
Cirrus: A Digitally Responsible Global Filesystem

William M. Pitts
Cirrus Project (DBA)

billpitts@stanfordalumni.edu

William J. Yeager
Retired, Stanford Knowledge Systems Lab

 byeager@fastmail.fm

Abstract

Cirrus is a distributed filesystem, overlay network

that extends the service domain of file servers to
global scale without diminishing the quality of
service. Cirrus, developed over many years, is
operational today and is ready for testing and
benchmarking. Cirrus’ distributed shared memory
implementation provides a fast and secure method of
transporting all network traffic within the overlay
network.

1. Introduction

Since the introduction of the World Wide Web in
the early 1990’s the Internet has evolved in a rather
haphazard manner with too many organizations and
individuals contributing extensions and new network
protocols with “Informational Status” that have not
been vetted with a rigorous IETF review [1].

The Internet’s “lower half”, developed from the
mid 1970’s to the late 1980’s, delivered the
foundations of DNS, IP, UDP, TCP and the
supporting protocols that made it all work. Each
foundational protocol is the result of a thorough,
multi-company, IETF design and review process
followed by an implementation by the principal
designers.

When Tim Berners-Lee opened the door to
WWW development, many new protocols were
hastily developed as companies raced to stake their
claims in the new frontier. This process produced an
Internet “upper half” built on a proliferation on non-
vetted protocols yielding a weak as well as
vulnerable layer.

Today’s Internet delivers benefits that enrich and
streamline our lives, enabling us to do more with
little expended effort. Expanding our horizons to
global scale, we are able to easily shop in the markets
of foreign countries, to maintain contact with friends
as they travel, and to collaborate with distant
colleagues. The benefits are substantial, as evidenced
by the fact that most of us opt for phones that double

as personal Internet portals (that we wouldn’t leave
home without!). However, today’s Internet also
exhibits many deficiencies and flaws. The most
obvious include an abundance of security holes, weak
consistency and poor performance.

1.1 Shortcomings and flaws

Network congestion, often trumping satisfaction
with frustration, is most apparent when a streaming
video or audio program comes to a screeching halt.
In these cases, the user, monitoring a real-time data
stream, becomes instantly aware of a network
shortcoming. However, in many instances network
congestion and extended response time latencies
remain hidden from the user. But these network
delays are readily apparent to distributed applications
and often substantially limit the scalability of such
applications. Consider that the NFS and CIFS
distributed filesystems can only support clients
within a campus sized geographical area. Although
geographically remote clients may access an NFS or
CIFS file server, it is rarely done because the
performance is so poor.

Another shortcoming ISPs and system
administrators wrestle with is the excessive
complexity of managing an infrastructure composed
of major software components from many vendors.
First, there are multiple operating systems and their
built-in protocol stacks running on various hardware
platforms. Then, application software, layered above
the operating systems, provides services such as NFS,
CIFS, AFP, DNS, LDAP, NIS, FTP, NTP, RDP, RIP,
RTMP, RTMFP, SIP, SLP, SMTP, IMAP, SSH,
etcetera. The misconfiguration of any one of these
can create a security hole. This security vulnerability
is further compounded by the fact that all of the
aforementioned software is in a constant state of flux
because the various vendors are continually updating
their products.

Stepping up from shortcomings to flaws: security
holes abound within the Internet. Reports of data
breaches within corporations and government

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6426
URI: https://hdl.handle.net/10125/64529
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/286030841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

agencies occur on an all-to-often basis. Identity theft
and ransom ware attacks are growing, putting all of
us at risk. We are aware of the problems. Yet, while
countermeasures are continuously deployed, these
attacks are still on the increase [2]. So, we keep our
fingers crossed and hope Internet evolution plugs the
holes before we get stung.

1.2 A Bit of history

These Internet deficiencies trace back to the
earliest days of the development of the World Wide
Web (early 1990s). At that time the capabilities of
both the NFS and CIFS distributed filesystems
limited operations to clients geographically close to
the file server (on the same campus) [3][4].

When Tim Berners-Lee created the first truly
global file sharing system, he could not call upon an
operating system’s filesystem to deliver file data to
very remote clients. So, he did what all good hackers
do, he did it himself! And, he did it in user space.

The CERN httpd web server executed as a user
space daemon. It responded to http browser requests
by calling upon the host’s filesystem to retrieve the
appropriate file data and then sent that data back over
the Internet to the browser. This client-server
program launched the Web.

