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SUMMARY 

Based on structural dynamics theory, the modal pushover analysis (MPA) procedure retains the concep-
tual simplicity of current procedures with invariant force distribution, now common in structural engi-
neering practice. The MPA procedure for estimating seismic demands is extended to unsymmetric-plan 
buildings. In the MPA procedure, the seismic demand due to individual terms in the modal expansion 
of the e�ective earthquake forces is determined by non-linear static analysis using the inertia force dis-
tribution for each mode, which for unsymmetric buildings includes two lateral forces and torque at each 
�oor level. These ‘modal’ demands due to the �rst few terms of the modal expansion are then combined 
by the CQC rule to obtain an estimate of the total seismic demand for inelastic systems. When applied 
to elastic systems, the MPA procedure is equivalent to standard response spectrum analysis (RSA). The 
MPA estimates of seismic demand for torsionally-sti� and torsionally-�exible unsymmetric systems are 
shown to be similarly accurate as they are for the symmetric building; however, the results deteriorate 
for a torsionally-similarly-sti� unsymmetric-plan system and the ground motion considered because (a) 
elastic modes are strongly coupled, and (b) roof displacement is underestimated by the CQC modal 
combination rule (which would also limit accuracy of RSA for linearly elastic systems). Copyright 
? 2004 John Wiley & Sons, Ltd. 
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INTRODUCTION 

The non-linear static procedure (NSP) or pushover analysis, as described in FEMA-273 [1] 
and its successor FEMA-356 [2] is now used by the structural engineering profession as a 
standard tool for estimating seismic demands for buildings. In the past few years, several 

∗Correspondence to: Anil K. Chopra, Department of Civil and Environmental Engineering, 707 Davis Hall, 
University of California, Berkeley, CA 94720-1710, U.S.A. 

†E-mail: chopra@ce.berkeley.edu 

Contract=grant sponsor: National Science Foundation; contract=grant number: CMS-0336085 

mailto:chopra@ce.berkeley.edu


researchers have discussed the underlying assumptions and limitations of pushover analysis 
(for example, References [3–8]) proposed adaptive force distributions that attempt to follow 
the time-variant distributions of inertia forces [9, 10], and considered more than the funda-
mental vibration mode [11–13]. Rooted in structural dynamics theory, the modal pushover 
analysis (MPA) has been developed to include the contributions of all modes of vibration 
that contribute signi�cantly to seismic demands [14]. It retains the conceptual simplicity and 
computational attractiveness of the standard pushover procedures with time-invariant lateral 
force distributions. This procedure has been improved, especially in its treatment of P–� ef-
fects due to gravity loads and calculation of plastic hinge rotations [15], extended to compute 
member forces, and its accuracy—bias and dispersion—has been evaluated for SAC build-
ings [15], height-wise regular generic frames [16] and irregular generic frames [17]. Recently, 
an incremental response spectrum analysis procedure that considers multiple modes has been 
developed [18]. 
Starting in 1997, various researchers have extended pushover analysis to unsymmetric-plan 

buildings. By applying a height-wise distribution of lateral forces, typical of standard pla-
nar pushover analysis at the �oor centers of mass, an approximate non-linear static analysis 
procedure was developed [19]; by the authors’ admission the procedure ‘does not pretend to 
be very accurate’. Another procedure consists of (i) three-dimensional elastic response spec-
trum analysis to determine roof displacement and height-wise distribution of lateral forces for 
each resisting element (frames, walls, etc.), and (ii) planar pushover analysis of each resisting 
element [20]. Some studies have focused on special considerations necessary to consider inter-
action between walls and frames in pushover analysis of wall-frame structures [21]. Another 
paper investigated the accuracy of applying lateral forces at di�erent locations in the plan of 
unsymmetric buildings [22]. The few comparisons of pushover analysis results with non-linear 
RHA give the impression of limited success. The need for developing improved rational ap-
proximate procedures for unsymmetric-plan buildings is critical. Current engineering practice 
[2] is based on judgmental extensions of methods initially developed for planar analysis of 
buildings, which appear inaccurate. 
The principal objective of this paper is to extend MPA to estimate seismic demands for 

unsymmetric-plan buildings. To provide a basis for the MPA procedure, we �rst develop 
an uncoupled modal response history analysis (UMRHA) procedure, which is shown to be 
equivalent to classical modal response history analysis (RHA) for linearly elastic systems, but 
only an approximate procedure for inelastic systems; the underlying assumptions and accuracy 
are discussed. Subsequently, we present the MPA procedure for unsymmetric-plan buildings, 
demonstrate its equivalence to standard response spectrum analysis (RSA) for elastic systems, 
and identify its underlying assumptions and approximations for inelastic buildings. Finally, 
the accuracy of MPA relative to rigorous non-linear RHA is evaluated. 

EQUATIONS OF MOTION, SELECTED BUILDINGS, AND GROUND MOTION 

Consider an assemblage of moment-resisting frames that make up an N -story building 
(Figure 1). Its plan (shown in Figure 1(a)) is not symmetric about the x or=and y axes. 
This implies that the �oor mass distribution and/or framing plan may be unsymmetric; or 
the framing plan is symmetric but the sti�ness properties of symmetrically-located frames 
di�er. Each �oor diaphragm is rigid in its own plane and has three degrees-of-freedom 
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Figure 1. Multistory building: (a) plan; and (b) frames in the x and y directions. 

