
Automating Cyberdeception Evaluation with Deep Learning

Gbadebo Ayoade† Frederico Araujo‡ Khaled Al-Naami†

Ahmad M. Mustafa† Yang Gao† Kevin W. Hamlen† Latifur Khan†

†The University of Texas at Dallas
{gbadebo.ayoade, khaled.al-naami, ahmad.mustafa, yang.gao, hamlen, lkhan}@utdallas.edu

‡IBM Research
frederico.araujo@ibm.com

Abstract
A machine learning-based methodology is proposed

and implemented for conducting evaluations of cyberde-
ceptive defenses with minimal human involvement. This
avoids impediments associated with deceptive research on
humans, maximizing the efficacy of automated evaluation
before human subjects research must be undertaken.

Leveraging recent advances in deep learning, the ap-
proach synthesizes realistic, interactive, and adaptive
traffic for consumption by target web services. A case
study applies the approach to evaluate an intrusion detec-
tion system equipped with application-layer embedded
deceptive responses to attacks. Results demonstrate that
synthesizing adaptive web traffic laced with evasive attacks
powered by ensemble learning, online adaptive metric
learning, and novel class detection to simulate skillful
adversaries constitutes a challenging and aggressive test
of cyberdeceptive defenses.

1. Introduction
Cyberdeceptive defenses are increasingly vital for

protecting organizational and national critical infrastruc-
tures from asymmetric cyber threats. Market forecasts
predict an over $2 billion industry for cyberdeceptive
products by 2022 [1], including major product releases by
Rapid7, TrapX, LogRhythm, Attivo, Illusive Networks,
Cymmetria, and many others in recent years [2].

These new defense layers are rising in importance
because they enhance conventional defenses by shifting
asymmetries that traditionally burden defenders back
on attackers. For example, while conventional defenses
invite adversaries to find just one critical vulnerability to
successfully penetrate the network, deceptive defenses
challenge adversaries to discern which vulnerabilities
among a sea of apparent vulnerabilities (many of them
traps) are real. As attacker-defender asymmetries increase
with the increasing complexity of networks and software,

deceptive strategies for leveling those asymmetries will
become increasingly essential for scalable defense.

Robust evaluation methodologies are a critical step in
the development of effective cyberdeceptions; however,
cyberdeception evaluation is frequently impeded by the
difficulty of conducting experiments with appropriate
human subjects. Capturing the diversity, ingenuity, and
resourcefulness of real APTs tends to require enormous
sample sizes of rare humans having exceptional skills
and expertise. Human deception research raises many
ethical dilemmas that can lead to long, difficult approval
processes [3]. Even when these obstacles are surmounted,
such studies are extremely difficult to replicate (and there-
fore to confirm), and results are often difficult to interpret
given the relatively unconstrained, variable environments
that are the contexts of real-world attacks.

Progress in cyberdeceptive defense hence demands ef-
ficient methods of conducting preliminary yet meaningful
evaluations without humans in the loop. Human subject
evaluation can then be reserved as a final, high-effort
validation of the most promising, mature solutions.

Toward this goal, this paper proposes and critiques a
machine learning-based approach for evaluating cyberde-
ceptive software defenses without human subjects. Al-
though it is extremely difficult to emulate human decision-
making automatically for synthesizing attacks, our ap-
proach capitalizes on the observation that in practice cyber
attackers rely heavily upon mechanized tools for offense.
For example, human bot masters rely primarily upon re-
ports delivered by automated bots to assess attack status
and reconnoiter targets, and they submit relatively simple
commands to the botnet to carry out complex killchains
that are largely mechanized as malicious software. In
such scenarios, deceiving the mechanized agents goes a
long way toward deceiving their human masters. Automat-
ing the machine-versus-machine part of the deception
evaluation is therefore both feasible and useful.

We therefore propose an evaluation methodology that
leverages machine learning to (1) generate realistic streams

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1925
URI: https://hdl.handle.net/10125/63975
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/286030294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

User
Attacker

User
Attacker

monitoring stream

embedded
deception

intrusion
detector audit stream

attack traces

User
Attacker

monitoring stream

embedded
deception

intrusion
detector audit stream

attack traces

Figure 1: Deceptive IDS training overview

of synthetic traffic comprised of benign interactions and
attacks based on real threat data and vulnerabilities, and
(2) automatically adapt the synthetic traffic in an effort to
evade observed (possibly deceptive) responses to the at-
tacks. The goal is to obtain the maximum evaluative power
of adaptive deceptive defenses without explicit human
adversarial engagement.1 As a case study, we apply our
technique to evaluate a network-level intrusion detection
system (IDS) equipped with embedded honeypots at the
application layer. Our contributions include:

• We present the design of a framework for replay and
generation of web traffic that statistically mutates
and injects scripted attacks into the output streams
to more effectively train, test, and evaluate deceptive,
concept-learning IDSes.

• We evaluate our approach on large-scale network and
system events gathered via simulation over a test bed
built atop production web software, including the
Apache web server, OpenSSL, and PHP.

• We propose an adaptive deception detector to cope
with adaptive defenses to detect outliers in the presence
of concept-evolving data streams.

Section 2 first characterizes deceptive defenses that
are suitable evaluation subjects of our approach. Section 3
details our technical approach, followed by our evaluation
case study and findings in Section 4. Related work is
highlighted in Section 5 and Section 6 concludes.

2. Background

2.1. Deception-enhanced Intrusion Detection

Our evaluation approach targets IDS defenses en-
hanced with deceptive attack-responses (e.g., [4, 5, 6]).
Figure 1 depicts the general approach. Unlike conventional
intrusion detection, deception-enhanced IDSes incremen-
tally build a model of legitimate and malicious behavior
based on audit streams and attack traces collected from
successful deceptions. The deceptions leverage user inter-
actions at the network, endpoint, or application layers to
solicit extra communication with adversaries and waste
1The implementation and datasets used in this paper are available in
https://github.com/cyberdeception/deepdig.

their resources, misdirect them, or gather intelligence.
This augments the classifier with security-relevant feature
extraction capabilities not available to typical network
intrusion detectors.