Tim had developed a distributed hypertext system
that made published material very accessible. I
suspect this was his goal. Perhaps he envisioned far
more. Perhaps he envisioned the Internet as the
global communications and commerce infrastructure
it has become. However, today Tim is concerned
about the Internet’s current state: 30 years on, what’s
next #ForTheWeb? [a]

From the perspective of viewing the Internet as it
exists today, a major architectural flaw was
introduced at the point where the filesystem passes
file data back to a user space web server, and at that
point the web server assumes responsibility for the
global distribution of the file data. Filesystems are
very good at providing secure file access only to
authenticated users. But, when a filesystem delivers
file data to a web server, it relinquishes all control
over that data.

Regardless, Tim’s effort started the ball rolling.
The Web quickly became a powerful advertising
medium, which led to sales, which led to secure
transactions, and on and on to where the Internet is
today.

The foundations of the Internet standards
(primarily IP, UDP and TCP) enable any developer to
create new distributed application communication
protocols with relative ease. So, as the Internet
quickly evolved to provide an expanding array of

services, the thousands of developers working at
hundreds of companies were not hindered from
creating additional network protocols to support new
Internet applications.

This wide-open development process quickly
delivered a global Internet that delivers substantial
benefits to all. Unfortunately, it has the shortcomings
and flaws mentioned above. And these are difficult
to fix. In particular, it is not possible to secure an
extremely complex Internet when so many of its
components continue to produce zero-day security
vulnerabilities. Furthermore, the integrity and
allegiance of maintenance programmers and system
administrators distributed about the globe cannot be
ascertained or guaranteed. There are just too many
doors and too many locksmiths!

In summary, the Internet’s major faults are:
o Too many doors and too many locksmiths.
o Filesystems prematurely relinquishing control

over content to web servers.

1.3 However, there is a solution

A distributed filesystem overlay network provides
an ideal framework for operating in parallel with the
vulnerable layer of user level applications. The
overlay network rests upon a minimal set of pillars
anchored in the bedrock of TCP, IP, DNS and LDAP,
that is to say, what’s required to address, send and
receive messages.

The framework of a distributed filesystem
provides the essential ingredients required to
construct a fast, secure, consistent and highly
available global network.

Note the transition from distributed filesystem to
global network in the preceding paragraph. When the
distributed filesystem’s consistency mechanism is
capable of delivering sequential consistency [b] very
quickly, then distributed shared memory (DSM)
becomes a very effective method of communicating
across a network [5][6][7][8][9].

When the global network employs DSM for all
network communications, the “too many doors” issue
is addressed. There is only one door: the filesystem
API. And this door is fitted with a virtualized locking
mechanism that can be configured on demand. Every
object (and every directory leading to the object) is
allowed to specify the door lock used to secure
content. Locks can be developed in-house, purchased
from a third party, or selected from an assortment of
standard built-in locks.

There might still be “many locksmiths”
(especially if a sizeable third-party market develops
for locks), but not “too many” because the content
owner or system administrator is able to select locks

Page 6427

that are well vetted and trusted. And, for the
paranoid, the door can be configured with multiple
locks.

However, fixing the Internet’s second major fault
is a more daunting task. More than thirty years after
the introduction of the first version of NFS, both NFS
and CIFS file servers are still “stuck on campus”.
Stretching the geographic domain of a distributed
filesystem to operate at a global scale will require:
o A more efficient network protocol for projecting

consistent file data into geographically remote
sites.

o Hierarchies of intermediate file caching sites that
provide global access to file data at “local”
speeds.

o A hierarchical distributed consistency
mechanism that ensures the consistency of file
images throughout the file caching hierarchy.

o High availability capabilities based on the
hierarchical distributed consistency mechanism
and on redundant network links to provide
continuous file access as long as any operational
path exists between a client node and an origin
server.

A global distributed filesystem with these features
and capabilities, projecting consistent file images into
edge nodes, services file access requests at LAN
speeds. It is a superhighway for the Internet.

The filesystem API provides portals to the
superhighway for application programs, and is the
sole interface for both requesting file access and for
sourcing file data. The superhighway is middleware:
the same API that enables an application to request
file data is employed at the other end of the
superhighway to request the file data from an origin
file server.

