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A numerical simulation of helical micro-fins is implemented in ANSYS Fluent 15. The model is scripted to
automatically set up and execute given three input parameters: fin height, helix angle, and number of
starts. The simulation results reasonably predict experimental pressure drop and heat transfer for mul-
tiple micro-fin geometries. A multi-objective parameter optimization is implemented based on the
NSGA-II algorithm to estimate the optimal trade-off (Pareto front) between Nusselt number and friction
factor of a micro-fin tube for 0.0006 < e/D < 0.045, 10 < N, < 70, at Reynolds number of 49,013. The result-

ﬁ?;vth;g:sfer ing Pareto front is analyzed and compared with several experimental data points. From the optimal
Enhancement results, a distinct difference in flow characteristics was identified between geometries above and below
Micro-fin a helix angle of approximately 45°. How the Pareto front can be used to choose micro-fin geometries for
Optimization different performance evaluation criterion scenarios is demonstrated. Optimal results from various exist-
NSGA-II ing correlations are also compared to the optimization results.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Numerical simulations of heat transfer and fluid flow over heat
transfer surfaces not only allow satisfactory design and insight into
local flow physics without expensive or impossible experimenta-
tion but also parameter optimization. Optimization via simulation
poses various problems. Due to the significant computational cost
of each simulation, performing this type of optimization for most
heat transfer surfaces is very time consuming. This issue is com-
pounded by the fact that heat transfer systems often have conflict-
ing objectives that tend to be application specific. Thus, the
optimum for one system may not be broadly applicable to many
different design scenarios.

One way to produce optimization results that are more general
is to consider the problem explicitly as a multi-objective optimiza-
tion. The goal of such a problem is to find the Pareto front—the set
of all non-dominated solutions. A solution is non-dominated if
there are no other feasible solutions that can improve one of the
objectives without diminishing another. The Pareto front thus rep-
resents all possible optimal solutions over the design space and can
be computed without selecting the relative importance of the
objectives. The front may then be used by the designer to chose

* Corresponding author.
E-mail addresses: gmann@mann-consulting.net (G.W. Mann), eckels@ksu.edu
(S. Eckels).

https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.078
0017-9310/© 2018 The Authors. Published by Elsevier Ltd.

the best parameters for various system applications without need-
ing to re-run the optimization.

Multi-objective optimization is typically carried out using evo-
lutionary algorithms. These have the benefits of being naturally
parallel, of robustly accommodating failed geometry generation
or diverging solutions, and of not requiring a gradient of the cost
function(s). Common multi-objective optimization genetic algo-
rithms (MOGA) are the non-dominated sorting genetic algorithm
Il (NSGA-II) [1] and the strength Pareto evolutionary Algorithm 2
(SPEA2) [2].

MOGAs have been applied to entire heat exchangers in several
studies including optimization of shell-and-tube [3-7], compact
[8-10], fin and tube [11], and plate heat exchangers [12-14], all
of which use some form of correlation to evaluate the objectives.
These algorithms have also been applied to surface-level
optimization—optimization of the geometry of fluid-facing sur-
faces at a local level. Problems of this scope do not encompass such
a wide range of scales as whole-heat exchanger optimization. Thus,
studies can be found evaluating the objectives using higher-
accuracy computational fluid dynamics (CFD) simulation. Exam-
ples of this are Hilbert et al. [15] and more recently Ranut et al.
[16] with tube shape optimization; Cavazzuti and Corticelli [17]
and Nobile et al. [18] with 2D plate heat exchanger passage opti-
mization; Foli et al. with micro heat exchangers [19]; and Copiello
and Fabbri with fin optimization [20].
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One class of heat exchanger surfaces that have been neglected
for multi-objective optimization, or any formal optimization
beyond parameter studies, is in-tube micro-fins. Micro-fin surfaces
often are one of the key components of chiller shell-and-tube evap-
orators and condensers, which are widely produced and utilized.
Because of the wide use of these devices, even small improvements
in performance would result in significant energy savings. These
surfaces also are typically on the single-phase side of a heat
exchanger. Commonly, the overall heat transfer coefficient for a
heat exchanger is limited by this surface. Additionally, manufac-
turing advances are enabling shorter fins and closer fin spacing.
The wide parameter ranges enabled could greatly benefit from
optimization to drive more complex surface design.

Micro-fin tubes have been studied experimentally, though dis-
crepancies exist between the data sets. The main findings of the
experimental works are the following. For micro-fins, the transi-
tion region persists to higher Reynolds numbers, not becoming
fully developed until Re ~ 20,000 [21]. At high Reynolds numbers,
correlation with Reynolds number is similar to that of a smooth
tube, but significant enhancements are realized, with larger fin
height, pitch, and helix angle generally causing higher heat transfer
and friction factor [22]. The effects of these parameters are inter-
related. However, in the transition region, a direct influence may
not always be present. Many correlations exist including these
parameters([23,24] give reviews of correlations). The highest
micro-fin heat transfer enhancements are approximately 4-4.1
with corresponding friction factor enhancement of 2.5-2.7 [22,25].