(DOFs) de�ned at the center of mass (CM); see Figure 1(a). The DOFs of the j-th �oor 
are: translation ujx along the x-axis, translation ujy along the y-axis, and torsional rotation uj� 

about the vertical axis; ujx and ujy are de�ned relative to the ground. 

Equations of motion 

The displacement vector u of size 3N × 1 for the system includes three N × 1 subvectors 
ux; uy, and u where ux is the vector of x-lateral �oor displacement ujx; uy is the vector of 
y-lateral �oor displacements ujy; and u is the vector of N -torsional �oor displacements: 

T T T ux = ·u1x u2x · · · uNx× uy = ·u1y u2y · · · uNy× u = ·u1 u2 · · · uN� ×

The di�erential equations of motion governing the response of the building to the x and y 
components of ground motion are: 

Mu + fs(u; sign u̇)=  −M�xugx(t) −M�yugy(t) (1) 

where M, a diagonal mass matrix of order 3N , includes three diagonal submatrices m; m 
and IO, each of order N ; m is a diagonal matrix with mjj = mj, the mass lumped at the j-th 
�oor diaphragm; and IO is a diagonal matrix with Ijj = IOj, the polar moment of inertia of the 
j-th �oor diaphragm about a vertical axis through the CM. The force–deformation relations 
between the displacements ux; uy, and u and the x-lateral forces fsx, y-lateral forces fsy, and 
torques fs� at the N �oor levels are non-linear and hysteretic. In Equation (1), the in�uence 
vectors associated with the x and y ground motions are as follows: 

 
1 
  

0 
             

�x = 0 �y = 1 (2)          
0 
   

0 
  

where each element of the N × 1 vector 1 is equal to unity and of the N × 1 vector 0 is equal 
to zero. Although not shown in Equation (1), damping is included and de�ned by modal 
damping ratios. 
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Figure 2. Plan of selected unsymmetric-plan buildings. 

The right side of Equation (1) can be interpreted as e�ective earthquake forces 

 
m1 
  

0 
             

pe� (t)=  −sug(t)=  − 0 ugx(t) and − m1 ugy(t) (3)          
0 
   

0 
  

associated with the x and y components of ground motion, respectively. 

Selected structural systems 

The structural systems considered in this paper are variations of the 9-story steel frame build-
ing designed for the SAC Steel Project. Although not actually constructed, this structure meets 
seismic code and represents typical medium-rise buildings for Los Angeles, California. This 
building is described in several publications (for example, References [14, 23]). It is one of 
six symmetric-plan buildings used as examples to determine the bias and dispersion in the 
MPA procedure [15]. 
This symmetric-plan building was modi�ed to create three systems that are unsymmetric 

about the y-axis but symmetric about the x-axis. While the sti�ness properties were preserved, 
the center of mass (CM) was de�ned eccentric relative to the center of sti�ness (CS), which 
is also the geometric center. The eccentricity between the CM and CS was chosen to be along 
the x-axis, equal to 10% of the plan dimension (Figure 2). The ratio between the �oor mass, 
mj, and its moment of inertia, IOj (about a vertical axis through the CM), was varied to create 
three di�erent unsymmetric-plan systems with di�erent degrees of coupling between lateral 
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Figure 3. Natural periods and modes of vibration of 9-story unsymmetric-plan systems: (a) unsym-
metric-plan system U1; (b) unsymmetric-plan system U2; and (c) unsymmetric-plan system U3. 

and torsional motions as characterized by di�erent values of the ratio of uncoupled lateral and 
torsional vibration periods. 

1. Unsymmetric-Plan 1 (U1). The IOj=m ratio at the CS was taken to be the same as for the 
symmetric-plan building. Figure 3(a) shows the natural vibration periods and modes of 



system U1. Lateral displacements dominate motion in the �rst mode, whereas torsional 
rotations dominate motion in the second mode, indicating weak coupling between lateral 
and torsional motions. Because the period of the dominantly-torsional mode is much 
shorter than that of the dominantly-lateral mode, which is representative of buildings 
with moment-resisting frames located along the perimeter of the plan, this system will 
be referred to as a ‘torsionally-sti�’ system. 

2. Unsymmetric-Plan 2 (U2). The IOj value for every �oor was increased by a factor 
of 2.95 relative to Case U1 and was chosen to achieve very close modal periods. 
Figure 3(b) demonstrates that the periods of the �rst two modes are indeed close and 
that the lateral and torsional motions, which are similar in magnitude, are strongly cou-
pled in the �rst two modes. This system with similar periods in these two modes will 
be referred to as a ‘torsionally-similarly-sti�’ system. 

3. Unsymmetric-Plan 3 (U3). The IOj value for every �oor was increased by a factor of 
6.0 relative to Case U1. Figure 3(c) shows the natural vibration periods and modes 
of system U3. Torsional rotations dominate motion in the �rst mode, whereas lat-
eral displacements dominate motion in the second mode, indicating weak coupling be-
tween lateral and torsional motions. Because the period of the dominantly-torsional mode 
is much longer than that of the dominantly-lateral mode, this system is said to be 
‘torsionally-�exible’. 

These three unsymmetric-plan systems will undergo coupled y-lateral and torsional motions 
due to the y-component of ground motion, which is the focus of this paper. The purely lateral 
response along the x-axis due to the x-component of excitation is not considered as it has 
been the subject of previous investigations [14, 15]. 

