
Toward a Mathematical Understanding of the Malware Problem

Michael Stephen Fiske
Aemea Institute
mf@aemea.org

Abstract

Malware plays a significant role in breaching
computer systems. Previous research has focused
on malware detection even though detection is up
against theoretical limits in computer science and
current methods are inadequate in practice. We explain
the susceptibility of computation to malware as a
consequence of the instability of Turing and register
machine computation. The behavior of a register
machine program can be sabotaged, by making a
very small change to the original, uninfected program.
Stability has been studied extensively in dynamical
systems and in engineering fields such as aerospace.
Our primary contribution introduces mathematical tools
from topology and dynamical systems to explain why
register machine computation is susceptible to malware
sabotage. A correspondence is constructed such that
one computational step of a Turing machine maps to
one iteration of a dynamical system in the x-y plane
and vice versa. Using this correspondence, another
contribution defines and demonstrates a structural
instability in a Universal Turing machine encoding.
One research direction proposes to better understand
instability in conventional computation by studying
non-isolated metrics on the space of Turing machines;
another suggests searching for stable computation in
unconventional machines.

1. Introduction

Malware can exploit a weakness in current computer
systems: user authentication does not protect the
execution of the user’s intended action. Malware can
circumvent strong authentication on a hardware token
[1], even when it is tightly integrated with strong
cryptographic protocols. As aptly stated by Shamir [2],
“cryptography is typically bypassed, not penetrated”.

It seems unlikely that malware detection methods
[3, 4, 5] can solely provide an adequate solution to the
malware problem. First, it is known that there is no

Turing machine algorithm that can detect all malware
[6]. Second, some recent malware implementations
use NP problems [7] to encrypt and hide the malware
[8]. Overall, detection methods are currently up against
fundamental limits in theoretical computer science [9].

Rather than continue to pursue detection, we explain
a register machine’s [10, 11] susceptibility to malware
as a consequence of the instability of conventional
computation. The instability of register machine
computation enables malware to sabotage the purpose
of a computer program, by making small changes to an
original, uninfected program. Programming languages
such as C, Java, Lisp and Python depend upon
branching instructions. After a branching instruction
of a register machine program has been sabotaged,
even if there is a routine to check if the program is
behaving properly, this friendly routine may never get
executed. The sequential execution of register machine
instructions cripples the program from protecting itself.

To the best of the author’s knowledge, prior research
[12, 13, 14] has not attempted to understand malware
susceptibility in terms of structural stability. Dynamical
systems [15, 16, 17] has extensively studied stability.
Our primary contribution introduces mathematical
tools from topology and dynamical systems theory
to explain why register machine computation is
susceptible to malware sabotage. We construct a
correspondence such that each computational step of a
Turing machine program corresponds to one iteration
of a dynamical system in the x-y plane. Using
this correspondence, another contribution defines and
demonstrates a structural instability in a Universal
Turing machine encoding. This is relevant in practice
because a programming language cannot express
universal computation unless its compiler or interpreter
“acts as a Universal Turing machine.”

2. Unstable Computation

Two examples illustrate what we mean by unstable
computation. Our first example is a C source code [18]

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6705
URI: https://hdl.handle.net/10125/64563
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/286030875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

listing that sorts four integers. This C program shows
how even small changes to a single machine instruction
can substantially alter the program’s behavior.

#include <stdio.h> #include <stdlib.h>
#include <string.h>

#define NUM_BITS 16
int pow_2[NUM_BITS] = {0x8000, 0x4000, 0x2000,

0x1000, 0x800, 0x400,
0x200, 0x100, 0x80, 0x40,
0x20, 0x10, 0x8, 0x4, 0x2, 0x1};

int greater_than(int p1, int p2)
{ return (p1 > p2); }

int less_than(int p1, int p2)
{ return (p1 < p2); }

void slow_sort(int* v, int n, int (*op)(int, int)) {
int i, k, x;
for(i = 0; i < n; i++)
for(k = 0; k < i; k++) {

if (op(v[i], v[k])) {
x = v[i];
v[i] = v[k];
v[k] = x;

}
}

}

void display_numbers(int* v, int n) {
int k;
printf("\n");
for(k = 0; k < n; k++)

printf("%d ", v[k]);
}

void print_binary(unsigned int v) {
int k;
for(k = 0; k < NUM_BITS; k++) {

if (v / pow_2[k]) printf("1 ");
else printf("0 ");

v %= pow_2[k];
}
printf("\n");

}

void sort_pr(int* nums, int n, char* fn,
int (*op)(int, int)) {

slow_sort(nums, n, op);
display_numbers(nums, n);
printf(" address of instruction");
printf("%s \n ", fn);
print_binary((unsigned int) op);

}

int main(int argc, char* argv[])
{

int nums[4] = {6, 9, 7, 8};
display_numbers(nums, 4);
printf("\n");
sort_pr(nums, 4, "less_than", less_than);
sort_pr(nums, 4, "greater_than", greater_than);
return 0;

}

Figure 1 shows an execution of this C program. The
ordering of the sorted numbers (6, 7, 8, 9) is reversed to
(9, 8, 7, 6), by flipping only two bits of one instruction.
This C program exhibits unstable computation because
a small change (i.e., flipping two bits) in the C program
causes a substantial change to the outcome of its
computation: namely, it changes from sorting integers in

˜MacBook-Air:sort$./sort
6 9 7 8

6 7 8 9 address of instruction less_than
1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0

9 8 7 6 address of instruction greater_than
1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0

Figure 1. Sorting order reversal

ascending order to sorting integers in descending order.
In Figure 2, the code demonstrates how to hijack

a register machine program, by inserting only one
jmp WVCTF instruction or changing the address of one
legitimate jmp instruction to WVCTF.