For example, honey-patches [4, 7, 8] introduce appli-
cation layer deceptions by selectively replacing software
security patches with decoy vulnerabilities. Attempted
exploits transparently redirect the attacker’s session to a
decoy environment where the exploit is allowed to succeed.
This allows the system to observe subsequent phases of
the attacker’s killchain without risk to genuine assets.

2.2. Challenges in IDS Evaluation

One of the major challenges for evaluation of deceptive
IDSes is the general inadequacy of static attack datasets,
which cannot react to deceptive interactions. Testing de-
ceptive defenses with these datasets renders the deceptions
useless, missing their value against reactive threats.

To mitigate this problem, a method of dynamic attack
synthesis is required. A suitable solution must learn a
model of how adversarial agents are likely to react based
on their reactions to similar feedback during real-world
interactions mined from real attack data. The accuracy of
such predictions depends upon the complexity of deceptive
responses and the decision logic of the adversaries. For
example, when defensive responses are binary (viz. accept
or reject) or a finite list of error messages, accurate predic-
tion is more feasible than when the output space is large
(e.g., arbitrary textual messages). Likewise, automated
agents tend to have high predictability (e.g., learnable by
emulating their software logic on desired inputs), whereas
human agents are far more difficult to predict.

3. Technical Approach
We aim to quantitatively assess the resiliency of adap-

tive, deceptive, concept-learning defenses for web services
against adaptive adversaries. Our approach therefore dif-
fers from works that measure only absolute IDS accuracy.
We first present our approach for generating web traf-
fic to replay normal and malicious user behavior, which
we harness to automatically generate training and test
datasets for attack classification (§3.1). We then discuss
the testing harness and analysis used to investigate the
effects of different attack classes and varying numbers of
attack instances on the predictive power and accuracy of
intrusion detection (§3.2).

3.1. Traffic Analysis

Our evaluation methodology seeks to create realistic,
end-to-end workloads and attack killchains to function-
ally test cyberdeceptive defenses embedded in commodity
server applications and process decoy telemetry for feature

Page 1926

https://github.com/cyberdeception/deepdig

embedded decep�onattack generator

attack automation

normal traffic generator

data sources
activities

Selenium client

exploits

normal
workload

attack
workload

BBC NewsBBC News

PIIPII

Electronic
Records

Electronic
Records

traffic replayaudit
pcap

audit stream

scap

pcap

attack labeling

attack traces

scap

pcap

normal
workload

decoy monitoring

a�ack traces

decoy hit abort

(a) traffic analysis

attack detectionattack modeling

feature extraction

classifiermodel update

monitoring stream
(unknown/test)

monitoring
data

alerts

audit stream
labeled attack traces

audit data
attack data

(b) data analysis

Figure 2: Overview of (a) automated workload generation for cyberdeception evaluation, and (b) deceptive IDS training and testing.

extraction and IDS model evolution. Figure 2a shows an
overview of our traffic generation framework. It streams
encrypted legitimate and malicious workloads onto end-
points enhanced with embedded deceptions, resulting
in labeled audit streams and attack traces (collected at
decoys) for training set generation.

Workload Generation. Rather than evaluating decep-
tion-enhanced IDSes with existing, publicly available
intrusion datasets (which are inadequate for the reasons
outlined in §2.2), our evaluation interleaves attack and nor-
mal traffic following prior work on defense-in-depth [8, 9],
and injects benign payloads as data into attack packets
to mimic evasive attack behavior. The generated traffic
contains attack payloads against realistic exploits (e.g.,
weaponizing recent CVEs for reconnaissance and initial
infection), and our framework automatically extracts la-
beled features from the monitoring network and system
traces to (re-)train the classifiers.

Legitimate workload. The framework uses both real
user sessions and automated simulation of various user
actions to compose legitimate traffic. Real interactions
comprise web traffic that is monitored and recorded as
audit pcap data in the targeted operational environment
(e.g., regular users in a local area network). The recorded
sessions are replayed by our framework and streamed as
normal workload onto endpoints embedding deceptions.

These regular data streams are enriched with simulated
interactions, which are created by automating complex
user actions on typical web application, leveraging Sele-
nium [10] to automate user interaction with web applica-
tions (e.g., clicking buttons, filling out forms, navigating a
web page). To create realistic workloads, our framework
feeds from online data sources, such as the BBC text
corpus [11], online text generators [12] for personally
identifiable information (e.g., usernames, passwords), and
product names to populate web forms. To ensure diversity,
we statistically sample the data sources to obtain user
input values and dynamically generate web content. For
example, blog title and body are statistically sampled from

the BBC text corpus, while product names are picked from
the product names data source.

Our implementation defines different customizable
user activities that can be repeated with varying data feeds
and scheduled to simulate different workload profiles
and temporal patterns. These include web page brows-
ing, e-commerce website navigation, blog posting, and
interacting with a social media web application. The
setup includes common web software stacks, such as CGI
web applications and PHP-based Wordpress applications
hosted on a monitored Apache web server.

Attack workload. Attack traffic is generated based on
real vulnerabilities. The procedure harnesses a collection
of scripted attacks (crafted using Bash, Python, Perl, or
Metasploit scripts) to inject malicious client traffic against
endpoints in the tested environment. Attacks can be easily
extended and tailored to specific test scenarios during
evaluation design, without modifications to the frame-
work, which automates and schedules attacks according
to parametric statistical models defined by the targeted
evaluation (e.g., prior probability of an attack, attack rates,
reconnaissance pattern).

In the case study reported in §4, multiple exploits for
recent CVEs were scripted to carry out different mali-
cious activities (i.e., different attack payloads), such as
leaking password files and invoking shells on the remote
web server. These vulnerabilities are important as attack
vectors because they range from sensitive data exfiltration
to complete control and remote code execution. The post-
infection payloads execute tasks such as tool acquisition,
basic environment reconnaissance (e.g., active scanning
with Nmap, passive inspection of system logs), password
file access, root certificate exfiltration, and attempts at
gaining access to other machines in the network.