Existing programs (MS Word, for example) will
not be able to distinguish this global filesystem from
their “traditional” local filesystems. So, these
programs can now directly locate and open any
document, anywhere, without the assistance of any
helper program. API extensions will be required to
exploit new filesystem capabilities, but these
extensions will not disrupt the operation of
unmodified application programs.

The superhighway is an overlay network. It will
not prevent any parts of the “old” Internet from
operating as before. Think of the “old” Internet as
the road network that existed in America in the
1940s, and the superhighway as the Interstate
Highway System developed in the 1950s and later.
The old roads are still available, but it makes a lot
more sense to use an interstate highway for a long
trip.

So, as the superhighway is deployed in stages and
grows in performance and capabilities, application
developers and maintainers are free to choose when
and where to merge onto the superhighway. They
will merge because, at some point, the reasons
become compelling.

The superhighway has not been built to date
because it requires an enormous amount of
distributed state information be kept synchronized,
and this is an extremely daunting task (see
Consistency and Availability on a Global Scale [c]).
Furthermore, the companies developing operating
systems, Internet software and application programs
all have a very parochial view; only considering
efforts in their marketplace can that increase their
revenues in the short term.

The field is wide open for a dedicated, very
talented, multi-discipline team to create the
superhighway that will transform the Internet. And,
to aid in that effort, there is a running head start: the
Cirrus Global Network.

2. Cirrus Global Network

Cirrus, an enormous geographically distributed
filesystem, envelopes the shared content of all file
servers worldwide into a common namespace and
provides highly available, consistent file access
services to all content. Wherever you travel in the
world, your data (and all other data) is here.

Cirrus is both a geographically distributed virtual
file server and a very fast data communications
overlay network. It is a superhighway system for the
Internet. Its freeways are fast, and enormous fully
automated warehouses may be placed at every
intersection and off-ramp.

 A Cirrus node stores an image of every file that
transits the site in its warehouse. Later, when
servicing a file access request, the Cirrus node first
checks its warehouse to determine if a current image
of the target file is present and, if so, uses that file
image to respond to the request. As a consequence,
file data retrieval is deceptively fast because fetching
data from warehouse DRAM or flash memory (or
even disk) is much faster than retrieving the same
data across a high latency WAN link
[10][11][12][13].

A distributed consistency mechanism
interconnects all warehouses, enabling each
warehouse to ensure it never references a file image
not consistent with the most recent version of the file.
Furthermore, the Cirrus distributed consistency
mechanism transparently overcomes network node
and link failures as required to deliver absolute file
consistency. Neither the client nor the server need be

Page 6428

made aware of the failure. They are informed only
when Cirrus cannot re-route around the failed
component(s). And this only happens when the
network has not been configured with sufficient
redundancy.

Cirrus is an overlay network, meaning it is
layered on top of the existing network infrastructure.
The underlying Internet layers are still there and can
be used as before. And the Cirrus overlay network is
not very crowded because all repeat traffic has been
removed.

A Cirrus node is a networked computing device
configured with the Cirrus code module. The device
may be a phone, laptop, computer, file server, or
switch. The Cirrus code is essentially the same for
all devices. When a Cirrus node initializes, Cirrus
configures itself appropriately for the host device. A
Cirrus phone might initialize with a 512 Gb
warehouse, whereas a backbone node could configure
itself with a two-stage warehouse of 4 Tb DRAM and
64 Tb of flash/disk. Every file that has recently
passed through the node would be immediately
accessible in DRAM, and files referenced in the last
three months may still be found in the flash or disk
portions of the warehouse.

The warehouse within a Cirrus phone operates in
the same manner. But, since the phone’s owner has
requested all file data passing through this edge
device, this warehouse ends up containing the 512
gigabytes of data most recently referenced through
this phone. Note that the user’s home folder is
origined on some big Cirrus file server somewhere
out there. This is the only location where the user’s
data resides. It may be of any size. It will always be
accessible, and it will never be lost. The 512
gigabytes in the phone’s warehouse is the most
recently referenced file data, regardless of source:
web surfing or home folder.

When the phone is misplaced, its warehouse may
be instructed to freeze or to delete all content. When
the user finds the phone or initializes a new one, the
warehouse simply refills itself by operating as
normal. All of the user’s devices “see” the same
home folder and can access any part of it. All user
devices remain synchronized at all times. That’s just
the way it works.

