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SUMMARY 

This investigation is concerned with the seismic response of one-story, one-way asymmetric linear and 
non-linear systems with non-linear �uid viscous dampers. The seismic responses are computed for a suite 
of 20 ground motions developed for the SAC studies and the median values examined. Reviewed �rst is 
the behaviour of single-degree-of-freedom systems to harmonic and earthquake loading. The presented 
results for harmonic loading are used to explain a few peculiar trends—such as reduction in deforma-
tion and increase in damper force of short-period systems with increasing damper non-linearity—for 
earthquake loading. Subsequently, the seismic responses of linear and non-linear asymmetric-plan sys-
tems with non-linear dampers are compared with those having equivalent linear dampers. The presented 
results are used to investigate the e�ects of damper non-linearity and its in�uence on the e�ects of plan 
asymmetry. Finally, the design implications of the presented results are discussed. Copyright ? 2005 
John Wiley & Sons, Ltd. 
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INTRODUCTION 

Several recent studies have shown that supplemental �uid viscous damping e�ectively re-
duces the seismic response of asymmetric-plan systems [1–5]. However, these investigations 
examined the behavior of asymmetric-plan systems with linear �uid viscous dampers. Non-
linear �uid viscous dampers (velocity exponent less than one) have the apparent advantage 
of limiting the peak damper force at large velocities while still providing su�cient supple-
mental damping [5–8]; for linear dampers (velocity exponent equal to one), the damper force 
increases linearly with damper velocity [9–11]. 
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A recent investigation examined the seismic response of asymmetric systems with non-linear 
viscous and viscoelastic dampers [12]. It was found that structural response is weakly a�ected 
by damper non-linearity, and non-linear dampers achieve essentially the same reduction in 
response but with much smaller damper force compared to linear dampers; reductions up 
to 20% were observed for edge deformations and plan rotations of short-period systems. 
Furthermore, it was shown that the earthquake response of the asymmetric systems with 
non-linear dampers can be estimated with su�cient degree of accuracy by analyzing the 
same asymmetric systems with equivalent linear dampers. A simpli�ed analysis procedure for 
asymmetric-plan systems with non-linear dampers has also been developed [13]. 
While the aforementioned investigations have led to improved understanding of the e�ects 

of damper non-linearity on the seismic response of asymmetric systems, the following aspects 
of the problem still need further investigation. First, an earlier investigation by the author [14] 
indicated that the force in a non-linear damper may be higher than that in a similarly sized 
linear damper in very-short-period systems. This contradicts the conclusion in many earlier 
investigations, including Lin and Chopra [12], that the force in a non-linear damper is smaller 
than in a linear damper. Note that the results presented in Figure 16 of the paper by Lin and 
Chopra [12] indicated higher force in non-linear dampers for very-short-period systems, but 
no explanation was provided for such behaviour. This behaviour needs further investigation 
and explanation. 
Second, most previous investigations are limited to systems with lateral load resisting 

elements responding in the linear elastic range of behaviour. Although it is desirable to limit 
the seismic performance of buildings to the linear elastic range by using supplemental damp-
ing, limited damage is permitted in such buildings during the design earthquake for economical 
reasons as is apparent from the commentary in the FEMA-356 document [15] which states 
that supplemental damping ‘devices would be expected to be good candidates for projects that 
have a target Building Performance Level of Life safety or perhaps Immediate Occupancy’. 
Therefore, there is a need to investigate the e�ects of damper non-linearity on the seismic re-
sponse of asymmetric systems responding beyond the elastic range (or non-linear asymmetric 
systems). 
The investigation by Lin and Chopra [12] examined the e�ects of damper non-linearity on 

edge deformations and damper forces. For asymmetric-plan systems, however, other important 
response quantities of interest for design purposes include base shear, base torque, and base 
torque generated by asymmetric distribution of dampers. Therefore, it is useful to investigate 
the e�ects of damper non-linearity on these responses. 
The research reported in this paper is aimed at addressing the aforementioned needs as 

well as independently verifying the �ndings of earlier investigations. For this purpose, a 
comprehensive investigation was conducted to examine: (1) the e�ects of damper non-linearity 
on the seismic response of linear and non-linear asymmetric systems; and (2) how the e�ects 
of plan asymmetry are in�uenced by the damper non-linearity. 
In order to facilitate the selection of damper properties, summarized �rst is the theoretical 

background on non-linear �uid viscous dampers followed by the behaviour of single-degree-
of-freedom (SDOF) systems with non-linear �uid viscous dampers subjected to harmonic 
and earthquake loading. The results for SDOF systems, some of which may appear to be 
duplicative of results presented in earlier publications, e.g. Reference [5], are included here 
because they explain the trends found later for asymmetric-plan systems. The e�ects of damper 
non-linearity on the seismic response of asymmetric-plan systems are investigated next by 
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comparing seismic responses—edge deformations, base shear and torque, and total damping 
force and torque at the base—of one-story, one-way asymmetric systems with non-linear �uid 
viscous dampers (velocity exponent =0:7, 0.5, and 0.35) and those with linear �uid viscous 
dampers (velocity exponent = 1). Finally, the in�uence of damper non-linearity on plan-
asymmetry e�ects is investigated by comparing the ratio of response of asymmetric- and its 
corresponding symmetric-plan systems for various values of ( = 1, 0.7, 0.5, and 0.35); the 
corresponding symmetric-plan system is de�ned later in this paper. The seismic responses are 
computed for a wide range of system parameters and a suite of 20 ground motions developed 
for the SAC studies [16]. 

