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S MMARY 

This study investigated the e9ects of neglecting o9-diagonal terms of the transformed damping matrix 
on the seismic response of non-proportionally damped asymmetric-plan systems with the speci(c aim of 
identifying the range of system parameters for which this simpli(cation can be used without introducing 
signi(cant errors in the response. For this purpose, a procedure is presented in which modal damping 
ratios computed by neglecting o9-diagonal terms of the transformed damping matrix are used in the 
traditional modal analysis. The e9ects of the simpli(cation are evaluated (rst by comparing the afore-
mentioned modal damping ratios with the apparent damping ratios obtained from the complex-valued 
eigenanalysis. The variation of a parameter that was de(ned by Warburton and Soni as an indicator of 
the errors introduced by the simpli(cation is examined next. Finally, edge deformations obtained from 
the simpli(ed procedure are compared with those obtained from the direct integration of the equations 
of motion. It is found that the simpli(ed procedure may be used without introducing signi(cant errors 
in response for most practical values of the system parameters. Furthermore, estimates of the edge 
deformations, in general, tend to be on the conservative side. Copyright ? 2001 John Wiley & Sons, 
Ltd. 
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INTROD CTION 

In dynamic analysis of linear systems subjected to earthquake ground motion, it is common 
to assume that the system is classically or proportionally damped. For such systems, the 
equations of motion can be transformed into a set of independent modal equations using 
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real-valued mode shapes and frequencies. The system response can then be evaluated using 
standard modal analysis techniques [1; 2]. 
In most systems with supplemental damping devices, however, the assumption of classical 

damping may not be valid. Such systems are denoted as non-classically or non-proportionally 
damped. In the past, several di9erent methods for analysis of non-classically damped systems 
have been proposed. However, most of these methods have limitations as apparent from the 
following review of the literature on this subject. 
An obvious method is to integrate directly the coupled equations of motion [3]. However, 

this method is numerically ineHcient for systems with a large number of degrees of free-
dom. Mode superposition method, in which only a limited number of important modes are 
considered, o9ers an attractive alternative to the direct integration method. For non-classically 
damped systems, however, the mode superposition method involves complex-valued mode 
shapes and frequencies [1; 3–6]. Further limitations of this method are doubling of the size 
of the eigenvalue problem and diHculties associated with the use of complex numbers in 
dynamics response analysis. 
In order to overcome the limitations of the complex-valued modal analysis of non-propor-

tional system, hybrid time-domain, frequency-domain procedure has been developed [7–9]. 
This approach involves solving the coupled modal equations (obtained by using undamped 
mode shapes and frequencies) iteratively in time domain; only equations corresponding to 
modes expected to contribute signi(cantly to the total response are considered. Although 
appealing, this procedure requires solutions of the response in the time-domain, which can be 
numerically ineHcient, and cannot be implemented on most commercially available structural 
analysis programs. Spectral method for random vibration analysis has also been proposed [10]. 
A common approach adopted for analysing non-classically damped systems is to diagonalize 

the transformed damping matrix; the transformation process is described later in this paper. 
Although several di9erent approaches have been proposed for this purpose, e.g. Reference [11], 
the most common approach is to simply neglect the o9-diagonal elements in the transformed 
damping matrix [12–14]. The modal damping ratios computed from the diagonal terms of 
the transformed damping matrix are then used in the modal equations that are uncoupled by 
mode shapes of the undamped system. The recently developed FEMA guidelines for seismic 
rehabilitation of buildings [15; 16] have adopted this approach for seismic analysis of buildings 
with supplemental damping devices; the simpli(ed equations for calculating the e9ective modal 
damping ratios given in these documents are derived from diagonal terms of the transformed 
damping matrix while neglecting the o9-diagonal terms. This method is appealing to the 
design professionals because it enables use of the traditional modal analysis methods, including 
response spectrum analysis, for non-classically damped systems. 
The simpli(cation associated with neglecting o9-diagonal terms in the transformed damping 