Micro-fins have also been studied numerically, although there
are fewer works in this area. Different aspects of the modeling pro-
cess have been emphasized in the literature. A range of periodic
computational domains have been proposed, and multiple turbu-
lence models have been tried including Spalart-Allmaras, Shear
Stress Transport (SST), k — € of Goldberg, k — € of Lam-Bremhorst
[26], k — € of Norris and Reynolds [27,28], and the RNG k — €
[29-31]. One paper was found using large eddy simulation (LES)
instead of a RANS turbulence model with excellent results [32].
These models have a range of accuracies with the best RANS mod-
els matching the experimental data within 11% for Nusselt number
[26,33] and 4.5% for friction factor [31] and the LES model predict-
ing within 3.7% and 4.2% respectively [32]. These simulations
tended to predict well at high Reynolds numbers while signifi-
cantly under-predicting friction factor at low Reynolds numbers
because of the difficulty of modeling the turbulence near the wall.
While some of these numerical studies sought to find the relation-
ship between micro-fin geometry parameters and the heat transfer
and pressure drop [28,29,31,34], this was done through simple
parameters studies; no formal optimization algorithms were
employed.

In this paper, fluid flow through a helical micro-fin tube is
numerically modeled and used with a multi-objective optimization
algorithm. The result of the optimization is the Pareto front show-
ing the trade-off between optimal friction factor and Nusselt num-
ber over a wide range of fin height, number of starts, and helix
angles. The flow patterns of the results are analyzed, and the bulk
performance is compared to experimental data from the literature
as well as Pareto fronts computed from existing correlations.

2. Problem description
2.1. Geometry

The geometry of a 2D micro-fin tube consists of fin profiles heli-
cally extruded along the interior of the tube. In this context, “2D”

designates that the fin profile is two dimensional which, along with
the helix specifications, completely specifies the geometry. Two

dimensional micro-fins contrast from 3D micro-fins which are
cross-cut along the helical path to make the fins disconnected axi-
ally (e.g. [35]). The main parameters describing the geometry are
helix angle (o), fin height (e), and number of starts (N;) around
the tube perimeter, which is related to the axial fin pitch by

nD
b= N, tan(o)’ (M

where D is the diameter of the tube. Following the tubes in [36], a
trapezoidal fin profile was chosen which is defined geometrically by
the included angle of the fin (8) and the fin tip width (t). Fig. 1 illus-
trates these dimensions.

2.2. Design space and constraints

It is well recognized that the three most significant geometry
variables for micro-fins are fin height, helix angle, and number of
starts ([22,28]). Liu and Jensen also demonstrated that fin width
influences the results, though they showed that this parameter
influenced the results less dramatically than the other three [28].
Numerical work by Bhatia and Webb [30] indicated very little
effect of the fin shape on heat transfer or friction. Liu and Jensen
showed numerically that triangle and rectangular fin shapes
yielded almost identical results, but round profiles differed from
rectangular fin profiles at certain Reynolds numbers [28]. The
design variables were thus chosen to be fin height, helix angle,
and number of starts, with fixed fin profile (g = 41°), fin width
(t=0.12 mm), and diameter (D =15.54 mm) based on the tubes
in [36]. Reynolds number was considered for inclusion as a design
variable, but to reduce the requirements of the automatic mesh
generator and to give results that were more easily interpreted,
Reynolds number was fixed. The range of these design variables
was

0.01 < e < 0.7 mm (2)
0<o<60° 3)
10 < N, < 70. (4)

The range is wide enough to capture the transition between the
major flow mechanisms. The span of e gives a maximum e/D of
0.045, which is well above the range of micro-fins given by [22]
of e/D = 0.03. The range of « is wide enough to encompass flows
that should recirculate and reattach, at least for sufficiently small
N; as suggested by [37]. The range of N; is large enough that for
certain o, flow recirculation between the fins could result. In addi-
tion, combinations within this range encompasses both small and
large surface area enhancements.

Not all combinations of the above variables are geometrically
feasible. In particular, too many starts with fins that are too high
will lead to intersecting fins. Thus, instead of a rectangular prism
design space, a section is cut out as shown in Fig. 2. Appendix A
derives the relationship between critical fin height and number
of starts.

2.3. Objectives

The two objectives were chosen to be the following:

_f
ﬂfﬂm ®)
Nu
= N (6)

where Nu and Nus are the Nusselt numbers of an enhanced and
smooth tube respectively and the f and f, are the fanning friction
factor of an enhanced and smooth tube respectively. The first
objective, f, is minimized, and f, is maximized. Both of these are
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Fig. 1. Geometry parameter definitions.
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Fig. 2. Design space constraint between N; and e.

evaluated at the same Reynolds number. The smooth tube friction
factor was evaluated using the Petukhov equation, and the smooth
tube Nusselt number was evaluated with the Gnielinski equation
[38].