THEORETICAL BACKGROUND: NON-LINEAR DAMPERS 

The force in a non-linear �uid viscous damper is given by 

fD = C sgn( ̇u)| u̇| (1) 

in which C is the damper coe�cient, u̇ is the damper velocity, sgn(·) is the signum func-
tion, and is the damper exponent ranging in values from 0.2 to 1 for seismic applications 
[6, 8, 10, 17]. For = 1, Equation (1) becomes fD = C1 u ˙ which represents force in a linear 
damper. Therefore, exponent is representative of the non-linearity of a �uid viscous damper. 
For a single-degree-of-freedom (SDOF) system with mass m, sti�ness k, and a non-linear 

�uid viscous damper de�ned by Equation (1), the supplemental damping ratio sd is generally 
de�ned based on the concept of equivalent linear viscous damping [6, 10, 11, 17] as: 

ED ED 
sd = = (2) 

4 �ESo 2 �kuo2 

where ESo is the elastic energy stored at the maximum system displacement, u0, and ED is the 
energy dissipated during one cycle of harmonic motion u = uo sin !t at ! = !n (!n = natural 
frequency of the SDOF system). For a non-linear damper, ED is given by [6, 8, 10, 17]: 

1+ ED = C !nuo (3) 

where the constant is 

22+ 2(1 + �=2) 
= (4) 

�(2 + ) 

and �(·) is the gamma function; Equation (4) can also be written in an alternative but 
equivalent form [18]. Utilizing Equation (3) in Equation (2) gives sd as a function of the 
peak displacement uo: 

C 
sd = (!nuo) −1 (5) 

2m!n 

Therefore, for a given value of supplemental damping ratio, sd, the damper coe�cient of a 
non-linear damper with damper exponent of can be calculated as 

2m!n sd (!nuo)1− C = (6) 

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2005; 34:825–846 
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Figure 1. (a) Hysteresis loops for linear ( = 1) and non-linear ( =0:35 and 0) dampers; and (b) ratio 
of damper force in non-linear and linear damper having the same equivalent damping ratio. 

For a linear damper with = 1, Equation (6) gives C1 = 2m!n sd implying that the damping 
coe�cients of non-linear and linear dampers, both with the same damping ratio, sd, are related 
as: 

(!nuo)1− 

C = C1 (7) 

Using equation (7), Equation (1) can be re-written as: 

fD(t) 1 1 
= (!nuo)1− sgn( ̇u)| u̇| (8) 

fDo( =1)  u̇o 

and the peak value of the damper force is given as: 
� �

fDo( ) 1 V 1− 

= (9) 
fDo( =1)  u̇o 

in which V = !nuo is the pseudo-velocity for the SDOF system. The relationship obtained in 
Equation (9) assumes that the peak velocity of a SDOF system with non-linear damper is 
identical to that of the corresponding system with linear damper. 
Figure 1(a) presents the force–displacement response (or hysteresis loops) of linear ( =1)  

and non-linear ( =0:35 and 0) �uid viscous dampers with equivalent damping ratio sd when 
subjected to harmonic motion. The hysteresis loop for the linear damper ( = 1) is a well-
known elliptical shape whereas that of the non-linear damper with = 0 (friction damper) 
is rectangular; the shape for the non-linear damper with 0¡�¡1 falls between these two 
extremes. Because all hysteresis loops enclose the same area ( sd was de�ned based on equal 
energy dissipation or equal area), the peak damper force in the non-linear damper ( �¡1) 
is less than that for the linear damper ( = 1). For systems subjected to harmonic motion, 
Equation (9) simpli�es to fDo( )=fDo( )=1=� , which gives 0.785 ( = �=4) for =0 and 
0.866 for =0:35. This indicates that the peak damper force in friction damper is about 22% 
and 13% less in non-linear dampers with = 0 and 0.35, respectively, compared to the linear 
damper. 
Figure 1(b) presents the relationship between the damper force and the ratio of the 

pseudo-velocity and peak velocity, V=u̇o (Equation (9)). For small values of V=u̇o, the force 

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2005; 34:825–846 
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Figure 2. The one-story, one-way asymmetric system considered: (a) locations of lateral force resisting 
elements; and (b) locations of �uid viscous dampers. 

in a non-linear damper is smaller than that in the linear damper. However, the force in a 
non-linear damper may become larger than that in a linear damper for larger values of V=u̇o. 
The threshold value of V=u̇o at which the non-linear damper force becomes larger depends 

1=(1− ) on and is slightly larger than V=u̇o = 1; transition occurs at a value of the V=u̇o = 
(=1:273 and 1.248 for = 0 and 0.35, respectively). 

SYSTEMS, GROUND MOTIONS, AND RESPONSE STATISTICS 

Asymmetric-plan system 

The asymmetric-plan system considered is the idealized one-story building (Figure 2) consist-
ing of a rigid deck supported by structural elements (wall, columns, moment-frames, braced-
frames, etc.), and �uid viscous dampers incorporated into the bracing system. The mass prop-
erties of the system were assumed to be symmetric about both the x- and y-axes whereas the 
sti�ness and the damper properties were considered to be symmetric only about the x-axis. 
The Center of Mass (CM), Center of Rigidity (CR), and Center of Supplemental Damping 

(CSD) are de�ned as follows. The CM of the system is the centroid of inertia forces when the 
system is subjected to a uniform translational acceleration in the direction under consideration. 
Since the mass was uniformly distributed about both the x- and y-axes, the CM coincided with 
the geometric center of the deck. The CR is the point on the deck through which application 
of a static horizontal force causes no rotation of the deck. The lack of symmetry in the 
sti�ness properties about the y-axis was characterized by the sti�ness eccentricities, e, de�ned 
as the distance between the CM and the CR. With both CM and CR de�ned, the edge that is 
on the same side of the CM as the CR was denoted as the sti� edge and the other edge was 
designated as the �exible edge (Figure 1(a)). The CSD is the centroid of damper forces when 
the system is subjected to a uniform translational velocity in the direction under consideration. 
The lack of symmetry in the damper properties about the y-axis was characterized by the 
supplemental damping eccentricity, esd, de�ned as the distance between the CM and the CSD 
(Figure 1(b)). 
The lateral force resisting system consists of six elements, three each in the x- and 

y-directions (Figure 2(a)). The middle element in each direction is located at the CM and the 
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two outermost elements are equidistant from the CM. Since the sti�ness eccentricity in the 
y-direction is zero, the three elements in the x-direction have equal sti�ness, i.e. kx1 = kx2 = kx3. 
In the y-direction, elements 2 and 3 possess equal sti�ness, i.e. ky2 = ky3, while the sti�ness 
of element 1 is larger than those of elements 2 and 3; the relative values depend on the 
sti�ness eccentricity in the x-direction. 
The supplemental damping distribution also consists of six dampers, three each in the 