Ground motion 

The ground motion selected for this investigation is the LA25 ground motion shown in 
Figure 4. This is one of the 20 ground motions that were assembled for the SAC project 
representing exceedance probability of 2% in 50 years, or a return period of 2475 years. It is 
derived from the free-�eld motion recorded at the Rinaldi Receiving Station during the 1994 
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Figure 4. LA25 ground motion, one of twenty ground motions assembled for the SAC project. 
It is derived from the free-�eld motion recorded at the Rinaldi Receiving Station during the 

1994 Northridge, California, earthquake. 
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Northridge earthquake. Recorded at a distance of 7:5 km from the causative fault, it contains 
a forward directivity pulse (Figure 4), which is common in many near-fault motions. This 
intense ground motion enables testing of the approximate procedures developed herein under 
severe conditions. 

APPROXIMATE ANALYSIS PROCEDURES 

Modal expansion of e�ective forces 

The spatial distribution of the e�ective forces [Equation (3)] over the building is de�ned by 
the vector s and the time variation by ug(t)=  ugx(t) or  ugy(t). This force distribution can be 
expanded as a summation of modal inertia force distributions sn (Reference [24], section 13.3) 

3N 3N 
s = sn = nM�n (4) 

n=1 n=1 

where �n is the n-th natural vibration mode of the structure consisting of three subvectors, 
� ; � , and � , and xn yn �n   �xn

T m1 for ugx(t) Ln 
n = Mn = �T 

n M�n Ln = (5) 
Mn  �T 

ynm1 for ugy(t) 

The e�ective earthquake forces can then be expressed as 

3N 3N 
pe� (t)=  pe� ; n(t)=  − snug(t) (6) 

n=1 n=1 

The contribution of the n-th mode to pe� (t) and s are 

pe� ; n(t)=  −snug(t) sn =� nM�n (7) 

The sn vectors associated with the x and y components of ground motions are given by the 
same equation:   sxn 

  
  m�xn 

          
sn = syn =� n m�yn (8)          

s �n 
   

IO� �n 

  

However, n depends on the component of ground motion, as is evident from Equation (5). 
Figure 5 shows the modal expansion of s = m�y for system U2 associated with the y-

component of ground motion. These modal contributions sn de�ne the force distributions that 
will be used in pushover analyses to be presented later. Observe that the contribution sn of 
each mode to s includes lateral forces and torque at each �oor level, and that the direction of 
forces is controlled by the algebraic sign of the modal displacements �jxn and �j�n (where j 
denotes �oor level). Hence, for the �rst pair of modes, the lateral forces and torques all act in 
the same direction; however, for the second and higher modal pairs, the lateral forces and/or 
torques change direction as one moves up the structure. The lateral forces are in the positive 
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Figure 5. Modal expansion of s = m�y for unsymmetric-plan system U2 subjected to the 
y-component of ground motion. 

y-direction in the �rst pair of modes, whereas the torques are in the positive (counter 
clockwise) direction in the �rst mode, but in the clockwise direction in the second mode. The 
contribution of the �rst modal pair to the force distribution s = m�y of the e�ective earthquake 
forces is largest, and these modal contributions decrease progressively for higher modal pairs. 

Basic concept 

Two procedures for approximate analysis of inelastic buildings will be described next: un-
coupled modal response history analysis (UMRHA) and modal pushover analysis (MPA). 
Not intended for practical application, the UMRHA procedure is developed only to provide 
a rationale and motivation for the MPA procedure. In the UMRHA procedure, the response 
history of the building to pe� ; n(t), the n-th mode component of the excitation, is determined 
by non-linear RHA of an inelastic SDF system, and superposition of these ‘modal’ responses 
gives the total response. In the MPA procedure, the peak response to pe� ; n(t) is determined 
by a non-linear static or pushover analysis, and the peak ‘modal’ responses are combined by 
modal combination rules to estimate the total response. 

UNCOUPLED MODAL RESPONSE HISTORY ANALYSIS 

Elastic systems 

The classical modal analysis procedure for linearly elastic systems may be interpreted as 
�nding the response of the structure to pe� ; n(t) for each n and superimposing the responses for 
all n. The response of the system to pe� ; n(t) is entirely in the n-th mode, with no contribution 
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from other modes, which implies that the modes are uncoupled. Then the �oor displacements 
are given by 

un(t)=  �nqn(t) (9) 

where the modal coordinate is governed by 

q + 2  n!nq̇ + !2 qn = − nug(t) (10) n n n

in which !n is the natural frequency and n is the damping ratio for the n-th mode. The 
solution qn(t) of Equation (10) is given by 

qn(t)=�  nDn(t) (11) 

where Dn(t) is the deformation response of the n-th mode linear SDF system, an SDF system 
with vibration properties—natural frequency !n (natural period Tn =2  �=!n) and damping ratio 
n—of the n-th mode of the MDF system, subjected to ug(t). It is governed by: 

Dn + 2  n!nḊn + !2 nDn = −ug(t) (12) 

Substituting Equation (11) into Equation (9) gives the lateral displacements in the x and y 
directions and torsional rotations of the �oors: 

uxn(t)=�  n�xnDn(t) uyn(t)=�  n�ynDn(t) u �n(t)=�  n� �nDn(t) (13) 

The story drifts in the x and y directions de�ned at the CM are given by 

jxn(t)=�  n(�jxn − �j−1; xn)Dn(t)� jyn(t)=�  n(�jyn − �j−1; yn)Dn(t) (14) 

These equations can be generalized to de�ne the story drifts for any frame, e.g., a frame at 
the edge of the building plan. Equations (13) and (14) represent the response of the MDF 
system to pe� ; n(t). Therefore, the response of the system due to total excitation pe� (t) is  

3N 
r(t)=  rn(t) (15) 

n=1 

This is the UMRHA procedure for exact analysis of elastic systems, which is identical 
to the classical modal RHA. Equation (10) is the standard equation governing the modal 
coordinate qn(t), Equations (13) and (14) de�ne the contribution of the n-th mode to the 
response, and Equation (15) combines the response contribution of all modes. However, these 
standard equations have been derived in an unconventional way. In contrast to the classical 
derivation found in textbooks (e.g., Reference [24]), we have used the modal expansion of 
the spatial distribution of the e�ective forces. This concept will provide a rational basis for 
the modal pushover analysis procedure to be developed later. 