Webb and Kim in [39] discuss the concept of performance eval-
uation criteria (PEC) for heat exchangers. Depending on the desired
performance, design constraints, or allowable geometry modifica-
tion in a heat exchanger, the enhancement in heat transfer can
be applied in different ways. They list twelve different configura-
tions of constraints and objectives for utilizing the enhancement
as an improvement over a smooth tube heat exchanger. In four
of these configurations, the Reynolds number of the smooth and
enhanced tubes stays the same. These cases are FG-1 (maximizing
heat transfer or minimizing temperature difference with surface
area and flow rate constant), FN-1 (minimizing heat exchanger
length with fixed flow rate, pumping power, and heat transfer
duty), FN-2 (minimizing heat exchanger length with fixed flow rate
and heat transfer duty with pumping power free), and FN-3 (min-
imizing pumping power with fixed flow and heat transfer duty).
With the objectives from (5) and (6), each of these four PEC cases
can be directly solved from the Pareto front by enumerating the
value to be optimized for each member of the Pareto set and then
choosing the optimal one. This is demonstrated in Appendix B.

Selection can be done without re-generating the Pareto front,
allowing broad applicability and usefulness of the optimization
results. To the authors’ knowledge, an explicit demonstration of
how PEC cases can be evaluated using the Pareto front has never
before been documented. Future work is necessary to extend this
technique to the remaining eight cases.

3. Simulation setup
3.1. Domain

A domain long enough to directly yield fully developed flow in a
tube this size would require a very large mesh, which would be
computationally prohibitive considering the many of simulations
that will be performed in this study. Thus, translationally periodic
boundary conditions were used on the inlet and outlet of the tube
to allow the use of a significantly smaller domain. Periodicity for
pressure is achieved by deconstructing the pressure profile into
linearly-decreasing (constant over the entire domain) and spatially
variable portions. Only the variable pressure profile is actually
periodic along the pipe. The variable portion is solved as the nor-
mal pressure in the RANS equations; the linearly-decreasing por-
tion is iteratively solved as a body force to produce the desired
mass flow rate. Similarly, translational periodicity for the energy
equation is transformed to a dimensionless temperature variable 0:

T(?) — T

g—- 7
Toutcinter — Twanr’

™)

where Ty inec and T(?) are the bulk temperature at the domain

inlet and the local temperature at any point in the domain respec-
tively. This variable is translationally periodic for a domain with
constant wall temperature.

Thus, the domain consisted of a thin, axial slice of the tube (see
Fig. 3). The length of the slice was determined by a series of tests
evaluating the convergence of the results. Since the periodic
boundary condition in Fluent requires the inlet and outlet face
meshes to only differ by a pure translation, the domain lengths
were chosen such that the inlet and outlet were rotated an integer
number of fins from each other (i.e. L must be integer multiples of
p). Note that this constraint means that the domain lengths for
geometries with different helix angles or number of starts will be
different. It was found that if the offset was only equal to one fin
rotation, the solution did not converge. Thus, lengths of two, four,
and six fin rotations were evaluated. Table 1 shows the results
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Fig. 3. Computational domain.

Table 1
Results of domain length study. Differences are with respect to six rotations.

Re Length f Diff (%) Nu Diff (%)
19,685 2 0.0117 0.29 335.0 0.31
19,685 4 0.0117 0.11 3343 0.10
19,685 6 0.0117 - 334.0 -
31,381 2 0.0115 0.14 495.6 0.07
31,381 4 0.0115 0.02 495.2 -0.01
31,381 6 0.0115 - 495.3 -
49,012 2 0.0107 —3.69 682.9 0.37
49,012 4 0.0109 —0.22 680.3 —0.02
49,012 6 0.0110 - 680.4 -

from the simulations with varying length. All of the results were
consistent within 1% except the friction factor at the highest
Reynolds number which showed a 3.7% deviation from the six fin
rotation. Despite this difference, the additional computational cost
that would be required to use a four fin rotation was deemed not to
be worth the additional accuracy, and the two fin rotation was
selected.

3.2. Flow rate

An initial study on the ability of the simulation to predict fric-
tion and heat transfer for variations in Reynolds number produced
the results shown in Fig. 4. These results show that while the
model predicts well for heat transfer and friction factor at high

0.016 T T T T T
0.014 1
00121 -_*'\-\-\- 7
0.01 1
“ 0.008 1
0.006 - 1
0.004 1
0.002 | —@— Sim 4

—3¥— Webb et al. (2000)

0 . . . . .