Monitoring & Threat Data Collection. Our frame-
work tracks two lifecycle events associated with moni-
tored decoys: upon a decoy hit, the framework records
the timestamp that denotes the beginning of an attack
session (i.e., when a security condition is met). After the

Page 1927

corresponding abort event arrives (i.e., session disconnec-
tion), the monitoring component extracts the session trace
(delimited by the two events), labels it, and stores the trace
outside the decoy for subsequent feature extraction. Since
the embedded deceptions should only host attack sessions,
precisely collecting and labeling their traces (at both the
network and OS level) is effortless using this strategy.

Our approach distinguishes between three separate
input data streams: (1) the audit stream, collected at the
target honey-patched server, (2) attack traces, collected
at decoys, and (3) the monitoring stream, the actual test
stream collected from regular servers. Each of these
streams contains network packets and OS events captured
at each server environment. To minimize performance
impact, we use two powerful and efficient software moni-
tors: sysdig (to track system calls and modifications made
to the file system), and tcpdump (to monitor ingress and
egress of network packets). Specifically, monitored data
is stored outside decoy environments to avoid possible
tampering with collected data.

Our monitoring and data collection solution is designed
to scale for large, distributed on-premise and cloud deploy-
ments. The host-level telemetry leverages a mainstream
kernel module [13] that implements non-blocking event
collection and memory-mapped event buffer handling
for minimal computational overhead. This architecture
allows system events to be safely collected (without sys-
tem call interposition) and compressed by a containerized
user space agent that is oblivious to other objects and
resources in the host environment. The event data streams
originated from the monitored hosts are exported to a high-
performance, distributed S3-compatible object storage
server [14], designed for large-scale data infrastructures.

3.2. Data Analysis

Using the continuous audit stream and incoming at-
tack traces as labeled input data, our approach enables
concept-learning IDSes to incrementally build supervised
models that are able to capture legitimate and malicious
behavior. As illustrated in Figure 2b, the raw training set
(composed of both audit stream and attack traces) is piped
into a feature extraction component that selects relevant,
non-redundant features and outputs feature vectors—audit
data and attack data—that are grouped and queued for
subsequent model update. Since the initial data streams
are labeled and have been preprocessed, feature extraction
becomes very efficient and can be performed automati-
cally. This process repeats periodically according to an
administrator-specified policy.

Network Packet Analysis. Each packet transmitted and
received forms the basic unit of information flow for our
packet-level analysis. Bidirectional (Bi-Di) features are

extracted from the patterns observed on this network data.
Due to encrypted network traffic opacity, features are
extracted from TCP packet headers. Packet data length
and transmission time are extracted from network sessions.
We extract histograms of packet lengths, time intervals,
and directions. To reduce the dimension of the generated
features, we apply bucketization to group TCP packets
into correlation sets based on frequency of occurrence.

Uni-burst features include burst size, time, and count
of groups of packets transmitted consecutively in one
TCP window. Bi-burst features include time and size
attributes of consecutive groups of packets transmitted in
two consecutive TCP windows.

System Call Analysis. In order to capture events from
within the host, we extract features from system-level OS
events. Event types include open, read, select, etc., with
the corresponding process name. Leveraging N-Gram
feature extraction, we build a histogram of the N-Gram
occurrences. N-Gram is a contiguous sequences of system
call events. We consider four types of such N-Gram: uni-
events, bi-events, tri-events, and quad-events are sequences
of 1–4 consecutive system call events (respectively).

3.3. Classification

Ensemble SVM. After feature extraction, we leverage
SVM to classify both Bi-DI and N-Gram features. SVM
uses a convex optimization approach by mapping non-
linearly separated data to a higher dimensional linearly
distinguishing space. With the new linearly separable
space, SVM can separate positive (attack) and negative
(benign) training instances by a hyperplane with the maxi-
mum gap possible. Prediction is assigned based on which
side of the hyperplane an instance resides.

The models built from Bi-Di and N-Gram are com-
bined into an ensemble to obtain a better predictive model.
Rather than concatenating the features from both Bi-Di
and N-Gram, which has the drawback of introducing
normalization issues, the ensemble combines multiple
classifiers to obtain a better outcome by majority voting.
In our case, for each classification output by the classifier
models, we obtain the predicted label and the confidence
probability of each of the individual classifiers. The out-
come of the classifier with the maximum confidence is
picked for the predicted instance.

Confidence is rated using Platt scaling [15], which
uses the following sigmoid-like function to compute the
classification confidence:

P (y = 1|x) =
1

1 + exp (Af(x) +B)
(1)

where y is the label, x is the testing vector, f(x) is
the SVM output, and A and B are scalar parameters

Page 1928

learned using Maximum Likelihood Estimation (MLE).
This yields a probability measure of how much a classifier
is confident about assigning a label to a testing point.

Online Adaptive Metric Learning. OAML [16] is a
recently advanced deep learning approach that improves
instance separation by transforming input features to a
new latent space. This generates a new latent feature
space where similar instances are closer together and
dissimilar instances are separated farther. It extends online
similarity metric learning (OML) [17,18,19,20,21], which
employs pairwise and triplet constraints: A pairwise
constraint takes two dissimilar/similar instances, while a
triplet constraint (A,B,C) combines similar instances A
and B with a dissimilar instance C.

We choose OAML since non-adaptive OML usually
learns a pre-selected linear metric (e.g., Mahalanobis
distance [22]) that lacks the complexity to learn non-linear
semantic similarities among class instances, which are
prevalent in intrusion detection scenarios. In addition,
using a non-adaptive method results in a fixed metric
which suffers from bias to a specific dataset. OAML
overcomes these disadvantages by adapting its metric
learning model to accommodate more constraints in the
observed data. Its metric function learns a dynamic latent
space from the Bi-Di and N-Gram feature spaces, which
can include both linear and highly non-linear functions.