Inelastic systems 

Although modal analysis is not valid for an inelastic system, its response can be usefully 
discussed in terms of the modal coordinates of the corresponding linearly elastic system. 
Each structural element of this linear system is de�ned to have the same sti�ness as the initial 
sti�ness of the same structural element of the inelastic system. Both systems have the same 
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mass and damping. Therefore, the natural vibration periods and modes of the corresponding 
linear system are the same as the vibration properties—referred to as natural ‘periods’ and 
‘modes’—of the inelastic system undergoing small oscillation. 
The response of an inelastic system to excitation pe� ; n(t) will no longer be described by 

Equation (9) because ‘modes’ other than the n-th ‘mode’ will also contribute to the response, 
implying that the vibration modes of the corresponding linear system are now coupled; thus 
the �oor displacements are given by the �rst part of Equation (16): 

3N 
un(t)=  �rqr(t) ≈ �nqn(t) (16) 

r=1 

However, because for linear systems qr(t) = 0 for all modes other than the n-th mode, it is 
reasonable to expect that qr(t) may be small and the n-th ‘mode’ should be dominant even 
for inelastic systems, implying that the elastic modes are, at most, weakly coupled. 
This above-mentioned expectation is con�rmed numerically in Figure 6 for the original 

symmetric-plan building. Its response to excitation pe� ; n(t) was determined by non-linear RHA 
and the resulting roof displacement history was decomposed into its modal components. This 
building yields extensively when subjected to the selected ground motion and modes other 
than the n-th ‘mode’ contribute to the response. Other modes start responding as soon as the 
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Figure 6. Modal decomposition of roof displacement at the CM of the symmetric 
building: (a) pe� ; 1 = −s1 × LA25; (b) pe� ; 2 = −s2 × LA25; (c) pe� ; 3 = −s3 × LA25; and 

(d) pe� ; 4 = −s4 × LA25 ground motion. 
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Figure 7. Modal decomposition of roof displacement at the right frame of the torsionally-sti� unsym-
metric-plan system U1: (a) pe� ; 1 = −s1 × LA25; (b) pe� ; 2 = −s2 × LA25; (c) pe� ; 3 = −s3 × LA25; and 

(d) pe� ; 4 = −s4 × LA25 ground motion. 

structure yields; however, their contributions to the roof displacement are generally very small, 
only a few per cent, of the n-th ‘mode’ contribution (Figures 6(a), (c) and (e)), implying 
weak coupling of elastic modes after the system yields. However, this is not always the case, 
as seen in the response to excitation pe� ;2(t) in Figure 6(b). Although the contribution of the 
second mode is dominant, the �rst mode contribution is no longer very small, but is close 
to 25%. 
The above-mentioned expectation is also con�rmed numerically for unsymmetric-plan sys-

tems in Figures 7 to 9, where the roof displacement of the frame at the right edge of the 
plan (Figure 2) is plotted. The degree of modal coupling for the torsionally-sti� unsymmetric 
system U1 (Figure 7) and for the torsionally-�exible unsymmetric system U3 (Figure 9) is 
similar to that for the symmetric-building (Figure 6). For system U1 modal coupling is seen 
to be insigni�cant for pe� ; n(t) with n=1; 2, and 4 (Figures 7(a), (b), and (d)), but not for 
n= 3 (Figure 7(c)), which denotes the mode similar to the second lateral vibration mode 
of the symmetric system. Although the contribution of the third mode is dominant, the �rst 
mode contribution is about 25%. For system U3, modal uncoupling is seen to be insigni�-
cant for n=1; 2, and 3 (Figures 9(a), (b) and (c)), but not for n= 4 (Figure 9(d)), which 
again denotes the mode similar to the second lateral vibration mode of the symmetric system. 
Although the contribution of the fourth mode is dominant, the second mode contribution is 
almost 25%. However, this modal coupling for n= 2 turns out to be stronger, as expected, 
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Figure 8. Modal decomposition of roof displacement at the right frame of the torsionally-similarly-sti� 
unsymmetric-plan system U2: (a) pe� ; 1 = −s1 × LA25; (b) pe� ; 2 = −s2 × LA25; (c) pe� ; 3 = −s3 × LA25; 

and (d) pe� ; 4 = −s4 × LA25 ground motion. 

for the unsymmetric system U2 (Figure 8(b)), because it has very similar periods in pairs 
of torsionally-coupled modes; but, the modal coupling remains negligible for n =1; 3, and 4 
(Figures 8(a), (c) and (e)). 
These observations suggest that approximate analysis procedures based on the modal uncou-

pling approximation are expected to be as accurate for torsionally-sti� and torsionally-�exible 
buildings as they were for symmetric-plan buildings [15], but they may be less accurate 
for unsymmetric-plan buildings with very closely-spaced natural vibration periods. For many 
cases then, it is justi�ed to approximate the structural response due to excitation pe� ; n(t) by  
the second half of Equation (16) where qn(t) is governed by 

Fsn q + 2  q̇ + = − (t) (17) n n!n n nugMn 

and Fsn is a non-linear hysteretic function of qn: 

Fsn = Fsn(qn; sign q̇n)=  �T 
n fs(qn; sign q̇n) (18) 

If the smaller contributions of other modes had not been neglected, Fsn would depend on 
all modal coordinates, implying coupling of modal coordinates because of yielding of the 
structure. 
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Figure 9. Modal decomposition of roof displacement at the right frame of the torsion-
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(d) pe� ; 4 = −s4 × LA25 ground motion. 