1 2 3 4 5 6 7

Re x10%

(a) f for different Reynolds numbers.

Reynolds numbers, the prediction is poor at low Reynolds num-
bers. This is similar to the findings of [40] and is due to the lami-
narization that persists to high Reynolds number but that is
difficult for turbulence models to capture. Due to this fact, a high
Reynolds number (Re = 49,013 from a round mass-flow number)
was chosen for the optimization.

Ji et al. plot Nu/Pr" and f versus Reynolds number for all the
main experimental helical micro-fin works from the literature
[25]. They show that for high enough Reynolds number (the fully
rough region, Re > 30,000) both friction factor and the Nusselt
number are approximately proportional to Re®®. This observation
has been also made elsewhere (e.g. [22]) Thus, f/f, and Nu/Nu;
from this optimization study will be expected to hold for a range
of Reynolds numbers throughout the fully rough region—perhaps
a little lower, but certainly at higher Reynolds numbers than the
chosen value.

3.3. Mesh

Due to the complex structure of the helical fins, an unstruc-
tured, tetrahedral mesh was selected away from the wall. Close
to the wall, mesh inflation providing prism cells was applied to
the wall boundaries with an inflation ratio of 1.2. Ultimately, eight
inflation layers were used.

3.4. Properties and boundary conditions

The following modeling assumptions/parameters were used to
simulate the flow in the domain:

o The flow was considered to be incompressible.

e The fluid was liquid water at 293.15 K (bulk, upstream temper-
ature) and 1 atm.

e The thermodynamic and transport properties were constant
(p =998.2 kg/m3), u=0.001003Pas, k = 0.6 W/mK, C, =
4182 J/kg K, and Pr = 6.99) evaluated using REFPROP [41,42] at
293.15K and 1 atm.

e A steady state solver was used.

e The RANS equations were solved with the following turbulence
models: realizable k-¢, k-w, k-kl-m, and Reynold’s stress model
(RSM). Details for these models are given under Model
Validation.

As mentioned previously, boundary conditions on the upstream
and downstream side of the pipe section were set to translationally

900 T T T T T

800 1

700 1

600 1

500 1

Nu

400 1
300 - 1
200 1

100 [- | —®— Sim 1
—#— Webb et al. (2000)

0 L L L . L
1 2 3 4 5 6 7

Re x10%

(b) Nu for different Reynolds numbers.

Fig. 4. Comparison of simulation (realizable k — € turbulence model) with data from Webb et al. (2000), Tube 2.
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periodic. No slip and constant temperature (at 25 K above bulk
temperature for all cases) boundary conditions were applied at
the domain walls. Constant temperature boundary conditions
allowed for simpler post-processing than constant heat flux (an
average wall temperature does not need to be defined) and should
yield the same results as constant heat flux boundary condition
since the properties were assumed constant with temperature.
The wall surfaces were assumed to be hydraulically smooth.

3.5. Discretization and convergence

The discretization for pressure was second order. The dis-
cretization for momentum and energy was second order upwind.
For turbulence parameters, the discretization was first order
upwind. A least squares, cell-based gradient was used. The velocity
and pressure equations were coupled in the solution process.

Convergence for the momentum equations was monitored by
changes in the bulk pressure gradient from the periodic velocity
domain scheme. The stop criterion limit was set to 107°, using
the default ANSYS Fluent stop criterion scheme over the previous
ten iterations: after each iteration, the maximum absolute variance
for each of the previous ten pressure gradient values was divided
by the pressure gradient from the current iteration to give ten
residuals. If the maximum of these ten residuals was less than
the defined limit, the solution was judged to be converged. Conver-
gence for the energy equation was similarly monitored by changes
in the integral of total heat flux over the pipe walls. The stop crite-
rion limit was set to 10°° over five previous iterations.

4. Data reduction

The two key parameters of interest from each simulation were
Fanning friction factor (f) and average Nusselt number (Nu). These
parameters were derived from the simulation results in the follow-
ing way.

4.1. Friction factor
Because of the translationally periodic boundary condition, the

simulation directly reported the average streamwise pressure gra-
dient as a single value. This along with the mass flow rate, fluid

0.02
0.018 1
0.016 q
0.014 - 1
0.012 - 1
=)
£ .,_,.——fk/'f—/-
€ 001f N
©
U
s 0.008 | o —eo ¢  — ——O— —e
0.006 1
—#®— Realizable k-¢
0.004 | —@®— SSTk-w 1
k-kl-w
0.002 [ | —¢ RSM 1
Experimental
0 . . . . . .
0 1 2 3 4 5 6 7

Mesh Elements 108

(a) f for different grid sizes and turbulence models
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properties, and tube geometry was used to compute the friction
factor as

dP -2 R5
w™Rp
r'nz

f= : 8)
where & is the streamwise pressure gradient, R is the root radius of
the tube, p is the density, and 1 is the mass flow rate. The formu-
lation assumes that the bulk velocity of the flow is related to the
mass flow rate by the root area rather than the true cross-
sectional area. The affect of this assumption on the result will be
minor due to the short fins.

