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Abstract 
 
Cirrus is a distributed filesystem, overlay network 

that extends the service domain of file servers to 
global scale without diminishing the quality of 
service.  Cirrus, developed over many years, is 
operational today and is ready for testing and 
benchmarking.  Cirrus’ distributed shared memory 
implementation provides a fast and secure method of 
transporting all network traffic within the overlay 
network. 
 
1. Introduction  
 

Since the introduction of the World Wide Web in 
the early 1990’s the Internet has evolved in a rather 
haphazard manner with too many organizations and 
individuals contributing extensions and new network 
protocols with “Informational Status” that have not 
been vetted with a rigorous IETF review [1].   

The Internet’s “lower half”, developed from the 
mid 1970’s to the late 1980’s, delivered the 
foundations of DNS, IP, UDP, TCP and the 
supporting protocols that made it all work.  Each 
foundational protocol is the result of a thorough, 
multi-company, IETF design and review process 
followed by an implementation by the principal 
designers. 

When Tim Berners-Lee opened the door to 
WWW development, many new protocols were 
hastily developed as companies raced to stake their 
claims in the new frontier.  This process produced an 
Internet “upper half” built on a proliferation on non-
vetted protocols yielding a weak as well as 
vulnerable layer. 

Today’s Internet delivers benefits that enrich and 
streamline our lives, enabling us to do more with 
little expended effort.  Expanding our horizons to 
global scale, we are able to easily shop in the markets 
of foreign countries, to maintain contact with friends 
as they travel, and to collaborate with distant 
colleagues. The benefits are substantial, as evidenced 
by the fact that most of us opt for phones that double 

as personal Internet portals (that we wouldn’t leave 
home without!).  However, today’s Internet also 
exhibits many deficiencies and flaws.  The most 
obvious include an abundance of security holes, weak 
consistency and poor performance. 
 
1.1 Shortcomings and flaws 
 

Network congestion, often trumping satisfaction 
with frustration, is most apparent when a streaming 
video or audio program comes to a screeching halt.  
In these cases, the user, monitoring a real-time data 
stream, becomes instantly aware of a network 
shortcoming.  However, in many instances network 
congestion and extended response time latencies 
remain hidden from the user.  But these network 
delays are readily apparent to distributed applications 
and often substantially limit the scalability of such 
applications.  Consider that the NFS and CIFS 
distributed filesystems can only support clients 
within a campus sized geographical area.  Although 
geographically remote clients may access an NFS or 
CIFS file server, it is rarely done because the 
performance is so poor. 

Another shortcoming ISPs and system 
administrators wrestle with is the excessive 
complexity of managing an infrastructure composed 
of major software components from many vendors.  
First, there are multiple operating systems and their 
built-in protocol stacks running on various hardware 
platforms.  Then, application software, layered above 
the operating systems, provides services such as NFS, 
CIFS, AFP, DNS, LDAP, NIS, FTP, NTP, RDP, RIP, 
RTMP, RTMFP, SIP, SLP, SMTP, IMAP, SSH, 
etcetera. The misconfiguration of any one of these 
can create a security hole.  This security vulnerability 
is further compounded by the fact that all of the 
aforementioned software is in a constant state of flux 
because the various vendors are continually updating 
their products. 

Stepping up from shortcomings to flaws: security 
holes abound within the Internet.  Reports of data 
breaches within corporations and government 
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agencies occur on an all-to-often basis.  Identity theft 
and ransom ware attacks are growing, putting all of 
us at risk.  We are aware of the problems. Yet, while 
countermeasures are continuously deployed, these 
attacks are still on the increase [2].  So, we keep our 
fingers crossed and hope Internet evolution plugs the 
holes before we get stung. 
 
1.2 A Bit of history  
 

These Internet deficiencies trace back to the 
earliest days of the development of the World Wide 
Web (early 1990s).  At that time the capabilities of 
both the NFS and CIFS distributed filesystems 
limited operations to clients geographically close to 
the file server (on the same campus) [3][4]. 

When Tim Berners-Lee created the first truly 
global file sharing system, he could not call upon an 
operating system’s filesystem to deliver file data to 
very remote clients.  So, he did what all good hackers 
do, he did it himself!  And, he did it in user space. 

The CERN httpd web server executed as a user 
space daemon.  It responded to http browser requests 
by calling upon the host’s filesystem to retrieve the 
appropriate file data and then sent that data back over 
the Internet to the browser.  This client-server 
program launched the Web. 