x- and y-directions (Figure 2(b)). The two outermost dampers in each direction are located 
at the two edges and the middle damper is located at the CM. The total damping in the 
x- and y-directions are assumed to be equal. Furthermore, the damper distribution in the 
x-direction is assumed to be symmetric, i.e. Cx1 = Cx2 = Cx3. In the  y-direction, Cy2 = Cy3, 
and Cy1¿Cy2 or Cy3. The total value of damper coe�cient in a selected direction, de�ned 
by the iterative procedure described next, is distributed to various dampers based on the 
damping eccentricity in the x-direction. The procedure to determine the distribution of damper 
coe�cients is available elsewhere [14, 19]. 
The non-linear damper coe�cient, C , given by Equation (6), depends on the peak displace-

ment of the system, uo, for a selected value of the equivalent supplemental damping ratio, 
sd. Since uo is not known before the start of the analysis, the following iterative procedure 
is used to compute the damper coe�cient C . 

(0) 1. Assume an initial value of uo and compute the value of C(0) from Equation (6). An 
(0) upper-bound estimate of uo may be obtained from the elastic response spectrum of an 

SDOF system with linear viscous damping equal to the natural damping ratio of the 
system plus the supplemental damping ratio. 

(1) 2. Compute the peak response uo of an elastic SDOF system with non-linear damper to 
selected loading from direct solution of the equation of motion. 

(i) (i) (i−1) 3. For the i-th iteration, set uo =(uo + uo )=2, determine C(i) from Equation (6), and 
recompute the response from direct solution of the equation of motion of an elastic 
SDOF system with non-linear damper. 

4. Repeat step (3) until two successive values of uo are su�ciently close. Compute �nal 
value of C from Equation (6) for the last value of uo. 

The updated estimate of uo in step (3) of the iterative procedure is based on the average of 
the previous two estimates. The estimate based on the previous value was not used because 
it did not lead to convergence for all cases. The �rst (and adopted) procedure always led to 
convergence, although at somewhat slower rate compared to the second procedure. 
For a selected value of sd, the value of C is always computed for an elastic SDOF sys-

tem because the relationship described by Equation (6) is restricted to systems vibrating at 
amplitudes within the linearly elastic limit of the overall structure [11]. As a result, the total 
supplemental damping coe�cient, C , for the non-linear system is equal to that of the corre-
sponding linear system. However, the e�ective supplemental damping ratio, which depends on 
the peak response of the system (Equation (5)), may be slightly di�erent for the two systems. 
The aforementioned iterative procedure to determine C ensures that the damping ratio for 

all earthquake ground motions in a selected ensemble would be the same. An alternative, but 
simpler approach would be to compute the damping coe�cient C for uo obtained from median 
linear spectra for the selected ensemble of ground motions constructed for a damping ratio 
equal to the natural damping ratio of the system plus the supplemental damping ratio. While 



this procedure eliminates the need for iterations, it may lead to slightly di�erent equivalent 
damping ratios for di�erent earthquakes. This approach was adopted in the research reported 
in earlier publications [14, 19], but it did not lead to conclusions signi�cantly di�erent from 
those reported in this paper. 
For non-linear systems, the total strength of the system is de�ned by reducing the strength 

required for the system to remain elastic by a reduction factor R, an approach consistent 
with most seismic design codes and recommendations. The reduction factor is applied to the 
strength of the elastic system with natural and supplemental damping. The total strength is 
distributed to the various lateral load-resisting elements in proportion to their sti�ness. The 
sti�ness-proportional strength distribution implies that the yield displacement of an element is 
independent of the yield strength. This behavior has been found to be true for several steel and 
reinforced concrete systems [20–22] and sti�ness-proportional strength distribution has been 
recommended for asymmetric-plan systems in several recent investigations [22, 23]. Note that 
the strength distribution used in this investigation does not require explicit calculation of the 
yield displacement. 

Symmetric-plan system 

The corresponding symmetric-plan system was de�ned as a system with coincidental CM, CR, 
and CSD, but with relative location and sti�ness of all resisting elements as well as location 
and damping coe�cient of all supplemental dampers identical to those in the asymmetric-
plan system. In other words, the corresponding symmetric-plan system is identical to the 
asymmetric-plan system but with rotational degree of freedom restrained. Therefore, the sym-
metric plan system has only one degree-of-freedom: translation in the direction of applied force 
(or ground motion). For the one-story system selected in this investigation, the symmetric-plan 
system can be replaced by a single-degree-of-freedom (SDOF) system with mass, sti�ness, 
and damping coe�cient equal to the total mass, total sti�ness of all lateral load resisting 
elements, and total damping coe�cient of all dampers, respectively, in the symmetric-plan 
system. 

Ground motions 

The sets of 20 ground motion records were assembled for Los Angeles, Seattle, and Boston 
representing probabilities of exceedance of 2%, 10%, and 50% in 50 years (return periods of 
2475, 475, and 72 years, respectively) [16]. The 10% probability of exceedance in 50 years 
set of records developed for Los Angeles are used in this investigation. 

Response statistics 

The dynamic response of each system to each of 20 ground motions is determined by response 
history analysis [11]. Presented in this paper are median values x̂, de�ned as the geometric 
mean, of n( = 20) observed values of xi of the peak value of the structural response [24]: 

� � 
n � 

x ˆ = exp ln xi=n 
i=1 



�

� � � �

�

� �
� �

� � �

� �
� �

� �

Figure 3. Ratio of steady-state response of SDOF systems with non-linear and linear damper subjected 
to harmonic loading: (a) deformation; and (b) damper force. 