matrix obviously introduces errors in the response. Warburton and Soni [12] examined errors 
due to such simpli(cation. For this purpose, a parameter was de(ned to indicate the level of 
error in the response. It was found that if this parameter is less than 5 per cent, the errors in 
response caused by this simpli(cation are no more than 10 per cent. 
Most previous studies on seismic analysis of systems with non-proportional damping have 

been focused on symmetric-plan or planar systems. Some recent studies, e.g. References [6; 17] 
have begun to examine the seismic behaviour of asymmetric-plan systems with supplemental 
dampers. Such systems generally belong to the class of systems with non-proportional damping. 
The controlling parameters of asymmetric-plan systems with supplemental damping have been 
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identi(ed and their e9ects on seismic response evaluated [17]. The analytical methods that 
were used are either the direct integration of equations of motion [17] or the complex-valued 
modal analysis [6]. As noted previously, such methods are likely to (nd limited application in 
the engineering design practice due to signi(cant computational e9orts or due to complexities 
in implementation. 
Therefore, the main objective of this study is to investigate the e9ects of neglecting o9-

diagonal terms of the transformed damping matrix on the seismic response of asymmetric 
systems with supplemental damping. With this objective, a simpli(ed procedure is presented 
in which modal damping ratios computed by neglecting o9-diagonal terms of the transformed 
damping matrix are used in the modal equations that are uncoupled by mode shapes of 
the undamped system. An additional objective is to identify the range of system parameters 
for which the simpli(ed procedure can be used without introducing signi(cant errors in the 
response. 
For this purpose, damping ratios are computed from the simpli(ed procedure and compared 

with apparent damping ratios obtained from the complex-valued eigenanalysis. The variation 
of the parameter de(ned by Warburton and Soni [12] is examined next for a wide range 
of system parameters. Finally, the edge deformations obtained from the simpli(ed procedure 
are compared with those obtained from the direct integration of the equations of motion to 
assess errors introduced by the simpli(cation. It is found that the simpli(ed procedure may be 
used without introducing signi(cant errors in response for most practical values of the system 
parameters. Furthermore, estimates of the edge deformations, in general, tend to be on the 
conservative side. 

THEORETICAL BACKGRO ND 

Equations of motion for a multi-degree-of-freedom system subjected to ground motion are: 

MuL(t) +  Cu̇(t) +  Ku(t)=  − M  uLg(t) (1) 

in which matrices M, C, and K characterize the mass, damping, and sti9ness related to 
the deformations u(t) at various degrees of freedom,   is the inPuence vector, and uLg(t) is  
the ground acceleration. For a system with N degrees of freedom (DOF), M, C, and K 
are N × N matrices, and u(t) and   are N × 1 vectors. Reviewed briePy next are the modal 
analysis methods used for proportional and non-proportional systems for solving the equations 
of motion. This material is included because it provides the basis for the simpli(ed procedure 
for analysis of asymmetric-plan systems with supplemental damping. 

Modal analysis of proportional systems 

 sing standard modal decomposition method [2], the coupled N × N system of second-order 
di9erential equations represented by Equation (1) may be transformed to a set of N uncoupled 
second-order di9erential equations: 

qL (t) + 2!   q̇ (t) +  !2 
 q (t)=Q uLg(t);   =1  to  N (2) 
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in which q (t) is the   th modal co-ordinate, !  and   are frequencies and damping ratio in 
the  th mode of vibration, and Q  is the modal participation factor de(ned by 

T 
  M  

Q  = T 
(3) 

  M   

where   is the  th mode shape of system. The mode shapes and frequencies that are used 
in Equations (2) and (3) are obtained from the eigenvalue problem for the undamped multi-
degree-of-freedom system 