Cirrus nodes communicate as peers. Every node
is an access portal and every node may be an origin
server, “owning” and managing the content it
provides to the Cirrus network. However, the role of
origin server is usually left to big file servers deep
within the Cirrus network. These systems are
configured with substantial redundancy and are
managed to ensure their files are never lost and are
always accessible.

The phone’s main memory (DRAM) allocated to
the warehouse is Cirrus Global Network memory. Its
contents may be quickly accessed by the phone’s user
or applications, but that memory is owned and
controlled by Cirrus. The warehouse is the phone’s
exclusive high-performance portal into the Cirrus
network. In fact, the phone is part of the network.
After proper authentication, the phone’s warehouse
memory may be directly accessed via other Cirrus
nodes using the full set of filesystem API routines,
including memory mapped i/o. Multiple devices
scattered across the globe directly reading and
writing the same memory. This is the Internet of
Things!

2.1 Cirrus structure

Cirrus is comprised of millions of crystals (file
service proxy cache nodes). A crystal is a network
node with compute and storage resources configured
with the Crystal Module. Servers, gateways,
computers, laptops and phones may be crystal
configured, thereby weaving them into the Cirrus
network.

Every crystal contains a massive warehouse filled
with the content that has most recently passed
through the site. Cirrus uses this content to respond
quickly to network requests, sidestepping the need to
request data from origin servers. Warehouse content
inconsistent with its source is detected and discarded
before its use. Today’s enormous DRAM and disk
capacities allow content to “age” for weeks or even
months before it must be discarded.

Nearly identical Crystal Modules run efficiently
across the spectrum of hardware platforms. Picture
the Cirrus distribution system as a network of huge
pipes interconnecting servers within a rack, big pipes
connecting gateways and other servers in the room,
medium pipes (WAN links) connecting remote
intermediate crystals, and finally medium or small
pipes to edge devices.

Pipe sizes are dynamically scaled throughout the
distribution network based on the capabilities of the
network link, the size and type of file and the current
loading of the server-side endpoint. Endpoint
crystals negotiate pipe diameters each time a file
connection is established, much like Ethernet
endpoints may negotiate the MTU that is used
between them. Then a uniform distributed control
mechanism continuously monitors and directs traffic
throughout the distribution fabric.

All crystals incorporate both server and portal
capabilities. However, edge and intermediate
crystals may be restricted to providing file access

Page 6429

services (the portal role). A server crystal is an origin
server for at least some of the content it provides.

Crystals bind together in a recursive manner to
create virtual file servers that are then incorporated
into successively larger virtual file servers. At the
top there is but one server, the Cirrus Global
Filesystem.

NFS and CIFS file servers can also be Cirrus edge
devices, using NFS or CIFS protocols to project
Cirrus content over the “last mile” to unmodified
NFS and CIFS clients.

The filesystem depicted below shows the top-
level directories of the root disk of a Mac desktop
computer.

/Cirrus/com/Boeing is the path to the Boeing
server. This server, containing all of Boeing’s online
documents (public and private), is a geographically
distributed multi-homed virtual file server. It may

have thousands of access portals around the world,
relying on GeoDNS to direct access traffic to portals
close to users. All portals provide fast, consistent
read/write access to any document. Of course, a
thoroughly tested authentication mechanism
stringently controls what is accessible, or even
visible, to users.

/Cirrus/com/Boeing/Support/747/747-800-0076 is
the path to the folder containing all engineering and
maintenance documents related to a 747-800 aircraft
with serial number 0076. No matter where this
aircraft travels, its complete documentation set will
be available for reference and updating.

Higher-level Cirrus directories are forgetful by
design. When the /Cirrus/com directory is entered,
only the thirty most recently referenced sub-
directories are presented.

If a computer with the directory view depicted
were resolving the path
/Cirrus/com/Apple/Support/iPod.doc, it would fail to
find Apple in the com directory. But, since com is
forgetful, there is a means to remember.

com/Apple is parsed and Apple is resolved to an
IP address (DNS or LDAP) and a request is sent to
the virtual file server at that address to connect to the
root of its export tree. Finally, “Apple” replaces the
least recently used directory in the com folder and its
contents may be discovered and accessed.

Within Cirrus, folders scale from directories with
a few files to huge domains containing content from
around the globe. The higher-level folders are
actually domains and may be configured to perform
domain manager type functions. The terms “folder”
and “domain” may be used interchangeably, but
“domain” generally implies some administrative
control is being applied to inbound and/or outbound
network traffic.