RESPONSE OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS 

Prior to investigating the seismic response of asymmetric-plan systems with supplemental 
dampers, it is useful to review the response behaviour of symmetric-plan, or single-degree-of-
freedom (SDOF) systems, with linear and non-linear �uid viscous dampers. For this purpose, 
the responses of SDOF systems to two types of loading—harmonic and earthquake—are 
examined in this section. The response for harmonic loading is presented for linear systems, 
whereas the response of linear and non-linear systems are presented for the earthquake loading. 
For non-linear systems, the strength is de�ned by reducing the strength required for the system 
to remain elastic by a reduction factor R = 4. Furthermore, the damping coe�cient, C , for non-
linear systems is kept the same as that for the corresponding elastic system, implying that the 
non-linear system in the elastic range of behaviour would have the same equivalent damping 
ratio as the corresponding linear system. The response quantities examined in this section are 
the ratios of peak deformations, uo( )=uo( = 1), and peak damper force, fDo( )=fDo( = 1), 
in a SDOF system with non-linear and linear damper, both systems with the same equivalent 
damping ratio, sd = 20%. 

Harmonic loading 

Presented in Figure 3 are the results for steady-state response of linear SDOF systems sub-
jected to harmonic loading with excitation frequency equal to natural vibration frequency of the 
system, i.e. ! = !n (or T = Tn). The presented results show that the ratio uo( )=uo( =1)=1  
for all period values and is independent of the damper non-linearity, , as curves for all 
values are identical (Figure 3(a)), a result that is expected because the de�nition of equiva-
lent damping ratio for SDOF systems with non-linear dampers is based on harmonic loading. 
The ratio fDo( )=fDo( = 1) is also independent of the period but depends on the value (Fig-
ure 3(b)). Since the ratio V=u̇o in Equation (9) is equal to one for steady-state response of 
linear SDOF systems subjected to harmonic loading with ! = !n, the ratio fDo( )=fDo( =1)  
= =� , which depends only on the damper non-linearity, , and is independent of the system 
period, as con�rmed by the results of Figure 3(b). The ratio fDo( )=fDo( = 1) is always less 
than one for non-linear dampers, i.e. �¡1. 
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Figure 4. Ratio of steady-state response of SDOF systems with non-linear and linear damper subjected 
to a �xed harmonic loading: (a) deformation; and (b) damper force. 

The results presented in Figure 3 are for SDOF systems subjected to excitation frequency 
equal to the natural vibration frequency of the system, i.e. ! = !n. It is also useful to examine 
the responses over a range of natural frequencies (or periods) of the SDOF system but with 
�xed excitation frequency. For this purpose, responses were computed for SDOF systems 
with vibration periods in the range of 0.05 to 3 s subjected to harmonic loading with period 
of 1 s. The results presented in Figure 4 show that uo( )=uo( = 1) is less than one for 
Ty=T¡1, becomes slightly more than one for 1¡Ty=T ¡1:5, and is essentially equal to one 
for Ty=T ¿1:5 (Figure 4(a)). For Ty=T = 1, the ratio uo( )=uo( = 1) is exactly equal to one, 
which is consistent with the results presented in Figure 3(a). The ratio fDo( )=fDo( =1)  is  
much larger than one for systems with Ty=T values less than a cuto� value and smaller than 
one for Ty=T values more than a cuto� value (Figure 4(b)); the cuto� value of Ty=T is slightly 
less than one. Furthermore, these e�ects become larger with increasing damper non-linearity. 
The results presented in Figure 4 imply that damper non-linearity reduces deformations but 

increases damper force for systems with periods shorter than the excitation frequency. For 
longer period systems, the deformations are essentially una�ected and the damper force is 
reduced due to damper non-linearity. 

Earthquake loading 

Figure 5 presents median values of results for linear elastic systems subjected to the selected 
ensemble of ground motions. These results show that the ratio uo( )=uo( = 1) is slightly less 
than one for system periods less than about 1:5 s (Figure 5(a)) indicating that the peak de-
formation of the elastic SDOF system with non-linear damper is slightly less than that of the 
SDOF system with linear damper, both with the same amount of equivalent damping. For 
system periods longer than about 1:5 s, the ratio uo( )=uo( = 1) approaches one indicating es-
sentially no reduction in deformation due to damper non-linearity. The ratio fDo( )=fDo( =1)  
may become larger than one for systems with very short periods (Ty¡0:2 s) (Figure 5(b)) 
indicating an increase in damper force due to damper non-linearity. For longer period sys-
tems, however, the ratio fDo( )=fDo( = 1) is less than one implying reduction in damper 
force due to damper non-linearity. These e�ects increase with increasing damper non-linearity 
(or decreasing value of ). 
Some of the trends apparent from the results presented in Figure 5 cannot be explained based 

on the response of the SDOF system subjected to harmonic loading with ! = !n, a loading 
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Figure 5. Median ratio of response of linear SDOF systems with non-linear and linear damper 
subjected to an ensemble of ground motions: (a) deformation; and (b) damper force. 

Figure 6. Median ratio of response of non-linear SDOF systems with non-linear and linear damper 
subjected to an ensemble of ground motions: (a) deformation; and (b) damper force. 

that is widely used for simpli�ed design of systems with non-linear dampers. For example, the 
deformations due to earthquake loading are reduced and damper force increased by damper 
non-linearity for short-period systems (Figures 5(a) and (b)). The results presented in Figure 
3 for the traditionally used harmonic loading, on the other hand, indicated that deformations 
are una�ected and the damper forces are reduced by damper non-linearity for such systems. 
Such is the case because both loading characteristics (loading frequency) and the system 
vibration period are varied together by enforcing ! = !n for results in Figure 3. For the 
earthquake loading, however, the loading characteristics remain unchanged (same earthquake 
ground motion) while the vibration period is varied. Therefore, the earthquake and harmonic 
loadings lead to di�erent trends for short-period systems. 
An improved correlation is obtained by examining the results for a �xed harmonic loading 

and varying the vibration period of the system. The results presented in Figure 4 indicate that 
deformation reduces and damper force increases with damper non-linearity for short-period 
systems, trends that are consistent with those in Figure 5 for earthquake loading. 
Figure 6 presents median values of results for non-linear systems subjected to the selected 

ensemble of ground motions. These results show that the ratio uo( )=uo( = 1) is less than one 
for non-linear systems with non-linear dampers (Figure 6(a)), with the exception at very short 
periods where the ratio may become slightly larger than one. The reduction in uo( )=uo( =1)  
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Figure 7. Median values of ratio for SDOF systems subjected to an ensemble of ground motions: 
(a) linear elastic systems; and (b) non-linear systems. 