(K − !2M)R=0 (4) 

which gives N values of !  and  . Since both M and K in structural engineering applica-
tions are symmetric and positive-de(nite, both !  and   are real valued. The uncoupling of 
equations of motion represented by Equation (2) is possible only when the damping matrix 
C satis(es the following condition: 

T C r = 0 for   = r (5)   

which implies zero o9-diagonal terms in the matrix product RTCR (R is the matrix of all 
mode shapes of an undamped system); RTCR is denoted as the transformed damping matrix 
in rest of this paper. The condition represented by Equation (5) implies that the damping 
matrix is orthogonal (or proportional) to the undamped mode shapes of the system. If this 
condition is not satis(ed, the damping is called non-proportional (or non-classical) and the 
simpli(cation of Equation (2) cannot be achieved. 
For proportional systems,   to be used in Equation (2) is calculated from 

T 
  C   

  = T 
(6) 

2!    M   

and the total response computed from 

N 
u(t)=   q (t) (7) 

 =1 

Modal analysis of non-proportional systems 

The modal analysis of system with non-proportional damping can be implemented using an 
alternative state-space formulation [6]: 

Aż(t) +  Bz(t)=  R uLg(t) (8) 

where z(t)=  u(t) u̇(t) T is a 2N × 1 vector, A and B are the 2N × 2N parameter matrices 
for the system given by 

−K 0 0 K  A = and B = (9) 0 M K C  

and R is a 2N × 1 vector de(ned as 

0 R = (10) −M  
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For systems with non-proportional damping matrix, mode shapes may be obtained from 

(B + A)S=0 (11) 

which leads to 2N complex-valued eigenvalues   
∗ and eigenvectors   

∗ . The complex eigen-
values   

∗ appear in complex conjugate pairs in the form of 

− ∗ ˜∗ !∗ ∗2 ∗ = !∗ − j!∗ 1 − ∗2 and = − ∗ + j!∗ 1 − (12)               

in which !∗ 
  and   

∗ are the apparent natural vibration frequency and apparent modal damping 
ratio, respectively, associated with the  th modal pair. Equation (12) may be utilized to obtain 
the apparent vibration frequencies and apparent modal damping ratios as 

−Re( ∗ ) 
!∗ ∗ ∗ )2 ∗   

  = Re(   )2 + Im(    and   = (13) ∗ ∗ )2 Re(   )2 + Im(    

∗ ˜∗ The complex-valued eigenvectors also appear in complex conjugate pairs,   and   . In a  
complex-valued eigenvector, each element describes the relative magnitude and phase of the 
motion of the DOF associated with that element when the system is excited at that mode only. 
In general, the relative position of each DOF can be out of phase by the amount indicated 
by the complex part of the mode shape element; all DOF vibrate with the same phase angle  
if the mode shape is real-valued. 
 sing complex-valued eigenvectors, ∗ 

  , equations of motions of Equation (8) can be con-
verted to the following 2N uncoupled, (rst-order di9erential equations: 

q̇∗ (t) +   q ∗ (t)=Q∗ uLg(t);   =1 to 2N (14)      

where 

∗T 

Q  
∗ = ∗T 

  R 
∗ 

(15) 
  A   

is the complex-values modal participation factor. The total response can then be obtained from 

2  
u(t)=    

∗ q  
∗ (t) (16) 

 =1 

Note that for a non-proportional system, the following product of mode shape (or eigen-
vector) matrix, R, obtained from eigenanalysis of undamped system (Equation (4)) and the 
damping matrix, C is not a diagonal matrix, 

  
c11 c12 · · ·  c1N   c21 c22 · · ·  c2N   RTCR=   . . .  (17) .. . . .  .  . . . 
cN 1 cN 2 · · ·  cNN 

that is, the o9-diagonal terms cij; i=j are not necessarily zero. 
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SIMPLIFIED MODAL ANALYSIS OF NON-PROPORTIONAL SYSTEMS 

The key to implementation of the simpli(ed modal analysis of non-proportional systems is cal-
culation of the modal damping ratios. These damping ratios can be computed by the following 
step-by-step procedure: 