WVCTF: mov eax, drl
jmp Loc1

Loc2: mov edi, [eax]
LOWVCTF: pop ecx

jecxz SFMM
inc eax
mov esi, ecx
dec eax
nop
mov eax, 0d601h
jmp Loc3

Loc1: mov ebx, [eax+10h]
jmp Loc2

Loc3: pop edx
pop ecx
nop
call edi
jmp LOWVCTF

SFMM: pop ebx
pop eax
stc

Figure 2. Polymorphic malware instructions

3. Motivating Stable Computation

Register machines execute one instruction at a
time. After a register machine program has been
hijacked, even if there is a routine to check if the
program is behaving properly, this friendly routine
may never get executed. The sequential execution
of register machine instructions cripples the program
from protecting itself against malware. Typical
programming languages (e.g., C, Java, Lisp and
Python) are Turing complete and depend upon
branching instructions. While conditional branching
instructions are not required for universal computation,
Rojas’s methods [19] still use unconditional branching
and program self-modification. Moreover, about 75%
to 80% of the control flow instructions, executed on
register machines, are conditional branch instructions.
(See figure A.14 in [11].)

Page 6706

These observations suggest that a computer
program’s purpose can be subverted because the register
machine behavior is not always stable when small
changes are made to its program. Why is this insight
useful for designing malware resistant computation?

Overall, we seek malware resistant computation
based on the following principle: design the
computation so that if malware makes a small
change, the program’s purpose is stable; if a larger
change is made, the program’s purpose is completely
destroyed. Our goal is to create stable computation that
is incomprehensible to malware authors [20] so that
it is far more challenging for malware to subvert the
program’s behavior without completely destroying it.

4. A Program is a Dynamical System

In dynamical systems, stability has been studied for
over 80 years [21]. There is currently no mathematical
definition of stable computation. Thus, in this section,
our primary goal is to explain how the execution of
a computer program corresponds to the iteration of a
dynamical system in the x-y plane. This correspondence
should enable us to apply powerful, mathematical tools
to computation, that already have been developed in
dynamical systems theory.

One of our goals is to reach some topological insight
on understanding the instability in Turing and register
machine computation. We seek topological insight
because open sets in a topology provide a more general
and flexible method for characterizing closeness than
Euclidian distance. This is ideally how we would like
to model small changes in a computer program.

With a simple example shown in Figure 3, we
informally describe how each Turing machine (TM)
[22] corresponds to a dynamical system, generated
from a finite set of affine functions in the x-y plane.
The appendix provides a comprehensive, mathematical
treatment of this correspondence. The appendix shows
that any computer program can be mapped to a
corresponding dynamical system. Furthermore, one
iteration of this dynamical system computes a result that
is equivalent to the execution of one computational step
of the Turing machine.

It is well-known that register machine computation
is equivalent to TM computation and both formalisms
model the behavior of a digital computer. (In [10], see
footnote 19, page 386 and chapter 5.) This equivalence
justifies our constructing a map from a Turing machine
to a dynamical system in the x-y plane and concluding
that these dynamical systems can characterize instability
in register machine programs.

First, a TM is reviewed. A TM has a tape T that is

represented as a function T : Z → A where Z is the
integers andA = {a1, . . . , an} is a finite set of alphabet
symbols that are read from and written to tape squares
on the tape. Here Ti = T (i) is the alphabet symbol on
tape square i. There is a finite set of machine statesQ =
{q1, . . . , qm} and a distinct halting state h. The function
η : Q × A → Q ∪ {h} × A × {−1,+1} specifies the
program instructions. The execution of one instruction
is called a computational step of the TM.

 Before machine execution starts

 q

. .

.
 # # # # # . . .

 After Computational Step 1
. .
.

 # # a # # . . .

 r

. . . # # a b # . . .

 q

 After Computational Step 2

 η # a b

 q (r, a, +1) (h, b, +1) (q, b, -1)

 r (q, b, -1) (r, a, +1) (r, b, +1)

 s (h, #,+1) (h, a,+1) (h, b,+1)

Program

 After Computational Step 3

. . . # # b b # . . .

 h

 Before machine execution starts

 q

. .

.
 # # # # # . . .

 After Computational Step 1
. .
.

 # # a # # . . .

 r

. . . # # a b # . . .

 q

 After Computational Step 2

 η # a b

 q (r, a, +1) (h, b, +1) (q, b, -1)

 r (q, b, -1) (r, a, +1) (r, b, +1)

 s (h, #,+1) (h, a,+1) (h, b,+1)

Program

 After Computational Step 3

. . . # # b b # . . .

 h

Figure 3. Turing machine execution steps

Figure 3 shows the execution of a simple TM with
alphabet A = {#, a, b} and states Q = {q, r, s}. The
initial state is q. Initially, the tape has a # (blank)
symbol in every tape square. The first instruction
executed is η(q,#) = (r, a,+1): it replaces the # with
an a on the tape, jumps to state r, and then the tape head
moves right one tape square.

Page 6707

4.1. The φ Correspondence

Set base B = |A| + |Q| + 1. Define value function
ν : {h} ∪ Q ∪ A → {0, 1, . . . , B − 1} as ν(h) = 0,
ν(ai) = i and ν(qi) = i + |A|. ν maps each alphabet
symbol and each state to a unique symbol in base B.

φ is the map that creates a one-to-one
correspondence from the program instructions to a
finite set of affine functions in the x-y plane. φ maps
each machine configuration to a unique point in the x-y
plane. φ maps right instruction η(q, Tk) = (r, α,+1)
to affine function f(x, y) = (Bx+m, 1

B y + n), where
m = −B2ν(Tk) and n = Bν(r) + ν(α) − ν(q).
φ maps left instruction η(q, Tk) = (r, α,−1) to
affine function g(x, y) = (1

Bx + m,By + n),
where m = Bν(Tk−1) + ν(α) − ν(Tk) and
n = Bν(r)−B2ν(q)−Bν(Tk−1).

After each step, the TM is in some configuration
(q, k, T) ∈ Q × Z × AZ. φ maps (q, k, T) to(∞∑
j=−1

ν(Tk+j+1)B−j , Bν(q) +
∞∑
j=0

ν(Tk−j−1)B−j
)

in

the x-y plane. Both the x and y coordinates are
convergent sums. Since the tape contains a finite number
of non-blank symbols, after a finite number of terms, the
tail of each sum is a geometric series.