for non-linear systems appears to be slightly larger than that for linear systems. The in-
crease in the ratio fDo( )=fDo( = 1) noted for linear systems for very-short-period systems 
(Figure 4(b)) does not occur for non-linear systems (Figure 6(b)). Furthermore, the reduc-
tion in fDo( )=fDo( = 1) for longer period non-linear systems is smaller than for the linear 
systems. 
The above-noted di�erence in trends in the damper forces between linear and non-linear 

systems may be explained by careful examination of the following relationship between the 
damper force in SDOF systems with non-linear and linear dampers having the same amount 
of equivalent damping ratio: 

fDo( ) 1 (u̇o;� ) = (!nuoe;� )1− (10) 
fDo( =1)  u̇o;� = 1  

in which uoe;� is the peak deformation of the linear SDOF system with non-linear damper, and 
u̇o;� and u̇o;� = 1  are the peak velocities of the SDOF system (linear or non-linear) with non-
linear damper (velocity exponent ) and linear damper (velocity exponent = 1), respectively. 
Equation (10) shows that the ratio fDo( )=fDo( = 1) for earthquake loading depends on the � 

ratio =(!nuoe;� )1− (u̇o;� ) u̇o;� = 1  in addition to the parameter de�ned by Equation (4). 
The simpli�cation achieved in Equation (9), where fDo( )=fDo( = 1) depends on (V=u̇o)1− 

is not possible for earthquake loading because the peak velocity of the SDOF system with 
non-linear damper may not be equal to that of the corresponding SDOF system with linear 
damper, as apparent from the deformation ratios uo( )=uo( = 1) presented in Figures 5 and 6. 
The median values of the ratio for the selected ensemble of ground motions are presented 

in Figure 7 for linear and non-linear systems. These results show that values of exceed 
one for very-short-period linear elastic systems (Figure 7(a)) implying that the damper force 
in very-short-period elastic systems may be larger in the non-linear damper compared to the 
linear damper (Figure 5(b)). For very-short-period non-linear systems, however, values of 
do not exceed one (Figure 7(b)) indicating that the damper force in non-linear systems would 
not exceed that in the linear damper (Figure 6(b)). Smaller reductions in fDo( )=fDo( =1)  
occur for longer period non-linear systems due to damper non-linearity compared to the linear 
systems (see Figures 5(b) and 6(b)) because values of are larger for the former compared 
to the latter (see Figures 7(a) and (b)). 
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RESPONSE OF ASYMMETRIC SYSTEMS 

System parameters 

The linear response of one-story, asymmetric-plan systems without supplemental damping 
depends on (1) transverse vibration period, Ty =2  �=!y (!y = vibration frequency), of the 
corresponding symmetric-plan system in the y-direction; (2) normalized sti�ness eccentricity, 
e = e=a (a = plan dimension perpendicular to the direction of ground motion); (3) ratio of 
the torsional and transverse frequencies, ; (4) aspect ratio of the deck, a=d; and (5) mass 
and sti�ness proportional damping constants, a0 and a1, which in turn depend on the natural 
damping ratios in the two vibration modes of the system. The additional parameters needed to 
include supplemental damping are: (1) supplemental damping ratio, sd; (2) normalized sup-
plemental damping eccentricity, esd = esd=a; and (3) damper velocity exponent, . A detailed 
description of various parameters is available elsewhere [14, 19]. 
Responses are presented for the following values of system parameters: Ty in the range of 

0.05 to 3 s; =1;  e =0:2; aspect ratio = 2; and = 5% in all modes of the corresponding 
linear elastic symmetric-plan system. The parameters for the supplemental damping system 
were selected as: sd = 20%; esd = −0:2; and = 1, 0.7, 0.5, and 0.35. For non-linear systems, 
the reduction factor has been selected to be the same in both directions, i.e. Rx = Ry =4.  

Response quantities considered 

The following six response quantities are considered in this investigation: sti�- and �exible-
edge deformations; base shear and base torque; and total damping force and damping torque 
at the base of the system. The base shear and base torque considered in this investiga-
tion include force contributions from lateral load resisting elements as well as supplemental 
dampers. Among these responses, the edge deformations have generally received the most 
scrutiny [1]. However, it is useful to examine the various force quantities because it would 
enable verifying the assertion that damper non-linearity limits the force in the damper. 

E�ects of damper non-linearity 

In order to evaluate the e�ects of damper non-linearity on the seismic response of asymmetric 
plan systems, ratios of the selected responses in asymmetric-plan systems with non-linear and 
linear dampers are computed for each ground motion and their median values determined. 
These ratios facilitate whether the response is ampli�ed (increased) or de-ampli�ed (reduced) 
due to damper non-linearity. In order to establish a baseline for comparison, the results are 
presented �rst for systems with lateral load-resisting elements responding in the linear elastic 
range (Figure 8); these systems are denoted as ‘linear’ systems. Subsequently, results are 
presented for systems with lateral load-resisting elements deformed beyond the elastic limit 
(Figure 9); these systems are denoted as ‘non-linear’ systems. Note that the distinction between 
‘linear’ and ‘non-linear’ systems is only due to the behaviour of the lateral load-resisting 
elements; both these systems may have non-linearity associated with dampers. The response 
ratios are computed such that both asymmetric systems, with non-linear and linear dampers, 
are either ‘linear’ or ‘non-linear’. 
The results for linear systems show that the damper non-linearity reduces sti�- and �exible-

edge deformations over a wide range of period values (Figures 8(a) and (b)). Furthermore, 
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Figure 8. Median values of ratios of seismic responses of asymmetric-plan systems with non-linear 
( =0:7, 0.5, and 0.35) and linear ( = 1) �uid viscous dampers: linear systems. 