OAML leverages artificial neural networks (ANNs)
which consist of a set of hidden layers where the output is
fed as input to an independent metric-embedding layer
(MEL). The MELs output an n-dimensional vector in
an embedded space that clusters similar instances. The
importance of model generated by each MEL layer is
determined by a metric weight assigned to each MEL.
The output of this embedding is used as input to a k-NN
classifier, as detailed below.

Problem Setting. Let S = {(xt,x
+
t ,x

−
t)}Tt=1 be a

sequence of triplet constraints sampled from the data,
where {xt,x

+
t ,x

−
t } ∈ Rd, and xt (anchor) is simi-

lar to x+
t (positive) but dissimilar to x−

t (negative).
The goal of OAML is to learn a model F : Rd 7→ Rd′

such that ||F (xt)− F (x+
t)||2 � ||F (xt)− F (x−

t)||2.
Given these parameters, the objective is to learn a metric
model with adaptive complexity while satisfying the con-
straints. The complexity of F must be adaptive so that its
hypothesis space is automatically modified.

Overview. Consider a neural network with L hidden
layers, where the input layer and the hidden layer are
connected to an independent MEL. Each embedding layer
learns a latent space where similar instances are clustered
and dissimilar instances are separated.

Figure 3 illustrates our ANN. LetE` ∈ {E0, . . . , EL}
denote the `th metric model in OAML (i.e., the network

E0

E1

L1

L
(0

)

L0

L0 E2

L
(1

)
L

(2
)

Constraint Stream Adaptive Metric Network

Hedge

Hedge

Hedge

Total Loss

Loss

𝞪0

𝞪1

𝞪2

Figure 3: OAML network structure. Each layer Li is a linear
transformation output to a rectified linear unit (ReLU) activation.
Embedding layers Ei connect input or hidden layers. Linear
model E0 maps the input feature space to the embedding space.

branch from the input layer to the `th MEL). The simplest
OAML model E0 represents a linear transformation from
the input feature space to the metric embedding space.
A weight α(`) ∈ [0, 1] is assigned to E`, measuring its
importance in OAML.

For a triplet constraint (xt,x
+
t ,x

−
t) that arrives at

time t, its metric embedding f (`)(x∗
t) generated by E` is

f (`)(x∗
t) = h(`)Θ(`) (2)

where h(`) = σ(W (`)h(`−1)), with ` ≥ 1, ` ∈ N, and
h(0) = x∗

t . Here x∗
t denotes any anchor xt (positive x+

t

or negative x−
t instance), and h(`) is the activation of the

`th hidden layer. Learned metric embedding f (`)(x∗
t) is

limited to a unit sphere (i.e., ||f (`)(x∗
t)||2 = 1) to reduce

the search space and accelerate training.
During the training phase, for every arriving triplet

(xt,x
+
t ,x

−
t), we first retrieve the metric embedding

f (`)(x∗
t) from the `th metric model using Eq. 2. A local

loss L(`) for E` is evaluated by calculating the similarity
and dissimilarity errors based on f (`)(x∗

t). Thus, the
overall loss introduced by this triplet is given by

Loverall(xt,x
+
t ,x

−
t) =

L∑
`=0

α(`)L(`)(xt,x
+
t ,x

−
t) (3)

Parameters Θ(`), α(`), and W (`) are learned during
the online learning phase. The final optimization problem
to solve in OAML at time t is therefore:

minimize
Θ(`),W (`),α(`)

Loverall

subject to ||f (`)(x∗
t)||2 = 1,∀` = 0, . . . , L.

(4)

We evaluate the similarity and dissimilarity errors using
an adaptive-bound triplet loss (ABTL) constraint [16] to
estimate L(`) and update Θ(`), W (`) and α(`).

Novel Class Detection. Novel classes may appear at any
time in real-world monitoring streams (e.g., new attacks
and new deceptions). To cope with such concept-evolving
data streams, we include a deception-enhanced novel class
detector that extends traditional classifiers with automatic
detection of novel classes before the true labels of the
novel class instances arrive.

Page 1929

Data stream classification. Novel class detection observes
that data points belonging to a common class are closer to
each other (cohesion), yet far from data points belonging to
other classes (separation). Building upon ECSMiner [23,
24], our approach segments data streams into equal, fixed-
sized chunks, each containing a set of monitoring traces,
efficiently buffering chunks for online processing. When
a buffer is examined for novel classes, the classification
algorithm looks for strong cohesion among outliers in the
buffer and large separation between outliers and training
data. When strong cohesion and separation are found, the
classifier declares a novel class.

Training & model update. A new classifier is trained on
each chunk and added to a fixed-sized ensemble of M
classifiers, leveraging audit and attack instances (traces).
After each iteration, the set of M +1 classifiers are ranked
based on their prediction accuracies on the latest data
chunk, and only the first M classifiers remain in the en-
semble. The ensemble is continuously updated following
this strategy and thus modulates the most recent concept
in the incoming data stream, alleviating adaptability issues
associated with concept drift [23]. Unlabeled instances are
classified by majority vote of the ensemble’s classifiers.

Classification model. Each classifier in the ensemble
uses a k-NN classification, deriving its input features from
Bi-Di and N-Gram feature set models. Rather than storing
all data points of the training chunk in memory, which is
prohibitively inefficient, we optimize space utilization and
time performance by using a semi-supervised clustering
technique based on Expectation Maximization (E-M) [25].
This minimizes both intra-cluster dispersion and cluster
impurity, and caches a summary of each cluster (centroid
and frequencies of data points belonging to each class),
discarding the raw data points.

Feature transformation. To make the learned represen-
tations robust to partial corruption of the input patterns
and improve classification accuracy, abstract features are
generated from the original feature space during training
via a stacked denoising autoencoder (DAE) [26, 27] using
the instances of the first few chunks in the data stream.
Stacked DAE builds a deep neural network that aims to
capture the statistical dependencies between the inputs by
reconstructing a clean input from a corrupted version of
it, thus forcing the hidden layers to discover more robust
features (yielding better generalization) and prevent the
classifier from learning the identity (while preserving the
information about the input).