Tim had developed a distributed hypertext system 
that made published material very accessible.  I 
suspect this was his goal.  Perhaps he envisioned far 
more.  Perhaps he envisioned the Internet as the 
global communications and commerce infrastructure 
it has become.  However, today Tim is concerned 
about the Internet’s current state:  30 years on, what’s 
next #ForTheWeb? [a] 

From the perspective of viewing the Internet as it 
exists today, a major architectural flaw was 
introduced at the point where the filesystem passes 
file data back to a user space web server, and at that 
point the web server assumes responsibility for the 
global distribution of the file data.  Filesystems are 
very good at providing secure file access only to 
authenticated users.  But, when a filesystem delivers 
file data to a web server, it relinquishes all control 
over that data. 

Regardless, Tim’s effort started the ball rolling.  
The Web quickly became a powerful advertising 
medium, which led to sales, which led to secure 
transactions, and on and on to where the Internet is 
today. 

The foundations of the Internet standards 
(primarily IP, UDP and TCP) enable any developer to 
create new distributed application communication 
protocols with relative ease.  So, as the Internet 
quickly evolved to provide an expanding array of 

services, the thousands of developers working at 
hundreds of companies were not hindered from 
creating additional network protocols to support new 
Internet applications. 

This wide-open development process quickly 
delivered a global Internet that delivers substantial 
benefits to all.  Unfortunately, it has the shortcomings 
and flaws mentioned above.  And these are difficult 
to fix.  In particular, it is not possible to secure an 
extremely complex Internet when so many of its 
components continue to produce zero-day security 
vulnerabilities.  Furthermore, the integrity and 
allegiance of maintenance programmers and system 
administrators distributed about the globe cannot be 
ascertained or guaranteed.  There are just too many 
doors and too many locksmiths! 

In summary, the Internet’s major faults are: 
o Too many doors and too many locksmiths. 
o Filesystems prematurely relinquishing control 

over content to web servers. 
 
1.3 However, there is a solution 
 

A distributed filesystem overlay network provides 
an ideal framework for operating in parallel with the 
vulnerable layer of user level applications.  The 
overlay network rests upon a minimal set of pillars 
anchored in the bedrock of TCP, IP, DNS and LDAP, 
that is to say, what’s required to address, send and 
receive messages. 

The framework of a distributed filesystem 
provides the essential ingredients required to 
construct a fast, secure, consistent and highly 
available global network. 

Note the transition from distributed filesystem to 
global network in the preceding paragraph.  When the 
distributed filesystem’s consistency mechanism is 
capable of delivering sequential consistency [b] very 
quickly, then distributed shared memory (DSM) 
becomes a very effective method of communicating 
across a network [5][6][7][8][9]. 

When the global network employs DSM for all 
network communications, the “too many doors” issue 
is addressed.  There is only one door: the filesystem 
API.  And this door is fitted with a virtualized locking 
mechanism that can be configured on demand.  Every 
object (and every directory leading to the object) is 
allowed to specify the door lock used to secure 
content.  Locks can be developed in-house, purchased 
from a third party, or selected from an assortment of 
standard built-in locks. 

There might still be “many locksmiths” 
(especially if a sizeable third-party market develops 
for locks), but not “too many” because the content 
owner or system administrator is able to select locks 
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that are well vetted and trusted.  And, for the 
paranoid, the door can be configured with multiple 
locks. 

However, fixing the Internet’s second major fault 
is a more daunting task.  More than thirty years after 
the introduction of the first version of NFS, both NFS 
and CIFS file servers are still “stuck on campus”.  
Stretching the geographic domain of a distributed 
filesystem to operate at a global scale will require: 
o A more efficient network protocol for projecting 

consistent file data into geographically remote 
sites. 

o Hierarchies of intermediate file caching sites that 
provide global access to file data at “local” 
speeds. 

o A hierarchical distributed consistency 
mechanism that ensures the consistency of file 
images throughout the file caching hierarchy. 

o High availability capabilities based on the 
hierarchical distributed consistency mechanism 
and on redundant network links to provide 
continuous file access as long as any operational 
path exists between a client node and an origin 
server. 

A global distributed filesystem with these features 
and capabilities, projecting consistent file images into 
edge nodes, services file access requests at LAN 
speeds.  It is a superhighway for the Internet. 

