identical to those determined by 

the graphical procedure (Fig. 5) except for round-off differences. 
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Figure 5. Application of Improved Procedure using three different (NH, KN, VFF) inelastic design 
spectra: (a) Systems 1 to 3, and (b) Systems 4 to 6. 
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Figure 6. (a) Variation of Ry  with T n  for selected ductility values , and (b) variation of µµµµ with T n  for 

selected Ry  values based on three different (NH, KN, VFF) recommendations. 

Table 1. Results from numerical implementation of improved procedure using three Ry − µ − T n  equations. 

System Properties Newmark-Hall Krawinkler-
Nassar 

Vidic et al. 

System T n  (s) A (g) Ay  (g) uy (cm) Ry µ D µ D µ D 

1 0.5 2.7062 0.5995 3.7202 4.51 5.99 22.29 5.14 19.11 4.69 17.43 
2 0.8992 5.5803 3.01 3.99 22.29 3.25 18.15 3.05 17.02 
3 1.5624 9.6962 1.73 2.00 19.39 1.77 17.20 1.71 16.54 
4 1 1.7984 0.2997 7.4403 6.00 6.00 44.64 5.56 41.37 4.97 36.94 
5 0.4496 11.160 4.00 4.00 44.64 3.80 42.46 3.32 37.00 
6 0.8992 22.321 2.00 2.00 44.64 1.97 43.97 1.73 38.58 

CONCLUSIONS 

This investigation of capacity-demand-diagram methods to estimate the earthquake-induced deformation of 
inelastic SDF systems has led to the following conclusions: 

1. The ATC-40 procedure significantly underestimates the deformation of inelastic systems for a wide range of 

T n  and µ values compared to the value determined from the inelastic design spectrum using three different 

Ry − µ − T n  equations, all of which provided similar results. 

2. An improved capacity-demand-diagram method that uses the well-known constant-ductility design spectrum 
for the demand diagram has been developed and illustrated by examples. When both capacity and demand 
diagrams are plotted in the A-D format, the yielding branch of the capacity diagram intersects the demand 
curves for several µ values. The deformation is given by the one intersection point where the ductility factor 
calculated from the capacity diagram matches the value associated with the intersecting demand curve. 

3. The improved method can be conveniently implemented numerically if its graphical features are not 
important to the user. Such a procedure, based on equations relating Ry  and µ for different T n  ranges, has 

been presented and illustrated by examples using three different Ry − µ − T n  relations. 
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