1. Calculate the mode shapes and frequencies from eigenanalysis of the undamped system 
(Equation (4)). 

2. Assemble the system, damping matrix, C. 

C = C  + Csd (18) 

where C  is a proportional damping matrix of the system without supplemental dampers 
de(ned as 

C  = a0M + a1K (19) 

in which constants a0 and a1 depend on damping ratios in the selected two undamped 
vibration modes of the system, and Csd is the damping matrix due to supplemental 
dampers which depends on the damping constant and locations of the dampers. 

3. Calculate the damping ratio in the  th mode from 

T C   
  =   

T 
(20) 

2!  M     

in which   is the  th mode shape of the undamped system. 

Once the modal damping ratios are computed, the response is computed by using techniques 
available for proportional systems (Equation (2)). 
Note that the procedure described in this section is equivalent to neglecting o9-diagonal 

terms of (Equation (17)). This implies that the coupling between the modal equations due to 
non-proportional nature of the damping matrix is ignored. Also note that this procedure is not 
new, as it has been proposed earlier [12–14] and has been adopted in the FEMA documents 
[15; 16]. However, its applicability to asymmetric-plan systems with supplemental damping is 
explicitly explored for the (rst time in this study. 

EVAL ATION OF SIMPLIFIED PROCED RE 

The simpli(ed procedure is implemented for a simple one-storey asymmetric-plan system with 
linear viscous dampers. This section (rst describes the system and ground motion considered 
in this study. The damping ratios from the simpli(ed procedure are compared next with 
those obtained from complex eigenanalysis (Equation (12)). Also presented are the results 
for the parameter de(ned by Warburton and Soni [12]. Finally, the edge deformations from 
the simpli(ed procedure are compared with those from the exact time-history analysis of the  
coupled system. 
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Figure 1. Idealized one-storey system. 

System and gro nd motion 

One-storey system. The system considered was the idealized one-storey building of Figure 1 
consisting of a rigid deck supported by structural elements (wall, columns, moment-frames, 
braced-frames, etc.) in each of the two orthogonal directions, and included Puid viscous 
dampers incorporated into the bracing system. The mass properties of the system were assumed 
to be symmetric about both the X - and Y -axis whereas the sti9ness and the damper properties 
were considered to be symmetric only about the X -axis. The distance between the centre of 
mass (CM) and the centre of supplemental damping (CSD) is denoted by the supplemental 
damping eccentricity, esd, whereas distance between the CM and the centre of rigidity (CR) 
is de(ned by the sti9ness eccentricities, e. 

System matrices and parameters. The one-way symmetric system (Figure 1) has two DOF 
when subjected to ground motion along the Y -axis: translation along the Y -axis and rotation 
about a vertical axis. The displacement vector u for the system is de(ned by uT = uy au 
where uy is the horizontal displacement relative to the ground of the CM along the Y -axis, 
u is the rotation of the deck about a vertical axis, and a is the plan dimension of the system 
along the X -axis. The mass, sti9ness, and damping matrices of the system with respect to the 
DOF u are then given in terms of the system parameters as   

m 0 
M=  1 +  2  (21) 

0 m 2 12 

where m is the total deck mass and = a=d is the aspect ratio of the deck,   
1 e V

K = m!y 
2 1 +  (22)  2  

e V eV2 + 2 W
2 

12 

in which !y is the undamped transverse vibration frequency of a corresponding uncoupled 
system de(ned as a system with coincidental CM and CR but with relative location and 
sti9ness of all resisting elements identical to those in the asymmetric-plan system, W is ratio 
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of the torsional and transverse frequencies of the corresponding uncoupled system, and Ve = e=a. 
The damping matrix of the system can be formed from Equations (18) and (19) with the  
damping matrix due to supplemental dampers Csd given as 

1 eVsd Csd =2m!y sd 2 �2 (23) 
eVsd eVsd + Vsd 

in which sd is the supplemental damping ratio, eVsd = esd=a is the normalized supplemental 
damping eccentricity, and V �sd=a is the normalized supplemental damping radius of gyra-�sd = 
tion. Detailed descriptions of various system parameters and derivations of the system matrices 
are available elsewhere [17]. 