The filesystem API provides portals to the 
superhighway for application programs, and is the 
sole interface for both requesting file access and for 
sourcing file data.  The superhighway is middleware: 
the same API that enables an application to request 
file data is employed at the other end of the 
superhighway to request the file data from an origin 
file server. 

Existing programs (MS Word, for example) will 
not be able to distinguish this global filesystem from 
their “traditional” local filesystems.  So, these 
programs can now directly locate and open any 
document, anywhere, without the assistance of any 
helper program.  API extensions will be required to 
exploit new filesystem capabilities, but these 
extensions will not disrupt the operation of 
unmodified application programs. 

The superhighway is an overlay network.  It will 
not prevent any parts of the “old” Internet from 
operating as before.  Think of the “old” Internet as 
the road network that existed in America in the 
1940s, and the superhighway as the Interstate 
Highway System developed in the 1950s and later.  
The old roads are still available, but it makes a lot 
more sense to use an interstate highway for a long 
trip. 

So, as the superhighway is deployed in stages and 
grows in performance and capabilities, application 
developers and maintainers are free to choose when 
and where to merge onto the superhighway.  They 
will merge because, at some point, the reasons 
become compelling. 

The superhighway has not been built to date 
because it requires an enormous amount of 
distributed state information be kept synchronized, 
and this is an extremely daunting task (see 
Consistency and Availability on a Global Scale [c]).  
Furthermore, the companies developing operating 
systems, Internet software and application programs 
all have a very parochial view; only considering 
efforts in their marketplace can that increase their 
revenues in the short term. 

The field is wide open for a dedicated, very 
talented, multi-discipline team to create the 
superhighway that will transform the Internet.  And, 
to aid in that effort, there is a running head start:  the 
Cirrus Global Network. 
 
2. Cirrus Global Network  
 

Cirrus, an enormous geographically distributed 
filesystem, envelopes the shared content of all file 
servers worldwide into a common namespace and 
provides highly available, consistent file access 
services to all content.  Wherever you travel in the 
world, your data (and all other data) is here. 

Cirrus is both a geographically distributed virtual 
file server and a very fast data communications 
overlay network.  It is a superhighway system for the 
Internet.  Its freeways are fast, and enormous fully 
automated warehouses may be placed at every 
intersection and off-ramp. 

 A Cirrus node stores an image of every file that 
transits the site in its warehouse.  Later, when 
servicing a file access request, the Cirrus node first 
checks its warehouse to determine if a current image 
of the target file is present and, if so, uses that file 
image to respond to the request.  As a consequence, 
file data retrieval is deceptively fast because fetching 
data from warehouse DRAM or flash memory (or 
even disk) is much faster than retrieving the same 
data across a high latency WAN link 
[10][11][12][13]. 

A distributed consistency mechanism 
interconnects all warehouses, enabling each 
warehouse to ensure it never references a file image 
not consistent with the most recent version of the file.  
Furthermore, the Cirrus distributed consistency 
mechanism transparently overcomes network node 
and link failures as required to deliver absolute file 
consistency.  Neither the client nor the server need be 
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made aware of the failure.  They are informed only 
when Cirrus cannot re-route around the failed 
component(s).  And this only happens when the 
network has not been configured with sufficient 
redundancy. 

Cirrus is an overlay network, meaning it is 
layered on top of the existing network infrastructure.  
The underlying Internet layers are still there and can 
be used as before.  And the Cirrus overlay network is 
not very crowded because all repeat traffic has been 
removed. 

A Cirrus node is a networked computing device 
configured with the Cirrus code module.  The device 
may be a phone, laptop, computer, file server, or 
switch.  The Cirrus code is essentially the same for 
all devices.  When a Cirrus node initializes, Cirrus 
configures itself appropriately for the host device.  A 
Cirrus phone might initialize with a 512 Gb 
warehouse, whereas a backbone node could configure 
itself with a two-stage warehouse of 4 Tb DRAM and 
64 Tb of flash/disk.  Every file that has recently 
passed through the node would be immediately 
accessible in DRAM, and files referenced in the last 
three months may still be found in the flash or disk 
portions of the warehouse. 