higher damper non-linearity leads to larger reduction in the deformations. For the �exible-
edge, reductions up to 25% may be achieved for short-period (Ty¡0:5 s) systems; reductions 
are much smaller (less than 10%) for longer period systems (Figure 5(b)). The reductions 
for the sti�-edge deformations are minimal: the reductions are, in general, about 5% (Figure 
8(a)) for the lowest value of =0:35 considered in this investigation. For very-short-period 
systems, deformation of the sti�-edge may even increase slightly (Figure 8(a)). The reduction 
in deformation due to damper non-linearity is larger for the �exible-edge and smaller for 
the sti�-edge compared to that found previously for SDOF systems (compare Figures 8(a) 
and (b) with Figure 4(a)). 
The damper non-linearity has little in�uence on the base shear as apparent from the ratio 

being nearly equal to one over the entire period range (Figure 8(c)). The base shear is insensi-
tive to the damper non-linearity because deformation of the structural element on the sti�-edge 
side, which contributed the most to the base shear, is a�ected very little by the damper non-
linearity (Figure 8(a)). However, the base torque which occurs due to plan asymmetry, is 
reduced with the largest reduction of about 15% for =0:35 and systems with Ty¡0:5 s  
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Figure 9. Median values of ratio of seismic response of asymmetric systems with non-linear ( =0:7, 
0.5, and 0.35) and linear ( = 1) �uid viscous dampers: non-linear systems. 

(Figure 8(d)). Such is the case because the �exible-edge element contributes signi�cantly to 
the base torque about the CR due to the larger lever arm (see Figure 2(a)) and deformation 
of this element (and hence its contribution to the total torque) is signi�cantly reduced by the 
damper non-linearity (Figure 8(b)). For longer period systems (Ty¿2 s) reduction in the base 
torque is minimal. 
The total damper force reduces, with a few exceptions, with increasing damper non-linearity, 

i.e. a reducing value of (Figure 8(e)). This observation is consistent with the earlier con-
clusions that the damper non-linearity reduces damper force (Figure 5(b)) reached based on 
responses of SDOF systems subjected to earthquake loading. The reduction is about 20% 
for =0:35 over the wide range of period values considered (Figure 8(e)). However, the 
exception occurs for very-short-period systems: the total damping force increases, instead of 
reducing, due to damper non-linearity (Figure 8(e)). This increase may be as large as 30% 
(Figure 8(e)). 
Owing to asymmetry in the system plan and the damper distribution, the damper forces are 

not symmetrically distributed about the geometric center of the system resulting in a damping 
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torque. Note that the damping torque will not occur in symmetric systems with symmetric 
damping distribution. The presented results show that the total damping torque at the base 
increases slightly with increasing damper non-linearity (Figure 8(f)); the increase is less than 
10% for =0:35 over a wide range of period values. For very-short-period systems, however, 
the increase in total damping torque may exceed 20%. 
Most previous investigations on seismic response of linear SDOF systems [6–10], as well 

as a recent investigation on seismic response of linear asymmetric systems [12], reached the 
conclusion that damper non-linearity reduces damper force signi�cantly. Based on the results 
presented so far in this paper, however, it must be emphasized that this conclusion is strictly 
valid for systems with periods longer than about 0:2 s. For systems with periods shorter 
than 0:2 s, the damper force may increase due to damper non-linearity. Therefore, non-linear 
dampers for very-short-period systems should be used cautiously. 
The results for the non-linear systems show that the damper non-linearity reduces edge 

deformations (Figures 9(a) and (b)). Reductions up to 25% in the �exible-edge deformation 
may be achieved for short-period systems, whereas the reductions in the sti�-edge deforma-
tions are generally less than 5%. For very-short-period systems, the damper non-linearity may 
increase the sti�-edge deformations. These trends for non-linear systems are generally similar 
to those observed previously for linear systems. 
However, the trends for base shear and base torque may di�er between linear and non-

linear systems. While the base shear was una�ected by the damper non-linearity for the linear 
system over the entire period range (Figure 8(c)), it may reduce slightly for long period 
(Ty¿2 s) non-linear systems with the reduction between 5% and 10% (Figure 9(c)). While 
the damper non-linearity reduces the base torque for linear systems (Figure 8(d)), it increases 
the base torque for non-linear systems with the increase of 20% or more over a wide range 
of periods for =0:35 (Figure 9(d)). 
The damper non-linearity reduces the total damper force (Figure 9(e)). However, the re-

duction in damper force is slightly smaller for non-linear systems compared to the linear 
systems (compare Figures 9(e) and 8(e)). Furthermore, increases in damper force in very-
short-period systems noted for linear systems (Figure 8(e)) do not occur for non-linear systems 
(Figure 9(e)). These trends are consistent with the trends noted previously for SDOF systems 
(Figures 5(b) and 6(b)). 
The trends for the total damper torque in non-linear systems are not consistent over 

the period range considered in this investigation. While damper non-linearity reduces damper 
torque for short-period systems, it may reduce or increase the damper torque for longer 
period systems (Figure 9(e)). The values of reduction may be up to 15% and increase up 
to 5%. 
The results presented so far indicate that the damper non-linearity may be used to achieve 

reduction in the �exible-edge deformation of the order of 25% for short-period linear and 
non-linear systems (Ty¡0:5 s). Furthermore, the damper non-linearity may reduce the total 
damping force between 15% and 20%. However, such reduction occurs for systems with 
periods longer than about 0:2 s. For systems with periods shorter than 0:2 s, damper non-
linearity may lead to an increase in damper force indicating that dampers for such systems 
should be used cautiously. 
The response of the ‘non-linear’ system presented in this section is strictly a�ected by 

two factors: (1) the damper non-linearity, and (2) a di�erent e�ective (or apparent) damping 
ratio in the non-linear asymmetric system compared to that for the corresponding elastic SDOF 
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Figure 10. E�ects of plan asymmetry in seismic response of asymmetric-plan systems with non-linear 
( =0:7, 0.5, and 0.35) and linear ( = 1) �uid viscous dampers: linear systems. 

system. While these two e�ects cannot be completely isolated for ‘non-linear’ systems because 
Equations (5) and (6) are strictly applicable for linear systems, the second e�ect is minimized 
by investigating the response ratio of asymmetric systems with non-linear and linear damping 
both responding in the ‘non-linear’ range; the two systems are likely to be a�ected in a similar 
way by the second e�ect. 