With the above-stated approximation, the solution of Equation (17) can be expressed as 
Equation (11) where Dn(t) is governed by 

Fsn Dn + 2  n!nq̇ + = −ug(t) (19) n Ln 

Dn(t) may be interpreted as the deformation response of the n-th ‘mode’ inelastic SDF system, 
an SDF system with (1) small-oscillation vibration properties—natural frequency and damping 
ratio n—of the n-th mode of the corresponding linear system; and (2) Fsn=Ln –Dn relation 
between resisting force and deformation, where 

Fsn = Fsn(Dn; sign Ḋn)=  �n 
T fs(Dn; sign Ḋn) (20) 

which will be determined by non-linear static or pushover analysis of the system using a modal 
force distribution based on Equation (8). This procedure will be described later. Introducing 
the n-th mode inelastic SDF system permitted extension of the well-established concepts for 
elastic systems to inelastic systems; compare Equations (10) to (17), Equations (12) to (19), 
and note that Equation (11) applies to both systems. 
Solution of the non-linear Equation (19) provides Dn(t), which when substituted into Equa-

tions (13) and (14) gives �oor displacements and story drifts. Equations (13) and (14) 
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approximate the response of the inelastic MDF system to pe� ; n(t), the n-th mode contri-
bution to pe� (t). The superposition of responses to pe� ; n(t), according to Equation (15) to 
obtain the total response to pe� (t), is strictly valid only for linearly elastic systems; however, 
it has been shown to be approximately valid for symmetric-plan inelastic systems [14]. This 
is the UMRHA procedure for approximate analysis of inelastic systems. When specialized for 
linearly elastic systems, it becomes identical to the rigorous classical modal RHA described 
earlier. 
However, UMRHA is only an approximate analysis procedure for inelastic systems. To 

identify the underlying assumptions and approximations in UMRHA of inelastic systems, the 
key equations in UMRHA for both classes of structural systems are compared. The striking 
similarity between the equations for the elastic and inelastic systems is apparent. Equations 
(11), (13), and (14) apply to both systems; Equations (10) and (12) di�er from Equations 
(17) and (19) only in the resisting force; Equations (9) and (15) are exact for elastic systems 
but only approximate for inelastic systems. As is evident from Equation (16), a principal ap-
proximation comes from neglecting the coupling of elastic modal coordinates [recall Equation 
(18)] in computing the response of the inelastic system to pe� ; n(t). Supported by the numerical 
results of Figures 7 to 9, this approximation is reasonable only because the excitation is the 
n-th mode contribution to the total excitation pe� (t) [see Equation (6)]. It would not be valid 
for an excitation with lateral force distribution di�erent than sn, e.g., the total excitation pe� (t). 
To test this approximation, the response of the unsymmetric-system U2—with strong lateral-

torsional coupling of vibration modes and closely-spaced vibration periods—to pe� ; n(t)=  
−snug(t), where ug(t) is the same ground motion as the one selected earlier, was deter-
mined by two methods and compared: (1) rigorous non-linear RHA by solving the governing 
coupled equations [similar to Equation (1) except that the right side is pe� ; n(t)]; and (2) 
approximate UMRHA procedure. Such comparison for roof-displacement and top-story drift 
is presented in Figures 10 and 11, respectively. The errors in UMRHA results are slightly 
larger in drift than in displacement, but the errors in either response quantity seem acceptable 
for approximate methods to estimate seismic demands for unsymmetric-plan buildings. 
The UMRHA procedure is based on Equation (16), which restricts the deformations due 

to pe� ; n(t) to be proportional to the n-th mode. This is exactly valid for linear elastic systems 
but is an approximation for inelastic systems. This approximation is avoided in the MPA 
procedure, which is presented next, but a modal combination approximation must be introduced 
as will be seen later. To provide a proper context, MPA is �rst presented for linear systems. 

MODAL PUSHOVER ANALYSIS 

Elastic systems 

Consider the lateral forces fxn and fyn in the x and y directions and torques f �n de�ned as: 

fxn = sxnAn fyn = synAn f �n = s �nAn (21) 

where sxn, syn, and s �n are given by Equation (8), An = !n
2 Dn and Dn is the peak deformation 

of the n-th mode linear SDF system, determined by solving Equation (12) for Dn(t). Note that 
An is also the ordinate A(Tn;� n) of the earthquake pseudo-acceleration response (or design) 
spectrum for the n-th mode SDF system. Static analysis of the structure subjected to forces 
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de�ned by Equation (21) will provide the peak value rn of the n-th mode contribution rn(t) 
to r(t) (Reference [24], section 13.9); recall that the rn(t) for �oor displacements and story 
drifts is given by Equations (13) and (14). 
Alternatively, this peak modal response can be obtained by static analysis of the structure 

subjected to lateral forces and torques de�ned by the modal force distribution s n 
∗ : 

  m� xn      
s n 
∗ = m�yn (22)        

Ip� �n 
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with the forces increased to push the structure to the roof displacement: 

urxn =� n rxnDn uryn =� n rynDn ur�n =� n r�nDn (23) 

where the subscript ‘r’ denotes the roof. For elastic structures, s n 
∗ is the only force distribution 

that produces displacements proportional to the n-th vibration mode. Therefore, the three 
components of roof displacement of an elastic system will simultaneously reach the values 
given by Equation (23). 
The peak modal response rn, each determined by one modal pushover analysis, can be 

combined by the Complete Quadratic Combination (CQC) Rule (Reference [24], section 13.7), 
a rule suitable for unsymmetric-plan buildings, which may have closely-spaced frequencies of 
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vibration. This MPA procedure for linear elastic systems is identical to the standard response 
spectrum analysis (RSA) procedure. 