The warehouse within a Cirrus phone operates in 
the same manner.  But, since the phone’s owner has 
requested all file data passing through this edge 
device, this warehouse ends up containing the 512 
gigabytes of data most recently referenced through 
this phone.  Note that the user’s home folder is 
origined on some big Cirrus file server somewhere 
out there.  This is the only location where the user’s 
data resides.  It may be of any size.  It will always be 
accessible, and it will never be lost.  The 512 
gigabytes in the phone’s warehouse is the most 
recently referenced file data, regardless of source: 
web surfing or home folder. 

When the phone is misplaced, its warehouse may 
be instructed to freeze or to delete all content.  When 
the user finds the phone or initializes a new one, the 
warehouse simply refills itself by operating as 
normal.  All of the user’s devices “see” the same 
home folder and can access any part of it.  All user 
devices remain synchronized at all times.  That’s just 
the way it works. 

Cirrus nodes communicate as peers.  Every node 
is an access portal and every node may be an origin 
server, “owning” and managing the content it 
provides to the Cirrus network.  However, the role of 
origin server is usually left to big file servers deep 
within the Cirrus network.  These systems are 
configured with substantial redundancy and are 
managed to ensure their files are never lost and are 
always accessible. 

The phone’s main memory (DRAM) allocated to 
the warehouse is Cirrus Global Network memory.  Its 
contents may be quickly accessed by the phone’s user 
or applications, but that memory is owned and 
controlled by Cirrus.  The warehouse is the phone’s 
exclusive high-performance portal into the Cirrus 
network.  In fact, the phone is part of the network.  
After proper authentication, the phone’s warehouse 
memory may be directly accessed via other Cirrus 
nodes using the full set of filesystem API routines, 
including memory mapped i/o.  Multiple devices 
scattered across the globe directly reading and 
writing the same memory.  This is the Internet of 
Things! 
 
2.1 Cirrus structure  
 

Cirrus is comprised of millions of crystals (file 
service proxy cache nodes).  A crystal is a network 
node with compute and storage resources configured 
with the Crystal Module.  Servers, gateways, 
computers, laptops and phones may be crystal 
configured, thereby weaving them into the Cirrus 
network. 

Every crystal contains a massive warehouse filled 
with the content that has most recently passed 
through the site.  Cirrus uses this content to respond 
quickly to network requests, sidestepping the need to 
request data from origin servers.  Warehouse content 
inconsistent with its source is detected and discarded 
before its use.  Today’s enormous DRAM and disk 
capacities allow content to “age” for weeks or even 
months before it must be discarded. 

Nearly identical Crystal Modules run efficiently 
across the spectrum of hardware platforms.  Picture 
the Cirrus distribution system as a network of huge 
pipes interconnecting servers within a rack, big pipes 
connecting gateways and other servers in the room, 
medium pipes (WAN links) connecting remote 
intermediate crystals, and finally medium or small 
pipes to edge devices. 

Pipe sizes are dynamically scaled throughout the 
distribution network based on the capabilities of the 
network link, the size and type of file and the current 
loading of the server-side endpoint.  Endpoint 
crystals negotiate pipe diameters each time a file 
connection is established, much like Ethernet 
endpoints may negotiate the MTU that is used 
between them. Then a uniform distributed control 
mechanism continuously monitors and directs traffic 
throughout the distribution fabric. 

All crystals incorporate both server and portal 
capabilities.  However, edge and intermediate 
crystals may be restricted to providing file access 
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services (the portal role).  A server crystal is an origin 
server for at least some of the content it provides. 

Crystals bind together in a recursive manner to 
create virtual file servers that are then incorporated 
into successively larger virtual file servers.  At the 
top there is but one server, the Cirrus Global 
Filesystem. 

NFS and CIFS file servers can also be Cirrus edge 
devices, using NFS or CIFS protocols to project 
Cirrus content over the “last mile” to unmodified 
NFS and CIFS clients. 

The filesystem depicted below shows the top-
level directories of the root disk of a Mac desktop 
computer. 
 

 
 

/Cirrus/com/Boeing is the path to the Boeing 
server.  This server, containing all of Boeing’s online 
documents (public and private), is a geographically 
distributed multi-homed virtual file server.  It may 

have thousands of access portals around the world, 
relying on GeoDNS to direct access traffic to portals 
close to users.  All portals provide fast, consistent 
read/write access to any document.  Of course, a 
thoroughly tested authentication mechanism 
stringently controls what is accessible, or even 
visible, to users. 