4.2. One Computational Step is One Iteration

The execution of the TM in Figure 3 is faithfully
modelled by iterating the corresponding affine
functions. Since alphabet A = {#, a, b} and states
Q = {q, r, s}, base B = 7. Also, ν(h) = 0, ν(#) = 1,
ν(a) = 2, ν(b) = 3, ν(q) = 4, ν(r) = 5 and ν(s) = 6.

φ maps the initial machine configuration in Figure
3 to point p = (px, py) in the x-y plane, where px =

Bν(#) + ν(#)

1− 1
7

= 8 1
6 and py = Bν(q) + ν(#)

1− 1
7

= 29 1
6 .

The first step executes instruction η(q,#) =
(r, a,+1), which corresponds to applying affine
function f1(x, y) = (7x − 49, 17y + 33) to p. For f1,
m = −72ν(#) = −49 and n = 7ν(r) + ν(a)− ν(q) =
33. The first iteration is f1(8 1

6 , 29 1
6) = (8 1

6 , 37 1
6).

The second step executes η(r,#) = (q, b,−1).
The second step corresponds to applying affine function
f2(x, y) = (1

7x + 16, 7y − 231) to point (8 1
6 , 37 1

6),
where m = 7ν(a) + ν(b) − ν(#) = 16 and n =
7ν(q) − 72ν(r) − 7ν(a) = −231. The result of the
second iteration is f2(8 1

6 , 37 1
6) = (171

6 , 29 1
6). The third

iteration is computed similarly. The orbit of p includes
p and all points reached after each iteration.

As a summary, executing a Turing machine
corresponds to iterating a discrete, autonomous system
in the x-y plane; the dynamical system consists of a

finite number of affine functions, whose domains lie in
distinct unit squares. If configuration (q, k, T) halts after
n computational steps, then the orbit of φ(q, k, T) exits
one of the unit squares on the nth iteration, and enters
the halting attractor. (See definition 10 in the appendix.)
If configuration (r, j, S) never halts, then the orbit of
φ(r, j, S) remains in these unit squares forever.

5. Applying Topology to Computation

In this section, we work toward formalizing our
intuitive explanation of unstable computation discussed
in the prior sections. Structural stability characterizes
the stability of a dynamical system under small changes
or perturbations [23]. With this in mind, we review some
mathematical definitions and italicize their names.

A topology [24] on a set X is a collection T of
subsets of X having the following properties: (a) ∅ and
X are both in T ; (b) The union of the elements of any
subcollection of T is in T ; (c) The intersection of the
elements of any finite subcollection of T is in T . A set
X for which a topology T has been specified is called
a topological space. A subset U of X is called open in
this topology if U belongs to the collection T .

Let R be the real numbers. As an example of a
topological space, for real numbers a and b, the open
intervals (a, b) = {x ∈ R : a < x < b} form a
basis for the standard topology on the real numbers,
generated from arbitrary unions of open intervals and
finite intersections of open intervals.

Let X and Y be topological spaces. The function
f : X → Y is continuous if for any open subset U of Y ,
the inverse image f−1(U) = {x ∈ X : f(x) lies in U}
is open in X’s topology. The function h : X → Y is a
homeomorphism if h is continuous, h is one-to-one and
onto, and h’s inverse h−1 : Y → X is continuous.

5.1. Topological Conjugacy

A discrete, dynamical system is a function f : X →
X , where X is a topological space. The orbit of p is
{fn(p) : n ∈ N}, which is the set of points, obtained
by iterating f on initial point p. Consider discrete,
dynamical systems f : X → X and g : Y → Y .
f and g are topologically conjugate if f and g are
continuous functions and there exists a homeomorphism
h : X → Y such that h ◦ f = g ◦ h. Topologically
conjugate functions exhibit equivalent dynamics. For
example, if f is topologically conjugate to g via h and
p is a fixed point for f , then h(p) is a fixed point for
g. Similarly, h induces a one-to-one correspondence
between the periodic points of f and g. Suppose p ∈ X
has period n with respect to f . Then fn(p) = p, so
h(p) = h(fn(p)) = h◦f(fn−1(p)) = g◦h(fn−1(p)) =

Page 6708

g2 ◦ h(fn−2(p)) = · · · = gn−1 ◦ h(f(p)) = gn(h(p)).
Thus, h(p) is a periodic point of g with period n.

Topological conjugacy is a useful notion for
computation because after a Turing machine has halted,
its halted machine configuration represents what the
Turing machine has computed. Furthermore, each
halted machine configuration corresponds to a fixed
point (halting point) of the dynamical system. If h is
a topological conjugacy with h ◦ f = g ◦ h, then p is
a fixed point of f if and only if h(p) is a fixed point.
Hence, a topological conjugacy between machinesM1

andM2 induces a one-to-one correspondence between
the halting configurations ofM1 andM2.

In the appendix, the φ correspondence, between
halting configurations of a Turing machine and fixed
points of the corresponding dynamical system in the
x-y plane, can be applied to any Turing machine. (See
definitions 10, 11, and theorem 2.) Thus, for any
computer program P , regardless of P’s complexity or
size, there exists a φ correspondence that is general
enough to apply to program P .

Lastly, there is an algorithm Aφ that receives
program P , initial tape T , and initial state q as input.
During the computation, Aφ prints the initial point p
in the x-y plane and a finite set of affine functions
that represents the dynamical system, corresponding
to P . The computations performed by algorithm
Aφ are explicitly specified in definition 6, remark 1,
definition 8, and definition 9. Mathematical proofs –
that the computations performed byAφ are correct – are
provided in lemma 2, lemma 3, and theorem 2.

5.2. Metric Spaces and Structural Stability

A metric space is a set X and a function (metric)
d : X×X → R, such that the following three conditions
hold. (i) d(a, b) ≥ 0 for all a, b ∈ X where equality
holds if and only if a = b. (ii) d(a, b) = d(b, a) for all
a, b ∈ X . (Symmetric). (iii) d(a, b) ≤ d(a, c) + d(c, b)
for all a, b, c ∈ X . (Triangle inequality).