Inelastic systems 

In the MPA procedure, the peak response rn of the inelastic building to e�ective earthquake 
forces pe� ; n(t) is estimated by a non-linear static analysis of the structure subjected to lateral 
forces and torques distributed over the building height according to s n 

∗ [Equation (22)] with the 
forces increased to push the structure up to roof displacements urxn; uryn; ur�n. These values of 
the roof displacement components are determined from Equation (23), as for elastic systems, 
but Dn is now the peak deformation of the n-th ‘mode’ inelastic SDF system, determined 
by solving Equation (19) for Dn(t). Alternatively, Dn can be determined from the inelastic 
response (or design) spectrum (Reference [24], sections 7.6 and 7.12) or the elastic response 
(or design) spectrum in conjunction with empirical equations for the inelastic deformation 
ratio [25]. At this roof displacement, non-linear static analysis provides an estimate of the 
peak value rn of response quantity rn(t): �oor displacements and story drifts. 
For an inelastic system, no invariant distribution of forces will produce displacements pro-

portional to the n-th elastic mode. Therefore, the three components of roof displacement 
of an inelastic system will not simultaneously reach the values given by Equation (23). 
One of the two lateral components will be selected as the controlling displacement; the 
choice of the component would be the same as the dominant motion in the mode being 
considered. 
Non-linear static analysis using force distribution s n 

∗ leads to the n-th ‘mode’ pushover 
curve, a plot of base shear Vbn versus roof displacement urn in the appropriate (x or y) 
direction. Such pushover curves for the �rst four modes of the unsymmetric-plan system 
U2 are shown in Figure 12, wherein the roof displacements at the right and left frames are 
identi�ed, indicating signi�cant inelastic action in the right or the left frame. The n-th ‘mode’ 
pushover curve and its bilinear idealization are shown in Figure 13; at the yield point the 
base shear is Vy and the roof displacement is urn

y . bn 
The force–deformation (Fsn=Ln –Dn) relation for the n-th ‘mode’ inelastic SDF system is 

required to determine Dn, whether it is determined by solving Equation (19) for Dn(t) or  
alternatively by the response spectrum methods mentioned above. Based on the theory pre-
sented earlier [14] for symmetric-plan buildings, the Vbn–urn pushover curve is converted to 
the desired Fsn=Ln –Dn relation, as shown in Figure 13(b), where the yield values of Fsn=Ln 

and Dn are 

Vy y Fy usn rn = bn 
∗ 

Dn
y = (24) 

Ln Mn n rn 

in which Mn 
∗ = Ln n is the e�ective modal mass. The two are related through 

Fy 
sn 

Ln 
= !n

2 Dn
y (25) 
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Knowing Fsn
y =Ln and Dn

y from Equation (24), the elastic vibration period Tn of the n-th ‘mode’ 
inelastic SDF system is computed from 

LnDn
y 1=2 

Tn =2  (26) 
Fy 
sn 

In an unsymmetric-plan building the non-linear static procedure leads to two pushover 
curves corresponding to the two lateral directions, x and y. It would be natural to use the 
x (or y) pushover curve for a mode in which the x (or y) component of displacements is 
dominant compared to their y (or x) component. 
The response value rn determined by pushover analysis is an estimate of the peak value 

of the response rn(t) of the inelastic structure to pe� ; n(t); but it is not identical to another 
estimate determined by UMRHA. As mentioned earlier, rn determined by pushover analysis 
of an elastic system is the exact peak value of rn(t), the n-th mode contribution to response 
r(t). Thus we will refer to rn as the peak ‘modal’ response even in the case of inelastic sys-
tems. However, for inelastic systems the two estimates of the peak ‘modal’ response are both 
approximate and di�erent from each other; the only exception is the controlling component of 



 

�

�

urn 

V
 bn

 

urn 
y 

Vbn 
y 

Actual 

Idealized 

1 
kn 

1 
αnkn 

Dn 

F
 sn

 / 
L n

 

Dn = urn / Γn φrn 

Vbn / Mn 
y * 

1 
ωn 

2 

1 
αnωn 

2 

y y (a) (b) 
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push curve; and (b) Fsn=Ln –Dn relationship. 

the roof displacement. They di�er because the underlying analyses involve di�erent assump-
tions. UMRHA is based on the approximation contained in Equation (16), which is avoided in 
MPA because the displacements and drifts are determined by non-linear static analysis using 
force distribution s n ∗ . As a result, the �oor displacements are no longer proportional to the 
mode shape, as implied by Equation (16). In this sense, the MPA procedure represents the 
non-linear behavior of the structure better than UMRHA. 
However, the MPA procedure contains a di�erent source of approximation, which does 

not exist in UMRHA. The peak ‘modal’ responses rn, each determined by one pushover 
analysis, are combined by the CQC rule, just as for elastic systems. This application of modal 
combination rules to inelastic systems obviously lacks a rigorous theoretical basis, but seems 
reasonable because the modes are weakly coupled. 

