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Abstract

In this paper, we study the Drone-Assisted Traveling
Salesman Problem with Robot Stations (TSP-D-RS).
Specifically, we assume that there is a single truck that
is equipped with a drone, and one or more potential
sites of stations that might accommodate some robots.
The TSP-D-RS asks for a valid route of the truck as
well as feasible utilization of the drone and robots,
such that all customers are served and minimal delivery
time (makespan) or cost is accomplished. We provide
a Mixed Integer Linear Programming formulation of
the problem and perform a detailed numerical study.
Through our numerical results, it is revealed that
our formulation can be effectively addressed by a
state-of-the-art solver. In addition, we demonstrate that
optimizing the makespan coincides with reduced costs.
In contrast, optimizing the operational costs might
increase the makespan significantly. Furthermore,
depending on the objective function, the operational
utilization of the vehicles differs.

1. Introduction

Drones are on the brink of achieving market maturity
as a commercial technology for civil applications in
many public and private sectors. In particular, drones
have already been successfully applied for monitoring
tasks in agriculture, energy, or infrastructure, and for the
delivery of packages (see [9] and references therein).
Besides that, to reduce the negative impact of traffic
in urban areas, there is a rising interest in using
autonomous delivery robots in last-mile delivery (see,
e.g., [2, 7, 16]). Due to the complementary nature of
trucks, drones, and robots such as, e.g., their different
speeds and carrying capacities, in a combined approach,
benefits might emerge in terms of improved delivery
times or reduced operational costs.

As a result, in this paper, we introduce the
Drone-Assisted Traveling Salesman Problem with Robot

Stations (TSP-D-RS)1 (see also Figure 1). To be
more specific, we study the interoperability of a
drone-assisted truck (refer to [1, 8]) with the possibility
of using remote robot stations (refer to [6, 15]) in an
integrated model. In this problem, we assume that a
truck with sufficient capacity, which carries a drone, is
located at a central depot. Moreover, we expect that a set
of customer locations, each of them with an equal type
of demand, as well as the potential sites of robot stations
are known in advance. A subset of stations, which might
accommodate a given number of autonomous robots,
can be visited by the truck. The TSP-D-RS asks for a
valid route of the truck, feasible operations of the drone,
and admissible use of the robots, such that all customers
are served and minimal delivery time (makespan) or cost
is accomplished. Notably, this problem is concerned
with various aspects of synchronization that determine
the interplay between the vehicles [3]. In other words,
the interactions between the truck, drone, and robots are
governed by several operational constraints.

The remainder of this paper is organized as follows.
We begin with a brief literature review in Section 2.
Afterwards, in Section 3, we clarify the assumptions
of the TSP-D-RS and provide a Mixed Integer Linear
Programming (MILP) formulation of the problem.
Computational experiments and their numerical results
are then presented in Section 4. Finally, in Section 5, we
draw concluding remarks on our work and derive some
possible implications for future research.

2. Related Literature

In [8] two novel problems were introduced, where
a truck is assisted by a single drone in the context of
last-mile delivery. The first one is called the Flying
Sidekick Traveling Salesman Problem (FSTSP). Here, if
the depot is remotely located from the demand centers,

1In this work, we make no strong assumptions about the technical
nature of drones and robots. However, for the sake of readability, in
our problem, we use the term drone to refer to the (unmanned aerial)
vehicle that travels along with the truck and the term robot to refer to
one of the (unmanned ground) vehicles that are assigned to a station.
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Figure 1. An illustration of TSP, TSP-D, TSP-DS, and TSP-D-RS solutions (from left to right): the paths of

the truck, drones, and robots are indicated by solid, dashed, and dotted lines, respectively. In each figure, the

depot and drone station (micro depot) are indicated by the square and star shapes; however, the robots may only

be utilized in the TSP-DS and TSP-D-RS.