2.2 Centralized control over distributed data

Two inviolate Cirrus principles are:
o Cirrus domain managers may exercise control

over all content within their domain throughout
the Cirrus global distribution network.

o Cirrus nodes are trustworthy.
These two principles provide the foundation for a

global filesystem that promiscuously caches file data
all over the world while ensuring content owners
retain complete control over their content.

Higher-level domains cannot remove restrictions
or controls placed on content by lower-level domains;
only additional restrictions or controls can be placed
on content. So, file access requests may be required
to run a gauntlet of challenges before getting to
sample any file data.

Page 6430

Owners of higher-level domains do not
necessarily own content within their sub-domains.
And yet, they may still exercise control over any
content within their domain.

Control over content is exercised by attaching
policy attributes to content in the form of extended
attributes. The consistency mechanism ensures all
sites know the policies, and all sites are faithful and
trustworthy.

Such an arrangement can be used to guarantee the
adherence to contractual, as well as complex DRM
models.

2.3 Extensibility

Cirrus is extremely extensible. For example,
when a domain manager specifies a third party
developed authentication module is to be used for
authentication, Cirrus will automatically load that
module at remote sites whenever necessary.

A major design and implementation goal is for
Cirrus to be as extensible as possible. Only the most
minimal framework and the distributed consistency
mechanism should be static. Replaceable modules
should eventually encompass network transfer
protocols, encryption/decryption modules,
authentication modules and presentation modules.

2.4 Security

Cirrus addresses network security in a manner
designed to satisfy the concerns of individuals,
corporations and governments. Recognizing that
back door fears will always be present with any
Cirrus controlled solution, Cirrus’ extensibility
features provide organizations with methods to
secure their data from end-to-end. Corporations, for
example, may use encrypted filesystems (in-house
developed or purchased from third party) and instruct
remote sites to use the corresponding authentication
and decryption modules. This approach removes any
possibility of back doors into unencrypted file data.
Only encrypted file data flows beyond the origin
filesystem. Data security is owned by the
corporation’s IT department, as it should be.

Third party developed software will quickly make
this level of security available to individuals. And, at
that point, governments around the world may decide
that encrypted communications over the Internet are
only permitted between authenticated parties whose
identities are verified,	 for example, by iris scan,
voice print, facial recognition, thumbprints or
suitable combinations of these. Thus, unauthenticated
encrypted traffic travelling on the Internet could be

detected and blocked. This will make it far more
difficult for those with nefarious intentions to
communicate.

Top-level domains such as /Cirrus/com are
public. Public domain portals do not usually exercise
much control over inbound/outbound traffic, but they
may if a need to do so is identified (such as blocking
encrypted network traffic). However, /Cirrus/com
sub-domains are the virtual file servers of ISPs,
organizations, corporations and governments. The
domain managers of these domains enforce a large
set of complex policies ensuring “outsiders” only
access content meant for public distribution while
allowing “insiders” to roam deeper into the domain’s
filesystem and to access and modify content as
permitted by their credentials.

Furthermore, the portals of these domains are
transition points from “inside” to “outside”. So, this
is often the boundary where file data is encrypted and
policy attributes are attached to the file.

2.5 Simplified administration

GUI based file managers render the configuration
and management of domains and domain managers
straightforward and intuitive. Right clicking on any
folder presents a list of the “doable” (in black)
interspersed with the “not doable” (in gray).
Selecting a complex “doable” feature may present an
appropriate form for the administrator to complete.
Placing the cursor over any of the “not doable” will
pop-up an explanation of why that feature is not
available or currently not possible.

This procedure is used throughout the
domain/folder hierarchy and all features and
capabilities are available at every level unless
enabling a particular feature just does not make
sense. This implies every folder is a domain and, as
such, it may exercise control over its content. So, if
desired, a folder near the bottom of a filesystem
hierarchy may be configured to demand extra
security measures be applied throughout the
distribution network when transporting, caching or
accessing its content.

Cirrus simplifies administration and management
tasks by removing as many distinctions as possible
between the levels of a global filesystem hierarchy.
It is easier to comprehend one container type than
three, four or five container types. If this is not
readily apparent, then please go online and check out
Microsoft’s Active Directory documentation.