4.2. Nusselt number

For Nusselt number (Nu), the heat transfer coefficient was first
computed using

B q// Aw
h= LMTD 27DL’ ©)
where ¢q” is the average heat flux along the pipe wall, A,, is the true
surface area of the wall, D and L are the root diameter and domain
length of the pipe section respectively, and LMTD is given by

(TW - Ti) - (Tw - TO)
n(Ff)
where T; is the bulk average inlet temperature from the simulation

results, T,, is the constant wall temperature specified in the simula-
tion, and T, is the outlet bulk temperature computed with

LMTD =

(10)

7qI/Aw ‘
T, = e, +T;.

(11)

C, is the heat capacity of the fluid. From the heat transfer coeffi-
cient, the Nusselt number is

D

Nu K

(12)

where k is the thermal conductivity of the fluid, and D is the root
diameter of the pipe.

600 [- q

500 [ 1

Nu

400 q

—#®— Realizable k-¢ B

—®— SSTkw
k-kl-w

—>— RSM )

Experimental
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0 1 2 3 4 5 6 7

Mesh Elements w108

100

(b) Nu for different grid sizes and turbulence models

Fig. 5. Turbulence model results for Tube 2.
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5. Model validation
35
Results from four turbulence models were compared to find the R
most predictive for this problem. Possibilities were restricted to 30
models already implemented in ANSYS Fluent 15. These models 80 o o 08 0,
were the realizable k — ¢, SST k — w, k — kl — w transition model, * 25
60
and Reynolds stress model (RSM). Each of these models have been
described at length in other publications, so only a basic descrip- 2 40 20 §
tion with references will be given here.
This realizable formulation of the k — e model was developed by 20 15
[43] to ensure that the normal turbulent stress stays positive and o
that the Schwarz inequality is satisfied for large strain rates. When 60 08 10
traditional wall functions are not employed, a two-layer model is
implemented where the dissipation rate is computed from the °
algebraic model of Wolfshtein [44] in the region sufficiently close o
to the wall. The solver interpolates between the results from the a(9) 0 o e (mm)
Wolfshtein model and wall functions depending on the grid size Fig. 7. Sambling of the desi .
allowing for grid independence studies to converge. The standard ig. 7. Sampling of the design space over time.
production limiter and low Reynolds number correction were used.
Table 2
Simulation results for Tubes 2, 6, and 7.
Tube # fsim Fexp Diff (%) Nugim, Nuexp Diff (%)
2 0.0108 0.01174 -84 669 703 1.9
6 0.00970 0.0110 -11.8 506 604 -16.3
7 0.00805 0.009025 -10.8 455 557 -18.8
Python
> Genetic Algorithm
NSGA-II
| \
(e,a,Ns) -84 (e,a,Ns)
simulation
+ instances, $
14 at a time
ANSYS WB ANSYS WB
Update geometry Update geometry
Generate mesh Generate mesh
Update and save fluent case Update and save fluent case
file file
Case file Case file
Iterate * *
through
mU'“E’.'e Fluent Fluent
generations Iterate to Iterate to
convergence convergence
| I
Parameter Parameter
Outpll.lt file outptIJt file
Y Y
Python Python
Post-process Post-process
(f,Nu) (f.,Nu)
(f,Nu)
Python

Collate Results

Fig. 6. Computational framework for optimization problem. For each generation, the population consisted of eighty-four simulation instances, taken fourteen at a time.
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The k — w turbulence model replaces the dissipation rate of the
k — e model with specific dissipation rate, resulting in better
numeric stability close to the wall. The shear-stress transport
(SST) modification blends the results from k — € in the free stream
with the k — w formulation near the wall [45].

The k — kI — w model is a three-equation model considering
equations for turbulent kinetic energy, laminar kinetic energy,
and the inverse turbulent time scale [46]. It was developed to
model laminar transition to turbulence.

For each of the turbulence models, enhanced wall treatment
was used, a formulation that smoothly switches between the
law-of-the-wall solution for coarse meshes and the transport equa-
tion solution for fine meshes.

3 T T T T T
lf: 1.65
Nu/NuS: 1.94
25 & 0.295mm fif: 2.77
:356° - Nu/Nug: 2.66
N,: 63 - e:0.578mm
2t fif: 1.76 o 56.5°
f/fs: 0.96 Nu/Nus: 2.18 N 38
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Fig. 8. The Pareto front after 10 generations.
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Simulations with each of these turbulence models were per-
formed for Tube 2 (e=0.327,04=45° N;=45), Tube 6
(e=0.430,00 =45°,Ns =10) and Tube 7 (e=0.430,0 =45,
N; = 10) from Webb et al. [36], digitized (with [47]) and interpo-
lated at Re=49,013. In order to ensure an accurate comparison,
for Tube 2, successively finer grids were used with each of the
models to ensure grid convergence. The grid size was changed by
increasing the number of inflation layers as well as decreasing
the maximum allowable element size for the whole domain. For
all of the simulations except for the coarsest grid, y* was less than
1.