Given ε > 0, define the ε-ball Bd(x, ε) = {y ∈
X : d(x, y) < ε}. The collection of all ε-balls,
where ε > 0 and x ∈ X , is a basis for a metric
topology on X , induced by d. In the appendix, lemma
1 implies that for a fixed Turing machine, the set of
all its machine configurations is a metric space. This
means metric ρ, defined in lemma 1, on the set of all
machine configurations can measure the closeness of
two machines.

Let (X, d) be a metric space. The C0 distance
between functions f : X → X and g : X → X is given
by ρ0(f, g) = sup{d

(
f(x), g(x)

)
: x ∈ X}, where sup

is the least upper bound. A function f : X → X is said

to be C0 structurally stable on X if there exists ε > 0
such that whenever ρ0(f, g) < ε for g : X → X , then f
is topologically conjugate to g.

In other words, a dynamical system f is structurally
stable if for all dynamical systems g that are close to
f , then f is topologically conjugate to g. Structural
stability is a mathematical tool that we want to apply
to computer programs (i.e., Turing machines). We can
accomplish this by using the φ correspondence between
the execution of a computer program and the iteration of
the program’s corresponding dynamical system.

6. Instability in Turing Computation

In this section, we apply structural stability to a
particular Universal Turing machine (UTM), which
hereafter will be called machine U . We show that U’s
computation is unstable under arbitrarily small changes.

Our demonstration of U’s unstable computation is
relevant to practical applications based on the following
line of thinking. A C compiler acts as a Universal
Turing machine, where the programs executed are valid
C programs. More concretely, a valid C compiler can
be executed with a finite table of Turing instructions,
called Pc, according to the encoding used by universal
machine U . Since U’s computation is unstable, there
could be a distinct, finite table of Turing instructions,
called Pmal, that subverts the purpose of valid C
compiler Pc, and Pmal is very close to Pc.

6.1. An Unstable UTM Encoding

The encoding used by machine U is shown in Figure
4 and Figure 5. Machine U has alphabet {#, 0, 1}, and
its states are Q = {q1, q2, . . . , qU}. A program table for
U is not provided, but a table can be constructed, based
on the description provided here.

 Before Universal Turing machine execution starts

... # 1 1 1 1 1 1 1 # 1 0 0 0 1 # ...

q
Unary n 1’s encode Mn Input for Mn

Figure 4. Universal Turing Machine U

We assume U starts execution, scanning a blank
symbol #. A sequence of n 1’s to the left of the U’s
initial tape head location is a unary encoding for the
nth Turing machine Mn that machine U executes. The
sequence of 0’s and 1’s to the right of U’s initial tape
head location are the input to machine Mn. Also, it is
well-known that a finite number of states and alphabet
{#, 0, 1} can represent any TM [25].

Page 6709

 η # 0 1
 q1 (h, 0,-1) (h, 0,-1) (h, 0,-1)

 M1

 η # 0 1

 q1 (h, 0,+1) (q1, #,+1) (h, #,+1)

 M215

 η # 0 1
 q1 (q1, #,+1) (q1, #,+1) (q1, #,+1)

 M1728

 η # 0 1

 q1 (h, 0,-1) (h, 0,-1) (h, 0,-1)
 q2 (h, 0,-1) (h, 0,-1) (h, 0,-1)

 η # 0 1

 q1 (h, 0,-1) (h, 0,-1) (h, 0,-1)

 q2 (h, 0,-1) (h, 0,-1) (h, 0,-1)

 q3 (h, 0,-1) (h, 0,-1) (h, 0,-1)

 M1729

 M123+186+1

Figure 5. Some machines executed by U

The enumeration of each Turing machine by
machine U works as follows: The number of distinct
programs (η’s) for a fixed number of states |Q| is(
2|A||Q| + 2|A|

)|A||Q|
. The first 123 machines are

all the possible Turing programs with Q = {q1} and
A = {#, 0, 1}. Figure 5 shows the program for M1

that U explicitly constructs for the unary representation
of 1 before U starts executing M1; the input for M1 is
to the right of U’s initial tape head location. When the
unary value is 123 + 186 + 1, then all possible Turing
programs withQ1 = {q1} andQ2 = {q1, q2} have been
exhausted, so the enumeration updates the state set to
Q3 = {q1, q2, q3}. The program for M123+186+1 is also
shown in Figure 5. This encoding works for each finite
set of states Qn = {q1, . . . , qn} for every n ∈ N.

Based on the φ correspondence, our next definition
measures a distance between two Turing machines in
terms of the encoding used by machine U . Note that
our metric definition depends upon the encoding that
machine U uses.

Definition 1. Turing Machine Encoding Metric ρ
For universal machine U , let Mn and Mm denote the
TMs encoded by n and m 1’s, respectively. Set ν(h) =
0, ν(#) = 1, ν(0) = 2, ν(1) = 3, ν(q1) = 4
. . . ν(qU) = U + 3 where the states of the UTM
are q1, . . . qU . Set B = U + 4. For m ≤ n,

define ρ(Mn,Mm) =
∣∣n−1∑
j=0

ν(1)B−j +
∞∑
j=n

ν(#)B−j

−
m−1∑
j=0

ν(1)B−j −
∞∑
j=m

ν(#)B−j
∣∣ = 2

n−1∑
j=m

B−j

Theorem 1. Universal Turing machine U has unstable
computation in the following sense. For any ε > 0, there
exist two distinct Turing machines closer than ε with
respect to ρ such that the respective dynamical systems
of these two machines are not topologically conjugate.

This means two different Turing machines that are
arbitrarily close with respect to ρ exhibit different
computing behavior.
PROOF. As above, let Qk = {q1, q2, . . . , qk} and thus,
|Qk| = k. Derived from

∑n
k=1(2|A|k + 2|A|)|A|k,

define function f : N → N where f(n) =
∑n
k=1(6k +

6)3k +1. Then the machine Mf(n) has only halting
configurations for all n. Machine Mν(n) is shown
in Figure 6. For each interval of natural numbers
[f(n), f(n+ 1)], Mν(n) satisfies f(n) < ν(n) < f(n+
1). Also, Mν(n) has no halting configurations. Thus,
Mν(n) is not topologically conjugate to Mf(n) for all n.