/Cirrus/com/Boeing/Support/747/747-800-0076 is 
the path to the folder containing all engineering and 
maintenance documents related to a 747-800 aircraft 
with serial number 0076.  No matter where this 
aircraft travels, its complete documentation set will 
be available for reference and updating. 

Higher-level Cirrus directories are forgetful by 
design. When the /Cirrus/com directory is entered, 
only the thirty most recently referenced sub-
directories are presented.   

If a computer with the directory view depicted 
were resolving the path 
/Cirrus/com/Apple/Support/iPod.doc, it would fail to 
find Apple in the com directory.  But, since com is 
forgetful, there is a means to remember. 

com/Apple is parsed and Apple is resolved to an 
IP address (DNS or LDAP) and a request is sent to 
the virtual file server at that address to connect to the 
root of its export tree.  Finally, “Apple” replaces the 
least recently used directory in the com folder and its 
contents may be discovered and accessed. 

Within Cirrus, folders scale from directories with 
a few files to huge domains containing content from 
around the globe.  The higher-level folders are 
actually domains and may be configured to perform 
domain manager type functions.  The terms “folder” 
and “domain” may be used interchangeably, but 
“domain” generally implies some administrative 
control is being applied to inbound and/or outbound 
network traffic. 
 
2.2 Centralized control over distributed data 
 
Two inviolate Cirrus principles are: 
o Cirrus domain managers may exercise control 

over all content within their domain throughout 
the Cirrus global distribution network. 

o Cirrus nodes are trustworthy. 
These two principles provide the foundation for a 

global filesystem that promiscuously caches file data 
all over the world while ensuring content owners 
retain complete control over their content.   

Higher-level domains cannot remove restrictions 
or controls placed on content by lower-level domains; 
only additional restrictions or controls can be placed 
on content.  So, file access requests may be required 
to run a gauntlet of challenges before getting to 
sample any file data. 
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Owners of higher-level domains do not 
necessarily own content within their sub-domains.  
And yet, they may still exercise control over any 
content within their domain.   

Control over content is exercised by attaching 
policy attributes to content in the form of extended 
attributes.  The consistency mechanism ensures all 
sites know the policies, and all sites are faithful and 
trustworthy. 

Such an arrangement can be used to guarantee the 
adherence to contractual, as well as complex DRM 
models. 
 
2.3 Extensibility 
 

Cirrus is extremely extensible.  For example, 
when a domain manager specifies a third party 
developed authentication module is to be used for 
authentication, Cirrus will automatically load that 
module at remote sites whenever necessary. 

A major design and implementation goal is for 
Cirrus to be as extensible as possible.  Only the most 
minimal framework and the distributed consistency 
mechanism should be static.  Replaceable modules 
should eventually encompass network transfer 
protocols, encryption/decryption modules, 
authentication modules and presentation modules. 
 
2.4 Security 
 

Cirrus addresses network security in a manner 
designed to satisfy the concerns of individuals, 
corporations and governments.  Recognizing that 
back door fears will always be present with any 
Cirrus controlled solution, Cirrus’ extensibility 
features provide organizations with methods to 
secure their data from end-to-end.  Corporations, for 
example, may use encrypted filesystems (in-house 
developed or purchased from third party) and instruct 
remote sites to use the corresponding authentication 
and decryption modules.  This approach removes any 
possibility of back doors into unencrypted file data.  
Only encrypted file data flows beyond the origin 
filesystem.  Data security is owned by the 
corporation’s IT department, as it should be. 

Third party developed software will quickly make 
this level of security available to individuals.  And, at 
that point, governments around the world may decide 
that encrypted communications over the Internet are 
only permitted between authenticated parties whose 
identities are verified,	 for example, by iris scan, 
voice print, facial recognition, thumbprints or 
suitable combinations of these. Thus, unauthenticated 
encrypted traffic travelling on the Internet could be 

detected and blocked.  This will make it far more 
difficult for those with nefarious intentions to 
communicate. 

Top-level domains such as /Cirrus/com are 
public.  Public domain portals do not usually exercise 
much control over inbound/outbound traffic, but they 
may if a need to do so is identified (such as blocking 
encrypted network traffic).  However, /Cirrus/com 
sub-domains are the virtual file servers of ISPs, 
organizations, corporations and governments.  The 
domain managers of these domains enforce a large 
set of complex policies ensuring “outsiders” only 
access content meant for public distribution while 
allowing “insiders” to roam deeper into the domain’s 
filesystem and to access and modify content as 
permitted by their credentials. 