Fig. 5 shows friction factor and Nusselt number versus grid size
from simulations for Tube 2. It is apparent from this figure both
that the SST k — w and RSM models yield poor agreement with
the experimental results. The SST k —  model under-predicts both
friction and heat transfer while the RSM model over-predicts them.
Both the k— € and k — kIl — w models give substantially closer
results, but it is clear that the realizable k — € is the closest.

Fig. 5 was also used to choose a standard grid density for the
simulations. The 2.1 M element grid was chosen as a tradeoff
between mesh size and solution accuracy. Table 2 compares fric-
tion factor and Nusselt number results at the chosen grid size for
Tubes 2, 6, 7. These results were deemed to be close enough for
the purposes of the optimization study.

6. Optimization algorithm
6.1. Genetic algorithm
Genetic algorithms are a set of numerical methods inspired by

the biological theory of genetic evolution. A typical algorithm
consists of a population of individuals that contain alleles (i.e.
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parameters) and a fitness value (i.e. objective). To form a succes-
sive generation, parents are selected from the population to pro-
duce offspring based on their fitness level. Additional mutation is
performed on the alleles of the offspring individuals. Then based
on the fitness of the offspring and parents, a new population is
formed. As this process repeats, the individuals in the population
converge towards the desired objective. For this study, the algo-
rithm used for the multi-objective optimization was the non-
dominated sorting genetic algorithm II (NSGA-II). This was devel-
oped by Deb et al. [1]. It uses a crowding operator along with Par-
eto dominance to rank different individuals in the population,
forcing the individuals in successive generations to converge
toward and spread out along the Pareto front.

The implementation used in this study used tournament selec-
tion (with tournament size of 2), blend crossover with a 10% blend
rate, and Gaussian mutation with 10% rate of mutation from a stan-
dard normal distribution. All non-dominated individuals from all
generations were archived to yield the best estimate of the Pareto
front; the result of the algorithm is that archive.

6.2. Computational architecture

Fig. 6 depicts the information flow and computational architec-
ture for the optimization algorithm. The optimization algorithm
NSGA-II was used with the implementation from the inspyred
python library [48]. For each generation, the eighty-four individu-
als in the population were evaluated/simulated in parallel fourteen
at a time. The solver for each instance was parallelized by sixteen
processes, thus 224 cores were used simultaneously in the compu-
tation. Individual simulations that failed due to meshing or conver-
gence were removed from the algorithm by assigning
unrealistically bad objective values. Thus, the parameters from
those simulations were not propagated to the next generation.

7. Results and discussion

After a lengthy debugging period, the NSGA-II algorithm with
micro-fin simulations was run for ten generations. Prior to the test-
ing period, the algorithm was initialized with uniform sampling
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from the design space. The best results from the testing period
were used to seed the original population of the final ten genera-
tions, thus speeding convergence. Ten generations were completed
in 37 days of computation with an average of 3.4 days per genera-
tion. The total number of unique evaluations performed over these
ten generations was 799. Of these geometries, 21% failed to either
mesh or to converge in the solver.

Fig. 7 shows how the design space was sampled during the
algorithms’ progress. The samples are color-coded by time. While
the samples are for the most part evenly distributed throughout
the design space, no points are present at high helix angle and
low fin heights, and at low number of starts, few points are present
at high fin heights. While it is possible that these poorly sampled
regions are due to failed geometries, it is more likely that the initial
population was derived from the best candidates from the test
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runs. The regions are sparse because they did not produce optimal
values of heat transfer and friction.

Fig. 8 shows the final archived Pareto front [dataset] [49] (note:
this is the final archive not the final population). There were 80 data
points in this set at the conclusion of the 10th generation. The Par-
eto front demonstrates the expected behavior, stretching from
close to the smooth tube results upward with convexity towards
better heat transfer. The convexity indicates that certain geometry
combinations produced greater than unity efficiency (more heat
transfer enhancement than increase in friction factor). As the heat
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Fig. 12. Comparison of experimental data with optimal results at Re = 49,013.
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transfer enhancement gets higher, the cost to enhance it becomes
greater, causing the front to curve back across the unity line at the
upper end.