Figure 4 illustrates our approach. The first step creates
a corrupted version x̃ of input x ∈ Rd using additive
Gaussian noise [28]. In other words, a random value
vk is added to each feature in x: x̃k = xk + vk where
k = [1 . . . d] and vk ∼ N (0, σ2) (cf., [29]). The output

Classification (W, b)

inp
u

t

novel class
detection

encode... ...

encode ...

x

z

�

Denoising Autoencoder Training

inp
ut

noise encode... ...

decode

encode decode...

...

x x~

z

x

Figure 4: Overview of feature transformation

of the training phase is a set of weightsW and bias vectors
b. We keep the learned weights and baises to transform the
feature values of the subsequent instances of the stream.
After transforming the features of stream instances, these
are fed back into our novel class detector for training.

One-class SVM Ensemble. Our approach builds an
ensemble of one-class SVM classifiers. One-class SVM is
an unsupervised learning method that learns the decision
boundary of training instances and predicts whether an
instance is inside it. We train one classifier for each class.
For instance, if our training data consists of instances of
k classes, our ensemble must contain k one-class SVM
classifiers, each trained with one of the k class’s instances.

During classification, once a new unlabeled instance
x emerges, we classify it using all the one-class SVM
classifiers in the ensemble.

We build our ensemble using the first few chunks of
instances. During the classification of the stream, once
novel class’s instances emerge, we train a new one-class
SVM classifier with the new novel class instances. Then
we add the new classifier to the ensemble.

Attacker Evasion. To properly challenge deceptive
defenses, it is essential to simulate adversaries who adapt
and obfuscate their behaviors in response to observed
responses to their attacks. Attackers employ various
evasion techniques to bypass protections, including packet
size padding, packet timing sequence morphing, and
modifying data distributions to resemble legitimate traffic.

In our study, we considered three encrypted traffic
evasion techniques published in the literature: Pad-to-
MTU [30], Direct Target Sampling [31], and Traffic Mor-
phing [31]. Pad-to-MTU (pMTU) adds extra bytes to each
packet length until it reaches the Maximum Transmission
Unit (1500 bytes in the TCP protocol). Direct Target
Sampling (DTS) is a distribution-based technique that
uses statistical random sampling from benign traffic fol-

Page 1930

lowed by attack packet length padding. Traffic Morphing
(TM) is similar to DTS but it uses a convex optimization
methodology to minimize the overhead of padding. Each
of these are represented using the traffic modeling ap-
proach detailed in §3.1 and analyzed using the machine
learning approaches detailed above.

4. Case Study
As a case study of our evaluation approach, we ap-

plied it to test DEEPDIG [8], an IDS platform protecting
deceptively honey-patched [4] web servers. DEEPDIG is
an anomaly-based IDS that improves its detection model
over time by feeding attack traces that trigger honey-patch
traps back into a classifier. This core feature makes it
an advanced, intelligent defense that cannot be properly
evaluated using static datasets.

4.1. Implementation

We implemented our evaluation framework atop 64-bit
Linux. The data generation component is implemented us-
ing Python and Selenium [10]. The monitoring controller
is 350 lines of node.js code, and leverages tcpdump [32],
editcap [33], and sysdig [13] for network and system
call tracing and preprocessing. The machine learning
modules are implemented in Python using 1200 lines of
scikit-learn [34] code for data preprocessing and feature
generation. The novel class detection component com-
prises of about 250 lines of code to reference the Theano
deep learning library [35] and ECSMiner [23]. Finally,
the OAML module was implemented with 500 lines of
PyTorch [36] deep learning development framework code.

4.2. Experimental Setup

The traffic generator was deployed on a separate host to
avoid interference with the test bed server. To account for
operational and environmental differences, our framework
simulated different workload profiles (according to time
of day), against various target configurations (including
different background processes and server workloads),
and network settings, such as TCP congestion controls.
In total, we generated 42 GB of (uncompressed) network
packets and system events over a period of three weeks.
After feature extraction, the training data comprised 1800
normal instances and 1600 attack instances. Monitoring or
testing data consisted of 3400 normal and attack instances
gathered at unpatched web servers, where the distribution
of normal and attack instances varies per experiment.

In the experiments, we measured the true positive rate
(tpr), where true positive represents the number of actual
attack instances that are classified as attacks; false positive
rate (fpr), where false positive represents the number of
actual benign instances classified as attacks; accuracy

Table 1: Base detection rate percentages for an approximate
targeted attack scenario (PA ≈ 1%) [37]

Classifier tpr fpr acc F2 bdr
1SVM Bi-Di 77.78 41.23 68.96 59.69 1.87
1SVM N-Gram 84.88 5.11 88.57 88.38 14.47
VNG++ 46.81 0.83 69.25 52.31 36.29
Panchenko 47.69 0.17 70.04 53.24 73.92

Bi-Di OML 91.00 0.01 91.14 90.00 98.92
N-Gram OML 65.00 0.01 88.58 80.00 98.50
Bi-Di SVM 79.00 0.78 89.88 78.69 50.57
N-Gram SVM 92.42 0.01 96.89 93.84 99.05
Ens-SVM 93.63 0.01 97.00 94.89 99.06

(acc); and F2 score of the classifier, where the F2 score
is interpreted as the weighted average of the precision
and recall, reaching its best value at 1 and worst at 0. We
also calculated a base detection rate (bdr) to estimate the
success of intrusion detection (§4.3).

Model Parameters. In our experiments, SVM uses RBF
kernel with Cost 1.3 × 105, and gamma is 1.9 × 10−6.
OAML employs a ReLU network with n = 200, L = 1,
k = 5, learning rate of 0.3, lr decay of 1 × 10−4, and
ADAM optimizer. One-class SVM uses RBF kernel and
Nu = 0.5. Novel class detection uses the DAE denoising
autoencoder with L = 2, input feature size = 6000, first
layer = 2

3 of input size, second layer = 1
3 of input size, and

additive Gaussian noise where σ = 1.1.