Furthermore, the portals of these domains are 
transition points from “inside” to “outside”.  So, this 
is often the boundary where file data is encrypted and 
policy attributes are attached to the file. 
 
2.5 Simplified administration 
 

GUI based file managers render the configuration 
and management of domains and domain managers 
straightforward and intuitive.  Right clicking on any 
folder presents a list of the “doable” (in black) 
interspersed with the “not doable” (in gray).  
Selecting a complex “doable” feature may present an 
appropriate form for the administrator to complete.  
Placing the cursor over any of the “not doable” will 
pop-up an explanation of why that feature is not 
available or currently not possible.   

This procedure is used throughout the 
domain/folder hierarchy and all features and 
capabilities are available at every level unless 
enabling a particular feature just does not make 
sense.  This implies every folder is a domain and, as 
such, it may exercise control over its content.  So, if 
desired, a folder near the bottom of a filesystem 
hierarchy may be configured to demand extra 
security measures be applied throughout the 
distribution network when transporting, caching or 
accessing its content. 

Cirrus simplifies administration and management 
tasks by removing as many distinctions as possible 
between the levels of a global filesystem hierarchy.  
It is easier to comprehend one container type than 
three, four or five container types.  If this is not 
readily apparent, then please go online and check out 
Microsoft’s Active Directory documentation. 

Moreover, the GUI listing of black and gray 
features (with pop-up explanations) assists users and 
administrators in understanding the capabilities of a 
domain/folder.  While experienced system 
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administrators will be managing higher-level 
domains, individuals with little or no technical 
training will be administering their small part of the 
Cirrus Global Filesystem.  Therefore, the simplicity 
of this user interface is quite important. 
 
3. New perspectives on a global network 
 

Cirrus transforms the Internet’s exterior, 
fundamentally transforming the Internet’s appearance 
and the methods by which distributed applications 
communicate. 
 
3.1 The user’s view 
 

Cirrus presents both users and developers with a 
new view.  Starting with the user’s view, the figures 
below depict the Internet before and after the full 
deployment of the Cirrus Global Filesystem. 
 

 
 
The figure on the left presents a view of the 

Internet as containing a number of disjoint 
filesystems (tan) attached to computers (blue) sharing 
a common network. 

The figure on the right shows a single filesystem.  
The disjoint filesystems of before have been stitched 
together into a single filesystem with a global 
namespace. 

Web browsers are designed to mask the 
complexity of leaping across the Internet from 
reference to reference.  Consequently, for Web 
surfers the new Internet looks a lot like the old.  The 
only visible difference is the browser’s URL bar 
displays URLs starting with “file://” instead of 
“http://”.  (Browsers require no modifications; they 
already operate in this manner.) 

A more important difference, not immediately 
visible, is all referenced content is completely 
current. Content modifications performed anywhere 
prior to a reference are included in the pages 
displayed for that reference.  For companies engaged 
in Internet commerce, consistency of content creates 
many opportunities to improve their online business 
practices.  Furthermore, the new Internet offers a 

more secure and a more scalable content distribution 
network. 

For computer users, the “reach” of application 
programs originally developed to execute on local 
filesystems (Word, Acrobat, Photoshop, …) is now 
global scale.  MS Word, for example, can directly 
open and edit any document anywhere (permissions 
permitting, of course).  The world’s complete 
filesystem, contained within the Cirrus folder, is now 
within the reach of applications developed before 
there was an Internet. 

In summary, the user’s view does not change.  It 
just gets better and far more expansive. 
 
3.2 The developer’s view 
 

The developer’s view of the Internet also gets 
better, but more dramatically.  The figures below 
graphically show the fundamental nature of the 
transformation wrought by Cirrus. 

 

 
 
The after view shows a single filesystem, the 

same set of computers and no network!  Instead, the 
computers are encompassed by a global filesystem.  
According to this view, if the computers are to 
communicate it must be through the filesystem. 

Before the time of networked computing (before 
Ethernet), timesharing systems were the “network”.  
The larger timesharing systems could support 
hundreds of simultaneous users.  When users 
collaborated while online, the timesharing system 
was their network. 

Applications and processes executing on the same 
system communicated using inter-process 
communication (IPC) mechanisms such as signals, 
pipes, semaphores, sockets and shared memory.  All 
of these IPC mechanisms are in common use today. 