Fig. 9 shows the relationship between four different parameters
and the enhancement from these optimal points. There is a strong
correlation between each of these four parameters (fin height,
helix angle, hydraulic diameter, and area enhancement) and the
enhancement level, especially for the lower region. For the upper
portion, the relationship is more chaotic with certain parameter
combinations yielding better or worse enhancement. Of particular
interest from these plots is the relationship with helix angle, which
shows a distinct break in the data around « = 45°. This indicates a
change in flow characteristic. The region of lower helix angles cor-
respond to a smooth regime where helix angle increase directly
increases the local heat transfer coefficient and friction. Thus, in
this regime, increase of helix angle results in a smooth increase
in heat transfer and friction, likely coming from increasing turbu-
lence production. However, in the upper regime, the front is no
longer parametrized by smooth changes in helix angle, indicating
a more chaotic flow with diverse combinations of geometry inter-
acting with the turbulence along with area enhancement to bring
about the increased heat transfer.

Fig. 10 show streamlines for six of the geometries along the
front. The orientation of the geometry is so that into the page is
along the fin valley—the geometry is rotated by the helix angle.
These streamlines demonstrate that the two regimes are also dis-
tinguished by the presence of secondary vortices in the deepest
portion of the fin valley. Those in the lower region only have a sin-
gle vortex in the fin valley and thus have greater similarity
between geometries with slightly different helix angles. Signifi-
cantly, the geometry with the highest efficiency corresponds to
the first appearance of this second helix, when the flow no longer

Table 3
Micro-fin correlations from the literature.
Notation Authors Expression Reference
WNTp, Webb et al. (2000) f= 04108Re’°'283N2 22150 785 ,0.78 [36]
Nu = 0.00933Re®19N0285 (g) 0323 50505 pr1/3
WNTe, Webb et al. (2000) 2/ = B(e*) — 2.51n(2e/D) — 3.75 [36]
Nu = (f/2)RePr
1+/f/2(ge" )P -B(e+))
B(E‘ ) _ 4.762(6" )0'21381\];0'10963( 0.297
g(e) = 1.714(e*)* 9N, 0215016
et =£Re \/f/2
RB Ravigururajan et al. (1986) ) 15/16 16/15 [50]
f= (1 + (29.1Re" (5)" (B)°(2/90)" (1 + 224) sin (5 +£) ) )
a=0.67-0.065—0.49%
b=137-0.157}
c=-1.66x 10°Re —0.33 &
d=459+4.11x10"°Re — 0.15§
n is number of corners facing the flow
1/7
0212 /p\-0.21 - 7
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appears to be smoothly related to helix angle. This is likely the
point where the break-up of the flow is inducing high turbulence,
but form drag is still lower. Fig. 11 corroborates this phenomena,
showing the ratio of pressure drag to viscous drag for each of the
six geometries from Fig. 10. This figure shows how the form drag
jumps between the two regions (about f/f; of 1.6) and then dra-
matically increases as the fins and helix angle grow in the upper
regime.

In the review paper by Ji et al. [25], the main experimental
works for heat transfer and friction factor in micro-fin tubes were
reviewed. These data, interpolated to the same Reynolds number,
are plotted with the optimal results in Fig. 12. The comparison
indicates that the Pareto front out-performs some, but not all of
the experimental data sets.

For an additional comparison, several well-known micro-fin
correlations were implemented, and the Pareto front using these
correlations was computed. Table 3 lists the different correlations
that were considered. Fig. 13 shows the Pareto fronts for the four
different correlations along with the simulation data (SIM). From
this figure, it is apparent that for most of the correlations, in the
lower enhancement region, the correlations show more favorable
results than those from the simulation—i.e. the front is further to
the left of the SIM front. For Webb et al. [36] power law (WNTpl),
Ravigurajan & Bergles [50] (RB), and Zandiuk et al. [51] (ZCW), the
unity crossover point occurs at a lower enhancement value than
for the simulation. This perhaps indicates that the power law cor-
relations are not able to adequately model the performance of the
tubes for higher enhancement levels. Interestingly, the e* correla-
tion of Webb et al. matches the simulation results well. This poten-
tially indicates that the form of this correlation more closely
matches the physics of the system then the power law models. Jan-
sen & Vlakancic’s [22] more detailed geometric model only
matches at low enhancement levels. At the extremes, there is a sig-
nificant discrepancy, with the JV correlation predicting a much
higher efficiency than all the other correlations.

A review of the design parameters for the various geometries on
the correlation fronts indicate somewhat unrealistic values. The
optimization algorithm is pushing the correlation function into
unrealistic regions. Other discrepancies could be due to differences
in parameter ranges of databases, the errors in the underlying
experimental data of the correlations, or errors due to grid spacing
or turbulence model in the simulations.
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Fig. 13. Pareto front comparison between correlations and simulation results.