In�uence of damper non-linearity on e�ects of plan asymmetry 

In�uence of damper non-linearity on the e�ects of plan asymmetry are evaluated by examining 
the median of ratios of the response of the asymmetric-plan system and its corresponding 
symmetric-plan system for a range of values; the corresponding symmetric-plan system will 
have the same damping ratio, sd, and velocity exponent, , as the asymmetric-plan system. 
The median values of the ratio for six response quantities are presented in Figures 10 and 11 
for linear and non-linear systems, respectively. Summarized in this section �rst are the e�ects 
of plan asymmetry in the system without supplemental damping. Subsequently, the results are 
compared for systems with linear and non-linear supplemental dampers to examine how the 
e�ects of plan asymmetry are modi�ed by the damper non-linearity. 
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Figure 11. E�ects of plan asymmetry in seismic response of asymmetric-plan systems with non-linear 
( =0:7, 0.5, and 0.35) and linear ( = 1) �uid viscous dampers: non-linear systems. 

The e�ects of plan asymmetry in linear systems without supplemental damping include an 
increase in deformation of the �exible-edge, decrease in the deformation of the sti�-edge, and 
reduction in the base shear compared to those in the corresponding symmetric plan system 
[25, 26]. Furthermore, plan asymmetry induces base torque in asymmetric systems, which does 
not occur in the corresponding symmetric-plan system. These e�ects are expected to become 
less prominent in systems with supplemental damping [1]. 
The presented results for linear systems with supplemental damping show that deformation 

of the sti�-edge is smaller, and �exible-edge larger, in asymmetric-plan systems compared 
to the corresponding symmetric-plan system (Figures 10(a) and (b)). This trend is consis-
tent with the e�ects of plan asymmetry summarized previously. However, these e�ects are 
prominent only for short-period systems: Ty up to 0:5 s. For systems with period longer than 
0:5 s, the e�ects of plan asymmetry on the edge deformations are minimal. The damper non-
linearity appears to slightly reduce the e�ects of plan asymmetry; the decrease in the sti�-edge 
deformation (Figure 10(a)) and increase in the �exible-edge deformation (Figure 10(b)) are 
slightly smaller for lower values of . 
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The e�ects of plan asymmetry, which reduces the sti�-edge deformation and increases the 
�exible-edge deformation of the linear systems, are almost non-existent for non-linear systems 
(Figures 11(a) and (b)) as apparent from the ratios being close to one over the entire period 
range. This occurs due to doubling of e�ects of supplemental damping [1] and system non-
linearity [25] both of which have been shown to reduce the e�ects of plan asymmetry. The 
damper non-linearity in�uences the deformations of non-linear systems in a similar way as 
for the linear systems, i.e. smaller �exible-edge deformation and larger sti�-edge deformations 
with increasing damper non-linearity. However, these e�ects are not noticeable for non-linear 
systems because of much smaller e�ects of plan asymmetry. 
The results presented so far for the edge deformations indicate that the damper non-linearity 

reduces the adverse e�ects of plan asymmetry, i.e. increase in the �exible-edge deformation 
and decrease in the sti�-edge deformation of the asymmetric-plan systems compared to the 
same edges of the corresponding symmetric-plan systems. Furthermore, using a combination 
of non-linear supplemental damping and system non-linearity can eliminate the adverse e�ects 
of plan asymmetry. In particular, essentially identical values of the edge deformations may 
be obtained in non-linear asymmetric- and symmetric-plan systems. 
The e�ects of damper non-linearity on base shear are negligibly small for linear as well as 

non-linear systems (Figures 10(c) and 11(c)). While the base torque for linear systems remains 
essentially una�ected by the damper non-linearity (Figure 10(d)), it is slightly increased for 
the non-linear systems (Figure 11(d)). 
The plan asymmetry slightly reduces the total damping force in linear systems as apparent 

from the ratio being somewhat smaller than one for most period values (Figure 10(e)). The 
damper non-linearity in�uences these e�ects minimally as apparent from the curves for all 
values being very close. For non-linear systems, the ratio is essentially one for all values of 
over the entire period range (Figure 11(e)) indicating that e�ects of plan asymmetry for 

such systems are minimal and they are not in�uenced by the damper non-linearity. 
The combination of plan asymmetry and asymmetric damper distribution gives rise to the 

total damping torque at the base. For linear systems, the damping torque tends to increase 
with increasing damper non-linearity, i.e. decreasing values of (Figure 10(f)). A similar 
but much smaller increase occurs for the non-linear systems (Figure 11(f)). While the me-
dian values of the ratio are in general more than one for linear systems (Figure 10(f)), 
they are always less than one for non-linear systems (Figure 11(f)) indicating that the 
damping torque generated in non-linear systems are in general smaller than those in linear 
systems. 

DESIGN IMPLICATIONS 

The results presented in this paper on seismic response of symmetric and asymmetric sys-
tems with linear and non-linear dampers lead to two important design implications: (1) the 
e�ectiveness of the non-linear �uid viscous dampers in reducing damper forces as well as 
system deformations, and (2) complexity of the analysis of systems with non-linear systems. 
The following is a brief discussion of the design implications of the results presented in 
this paper. 
The non-linear �uid viscous dampers are attractive for seismic response control of systems 

because they are expected to lead to better performance, e.g. smaller deformations, while 



limiting the damper force. The results presented in this investigation show that both these 
expectations are not necessarily met simultaneously for a selected system. For example, no-
ticeable reduction in damper force occurs for longer period systems (see Figures 5(b) and 
6(b) for SDOF systems, and Figures 8(e) and 9(e) for asymmetric plan systems) due to 
damper non-linearity. For very-short-period systems, however, damper non-linearity may lead 
to an increase in the damper force. The deformations, on the other hand, are reduced by 
damper non-linearity for short-period systems (see Figures 5(a) and 6(a) for SDOF systems, 
and Figures 8(b) and 9(b) for asymmetric plan systems). Therefore, the designer can obtain 
deformation reduction but at the cost of higher damper force for short-period systems and 
damper force reduction but without deformation reduction for longer period systems by using 
a non-linear damper instead of a linear damper. 
There are several complexities associated with the analysis of systems with non-linear 