Further, ρ(Mf(n),Mν(n)) <
2B
B−1B

−f(n), implies that
for all ε > 0, there are two machines closer than ε and
they are not topologically conjugate. �

 η # 0 1
 q1

 . . .

 qk

 . . .
 qn

 (q2, 0,+1) (q2, 1,-1) (q2, #,-1)

 (qk+1, 0,+1) (qk+1, 1,-1) (qk+1, #,-1)

 (q1, 0,+1) (q1, 1,-1) (q1, #,-1)

Figure 6. Turing Machine Mν(n)

6.2. Non-Isolated Metrics are Useful

Let X be a topological space. A separation of X is
a pair U, V of disjoint open subsets of X whose union
is X . X is connected if there does not exist a separation
of X . A topological space is totally disconnected if its
only connected subsets are one-point sets.

One of our goals is to mathematically model the
stability of computation with respect to small changes.

Page 6710

If metricD on topological spaceX satisfies the property
that for all x ∈ X , there exists an ε > 0 such that
BD(ε, x) only contains x, then D is called an isolated
metric. An isolated metric cannot quantify an arbitrarily
small change to a machine, so it has no utility for
defining stable computation.

Let M1,M2, . . . be an enumeration of all Turing
machines for some UTM. For each m, define the metric
γ(Mm,Mm) = 0 and γ(Mm,Mn) = 1 when m 6= n.
γ vacuously satisfies the stability property since any two
distinct Turing machines are a distance of 1 apart. γ is
an example of an isolated metric. Moreover, for every
Universal Turing machine enumeration {M1,M2, . . . },
the machine space M = {Mm : m ∈ N}, induced by γ,
is totally disconnected.

A metric is non-isolated on machine space M if the
metric does not disconnect M. A longer-term goal is
to mathematically characterize non-isolated metrics and
use them to search for machines M in M that exhibit
stable computation in an open neighborhood of M .

Determining whether a metric is isolated,
independent of the UTM, seems subtle. This is
shown in example 1: a metric r is defined to measure
how closely two orbits of two Turing machines match,
which seems to be a natural measure of closeness.
Example 1.
Let M1,M2, . . . be an enumeration of all Turing
machines for some UTM. Let ηn be the program
instructions for machine Mn and ηm the program
instructions for Mm. I = (q0, i, T) is an initial
machine configuration, where 1 ≤ i ≤ n and T (j) =
aj ∈ {0, 1,#} for 1 ≤ j ≤ n and T (j) =
when j ≤ 0 or j > n. Let (q(1,n), a(1,n))
. . . (q(k,n), a(k,n)), (q(k+1,n), a(k+1,n)) be the sequence
of inputs for ηn in the first k computational
steps of Mn and (q(1,m), a(1,m)) . . . (q(k,m), a(k,m)),
(q(k+1,m), a(k+1,m)) be the sequence of inputs for ηm.
Assume both machines have the same initial starting
state q0 = q(1,n) = q(1,m). Let k(I,Mn,Mm) be the
number of computational steps until Mn and Mm differ
with respect to their execution steps, i.e. the first k such
that ηn(q(k,n), a(k,n)) 6= ηm(q(k,m), a(k,m)).

For only configuration I , the distance between
machines Mm and Mn is defined as µ(I,Mn,Mm) =
2−k+1. In the special cases, where ηn(q(k,n), a(k,n))
= ηm(q(k,m), a(k,m)) for all k either because it is an
immortal orbit or a halting orbit, then µ(I,Mn,Mm) =
0. Let Γ be the set of all tapes T such that T (j) ∈
{0, 1,#} for 1 ≤ j ≤ n and T (j) = # when j ≤ 0
or j > n. Define r(Mm,Mn) = sup{µ(I,Mn,Mm) :
I ∈ Q× {1, . . . , n} × Γ}.

If m 6= n, there is some instruction where
ηm(q, a) 6= ηn(q, a). Consider initial configuration

I = (q, 1, T) where T (1) = a. Then µ(I,Mn,Mm) =
2−1+1, so r(Mm,Mn) = 1. Further, r(Mm,Mn) = 0
when m = n.

Although metric r seems to carefully measure
the distance between machines based on how many
computational steps match, r is the same metric as γ,
so r is an isolated metric.

7. Two Research Directions

Classical dynamical systems theory helps to
introduce new notions for characterizing the stability of
digital computer programs. There is empirical evidence
that malware can change the purpose of a computer
program by making very small changes to the original
program; only one address of one branch instruction
in a digital computer program needs to be changed in
order to subvert the machine to execute the malware.
Malware authors are able to exploit this vulnerability
because register machines rely on branch instructions
and execute their instructions one at a time.

In section 6, we constructed a universal machine
U that is unstable with respect to metric ρ, Further
research should study other non-isolated metrics and
their relationship to other Universal Turing machine
encodings. A goal is to find more general mathematical
conditions when a TM computation is structurally
unstable that includes a search for non-isolated metrics
on the space of Turing machines. If there exist
conditions for stable TM computation, then this
know-how could help design more robust digital
computer programs.

Using our mathematical tools for understanding
stable computation, a second research direction should
further develop machines that can simultaneously
execute multiple instructions. Using the active element
machine’s inherent parallelism [26], it might be
possible to program redundancy in the element and
connection commands, and to repair a sabotaged
program with meta commands. A goal is to build
active element machine programs whose purpose does
not change even when some of the commands in a
program have been sabotaged. Overall, we propose to
search for unconventional machines that can execute
stable computation.

Acknowledgments

I am deeply grateful to Lawrence Reeves, President
of AFCEA Monterey Bay chapter, for his introduction
to NPS faculty, and sage advice. I am deeply grateful to
Dan Boger and Peter Denning for a meeting in 2013. I
am deeply grateful to the reviewers for their comments.