4.3. IDS Evaluation

Using the dataset shown in Table 2, we trained and
assessed the individual performances of the classifiers
presented in §3.3 and two other state-of-the-art supervised
approaches, VNG++ [30] and Panchenko (P) [38], which
are widely used in the literature on encrypted traffic analy-
sis [39]. To obtain different baselines, 1SVM, VNG++,
and Panchenko were trained non-deceptively (i.e., trained
exclusively on normal data, as outlier detectors), while the
OML and SVM classifiers were trained atop DEEPDIG.

Table 1 summarizes our results, which confirm our
intuition that deceptively-trained IDSes are able to curtail
false positives and achieve better detection rates than non-
deceptive outlier detectors by 25.1–97.2%. Figure 5 also il-
lustrates the performances of the different IDS approaches
when trained incrementally with the first 1–16 attack
classes. Specifically, the results shown in Fig. 5(a)–(d) un-
derscore perennial challenges encountered in conventional
anomaly-based intrusion detection: reduced detection
accuracy and high incidence of false alarms. Conversely,
Ens-SVM is able to achieve high accuracy after being
trained with just a few attack classes (Fig. 5(e)–(f)).

Base Detection Analysis. We measure the success of
detecting intrusions assuming a realistic scenario in which
attacks are only a small fraction of the interactions. Al-

Page 1931

Table 2: Summary of attack workload
Attack Type Description Software

1 CVE-2014-0160 Information leak OpenSSL
2 CVE-2012-1823 System remote hijack PHP
3 CVE-2011-3368 Port scanning Apache

4–10 CVE-2014-6271 System hijack (7 variants) Bash
11 CVE-2014-6271 Remote Password file read Bash
12 CVE-2014-6271 Remote root directory read Bash
13 CVE-2014-0224 Session hijack and info leak OpenSSL
14 CVE-2010-0740 DoS via NULL pointer deref OpenSSL
15 CVE-2010-1452 DoS via request lacking path Apache
16 CVE-2016-7054 DoS via heap buffer overflow OpenSSL

17–22 CVE-2017-5941 System hijack (6 variants) Node.js

though risk-level attribution for cyber attacks is difficult
to quantify in general, we use the results of a recent
study [37] to approximate the probability of attack occur-
rence for targeted attacks against business and commercial
organizations. The study’s model assumes a determined
attacker leveraging one or more exploits of known vul-
nerabilities to penetrate a typical organization’s internal
network, and approximates the prior of a directed attack
as PA = 1% based on real-world threat statistics.

To estimate the success of the IDS, we use base detec-
tion rate (bdr) [40], expressed using the Bayes theorem:

P (A|D) =
P (A) P (D|A)

P (A) P (D|A) + P (¬A) P (D|¬A)]
(5)

where A and D are random variables denoting targeted
attacks and their detection by the classifier, respectively.

Table 1 presents the accuracy values and bdr for each
classifier, assuming P (A) = PA. The numbers expose
a practical problem with the defense that is typical in
intrusion detection research: Despite having high accu-
racy values, the IDS is ineffective when confronted with
extremely low base detection rates. This is in part due
to its inability to eliminate false positives in operational
contexts where the attacks are such a tiny fraction of the
total traffic available for learning.

4.4. Resistance to Attack Evasion Techniques

Table 3 shows the results of the deceptive defense
against our evasive attack techniques compared with re-
sults when no evasion is attempted. In each experiment,
the classifier is trained and tested with 1800 normal in-
stances and 1600 morphed attack instances.

Our evaluation shows that the tpr drops slightly and
the fpr increases with the introduction of attacker evasion
techniques. This shows that the system could resist some
of the evasions but not all. However, we can conclude
that an increase in the frequency of classifier retraining
may be needed to accommodate the drop in performance.
This may be a challenge as shorter time interval results in
fewer data points to retrain the classifier to maintain their
detection performance.

Table 3: Detection performance in adversarial settings
Evasion technique tpr fpr acc F2

No evasion 93.63 0.01 97.00 99.06
pMTU 75.84 0.96 85.78 79.57
DTS 82.78 6.02 87.58 84.91
TM 79.29 6.17 85.52 81.91

Table 4: Novel attack class detection performance
Features Classifier tpr fpr
Bi-Di OneSVM 44.06 31.88

DAE & OneSVM 76.54 85.61
ECSMiner 74.91 26.66
DAE & ECSMiner 84.73 0.01

N-Gram OneSVM 54.25 45.13
DAE & OneSVM 80.09 71.49
ECSMiner 76.36 34.89
DAE & ECSMiner 89.67 2.95

4.5. Novel Class Detection Accuracy

To test the ability of our novel class classifier to detect
novel classes emerging in the monitoring stream, we split
the input stream into equal-sized chunks. A chunk of
100 instances is classified at a time where one or more
novel classes may appear along with existing classes. We
measured the tpr (total incremental number of actual novel
class instances classified as novel classes) and the fpr
(total number of existing class instances misclassified as
belonging to a novel class).

Table 4 shows the results for OneSVM and ECSMiner.
Here ECSMiner outperforms OneSVM in all measures.
For example, for Bi-Di features, ECSMiner observes an
fpr of 26.66% while OneSVM reports an fpr of 31.88%,
showing that the binary-class nature of ECSMiner is
capable of modeling the decision boundary better than
OneSVM. To achieve better accuracy, we augmented
ECSMiner with extracted deep abstract features using
our stacked denoising autoencoder approach (DAE &
ECSMiner). For DAE, we used two hidden layers (where
the number of units in the first hidden layer is 2/3 of the
original features, and the number of units in the second
hidden layer is 1/3 of the first hidden layer units). For the
additive Gaussian noise, which is used for data corruption,
we assigned σ = 1.1. As a result, fpr reduced to a
minimum (0.01%), showing a substantial improvement
over ECSMiner. Notice that using the abstract features
with OneSVM does not help as shown in the table.

While effective in detecting concept drifts, our novel
class detection technique requires a (semi-)manual la-
beling of novel class instances. In our future work, we
plan to investigate how to automatically assign labels
(e.g., deceptive vs. non-deceptive defense response) to
previously unseen classes.