Selected system and damping parameters. The following parameters related to the system 
were (xed in this investigation: W = 1 to represents systems with strong coupling between 
lateral and torsional motions in the elastic range; Ve =0:2 which implies an eccentricity of 20 
per cent of the plan dimension; =2;  a0 and a1 in Equation (18) to achieve damping ratios 
in both vibration modes of the system without supplemental damping equal to 5 per cent. 
Among the parameters related to the supplemental damping and its plan-wise distribution, sd 

was (xed at 10 per cent. The other parameters were varied over a wide range of practical 
values. For example, Vesd was varied between the extreme values of −0:5 to 0.5 corresponding 
to all dampers concentrated at either the Pexible edge or the sti9 edge of the system; whereas 
three discrete values of V 0, 0.2, and 0.5 representing low, medium, and large spreads of �sd = 
the supplemental damping about the CSD were considered. For selected cases, discrete values 
of Vesd = −0:2, 0, and 0.2 were also considered; Vesd = −0:2 represents a plan-wise distribution 
of damping such that the CSD is located at a distance equal to the structural eccentricity Ve 
but on the side of the CM opposite to the CR, Vesd =0:2 represents identical locations of the 
CSD and CR, and Vesd = 0 implies even distribution of the supplemental damping, i.e., identical 
locations of the CM and the CSD. 

Gro nd motion. The ground motion considered is the North–South (360◦) component recor-
ded at the Sylmar County Hospital parking lot during the 1994 Northridge earthquake. The  
peak values of the ground acceleration, velocity, and displacement recorded at the site were 
826.6, 128.9, and 32:55 cm=s2, respectively. This ground motion was applied to the system to 
act in the Y -direction. 

Modal damping ratios 

The damping ratios in each of the two modes of vibration of the system are computed from 
two methods: the complex-valued eigenanalysis (Equation (13)), and the simpli(ed procedure 
in which the damping ratio is based on the diagonal terms of the transformed damping matrix 
RTCR (Equation (20)) while its o9-diagonal terms are neglected. Note that the damping ratio 
obtained form the (rst analysis is the apparent damping ratio the system will exhibit when 
vibrating in its corresponding (complex-valued) mode shape. This damping ratio is denoted 
as “exact” value in this paper. The damping ratio obtained from the second method obviously 
involves several simpli(cations and is denoted as “approximate” value. The closeness of the 
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Figure 2. Comparison of apparent damping ratio from the state-space formulation with the damping 

ratios from the approximate procedure: (a) 1 and (b) 2. 

approximate damping ratio to be used in the simpli(ed analysis to the exact damping ra-
tio that is required to be used in the complex-values modal analysis will indicate the suit-
ability of the simpli(ed method for analysis of asymmetric-plan systems with supplemental 
damping. 
The approximate and exact values of damping ratios are compared in Figure 2. These  

results show that over a wide range of parameters, the approximate damping ratio used in the 
simpli(ed method is nearly the same as the exact damping ratio in the complex-valued modal 
analysis. This is especially true for low to moderate values of the (= 0 and 0.2). For �Vsd 
larger values of V (= 0:5), however, the two values may di9er. These di9erences occur for �sd 
extreme values of Vesd. For example, the approximate value is smaller for the (rst mode and 
larger for the second mode compared to the exact value in the neighbourhood of Vesd = −0:5; 
the trend reverses in the neighbourhood of Vesd =0:5. However, the di9erences are negligibly 
small. 
Based on the results of Figure 2, it may be expected that the simpli(ed method that uses 

the approximate value of damping ratio would lead to good estimate of the response for a 
wide range of system parameters. Noticeable errors may be expected only for systems with 
large values of V and extreme values of V�sd esd. 
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Figure 3. Error parameter de(ned by Warburton and Soni due to decoupling of damping matrix. 