Page 6711

References

[1] Keith Mayes and Konstantinos Markantonakis
(editors). Smart Cards, Tokens, Security and
Applications. Springer, 2008.

[2] Adi Shamir. Cryptography: State of the Science.
ACM. Alan M. Turing Award Lecture. June 8, 2003.

[3] John Mitchell and Elizabeth Stillson. Detection of
Malicious Programs. U.S. Patent 7,870,610, 2011.

[4] Andreas Moser, Chris Kruegel and Engin Kirda.
“Limits of Static Analysis for Malware Detection.”
IEEE. 23rd Annual Computer Security Applications
Conf., 2007.

[5] Diego Zamboni (editor). Proc. of the 5th Intl. Conf. on
Detection of Intrusions and Malware LNCS. Springer.
July 2008.

[6] Fred Cohen. “Computer Viruses Theory and
Experiments. Computers and Security.” 6(1) 22–35,
Feb. 1987.

[7] Stephen Cook. “The P versus NP Problem.” Clay
Math Institute, 2013.

[8] Eric Filiol. “Malicious Cryptology and Mathematics.”
Cryptography and Security in Computing. Chapter 2.
Intech, March 7, 2012.

[9] Eric Filiol. Computer viruses: from theory to
applications. Springer, 2005.

[10] Harold Abelson and Gerald J. Sussman with J.
Sussman. Structure and Interpretation of Computer
Programs. Second Edition, MIT Press, 1996.

[11] John Hennessy and David Patterson. Computer
Architecture. 5th Edition, Morgan Kaufmann, 2012.

[12] Len Adleman. “An Abstract Theory of Computer
Viruses.” Advances in Cryptology – CRYPTO 2008.
LNCS 403, Springer, 1988.

[13] Guillaume Bonfante, Matthieu Kaczmarek, and
Jean-Yves Marion. “On Abstract Computer Virology
from a Recursion-theoretic Perspective.” Journal in
Computer Virology. 1, No. 3-4, 2006.

[14] Hubert Godfroy and Jean-Yves Marion. “Abstract
Self Modifying Machines.” HAL CCSD, 2016.

[15] Jacob Palis and Stephen Smale. “Structural Stability
Theorems.” Proc. Symp. Pure Math. AMS. 14,
223–232, 1970.

[16] Clark Robinson. “Structural Stability of C1

Diffeomorphisms.” Journal of Differential Equations.
22, 28–73, 1976.

[17] Keonhee Lee and Kazuhiro Sakai. “Structural
stability of vector fields with shadowing.” Journal of
Differential Equations. 232, 303–313, 2007.

[18] Brian Kernighan and Dennis Ritchie. The C
Programming Language. 2nd Edition, Prentice Hall,
1988.

[19] Raul Rojas. “Conditional Branching is not Necessary
for Universal Computation in von Neumann
Computers.” Journal of Universal Computer Science.
2, No. 11, 756–768, 1996.

[20] Michael S. Fiske. “Turing Incomputable
Computation.” Turing-100 Proceedings. Alan
Turing Centenary. EasyChair 10, 69–91, 2012.

[21] Aleksandr Andronov and Lev Pontrjagin. “Systèmes
Grossiers.” Dokl. Akad. Nauk., SSSR, 14, 247–251,
1937.

[22] Alan M. Turing. “On computable numbers, with
an application to the Entscheidungsproblem.” Proc.
London Math. Soc. Series 2. 42 Parts 3, 4, 230–265,
1936.

[23] Clark Robinson. Dynamical Systems. Stability,
Symbolic Dynamics and Chaos. CRC Press, 1996.

[24] James R. Munkres. Topology: A First Course.
Prentice-Hall, 1975.

[25] Claude Shannon. “A Universal Turing Machine with
Two Internal States.” Automata Studies. Annals of
Mathematics Studies, No. 34, Princeton Univ. Press,
157–165, 1956.

[26] Michael S. Fiske. “The Active Element Machine.”
Proc. of Comp. Intelligence. Autonomous Systems.
391, 69–96, Springer, 2011.

[27] Marvin Minsky. Computation: Finite and Infinite
Machines. Prentice-Hall, 1967.

Appendix

A Turing Machine is defined; function η specifies the
program instructions instead of quintuples [27].
Definition 2. A Turing machine is a triple (Q,A, η):
(1) Q is a finite set of states that does not contain a
unique halting state h.
(2) A is a finite alphabet whose symbols are read from
and written to a tape. # is the blank symbol.
(3) −1 and +1 represent advancing the tape head one
square to the left or right, respectively.
(4) η : Q × A → Q ∪ {h} × A × {−1,+1} specifies
the program instructions.

For each q in Q and α in A, η(q, α) = (r, β, x)
describes how the machine executes one computational
step. When in state q and reading alphabet symbol α
on the tape, machine (Q,A, η) jumps to state r, and
replaces symbol α with β on the tape.

If x = −1, the tape head moves one square to the left
on the tape. If x = +1, the tape head moves one square
to the right on the tape. If r = h, machine (Q,A, η)
enters halting state h, and stops executing.
Definition 3. Turing Machine Tape
Function T : Z → A represents the tape T . Before
machine execution begins, the tape contains a finite
number of non-blank symbols. The alphabet symbol on
the kth square of the tape is denoted as T (k) or Tk.
Definition 4. Tape Head Location
Let (Q,A, η) be a Turing machine with tape T. A
configuration is an element of the set C = Q ∪ {h} ×
Z×{T |T : Z→ A}. If (q, k, T) is a configuration, then
k is the tape head location on tape T .

Page 6712

Definition 5. Turing Machine Computational Step
Consider (Q,A, η) in configuration (q, k, T), where
T (k) = a. After executing one instruction, the new
configuration is determined by one of the four cases.
(1) (r, k − 1, S) if η(q, a) = (r, b,−1).
(2) (r, k + 1, S) if η(q, a) = (r, b,+1).
(3) (h, k − 1, S) if η(q, a) = (h, b,−1).
(4) (h, k + 1, S) if η(q, a) = (h, b,+1).