Page 1932

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

%

number of instances

OneSVM-Bi-Di OneSVM-N-Gram

(a) tpr

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%

number of attack classes

VNG++ P

(c) tpr

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%

number of attack classes

ens-SVM

(e) tpr

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

%

number of instances

OneSVM-Bi-Di OneSVM-N-Gram

(b) fpr

 0

 5

 0 2 4 6 8 10 12 14 16

%

number of attack classes

VNG++ P

(d) fpr

 0

 5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%

number of attack classes

ens-SVM

(f) fpr

Figure 5: Baseline evaluations: (a)–(b) OneSVM Bi-Di and OneSVM N-Gram, and (c)–(d) VNG++ and Panchenko. Classification:
(e)–(f) Ens-SVM classification tpr for 0–16 attack classes.

5. Related Work
Deception-enhanced IDS. Our evaluation methodology
is designed to assess adaptive, deception-enhanced IDS
systems protecting web services. Examples from the
literature include shadow honeypots [41, 42], Argos [43],
Honeycomb [44], and DAW [45].

Synthetic Attack Generation. Our approach was in-
spired by WindTunnel [9], which is a synthetic data gener-
ation framework for evaluating (non-deceptive) security
controls. WindTunnel acquires data from network, system
call, file access, and database queries and evaluates which
of the data sources provides better signal for detection
remote attacks. The DETER [46] testbed provides a frame-
work for designing repeatable experiments for evaluating
security of computer systems.

6. Conclusion
Effective evaluation of cyberdeceptive defenses is no-

toriously challenging. Our attempts to conduct such an
evaluation without resorting to human subjects experimen-
tation indicates that dynamic, synthetic attack generation
powered by deep learning is a promising approach. In
particular, a combination of ensemble learning leveraging
multiple classifier models, online adaptive metric learning,
and novel class detection suffices to model aggressively
adaptive adversaries who respond to deceptions in a va-
riety of ways. Our case study evaluating an advanced,
deceptive IDS shows that the resulting synthetic attacks
can expose both strengths and weaknesses in modern
embedded-deception defenses.

Acknowledgments
The research reported herein was supported in part by

ONR award N00014-17-1-2995; NSA award H98230-15-
1-0271; AFOSR award FA9550-14-1-0173; an endowment
from the Eugene McDermott family; NSF FAIN awards
DGE-1931800, OAC-1828467, and DGE-1723602; NSF
awards DMS-1737978 and MRI-1828467; an IBM fac-
ulty award (Research); and an HP grant. Any opinions,
recommendations, or conclusions expressed are those of
the authors and not necessarily of the aforementioned
supporters.

References

[1] Mordor Intelligence, “Global cyber deception market,”
tech. rep., Mordor Intelligence, 2018.

[2] G. Sadowski and R. Kau, “Improve your threat detec-
tion function with deception technologies,” Tech. Rep.
G00382578, Gartner, March 2019.

[3] D. Baumrind, “IRBs and social science research: The costs
of deception,” IRB: Ethics & Human Research, vol. 1,
no. 6, pp. 1–4, 1979.

[4] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzen-
beisser, “From patches to honey-patches: Lightweight
attacker misdirection, deception, and disinformation,” in
Proc. ACM Conf. Computer and Communications Security,
pp. 942–953, 2014.

[5] J. Avery and E. H. Spafford, “Ghost patches: Fake patches
for fake vulnerabilities,” in Proc. IFIP Int. Conf. ICT
Systems Security and Privacy Protection, pp. 399–412,
2017.

[6] S. Crane, P. Larsen, S. Brunthaler, and M. Franz, “Booby
trapping software,” in Proc. New Security Paradigms Work.,
pp. 95–106, 2013.

[7] F. Araujo, M. Shapouri, S. Pandey, and K. Hamlen, “Ex-
periences with honey-patching in active cyber security

Page 1933

education,” in Proc. Work. Cyber Security Experimentation
and Test, 2015.

[8] F. Araujo, G. Ayoade, K. Al-Naami, Y. Gao, K. W. Hamlen,
and L. Khan, “Improving intrusion detectors by crook-
sourcing,” in Proc. Annual Computer Security Applications
Conf., December 2019.

[9] N. Boggs, H. Zhao, S. Du, and S. J. Stolfo, “Synthetic
data generation and defense in depth measurement of
web applications,” in Proc. Int. Sym. Recent Advances in
Intrusion Detection, pp. 234–254, 2014.

[10] Selenium, “Selenium browser automation.” http://www.
seleniumhq.org, 2016.

[11] D. Greene and P. Cunningham, “Practical solutions to
the problem of diagonal dominance in kernel document
clustering,” in Proc. Int. Conf. Machine learning, pp. 377–
384, 2006.

[12] Mockaroo, “Product data set.” www.mockaroo.com, 2018.
[13] Sysdig, “Linux system exploration and troubleshooting

tool.” https://github.com/draios/sysdig, 2019.
[14] MinIO, “MinIO object storage.” https://min.io, 2019.
[15] J. C. Platt, Probabilities for SV Machines, ch. 5, pp. 61–74.

Neural Information Processing, MIT Press, 2000.
[16] Y. Gao, Y.-F. Li, S. Chandra, L. Khan, and B. Thuraising-

ham, “Towards self-adaptive metric learning on the fly,” in
Proc. Int. World Wide Web Conf., pp. 503–513, 2019.

[17] W. Li, Y. Gao, L. Wang, L. Zhou, J. Huo, and Y. Shi,
“OPML: A one-pass closed-form solution for online metric
learning,” Pattern Recognition, vol. 75, pp. 302–314, 2018.

[18] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large
scale online learning of image similarity through ranking,”
J. Machine Learning Research, vol. 11, pp. 1109–1135,
2010.

[19] P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman, “Online
metric learning and fast similarity search,” in Proc. Annual
Conf. Neural Information Processing Systems, pp. 761–768,
2008.

[20] R. Jin, S. Wang, and Y. Zhou, “Regularized distance metric
learning: Theory and algorithm,” in Proc. Annual Conf.
Neural Information Processing Systems, pp. 862–870,
2009.