With shared memory, two or more processes map 
the same memory into their address space.  Each 
process executes a single system call instructing the 
operating system to perform the mapping.  
Afterwards, whenever any process modifies the 
shared memory, that modification is immediately 
visible to all other processes (if they bother to look).  
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No interaction with the host operating system is 
required after the first system call. 

However, when a process modifies shared 
memory a signal is often used to quickly alert the 
other processes.  Otherwise, it might be a while 
before the other processes notice the change.  
Sending the signal does require a system call. 

Cirrus builds upon the POSIX version of shared 
memory, where the shared memory is a file residing 
within a filesystem.  And Cirrus extends the 
filesystem interface, enabling the fast delivery of 
notification messages to distributed processes 
whenever their shared memory is modified (US 
Patent 8,504,597, others pending).  With Cirrus, 
writing to shared memory incorporates the ability to 
send a signal to other processes. 

Distributed applications may use Cirrus’ extended 
version of POSIX shared memory to communicate 
quickly and efficiently.  Distributed applications open 
the same file for read and write access and then map 
the file as shared memory.  Now the applications can 
exchange messages and data.  The distributed 
application is up and running and a file name was the 
only link required to bind the applications together. 

The distributed applications running on the 
Internet today are excessively complicated because 
when an application “gets distributed”, at least some 
if not all of the networking fundamentals mentioned a 
few paragraphs earlier come into play.  That is a lot 
of complexity.  With Cirrus, all of that complexity is 
still there.  But Cirrus layers on a view and an 
interface that hides the complexity not directly 
related to the distributed application. 
 
3.2 Beyond views 
 

The streamlined views Cirrus presents to users 
and developers is a major improvement over the 
current Internet.  But this improvement is not 
substantial enough to warrant the use of the Cirrus 
architecture.  That justification rests on major 
improvements in performance, scalability, 
availability and security. 

The Cirrus overlay network of millions of crystals 
(huge DRAM/disk caches with strong consistency) 
securely and intelligently transport and cache file 
data on a demand basis.  The same content never 
traverses a network link twice (never being defined 
as “at least a week, but possibly forever”).  With 
repeat traffic removed from the network and content 
cached close to access points, the existing 
infrastructure will deliver far better performance to 
substantially more users. 

Cirrus is a superhighway overlay for the Internet.  
Every off-ramp may contain a huge, fully automated 

warehouse containing the content that has most 
recently passed through that site.  And warehouses 
never serve up stale content.  This is the fully 
automated part. 

DRAM, flash and disk capacities continue to 
increase while their prices decline, and non-volatile 
main memories are on the horizon.  Meanwhile the 
cost of WAN links, in terms of both price and 
increased response time latencies, remains high.  So, 
it may often be very cost effective to place 
warehouses configured with a terabyte of DRAM and 
twenty terabytes of disk at WAN off-ramps. 

It is also very effective to locate warehouses in 
user devices such as phones, pads and laptops.  A 512 
GB phone, for example, might allocate 256 gigabytes 
for its internal warehouse.  This might seem to be a 
rather excessive allocation, but the warehouse 
replaces the phone’s internal filesystem.  The user’s 
content resides in the Cirrus cloud and is accessible 
and shared by all of the user’s devices. 

Warehouses may also be preferentially located to 
minimize Internet backbone traffic when retrieving 
data to unburden border routers and gateways.  In the 
mature stages of deployment, the Cirrus network will 
contain millions of warehouses.  Content will be 
stored all along the pathways through which it has 
been previously accessed.  Origin server content is 
projected throughout the cloud and to its edges, close 
to where the content is being accessed.  Often, the 
final warehouse is in a user’s device. 
 
4. Digital rights and responsibilities 
 

Cirrus’ security capabilities (Section 2.4) and its 
ability to exercise centralized control over distributed 
data (Section 2.2) endow Cirrus with facilities for 
protecting individuals and safeguarding personal 
data. 

The Cirrus Global Network can be configured to: 
1. Reflect that computer technology is a means of 

amplifying an individual’s mind.  Encrypted 
personal data stored online may be considered 
an extension of an individual’s personal 
thoughts and be subject to Fourth Amendment 
protections. 

2. Store browsing history, search history and other 
online activity histories in folders that belong 
to, and are controlled by, the individual.  The 
individual may choose what is disclosed, when 
it is disclosed and whether any payment is 
required. 