Warb rton and Soni’s error parameter 

In order to assess the impact of neglecting the o9-diagonal terms in the transformed damp-
ing matrix RTCR, Warburton and Soni [12] proposed a parameter. This parameter can be 
expressed as follows for the two-degree-of-freedom system being considered in this study: 

T !2 e12 = 1 C 2 (24) 
!22 − !2 

1 

Variation of this parameter with Vesd is presented in Figure 3 for three values of V 0, 0.2, �sd = 
and 0.5. It is apparent from these results that the parameter is within 10 per cent over a wide 
range of Vesd values for low to moderate values of V (= 0 and 0.2); the parameter becomes �sd 
large only in the neighbourhood of Vesd = −0:5. For large value of �Vsd (= 0:5), however, the 
parameter exceeds 10 per cent for the entire range of Vesd, with the value becoming particularly 
large in the neighbourhood of Vesd = −0:5 and 0.5. 
Warburton and Soni [12] recommended, based on studies of single- and multi-degree-of-

freedom systems, limiting the parameter to be no more than 5 per cent. For his value of the 
parameter, the maximum error in the response was shown to be no more than 10 per cent. 
For speci(c applications, higher values of the parameter may be acceptable depending on the 
desired accuracy of the results. It will be shown later in this study that response estimates 
from the simpli(ed method within 15 per cent of the exact response may be obtained even 
for systems for which the parameter is up to 10 per cent. 

Edge deformations 

In order to evaluate the e9ects of neglecting o9-diagonal terms in the transformed damping 
matrix, edge deformations of the system of Figure 1 due to the selected ground motion are 
computed by the following two methods and compared. The (rst method, denoted as the “ex-
act” method, entails solving the coupled equations of motion (Equation (1)) in time domain. 
The second method, denoted as “approximate” method, involves solving the uncoupled modal 
equations with damping ratios obtained from the simpli(ed procedure (Equation (20)); the 
modal equations are developed in terms of the mode shapes and frequencies of the undamped 



Figure 4. Comparison of normalized deformations from exact and approximate procedures: Vesd = −0:2; 
(a) Pexible-side element and (b) sti9-side element. 

system. Since the response in the “exact” method is computed in the time domain, the modal 
equations in the “approximate” method are also solved in the time domain. In this study, 
instead of solving the modal equations, the response in the “approximate” method is obtained 
by solving the coupled equations (Equation (1)) with the damping matrix re-formed based on 
the modal damping ratios obtained from the simpli(ed procedure (Equation (20)); note that 
for linear systems, the two procedures give the same response. 
The normalized edge deformations, Vus and Vuf , are presented in Figures 4–6 for three dif-

ferent values of Vesd = −0:2, 0 and 0.2. The normalization is achieved by dividing the peak 
deformations of the sti9 and Pexible edge of an asymmetric-plan system, us and uf , respec-
tively, by the peak deformation of the corresponding symmetric-plan system uo. Note that uo 

is also the deformation at the two edges of the corresponding symmetric-plan system because 
such a system undergoes no torsional motion. The normalized edge deformations, Vus and Vuf , 
are indicative of the e9ects of plan asymmetry: a value of the normalized edge deformation 
more than one indicates that the edge deformation in the asymmetric-plan system is larger 
than the deformation of the same edge in the symmetric-plan system and vice versa. 
The results presented in Figures 4–6 indicate that for short-period systems, e.g., Ty¡0:5sec, 

the two methods lead to nearly identical edge deformation, regardless of Vesd indicating that 



Figure 5. Comparison of normalized deformations from exact and approximate procedures: eVsd =0;  
(a) Pexible-side element and (b) sti9-side element. 