Summary of MPA 

A step-by-step summary of the MPA procedure to estimate the seismic demands for an 
unsymmetric-plan multistorey building is presented as a sequence of steps: 

1. Compute the natural frequencies, !n and modes, n, for linearly elastic vibration of the 
building. 

2. For the n-th mode, develop the base shear–roof displacement, Vbn–urn, pushover curve by 
non-linear static analysis of the building using the force distribution, s n 

∗ [Equation (22)]. 
Between the two pushover curves obtained corresponding to two lateral directions, x 
and y, preferably choose the pushover curve in the dominant direction of motion of the 
mode. Gravity loads, including those present on the interior (gravity) frames, are applied 
before pushover analysis. Note the value of the lateral roof displacement due to gravity 
loads, urg. 

3. Idealize the pushover curve as a bilinear curve. If the pushover curve exhibits negative 
post-yielding sti�ness due to P–� e�ects, the second sti�ness (or post-yield sti�ness) of 
the bilinear curve would be negative. 

4. Convert the idealized Vbn–urn pushover curve to the force–displacement, Fsn=Ln –Dn, rela-
tion for the n-th ‘mode’ inelastic SDF system by using Fsn

y =Ln = Vbn
y =Mn 

∗ and Dn
y = urn

y = n 
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rn [Equation (24)] in which rn is the value of �n at the roof in the direction of the 
selected pushover curve; and Mn 

∗ and n correspond to the direction of ground motion 
under consideration (x or y). 

5. Compute the peak deformation Dn of the n-th ‘mode’ inelastic single-degree-of-freedom 
(SDF) system de�ned by the force–deformation relation developed in Step 4 and damping 
ratio n. The elastic vibration period of the system is Tn =2  (LnD

y 
sn)1=2. For an SDF n =F
y 

system with known Tn and n; Dn can be computed from non-linear RHA, inelastic 
design spectrum, or elastic design spectrum in conjunction with empirical equations for 
the ratio of deformations of inelastic and elastic systems. 

6. Calculate peak roof displacement urn in the direction of the selected pushover curve 
associated with the n-th ‘mode’ inelastic SDF system from urn =� n rnDn. 

7. From the pushover database (Step 2), extract values of desired responses rn+g due to the 
combined e�ects of gravity and lateral loads at roof displacement equal to urn + urg. 

8. Repeat Steps 3–7 for as many modes as required for su cient accuracy. 
9. Compute the dynamic response due to the n-th ‘mode’: rn = rn+g − rg, where rg is the 
contribution of gravity loads alone. 

10. Determine the total response (demand) by combining gravity response and the peak 
‘modal’ responses using the CQC rule: 

1=2 J J 
r ≈ max rg ± inrirn (27) 

i=1 n=1 

in which the correlation coe cient in is given by: 

8 ( ) 3=2 
i n in i + n in 

in = (28) 2 2 2 2 (1 − in)2 + 4  i n in(1 + in) + 4(  i 
2 + n) in 

where in = !i=!n is the ratio of the i-th and n-th modal frequencies, and i and n are 
the damping ratios for these modes. 

The MPA procedure summarized in this paper is an extension to unsymmetric-plan buildings 
of the procedure originally developed for symmetric buildings [14] with three improvements 
[15]. First, gravity loads and their P–� e�ects are now included in pushover analysis for 
all ‘modes’; these factors were considered only for the �rst ‘mode’ in the original version. 
Second, although the total �oor displacements and story drifts (at any location in plan) are 
computed by combining the values obtained from gravity load and ‘modal’ pushover analyses 
(Step 10), the beam plastic rotations and element forces (not presented in this paper) will 
no longer be computed by this procedure. They will be computed from the total story drifts; 
such a procedure to determine beam plastic rotations has been published [15], but the one for 
element forces remains to be reported. 

EVALUATION OF THE MPA PROCEDURE 

The MPA procedure was implemented for the original symmetric building and the three 
unsymmetric systems for the selected ground motion. To estimate the seismic demands, the 
contribution of the �rst three ‘modes’ was included in analysis of the symmetric building 



and the �rst three ‘modal’ pairs for the unsymmetric systems. The combined values of �oor 
displacements and story drifts were computed including one, two, or three ‘modal’ pairs (or 
modes for symmetric building). Figure 14(a) shows the �oor displacements and story drift 
demands at the CM for the symmetric building together with the exact value determined by 
non-linear RHA of the system. Figures 14(b), (c), and (d) show similar results for the three 
unsymmetric systems, but the demands are now for the frame at the right edge of the plan. 
These results lead to the following observations for unsymmetric systems, which also apply 
to symmetric buildings provided that all reference to ‘modal’ pair(s) is replaced by mode(s). 
As may be expected, the �rst ‘modal’ pair alone is inadequate in estimating the story drifts, 

especially in the upper stories of the building (Figure 14). Including the response contributions 
of higher ‘modal’ pairs signi�cantly improves the story drifts, but the �oor displacements are 
una�ected, implying that contributions of the higher modal pairs to �oor displacements are 
negligible. Two ‘modal’ pairs su ce, implying that the contribution of the third ‘modal’ pair 
is negligible. 
Figure 14 shows that higher ‘modal’ pairs contribute signi�cantly to the seismic demands 

for the selected systems and MPA is able to capture these e�ects. With su cient number 
of ‘modal’ pairs included, the height-wise distribution of story drifts estimated by MPA is 
generally similar to the ‘exact’ results from non-linear RHA, and much superior to the �rst 
‘modal’ pair result. However, because MPA is an approximate method, it does not match 
the ‘exact’ demands determined by non-linear RHA. Instead MPA has the goal of estimating 
seismic demands to a useful degree of accuracy for practical application with the advantage 
of much less e�ort than that required for non-linear RHA. 
For the excitation considered, the MPA results are accurate for two unsymmetric systems, 