[21] C. Breen, L. Khan, and A. Ponnusamy, “Image classi-
fication using neural networks and ontologies,” in Proc.
Int. Work. Database and Expert Systems Applications,
pp. 98–102, 2002.

[22] S. Xiang, F. Nie, and C. Zhang, “Learning a mahalanobis
distance metric for data clustering and classification,” Pat-
tern Recognition, vol. 41, no. 12, pp. 3600–3612, 2008.

[23] M. M. Masud, T. M. Al-Khateeb, L. Khan, C. Aggarwal,
J. Gao, J. Han, and B. Thuraisingham, “Detecting recurring
and novel classes in concept-drifting data streams,” in Proc.
Int. IEEE Conf. Data Mining, pp. 1176–1181, 2011.

[24] T. Al-Khateeb, M. M. Masud, K. M. Al-Naami, S. E.
Seker, A. M. Mustafa, L. Khan, Z. Trabelsi, C. Aggarwal,
and J. Han, “Recurring and novel class detection using
class-based ensemble for evolving data stream,” IEEE
Trans. Knowledge and Data Engineering, vol. 28, no. 10,
pp. 2752–2764, 2016.

[25] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thurais-
ingham, “A practical approach to classify evolving data
streams: Training with limited amount of labeled data,” in
Proc. Int. Conf. Data Mining, pp. 929–934, 2008.

[26] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol,
“Extracting and composing robust features with denois-
ing autoencoders,” in Proc. Int. Conf. Machine Learning,
pp. 1096–1103, 2008.

[27] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol, “Stacked denoising autoencoders: Learning
useful representations in a deep network with a local de-

noising criterion,” J. Machine Learning Research, vol. 11,
pp. 3371–3408, 2010.

[28] M. Chen, K. Q. Weinberger, F. Sha, and Y. Bengio,
“Marginalized denoising auto-encoders for nonlinear repre-
sentations,” in Proc. Int. Conf. Machine Learning, pp. 1476–
1484, 2014.

[29] Y. Bengio, Learning Deep Architectures for AI. Now
Foundations and Trends, 2009.

[30] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton,
“Peek-a-boo, I still see you: Why efficient traffic analysis
countermeasures fail,” in Proc. IEEE Sym. Security &
Privacy, pp. 332–346, 2012.

[31] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morph-
ing: An efficient defense against statistical traffic analysis,”
in Proc. IEEE Network and Distributed Security Sym.,
pp. 237–250, 2009.

[32] TcpDump, “Network packet capture and analyzer.” www.
tcpdump.org, 2019.

[33] Linux Manual, editcap: Edit and/or Translate the Format
of Capture Files, 2019. https://linux.die.net/man/1/editcap.

[34] Scikit-learn, “Scikit-learn: Machine learning in Python.”
https://scikit-learn.org, 2011.

[35] Theano Development Team, “Theano: A Python frame-
work for fast computation of mathematical expressions,”
arXiv, vol. abs/1605.02688, 2016.

[36] PyTorch, “An open source deep learning framework.” https:
//pytorch.org, 2019.

[37] D. Dudorov, D. Stupples, and M. Newby, “Probability anal-
ysis of cyber attack paths against business and commercial
enterprise systems,” in Proc. IEEE European Intelligence
and Security Informatics Conf., pp. 38–44, 2013.

[38] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Web-
site fingerprinting in onion routing based anonymization
networks,” in Proc. Annual ACM Work. Privacy in the
Electronic Society, pp. 103–114, 2011.

[39] T. Kovanen, G. David, and T. Hämäläinen, “Survey: Intru-
sion detection systems in encrypted traffic,” in Int. Conf.
Internet of Things, Smart Spaces, and Next Generation
Networks and Systems, pp. 281–293, 2016.

[40] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt,
“A critical evaluation of website fingerprinting attacks,” in
Proc. ACM Conf. Computer and Communications Security,
pp. 263–274, 2014.

[41] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis,
E. Markatos, and A. D. Keromytis, “Detecting targeted at-
tacks using shadow honeypots,” in Proc. USENIX Security
Sym., 2005.

[42] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, M. Poly-
chronakis, A. D. Keromytis, and E. P. Markatos, “Shadow
honeypots,” Int. J. Computer and Network Security, vol. 2,
no. 9, pp. 1–15, 2010.

[43] G. Portokalidis, A. Slowinska, and H. Bos, “Argos: An
emulator for fingerprinting zero-day attacks for advertised
honeypots with automatic signature generation,” ACM
SIGOPS Operating Systems Review, vol. 40, no. 4, pp. 15–
27, 2006.

[44] C. Kreibichi and J. Crowcroft, “Honeycomb – creating
intrusion detection signatures using honeypots,” ACM
SIGCOMM Computer Communication Review, vol. 34,
no. 1, pp. 51–56, 2004.

[45] Y. Tang and S. Chen, “Defending against internet worms:
A signature-based approach,” in Proc. Annual Joint Conf.
IEEE Computer and Communications Societies, pp. 1384–
1394, 2005.

[46] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph,
K. Sklower, R. Ostrenga, and S. Schwab, “Experience
with DETER: A testbed for security research,” in Proc.
Int. Conf. Testbeds and Research Infrastructures for the
Development of Networks and Communities, 2006.

Page 1934

http://www.seleniumhq.org
http://www.seleniumhq.org
www.mockaroo.com
https://github.com/draios/sysdig
https://min.io
www.tcpdump.org
www.tcpdump.org
https://linux.die.net/man/1/editcap
https://scikit-learn.org
https://pytorch.org
https://pytorch.org

	Introduction
	Background
	Deception-enhanced Intrusion Detection
	Challenges in IDS Evaluation

	Technical Approach
	Traffic Analysis
	Data Analysis
	Classification

	Case Study
	Implementation
	Experimental Setup
	IDS Evaluation
	Resistance to Attack Evasion Techniques
	Novel Class Detection Accuracy

	Related Work
	Conclusion