In cases 1–4, the new tape S satisfies S(j) = T (j)
when j 6= k and S(k) = b. In cases 3 and 4, the
machine execution halts after the step is completed. If
the machine is currently in configuration (q0, k0, T0)
and over the next n steps the sequence of configurations
is (q0, k0, T0), (q1, k1, T1), . . . , (qn, kn, Tn), then this
sequence is called the next n computational steps.
(q, k, T) is immortal if (q, k, T) never halts.

This next part shows the correspondence between the
execution of the Turing machine and the iteration of a
dynamical system in the x-y plane P .
Definition 6. Machine Configurations ⇐⇒ Plane P

... Tk−3 Tk−2 Tk−1 Tk Tk+1 Tk+2 Tk+3 ...

q

For a fixed machine, each configuration (q, k, T)
represents a unique point (x, y) in the x-y plane P . Let
C be the set of configurations.

Coordinate function x : C → P is x(q, k, T) =
TkTk+1 . Tk+2Tk+3Tk+4 . . . , where x(q, k, T) is the

number Bν(Tk) + ν(Tk+1) +
∞∑
j=1

ν(Tk+j+1)B−j .

Coordinate function y : C → P is y(q, k, T) = q
Tk−1 . Tk−2Tk−3Tk−4 . . . , where y(q, k, T) is the

number Bν(q) + ν(Tk−1) +
∞∑
j=1

ν(Tk−j−1)B−j . Define

function φ : C → P as φ(q, k, T) =
(
x(q, k, T),

y(q, k, T)
)
. Let N be the immortal configurations in C.

Definition 7. Equivalent Configurations
(q, k, T) ∼ (r, j, V) if q = r and T (m) = V (m +
j − k) for every integer m. Configurations (q, k, T)
and (r, j, V) are called equivalent, since ∼ is an
equivalence relation on C. C is the set of all equivalence
classes [(q, k, T)] on C. φ maps every configuration in
equivalence class [(q, k, T)] to the same point in P .

(d, X) is a metric space if the three conditions hold:
(1) d(a, b) ≥ 0 for all a, b ∈ X where equality holds if
and only if a = b. (2) d(a, b) = d(b, a) for all a, b ∈
X . (Symmetric.) (3) d(a, b) ≤ d(a, c) + d(c, b) for all
a, b, c ∈ X . (Triangle inequality.)

Lemma 1. (ρ, C) is a metric space where ρ is
induced via φ by the Euclidean metric in P .
PROOF. For points p1 = (x1, y1), p2 = (x2, y2)
in plane P , let d be the Euclidean metric
d(p1, p2) =

√
(x1 − x2)2 + (y1 − y2)2. Let

u = [(q, k, S)], w = [(r, l, T)] be elements of C. Define
ρ : C× C→ R as ρ(u,w) = d

(
φ(q, k, S), φ(r, l, T)

)
=√(

x(q, k, S)− x(r, l, T)
)2

+
(
y(q, k, S)− y(r, l, T)

)2
.

The symmetric property and the triangle inequality
hold for ρ because d is a metric. In regard to property 1,
ρ(u,w) ≥ 0 because d is a metric.

The condition ρ(u,w) = 0 if and only u = w also
holds. If u = w, then (q, k, S) ∼ (r, l, T). This implies
q = r and S(m) = T (m+ l−k) for every integerm, so
φ(q, k, S) = φ(r, l, T). Since d is a metric, ρ(u,w) = 0.
If u 6= w, then φ(q, k, S) 6= φ(r, l, T), which implies
ρ(u,w) = d

(
φ(q, k, S), φ(r, l, T)

)
6= 0. �

Remark 1. Unit square domain
U(bxc,byc) has a lower left corner (bxc, byc), where

bxc = Bν(Tk)+ν(Tk+1) and byc = Bν(q)+ν(Tk−1).

Definition 8. Left Affine Function
Case (1) in definition 5 where η(q, Tk) = (r, b,−1).

... Tk−3 Tk−2 Tk−1 b Tk+1 Tk+2 Tk+3 ...

r

The left affine function is derived as follows:
x → Tk−1b . Tk+1Tk+2Tk+3 . . .

1
Bx = Tk . Tk+1Tk+2Tk+3 . . .

Subtract the numbers in base B, so m = Tk−1b− Tk.
y → rTk−2 . Tk−3Tk−4 . . .

By = qTk−1Tk−2 . Tk−3Tk−4 . . .
Subtract the integers in base B, so n = rTk−2 −
qTk−1Tk−2. Define function L : U(bxc,byc) → P as

L(x, y) = (1
Bx+m,By+n) where m = Bν(Tk−1) +

ν(b) − ν(Tk) and n = Bν(r) − B2ν(q) − Bν(Tk−1).
L is called a left affine function.
Lemma 2. Left Affine ⇐⇒ TM Execution Step
Let (q, k, T) be a machine configuration. Suppose
η(q, Tk) = (r, b,−1) for some state r in Q ∪ {h}
and some alphabet symbol b in A and where Tk = a.
For the next execution step, the new configuration is
(r, k − 1, T b) where T b(j) = T (j) for every j 6= k and
T b(k) = b. The commutative diagram L ◦ φ(q, k, T) =
φ ◦ η(q, k, T) holds, so L(x(q, k, T), y(q, k, T)) =
(x(r, k − 1, T b), y(r, k − 1, T b)).
PROOF. The x-coordinate of L(x(q, k, T), y(q, k, T))
= B−1x(q, k, T) +Bν(Tk−1) + ν(b)− ν(a)
= B−1(aTk+1 . Tk+2 . . .) +Bν(Tk−1) + ν(b)− ν(a)

Page 6713

= a . Tk+1Tk+2Tk+3 · · ·+Bν(Tk−1) + ν(b)− ν(a)
= Tk−1b . Tk+1Tk+2Tk+3 . . .