Moreover, the GUI listing of black and gray
features (with pop-up explanations) assists users and
administrators in understanding the capabilities of a
domain/folder. While experienced system

Page 6431

administrators will be managing higher-level
domains, individuals with little or no technical
training will be administering their small part of the
Cirrus Global Filesystem. Therefore, the simplicity
of this user interface is quite important.

3. New perspectives on a global network

Cirrus transforms the Internet’s exterior,
fundamentally transforming the Internet’s appearance
and the methods by which distributed applications
communicate.

3.1 The user’s view

Cirrus presents both users and developers with a
new view. Starting with the user’s view, the figures
below depict the Internet before and after the full
deployment of the Cirrus Global Filesystem.

The figure on the left presents a view of the

Internet as containing a number of disjoint
filesystems (tan) attached to computers (blue) sharing
a common network.

The figure on the right shows a single filesystem.
The disjoint filesystems of before have been stitched
together into a single filesystem with a global
namespace.

Web browsers are designed to mask the
complexity of leaping across the Internet from
reference to reference. Consequently, for Web
surfers the new Internet looks a lot like the old. The
only visible difference is the browser’s URL bar
displays URLs starting with “file://” instead of
“http://”. (Browsers require no modifications; they
already operate in this manner.)

A more important difference, not immediately
visible, is all referenced content is completely
current. Content modifications performed anywhere
prior to a reference are included in the pages
displayed for that reference. For companies engaged
in Internet commerce, consistency of content creates
many opportunities to improve their online business
practices. Furthermore, the new Internet offers a

more secure and a more scalable content distribution
network.

For computer users, the “reach” of application
programs originally developed to execute on local
filesystems (Word, Acrobat, Photoshop, …) is now
global scale. MS Word, for example, can directly
open and edit any document anywhere (permissions
permitting, of course). The world’s complete
filesystem, contained within the Cirrus folder, is now
within the reach of applications developed before
there was an Internet.

In summary, the user’s view does not change. It
just gets better and far more expansive.

3.2 The developer’s view

The developer’s view of the Internet also gets
better, but more dramatically. The figures below
graphically show the fundamental nature of the
transformation wrought by Cirrus.

The after view shows a single filesystem, the

same set of computers and no network! Instead, the
computers are encompassed by a global filesystem.
According to this view, if the computers are to
communicate it must be through the filesystem.

Before the time of networked computing (before
Ethernet), timesharing systems were the “network”.
The larger timesharing systems could support
hundreds of simultaneous users. When users
collaborated while online, the timesharing system
was their network.

Applications and processes executing on the same
system communicated using inter-process
communication (IPC) mechanisms such as signals,
pipes, semaphores, sockets and shared memory. All
of these IPC mechanisms are in common use today.

With shared memory, two or more processes map
the same memory into their address space. Each
process executes a single system call instructing the
operating system to perform the mapping.
Afterwards, whenever any process modifies the
shared memory, that modification is immediately
visible to all other processes (if they bother to look).

Page 6432

No interaction with the host operating system is
required after the first system call.

However, when a process modifies shared
memory a signal is often used to quickly alert the
other processes. Otherwise, it might be a while
before the other processes notice the change.
Sending the signal does require a system call.

Cirrus builds upon the POSIX version of shared
memory, where the shared memory is a file residing
within a filesystem. And Cirrus extends the
filesystem interface, enabling the fast delivery of
notification messages to distributed processes
whenever their shared memory is modified (US
Patent 8,504,597, others pending). With Cirrus,
writing to shared memory incorporates the ability to
send a signal to other processes.

Distributed applications may use Cirrus’ extended
version of POSIX shared memory to communicate
quickly and efficiently. Distributed applications open
the same file for read and write access and then map
the file as shared memory. Now the applications can
exchange messages and data. The distributed
application is up and running and a file name was the
only link required to bind the applications together.

The distributed applications running on the
Internet today are excessively complicated because
when an application “gets distributed”, at least some
if not all of the networking fundamentals mentioned a
few paragraphs earlier come into play. That is a lot
of complexity. With Cirrus, all of that complexity is
still there. But Cirrus layers on a view and an
interface that hides the complexity not directly
related to the distributed application.

3.2 Beyond views

The streamlined views Cirrus presents to users
and developers is a major improvement over the
current Internet. But this improvement is not
substantial enough to warrant the use of the Cirrus
architecture. That justification rests on major
improvements in performance, scalability,
availability and security.