dampers. First, the damping coe�cient associated with a speci�ed (or desired) damping 
ratio depends on the peak deformation of the system (see Equation (6)) which itself 
depends on the damping ratio. Therefore, an iterative procedure is required for specifying the 
damping coe�cient. No such iterations are required to de�ne the damping coe�cient of a lin-
ear damper. Second, for a selected damping coe�cient, the equivalent damping ratio depends 
on the peak system deformation (see Equation (5)). This indicates that a system designed 
for a selected damping ratio during a design earthquake would provide di�erent damping for 
earthquakes smaller or larger than the design earthquake: the damping ratio would be higher 
for smaller earthquakes and lower for larger earthquakes compared to the designed damping 
ratio. Linear �uid viscous dampers, on the other hand, provide the same damping ratio for all 
earthquake excitation. Finally, the damper non-linearity requires that equations of motion be 
solved directly in the time-domain. Although simpli�ed procedures have been developed for 
the analysis of systems with non-linear dampers [13, 15], the errors associated with approx-
imations in the simpli�ed analysis, which may be as large as 20% [13], would negate the 
advantage gained by the non-linear dampers in terms of response reduction. For most systems 
with linear dampers, the response can easily be computed using standard and well-understood 
response spectrum analysis methods. Therefore, the advantages of using non-linear dampers, 
i.e. reduction in �exible-edge deformation and damper force by about 20%, must be weighed 
against the disadvantage associated with complexities of the analysis procedure or the error 
in the simpli�ed procedure that may also approach 20%. 

CONCLUSIONS 

The investigation examined the in�uence of damper non-linearity on the seismic response of 
one-story, one-way asymmetric linear and non-linear systems. Reviewed �rst is the behaviour 
of SDOF systems with non-linear dampers. While some of the trends from SDOF systems 
con�rm the well-known �ndings on the in�uence of damper non-linearity, others have not been 
adequately explained in the past. In particular, the system deformation reduces and damper 
force increases for short-period linear systems due to damper non-linearity when subjected to 
earthquake loading. These trends cannot be explained based on the traditionally used harmonic 
loading with forcing frequency equal to the natural vibration frequency of the system, which 
indicates no in�uence on the deformation and reduction in the damper force. In this inves-
tigation, the trends for the earthquake loading have been explained based on an alternative 
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approach in which the response of systems over a range of vibration periods (or frequen-
cies) are computed for a harmonic loading with �xed frequency. Furthermore, the increase in 
damper force due to damper non-linearity noted for short-period linear systems does not occur � 
for non-linear systems. This is the case because the ratio =(!nuoe;� )1− (u̇o;� ) u̇o;� = 1  that 
governs the ampli�cation (or de-ampli�cation) of the damper force (Equation (10)) is much 
smaller for non-linear systems compared to the linear systems. 
Subsequently, the seismic responses of asymmetric-plan systems with linear and non-linear 

dampers are compared to evaluate the e�ects of damper non-linearity and its in�uence on the 
e�ects of plan asymmetry. This investigation has led to the following important 
conclusions: 

1. The damper non-linearity leads to reductions (up to 25%) in the �exible-edge defor-
mations of short-period (Ty¡0:5 s) systems. For longer period systems, however, the 
reduction is much more modest (about 10%). The e�ects of damper non-linearity on the 
sti�-edge deformations are minimal with a reduction of no more than 5%. These e�ects 
are found to be similar for both linear and non-linear systems. 

2. The e�ects of damper non-linearity on base shear and base torque are found to be 
slightly di�erent for linear and non-linear systems. While the damper non-linearity does 
not in�uence the base shear in linear systems, it may reduce the base shear in non-linear 
systems slightly (between 5% and 10%) for Ty¿2 s. The damper non-linearity reduces 
base torque for linear systems with reductions of up to 20% for Ty¡0:5 s, whereas it 
increases the base torque for non-linear systems by more than 20% over a wide range 
of period values. 

3. The damper non-linearity in general reduces the total damping force by about 15% and 
increases the total damping torque by about 10%. These trends are similar for both linear 
and non-linear systems. 

4. The reduction in the damper force is restricted to systems with periods longer than 
0:2 s. For systems with periods shorter than 0:2 s, however, the damper non-linearity 
may signi�cantly increase the damping force; increases in excess of 25% were found to 
occur. Therefore, non-linear dampers for such systems should be used cautiously. These 
increases in damper force occurred only for short-period linear systems. 

5. The damper non-linearity reduces the e�ects of plan asymmetry leading to a smaller 
increase in the �exible-edge deformation and a smaller decrease in the sti�-edge defor-
mation of the asymmetric-plan systems compared to the same edges of the corresponding 
symmetric-plan systems. This trend was found to occur for both linear and non-linear 
systems. 

6. The e�ects of plan asymmetry on base shear are not in�uenced by the damper non-
linearity for both linear and non-linear systems. However, the damper non-linearity re-
duces the base torques slightly for linear systems but increases it for non-linear systems. 

7. The plan asymmetry reduces the total damping force and introduces damping torque. 
While the damper non-linearity has very little in�uence on the total damping force, it 
tends to increase the damping torque for both linear and non-linear systems. 

8. A combination of damper non-linearity and system non-linearity may be used to nearly 
eliminate the adverse e�ects of plan asymmetry. In particular, essentially identical val-
ues of the �exible- and sti�-edge deformations may be obtained in asymmetric- and 
symmetric-plan systems. 



Finally, design implications of the results presented in this paper have been discussed. In 
particular, it is noted that both reduction in deformations and damper forces due to damper 
non-linearity may not be obtained simultaneously for a selected system; while deformation 
reduction occurs for short-period systems, damper force reduction occurs for longer period 
systems. Furthermore, the advantages of the reduction in response by damper non-linearity 
may be negated by disadvantages associated with complexities in the analytical procedure and 
errors in the simpli�ed procedures. 
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