the “approximate” method may be used without introducing any errors for the short period 
systems. This trend is applicable to both edges. For the longer period systems, however, the 
“approximate” method gives higher deformations of the Pexible edge and smaller deformation 
of the sti9 edge for Vesd = −0:2 (Figure 4), whereas the trend is reversed for Vesd =0:2 (Figure 6). 
However, the di9erences are small. For Vesd = 0 (Figure 5), the “approximate” method gives 
deformations that are nearly the same as those from the “exact” method. These results indicate  
that the “approximate” method may be used for longer period systems provided some errors 
are acceptable. 
In order to assess the level of di9erence between the results obtained from the “exact” 

and “approximate” procedures, the percentage errors were computed and are presented in 
Figure 7. It is apparent from this (gure that the errors are, in general, less than 15 per cent. 
The errors are the smallest and nearly zero for eVsd = 0. As expected based on the results 
of Figures 4–6, the errors are positive, indicating overestimation of the response, for the 
Pexible edge (Figure 7a) and negative, indicating underestimation of the response, for the 
sti9 edge (Figure 7b) of systems with Vesd = −0:2. These trends are reversed for systems with 
eVsd =0:2. 



Figure 6. Comparison of normalized deformations from exact and approximate procedures: eVsd =0:2; 
(a) Pexible-side element and (b) sti9-side element. 

The results presented in Figure 7 are for �Vsd =0:2. It would be useful to evaluate how 
the error trends di9er for smaller or larger values of V Therefore, edge deformations were �sd. 
computed for systems with two other values 0 and 0.5 and are presented in Figures 8 �Vsd = 
and 9, respectively. These results show that the trends and level of errors for V 0 are, in �sd = 
general, similar to those observed previously for V�sd =0:2: For V�sd =0:5; however, the errors 
tend to be slightly larger, with values for some cases exceeding 25 per cent, compared to those 
for V�sd =0:2. This observation is consistent with the earlier observation based on Warburton 
and Soni’s parameter where the error parameter was found to be large for V�sd =0:5. 
It is useful to point out that Pexible edge in asymmetric-plan systems, in general, undergoes 

larger deformations during earthquake ground motions compared to the sti9 edge, which is 
also apparent from the results presented in Figures 4–6 where Vuf is, in general, much larger 
than Vus. Therefore, the plan-wise distribution of damping is selected to reduce deformations of 
the Pexible edge. As observed in several earlier studies [6; 17; 18], and apparent from Figure 4, 
this objective is achieved by distributing supplemental damping in the system’s plan such 
that Vesd = −0:2; i.e., the CSD is located at a distance equal to Ve from the CM but on the side op-
posite to the CR. For such a con(guration, the “approximate” procedure gives deformation of the 
Pexible edge to be slightly larger than that obtained from the “exact” procedure (Figures 4–6), 



Figure 7. Errors in normalized deformations from approximate procedure: 
�Vsd =0:2; (a) Pexible-side element and (b) sti9-side element. 

and the error rarely exceeds 15 per cent (Figures 7a–9a). This indicates that the approximate 
procedure gives conservative results and the level of conservatism is not excessive. 
If deformation of the sti9 edge is of concern, as may be the case if brittle elements located 

on the sti9 side are to be protected, the plan-wise distribution of supplemental damping 
should be selected to give Vesd =0:2; i.e., identical locations of the CSD and the CR. For such 
a con(guration, the “approximate” procedure once again gives conservative estimate of the 
sti9-edge deformation (Figures 7b–9b), although the level of conservatism may be slightly 
higher than that for the Pexible edge. 
The results presented so far are for a selected few values of eVsd. It would be useful to 

examine the variation of errors over a much wider range of eVsd values. For this purpose, 
responses of systems with (xed period (Ty = 1 sec) were computed for several values of Vesd 

ranging from −0:5 to 0:5. The errors in response obtained from the “approximate” procedure 
are presented in Figure 10. These results show that errors are minimal for values of Vesd in the 
neighbourhood of zero, i.e., for symmetric plan-wise distribution of supplemental damping. 
As Vesd takes on increasing larger negative values, i.e., the CSD moves closer to the Pexible 
edge, the errors in deformation of both edges increases. For the Pexible edge, the error tends 