The Cirrus overlay network of millions of crystals
(huge DRAM/disk caches with strong consistency)
securely and intelligently transport and cache file
data on a demand basis. The same content never
traverses a network link twice (never being defined
as “at least a week, but possibly forever”). With
repeat traffic removed from the network and content
cached close to access points, the existing
infrastructure will deliver far better performance to
substantially more users.

Cirrus is a superhighway overlay for the Internet.
Every off-ramp may contain a huge, fully automated

warehouse containing the content that has most
recently passed through that site. And warehouses
never serve up stale content. This is the fully
automated part.

DRAM, flash and disk capacities continue to
increase while their prices decline, and non-volatile
main memories are on the horizon. Meanwhile the
cost of WAN links, in terms of both price and
increased response time latencies, remains high. So,
it may often be very cost effective to place
warehouses configured with a terabyte of DRAM and
twenty terabytes of disk at WAN off-ramps.

It is also very effective to locate warehouses in
user devices such as phones, pads and laptops. A 512
GB phone, for example, might allocate 256 gigabytes
for its internal warehouse. This might seem to be a
rather excessive allocation, but the warehouse
replaces the phone’s internal filesystem. The user’s
content resides in the Cirrus cloud and is accessible
and shared by all of the user’s devices.

Warehouses may also be preferentially located to
minimize Internet backbone traffic when retrieving
data to unburden border routers and gateways. In the
mature stages of deployment, the Cirrus network will
contain millions of warehouses. Content will be
stored all along the pathways through which it has
been previously accessed. Origin server content is
projected throughout the cloud and to its edges, close
to where the content is being accessed. Often, the
final warehouse is in a user’s device.

4. Digital rights and responsibilities

Cirrus’ security capabilities (Section 2.4) and its
ability to exercise centralized control over distributed
data (Section 2.2) endow Cirrus with facilities for
protecting individuals and safeguarding personal
data.

The Cirrus Global Network can be configured to:
1. Reflect that computer technology is a means of

amplifying an individual’s mind. Encrypted
personal data stored online may be considered
an extension of an individual’s personal
thoughts and be subject to Fourth Amendment
protections.

2. Store browsing history, search history and other
online activity histories in folders that belong
to, and are controlled by, the individual. The
individual may choose what is disclosed, when
it is disclosed and whether any payment is
required.

3. Not allow anonymous users to post articles or
send email.

4. Proactively detect and prevent many types of
malicious activity.

Page 6433

5. Cirrus today

The current Cirrus implementation is a Linux user
space application written in C. The core functionality
required to benchmark and verify global scale fast
access to consistent file data is operational. The high
availability capability (failover) is partially
implemented, but the design is complete. Eight US
patents have been granted and nine US patent
applications are being prosecuted.

Cirrus configured Amazon machine images
(AMIs) are available in the Asia Pacific and US West
regions of the AWS cloud. Preliminary
benchmarking shows a very substantial performance
advantage of Cirrus over NFSv4 when the “ping
latency” between nodes averages 125 milliseconds.

Three zip files are unzipped and directories, sub-
directories and files are created in exported
filesystems resident on a server in Tokyo. Then the
configure script (one of the files within the zip file) is
executed and it generates substantial filesystem
traffic as it generates a configuration file that controls
the “make” process. This “make” process compiles
source code files and creates object code files, and
then it links the object code files and creates an
executable program.

 Cirrus NFSv4

gz124src.zip 270kb
 unzip
 configure
 make

6.07 secs
0.60 secs
1.07 secs

83.56 secs
55.62 secs
37.05 secs

dds.tar.gz 512kb
 unzip (“tar xvf”)
 configure
 make

6.87 secs
8.07 secs
20.46 secs

50.28 secs
633.73 secs
247.65 secs

tar-1.28.tar.gz 4mb
 unzip (“tar xvf”)
 configure
 make

32.69 secs
42.08 secs
24.05 secs

702.45 secs
<-broken pipe to tk
 after ~ 2500 secs

Performance Comparison: Cirrus vs NFSv4
Tokyo Server and N. California Client

The important numbers to note are the extremely

fast Cirrus execution times in each phase of building
an executable program from a zip file residing on a
very remote file server. Cirrus achieves this
performance level by leveraging its distributed
consistency mechanism to drastically eliminate
network traffic while still maintaining POSIX
filesystem semantics. The Cirrus and NFSv4 servers
both executed on the same AWS instance at the same
time. All other aspects of the comparison runs were
fair and equal. Detailed information on these
comparison runs is presented at
http://www.billpitts.org/Cirrus_vs_NFSv4 [d].