U1 and U3, to a similar degree as they were for the symmetric building, which is apparent 
by comparing Figures 14(b) and (d) with Figure 14(a); however, the results are less accurate 
for system U2. This loss of accuracy could be due to two reasons: The �rst plausible reason 
could be that the system has very close modal periods and strong coupling of the lateral 
and torsional motions in each mode of vibration. However, in spite of the resulting stronger 
modal coupling (Figure 8), the approximate UMRHA procedure was shown to be valid for 
this system (Figure 10). Thus, strong lateral–torsional coupling does not seem to be the source 
of the entire discrepancy. Another plausible reason is that the roof displacement of system 
U2 due to the selected ground motion is considerably under-estimated in the MPA procedure 
(Figure 14(c)). This discrepancy occurs because the individual ‘modal’ responses attain their 
peaks almost simultaneously (Figure 10(b)), a situation for which the CQC modal combination 
rule is not valid. For such a case, the absolute sum (ABSSUM) rule (see Reference [24], 
section 13.7.2) may be more appropriate. To explore this possibility, Figure 15 shows the 
�oor displacements and story drifts determined by the MPA procedure using two di�erent 
modal combination rules, CQC and ABSSUM, and compares these two estimates of seismic 
demand with its ‘exact’ value determined by non-linear RHA. The ‘exact’ demand is generally 
bounded by the two estimates. The ABSSUM rule provides a conservative estimate of the 
roof displacement, as it should, and over-estimates displacements at most �oors and drifts in 
most stories. In contrast, for elastic systems, the ABSSUM rule would be conservative for all 
response quantities. 
The preceding scenario points to the need for evaluating the MPA procedure considering 

an ensemble of ground motions and documenting the bias and dispersion in this procedure 
applied to unsymmetric buildings, as has been accomplished for symmetric buildings [15]. 
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Figure 15. Floor displacements and story drifts at the right frame of unsymmetric-plan system U2 
determined by MPA using CQC and ABSSUM combination rules and non-linear RHA. 

Such a statistical investigation is necessary for two reasons. First, the SRSS and CQC modal 
combination rules are based on random vibration theory and the combined peak response 
should be interpreted as the mean of the peak values of response to an ensemble of earthquake 
excitations. Thus, the modal combination rules are intended for use when the excitation is 
characterized by a smooth response (or design) spectrum. Although modal combination rules 
can also approximate the peak response to a single ground motion characterized by a jagged 
response spectrum, the errors are known to be much larger. Second, accurate estimation of 
roof displacement is necessary for the success of any pushover procedure and this usually is 
not assured for individual ground motions, as has been observed for the six SAC buildings 
[26]. For the Los Angeles 9-story building, the ratio of roof displacement values determined 
by MPA and non-linear RHA varied from 0.66 to 1.70, with a median value of 1.21, over 
the 20 ground motions mentioned earlier. 

CONCLUSIONS 

The modal pushover analysis (MPA) procedure for estimating seismic demands has been 
extended to unsymmetric-plan buildings. Based on structural dynamics theory, the MPA pro-
cedure retains the conceptual simplicity of current procedures with invariant force distribution, 
now common in structural engineering practice. 
The MPA estimate of seismic demand due to an intense ground motion (including a for-

ward directivity pulse) has been shown to be generally accurate for unsymmetric systems to a 
similar degree as it was for a symmetric building. This conclusion is based on a comparison 
of the MPA estimate of demand and its exact value determined by non-linear RHA for four 
structural systems: Los Angeles 9-story steel frame building designed for the SAC project 
and variations of this symmetric-plan building to create three unsymmetric-plan systems with 
di�erent degrees of coupling between lateral and torsional motions, as characterized by dif-
ferent values of the ratio of uncoupled lateral and torsional vibration periods: torsionally-sti� 
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system U1, torsionally-�exible system U3, and torsionally-similarly-sti� system U2. For the 
excitation considered, the MPA estimates for two unsymmetric systems, U1 and U3, are sim-
ilarly accurate as they were for the symmetric-plan building; however, the results deteriorated 
for system U2 because of (a) stronger coupling of elastic modes and (b) under-estimation of 
roof displacement by the CQC modal combination rule, which occurs because the individual 
modal responses attain their peaks almost simultaneously. This implies that for system U2 
and the selected ground motion the CQC modal combination rule would not give an accurate 
estimate of the peak response even if the system were linearly elastic. 
This points to the need for evaluating the MPA procedure considering an ensemble of 

ground motions and documenting the bias and dispersion in the procedure applied to un-
symmetric buildings, as has been accomplished for symmetric buildings [15]. Such future 
work will also evaluate the MPA procedure when earthquake hazard is de�ned by a design 
spectrum—typical of building codes and building evaluation guidelines—a situation for which 
modal combination rules were intended. Simultaneous action of two horizontal components 
of ground motion and structural plans unsymmetric about both axes also remain to be inves-
tigated. 
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