Figure 8. Errors in normalized deformations from approximate procedure: 
0; (a) Pexible-side element and (b) sti9-side element. �Vsd = 

to be positive, implying the deformations from the “approximate” procedure are larger than 
those from the “exact” procedure. For the sti9 edge, on the other hand, the error tends to be 
negative, implying that the deformations from the “approximate” procedure are smaller than 
those from the “exact” procedure. As Vesd approaches 0.5, i.e., the CSD moves closer to the 
sti9 edge, the trends in errors are reversed. 
It is also apparent from these results that the error become excessively large for extreme 

values of Vesd as CSD approaches the Pexible edge, i.e., Vesd approaches −0:5. This is consis-
tent with the previous observations based on the Warburton and Soni’s [12] error parameter 
(Figure 3), which also becomes very large as eVsd approaches −0:5. 
For the selected system, the errors are within 15 per cent for values of Vesd approximately 

between −0:2 and 0:2: Since the structural eccentricity for the selected system is e V= 0:2; 
this implies that the “approximate” procedure can be used to reasonably and conservatively 
estimate the response of asymmetric-plan systems with supplemental damping for system with 
− e V6 eVsd 6 e; V a range that has been suggested previously to give near optimal reduction in 
the edge deformations. In this range, the errors for systems with large plan-wise spread of 
supplemental damping ( V�sd =0:5) are within acceptable limits of say 15 per cent. 



Figure 9. Errors in normalized deformations from approximate procedure: 
�Vsd =0:5; (a) Pexible-side element and (b) sti9-side element. 

CONCL SIONS 

This study investigated the e9ects of neglecting the o9-diagonal terms of the transformed 
damping matrix on the seismic response of asymmetric systems with supplemental damping, 
a class of systems which generally fall in the category of non-proportionally damped systems. 
Furthermore, it investigated the range of system parameters for which this simpli(cation can 
be used without introducing signi(cant errors in the response. For this purpose, damping prop-
erties, Warburton and Soni’s parameter, and seismic response of one-storey asymmetric-plan 
system responding in the elastic range are examined for a wide range of system parameters. 
This investigation has led to the following conclusions: 

1. Over a wide range of parameters, the “approximate” damping ratio obtained by neglecting 
the o9-diagonal terms of the transformed damping matrix is nearly the same as the  
“exact” (or apparent) damping ratio in the complex-valued modal analysis indicating that 
the “approximate” value of damping ratio is suitable for use in the simpli(ed method. 

2. The error parameter, de(ned by Warburton and Soni [12] is within 10 per cent over a 
wide range of Vesd values for low to moderate values of V�sd (=0 and 0:2) but becomes 



Figure 10. Errors in normalized deformations from approximate procedure: 
Ty = 1 s; (a) Pexible-side element and (b) sti9-side element. 

excessive for values of eVsd close to −0:5. This indicates that the simpli(ed procedure 
should not be used for asymmetric-plan systems with large damping eccentricity. 

3. The simpli(ed method may be used without introducing signi(cant errors for the short 
period systems for the entire range of system parameters. For longer period systems, 
slightly larger errors should be expected. 

4. The simpli(ed method gives conservative estimate of the deformation at the Pexible 
edge, which is most often the critical edge in asymmetric-plan systems. 

5. The simpli(ed method conservatively estimates the response of asymmetric-plan systems 
with supplemental damping with − e V6 eVsd 6 e; V a range that has been suggested previously 
to give the near optimal reduction in the edge deformations. In this range, the errors in 
edge deformations are within 15 per cent. 
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