3. Not allow anonymous users to post articles or 
send email. 

4. Proactively detect and prevent many types of 
malicious activity. 
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5. Cirrus today 
 

The current Cirrus implementation is a Linux user 
space application written in C.  The core functionality 
required to benchmark and verify global scale fast 
access to consistent file data is operational.  The high 
availability capability (failover) is partially 
implemented, but the design is complete.  Eight US 
patents have been granted and nine US patent 
applications are being prosecuted. 

Cirrus configured Amazon machine images 
(AMIs) are available in the Asia Pacific and US West 
regions of the AWS cloud.  Preliminary 
benchmarking shows a very substantial performance 
advantage of Cirrus over NFSv4 when the “ping 
latency” between nodes averages 125 milliseconds. 

Three zip files are unzipped and directories, sub-
directories and files are created in exported 
filesystems resident on a server in Tokyo.  Then the 
configure script (one of the files within the zip file) is 
executed and it generates substantial filesystem 
traffic as it generates a configuration file that controls 
the “make” process.  This “make” process compiles 
source code files and creates object code files, and 
then it links the object code files and creates an 
executable program.  

 
 Cirrus NFSv4 

gz124src.zip  270kb 
    unzip 
    configure 
    make 

 
6.07 secs 
0.60 secs 
1.07 secs 

 
83.56 secs 
55.62 secs 
37.05 secs 

dds.tar.gz      512kb 
    unzip (“tar xvf”) 
    configure 
    make 

 
6.87 secs 
8.07 secs 
20.46 secs 

 
50.28 secs 
633.73 secs 
247.65 secs 

tar-1.28.tar.gz  4mb 
    unzip (“tar xvf”) 
    configure 
    make 

 
32.69 secs 
42.08 secs 
24.05 secs 

 
702.45 secs 
<-broken pipe to tk 
  after ~ 2500 secs 

Performance Comparison:  Cirrus vs NFSv4 
Tokyo Server and N. California Client 

 
The important numbers to note are the extremely 

fast Cirrus execution times in each phase of building 
an executable program from a zip file residing on a 
very remote file server.  Cirrus achieves this 
performance level by leveraging its distributed 
consistency mechanism to drastically eliminate 
network traffic while still maintaining POSIX 
filesystem semantics.  The Cirrus and NFSv4 servers 
both executed on the same AWS instance at the same 
time.  All other aspects of the comparison runs were 
fair and equal.  Detailed information on these 
comparison runs is presented at 
http://www.billpitts.org/Cirrus_vs_NFSv4 [d]. 

Cirrus’ incredible performance stems from its 
distributed consistency mechanism.  After unzip (or 
tar) creates the root directory for the files and 
directories being unpacked, no other communication 
with the server is required by the client system.  
However, the root directory and its contents are 
contained within a filesystem exported by the server 
and may be recalled by the server at any time. 

The time has arrived for Cirrus’ transition from 
the development lab to the marketplace.  A 
substantial effort will be required to field a first 
Cirrus product, which has not been determined at this 
point.  However, here are several potential 
candidates: 
o Deploy Cirrus file servers in Amazon, Google or 

Azure clouds to invert the online backup business.  
Your data does not reside on a computer at home 
and need to be secured by Carbonite.  It resides 
securely in the cloud and is projected into all of 
your devices.  You can modify content on any 
device, and that content instantly changes on all 
devices.  You can lose any device and not lose 
any of your data.  This is a pure software play. 

o Launch a new file server company to compete 
against NetApp, EMC, Dell and others.  Very late 
to this game, but geographically distributed file 
servers binding together to create a single global, 
highly available consistent filesystem is a 
compelling feature.  This could be a mostly 
software play with Cirrus servers running in cloud 
and Cirrus access portals running on real 
hardware on clients’ premises. 

o Start a company that develops and licenses global 
filesystem software, Veritas style. 
There are many promising avenues to consider.  

Cirrus could become an opensource effort or it could 
develop along a proprietary path.  No decision has 
been made at this point because, in all honesty, there 
is no plan.  A next step is to assemble the best 
possible management team.  Their first task will be to 
identify the first Cirrus product and develop a plan 
for developing and marketing it. 

Meanwhile, Cirrus development activities will 
continue.  If you would like more information on 
Cirrus and its current state of development see:  
http://www.billpitts.org/Cirrus.[e](Password:  Cirrus) 
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