8. Conclusions

In this paper, a multi-objective optimization was performed for
2D helical micro-fin surfaces by CFD simulation. Fin height, helix
angle, and number of starts were varied to find the Pareto front
of two objectives—minimum friction enhancement and maximum
heat transfer enhancement. The best results from 799 simulation
evaluations were presented and compared to available data.
Besides the results being significant from a design perspective,
the results from the archival set indicate that for lower enhance-
ment levels, small increases in helix angle and fin height smoothly
increase heat transfer and friction. At the higher enhancement
levels, for helix angles greater than 45°, there is consistently a dou-
ble vortex in-between the fins, and the relationship between heat
transfer enhancement and geometry is chaotic rather than smooth.
In addition, Pareto fronts computed from correlations were com-
pared to the simulation Pareto front. This comparison indicated
that most of the correlations over-predicted the performance of
the simulation. The power law correlations show particularly poor
prediction. The list of optimal geometries are included as attached
data for the use of micro-fin designers or for seeding future opti-
mization studies.

Admittedly, the utilization of the optimal results from this
study are limited by the high Reynolds number. Such a high Rey-
nolds number was chosen due to the difficultly of predicting
micro-fin performance at lower Reynolds numbers. However, this
paper demonstrates the feasibility and potential of the multi-
optimization approach. Future work will include a repeat of the
computations for lower Reynolds numbers.
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Appendix A. Derivation of N constraint

The geometric parameters defining the geometry of the micro-
fins are not geometrically independent. High fins with too many
starts will cause the fins to intersect. This appendix briefly derives
the constraint between the number of starts (N;) and the fin height
(e).

Fig. A.1 gives the geometry of half of a fin and defines the rele-
vant variables for the derivation. As is shown, as the fin gets wider
by the increase of e, t, or g, it will eventually outgrow its allotted
sector (f) and intersect with the neighboring fin. Thus the con-

straint to prevent this is

. {3
E+0<

X (A1)

It remains then to find expressions for ¢ and 0 in terms of the
geometry definition parameters (e, t, 8) and root radius (R). Notice
first that sector D can decomposed into two right triangles which
gives the relationship:

4 t

tans =———.

2 4R—e) (A-2)
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Fig. A.1. Fin geometry for constraint derivation.

This rearranged yields

t

=2tan"! ([——— .
=2 (37 )
Careful inspection gives an expression for ):
N — E _F
Y= 2 <
For ¢,
p=m—7y

s=n-(5-¢).

By the law of sines,

R R-e
sing  siny
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Finally,
O0=1—¢—y.

Substituting and simplifying this leads to
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The inequality constraint on N is then from (A.1)

Ny<m {/j sin”' ((R —@sin (g ~2tan” (4(1{@)))]

2 R

(A3)

(A4)

(A.5)
(A.6)

(A.10)

(A11)

(A12)

(A13)

Appendix B. Application of Pareto front to different
performance evaluation criteria scenarios

This appendix shows how the results from the non-dominated
set (Pareto front) can be used to obtain the best micro-fin geome-
tries for four different PEC cases. The nomenclature for the PEC
cases is from [39].

B.1. FG-1

In this configuration, maximum heat transfer (or alternatively
minimum temperature difference) is sought for fixed nominal sur-
face area (number of tubes and exchanger length) and flow rate. No
constraint is placed on the pumping power. The ratio of heat trans-
fer of enhanced versus smooth tube is

Q _ hAAT,

Qs hsAsATlm
Maximizing the heat transfer or minimizing the AT, is equiva-

lent to maximizing hﬂ (since £ = 1). Thus, the best geometric con-

figuration is given by the maximum f, in the Pareto set. In the
discussion, f; = f/f, and f; = Nu/Nu; from (6).

(B.1)

B.2. FN-1

In this configuration, minimum heat exchanger length is
desired for fixed flow rate, frontal area, heat transfer duty and
pumping power. The pumping power constraint can be written as

P fA <c ) ’
=2 22 (2) =1 B.2
P [ A \G B2
Due to the fixed frontal area and flow rate constraint, this simplifies
to a constraint on /:

f_A

=7 (B.3)
Similarly, the constraint on the heat transfer coefficient (from
above) is

Nu A

Eliminating 7 gives

Nu f

s B.5
TR (5-3)

Thus, the optimal geometry can be found by the intersection of the
constraint (f,/f; = 1) with the Pareto front. Since there may be mul-
tiple locations on the Pareto front where this condition holds, the
optimal value is the one farthest from the origin.

B.3. FN-2

For this configuration, the objective is minimum heat exchanger
length as before, but pumping power is allowed to vary. Because of
this, only (B.4) applies. Thus the optimal value is the largest value
of f, on the Pareto front.

B.4. FN-3

For this configuration, the objective is minimum pumping
power. Substituting (B.4), the pumping power is

P f Nug

o (B.6)
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Thus, the maximum of f, /f; (maximum efficiency) should be found
by computing this quantity for each point on the Pareto front and
numerically computing the maximum.
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