Cirrus’ incredible performance stems from its
distributed consistency mechanism. After unzip (or
tar) creates the root directory for the files and
directories being unpacked, no other communication
with the server is required by the client system.
However, the root directory and its contents are
contained within a filesystem exported by the server
and may be recalled by the server at any time.

The time has arrived for Cirrus’ transition from
the development lab to the marketplace. A
substantial effort will be required to field a first
Cirrus product, which has not been determined at this
point. However, here are several potential
candidates:
o Deploy Cirrus file servers in Amazon, Google or

Azure clouds to invert the online backup business.
Your data does not reside on a computer at home
and need to be secured by Carbonite. It resides
securely in the cloud and is projected into all of
your devices. You can modify content on any
device, and that content instantly changes on all
devices. You can lose any device and not lose
any of your data. This is a pure software play.

o Launch a new file server company to compete
against NetApp, EMC, Dell and others. Very late
to this game, but geographically distributed file
servers binding together to create a single global,
highly available consistent filesystem is a
compelling feature. This could be a mostly
software play with Cirrus servers running in cloud
and Cirrus access portals running on real
hardware on clients’ premises.

o Start a company that develops and licenses global
filesystem software, Veritas style.
There are many promising avenues to consider.

Cirrus could become an opensource effort or it could
develop along a proprietary path. No decision has
been made at this point because, in all honesty, there
is no plan. A next step is to assemble the best
possible management team. Their first task will be to
identify the first Cirrus product and develop a plan
for developing and marketing it.

Meanwhile, Cirrus development activities will
continue. If you would like more information on
Cirrus and its current state of development see:
http://www.billpitts.org/Cirrus.[e](Password: Cirrus)

Page 6434

6. References

[1] Bradner, S., RFC2026, IETF, October, 1996.
[2] Information Week, Dark Reading
(https://www.darkreading.com/) [f]
[3] Haynes, E., RFC7530, IETF, March, 2015.
[4] Neville-Neil, G., “Bound by the Speed of Light”, ACM
Queue, Vol 8, Number 12.
[5] Khakidi Y., and M. Nelson, “The Spring Virtual
Memory System”, Sun Microsystems Laboratories, SMLI-
TR-93-09.
[6] Cheriton, D., “The V Distributed System”,
Communications of the ACM, Vol 31 Number 3 March
1988.
[7] Young, M., “Exporting a User Interface to Memory
Management from a Communication-Oriented Operating
System”, Technical Report, CMU-CS-89-202, Carnegie
Mellon University, November 1989.
[8] Rashid, R., A.Tevanian, M. Young, D. Golub, R. Baron,
D. Black, W. Bolosky, and J. Chew, “Machine-Independent
Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures”, IEEE Transactions on
Computers, Vol 37 August 1988.
[9] Abrosimov, V., F. Armand, and M. Ines Ortega, “A
Distributed Consistency Server for the CHORUS System”,
3rd Symposium on Experiences with Distributed
Multiprocessor Systems, SEDMS III pp. 129-150, March
1992.
[10] Pitts, W., “System for accessing distributed data cache
channel at each network node to pass requests and data”,
US Patent 5,611,049.
[11] Alonso, R. and M. Blaze, “Long-term Caching
Strategies for Very Large Distributed File Systems”,
Proceedings of the USENIX Summer Conference, pages 3 –
16, June 1991.
[12] Alonso, R. and M. Blaze, “Dynamic Hierarchical
Caching for Large-scale Distributed File Systems”,
Proceedings of the Twelfth International Conference on
Distributed Computing Systems, June 1992.
[13] Chankhunthod, A., P. Danzig, “A hierarchical Internet
Object Cache”, University of Colorado, Boulder, Computer
Science Technical Reports, CU-CS-766-95.

7. Hyperlinks

[a] https://webfoundation.org/2019/03/web-birthday-30/
[b] https://en.wikipedia.org/wiki/Sequential_consistency
[c] http://www.billpitts.org/Global_Consistency
[d] http://www.billpitts.org/Cirrus_vs_NFSv4
[e] http://www.billpitts.org/Cirrus
[f] https://www.darkreading.com/

Page 6435