Lastly, η(q, Tk) = (r, b,−1) implies x(r, k − 1, T b) =
Tk−1b . Tk+1Tk+2

The y-coordinate of L(x(q, k, T), y(q, k, T))
= By(q, k, T) +Bν(r)−B2ν(q)−Bν(Tk−1)
= B(qTk−1 . Tk−2 . . .)+Bν(r)−B2ν(q)−Bν(Tk−1)
= qTk−1Tk−2 . Tk−3 · · ·+Bν(r)−B2ν(q)−Bν(Tk−1)
= rTk−2 . Tk−3Tk−4 . . .
= y(r, k − 1, T b).
Lastly, η(q, Tk) = (r, b,−1) implies y(r, k − 1, T b) =
rTk−2 . Tk−3Tk−4 . . . �

Definition 9. Right Affine Function
Case (2) in definition 5 where η(q, Tk) = (r, b,+1).

... Tk−3 Tk−2 Tk−1 b Tk+1 Tk+2 Tk+3 ...

r

The right affine function is derived as follows.
x → Tk+1Tk+2 . Tk+3Tk+4 . . .

Bx = TkTk+1Tk+2 . Tk+3Tk+4 . . .

Subtract in base B, so m = Tk+1Tk+2 − TkTk+1Tk+2.
y → rb . Tk−1Tk−2Tk−3 . . .

1
B y = q . Tk−1Tk−2Tk−3 . . .
Subtract the numbers in base B, so n = rb − q.
Define the right affine function R : U(bxc,byc) → P as

R(x, y) = (Bx + m, 1
B + n) where m = −B2ν(Tk)

and n = Bν(r) + ν(b)− ν(q).
Lemma 3. Right Affine ⇐⇒ TM Execution Step
Let (q, k, T) be a machine configuration. Suppose
η(q, Tk) = (r, b,+1) for some state r in Q ∪ {h}
and some alphabet symbol b in A and where Tk = a.
For the next execution step, the new configuration is
(r, k + 1, T b) where T b(j) = T (j) for every j 6= k and
T b(k) = b. The commutative diagram R ◦ φ(q, k, T) =
φ ◦ η(q, k, T) holds, so R(x(q, k, T), y(q, k, T)) =
(x(r, k + 1, T b), y(r, k + 1, T b)).
PROOF. The x-coordinate of R(x(q, k, T), y(q, k, T))
= Bx(q, k, T)−B2ν(a)
= B(aTk+1 . Tk+2Tk+3 . . .)−B2ν(a)
= aTk+1Tk+2 . Tk+3 · · · −B2ν(a)
= Tk+1Tk+2 . Tk+3Tk+4 . . .

= x(r, k + 1, T b) because η(q, Tk) = (r, b,+1).
The y-coordinate of R(x(q, k, T), y(q, k, T))
= B−1y(q, k, T) +Bν(r) + ν(b)− ν(q)
= B−1(qTk−1 . Tk−2Tk−3 . . .) +Bν(r) + ν(b)− ν(q)
= q . Tk−1Tk−2Tk−3 · · ·+Bν(r) + ν(b)− ν(q)
= rb . Tk−1Tk−2Tk−3 . . .
= y(r, k + 1, T b) because η(q, Tk) = (r, b,+1). �

Definition 10. Halting Attractor and Halting Points
Define halting attractor Ah = {(x, y) ∈ P : 0 ≤

x ≤ B−|A|
B−1 B

2 and 0 ≤ y ≤ B − 1}. The halting
points in P correspond (via φ) to halting configurations
(h, k, T). Using elementary algebra, one can verify
that Ah contains the halting points. Define halting map
h : Ah → Ah such that h(x, y) = (x, y). Every p in Ah
is a fixed point of h.
Definition 11. Halting and Immortal Orbits in P
Let fk : Uk → P be a function for each k such that
whenever j 6= k , then Uj ∩ Uk = ∅ . For any p in P ,
its orbit is generated as follows. The 0th iterate of the
orbit is p. Given the kth iterate is point q, if point q does
not lie in any Uk, then the orbit enters Ah and halts (i.e.,
h(q) = q). Otherwise, q lies in some Uj . Inductively,
the k+1 iterate of q is defined as fj(q). p is an immortal
point if p has an orbit that never enters Ah.

Let {f1, f2, . . . , fI} be a set of functions fk :
X → X . A function index sequence S : N →
{1, 2, . . . , I} indicates the order that the functions are
applied. If p lies in X , then the orbit with respect to this
function index sequence is [p, fS(1)(p), fS(2)fS(1)(p),
. . . , fS(m)fS(m−1) . . . fS(2) fS(1)(p), . . .].
Theorem 2. Correspondence Theorem
Consider machine (Q,A, η) with initial configuration
(s, 0, T). W.L.O.G., we assume that (Q,A, η) begins
executing with its tape head location at 0. Let p =
(x(s, 0, T), y(s, 0, T)). Per definitions 6, 8 and 9, and
remark 1, let fk : Wk → P , where 1 ≤ k ≤ l, be the l
corresponding affine functions with unit squares Wk.

There is a one-to-one correspondence between the
mth point of the orbit [p, fS(1)(p), fS(2) ◦ fS(1)(p),
. . . , fS(m) ◦ fS(m−1) . . . fS(2) ◦ fS(1)(p), . . .] and
the mth computational step of (Q,A, η) with initial
configuration (s, 0, T). Moreover, (s, 0, T) is a halting
(immortal) configuration if and only if p is a halting
(immortal) point with respect to the halting map h and
affine functions fk : Wk → P where 1 ≤ k ≤ l.
PROOF. From lemmas 2, 3 and definition 6, each
computational step of (Q,A, η) on current configuration
(q, k, T) corresponds to applying a unique affine
map fk (definitions 8 and 9) to corresponding point
p = (x(r, k, T), y(r, k, T)). By induction, the
correspondence holds for all n if the initial configuration
(s, 0, T) is immortal; this implies that (x(s, 0, T),
y(s, 0, T)) is an immortal point. Similarly, if (s, 0, T)
is a halting configuration, then machine (Q,A, η)
with initial configuration (s, 0, T) halts after N
computational steps. For each step, the correspondence
implies that the orbit of initial point (x(s, 0, T),
y(s, 0, T)) enters Ah on the N th iteration. �

Page 6714