it might be beneficial to have the drone working in close
collaboration with the truck. Therefore, for the FSTSP,
we assume that the drone is taken along by the truck
and might be launched at some locations to initiate a
multi-leg flight. In detail, the first leg consists of the
loaded drone departing from the truck to perform an
unattended delivery to a customer. Subsequently, as
the drone needs to be resupplied, the second (empty)
leg consists of the drone autonomously returning to
the truck. The objective is to serve all customers
and achieve minimal delivery time. Noteworthy, in
the FSTSP, the drone cannot be recovered at the same
location from which it was launched, i.e., round trips are
forbidden [8]. In contrast, in a closely related problem,
named the Traveling Salesman Problem with Drone
(TSP-D) [1], such a move is permitted (see Figure 1).
In recent years, a rapidly increasing number of research
papers have been published, which follow the general
idea of the FSTSP and TSP-D (see, e.g., [10, 11, 14, 16,
17]). These works address variants, provide theoretical
insights, or develop advanced computational methods
for solving problems involving a truck-drone tandem.

In contrast to the FSTSP, if the central depot
is located within a dense customer cluster, the
Parallel Drone Scheduling Traveling Salesman Problem
(PDSTSP) provides a different perspective [8]. In this
case, the truck and drone perform their actions more
independently from one another. Indeed, while the truck
follows a predefined tour to serve remote locations, the
drone might be used to fulfill requests that are located in
the area surrounding the depot. While the truck serves
the customers that might be inaccessible by the drone,
the latter continuously performs round trips: starting
from the depot, a customer is served, and the drone
resupplied afterwards. Hence, a much smaller degree
of synchronization is required in the PDSTSP [8].

In practice, it seems unlikely that the central depot
is located in close proximity to demand centers — in
order to overcome this issue, the Traveling Salesman

Problem with a Drone Station (TSP-DS) was introduced
as a generalization of the PDSTSP [6] (see also Figure
1). More precisely, apart from the central depot, where
the truck is initially located, it is assumed that there is
a single drone station (or micro depot), which provides
shelter to one or more drones. In the TSP-DS, as soon
as the drone station has been supplied by the truck,
the drones can start their operation in a manner that
mirrors the PDSTSP. In this problem, as in the FSTSP
and PDSTSP, the objective is to serve all customers with
minimal makespan, by effectively utilizing the drone
station. Specifically, when the number of drones that
are located at the station and their relative velocity are
sufficiently large, it is possible to determine from the
start which customers should be assigned to the truck
or drone, respectively. Moreover, under these special
assumptions, it is possible to decompose the problem
into two independent subproblems [6]: a Traveling
Salesman Problem to determine the route of the truck
and a Parallel Machine Scheduling Problem to create a
schedule for the drones that are located at the station.

Compared to existing large-scale central depots,
drone stations might be a low-cost infrastructure of
much smaller scale. Above all, they need to provide
shelter along with the infrastructure that is needed for
automated storage and retrieval of parcels as well as
recharging of drones. Consequently, it is conceivable
to incorporate the decision of locating (or selecting)
a drone station from several potential sites into the
problem at hand. Indeed, this was addressed in the
Traveling Salesman Drone Station Location Problem
(TSDSLP) that treats the routing of the truck, facility
location of the drone stations, and scheduling of the
drones in an integrated model [15]. In general, works
that follow the concept of the FSTSP conclude that a
drone must have a sufficiently high velocity to provide
significant improvements w.r.t. the makespan (see, e.g.
[1, 13]). In contrast, [6, 15] can show that drone stations
are also effective even when the speed of the drones is
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low compared to that of the truck.
To the best of our knowledge, at this point, there is

no work that combines the concepts of the FSTSP (or
TSP-D) with the general idea of using drone stations.
However, in an effort to further reduce delivery times
or costs, it might be beneficial to consider an integrated
delivery system that merges a (costly high-speed aerial)
drone that travels along with the truck with some
(cheaper ground-operated and slow-moving) robots that
are coordinated directly from stations.

3. Problem Definition

In this section, we formally introduce the TSP-D-RS,
which integrates the TSP with a drone (refer to [1, 8])
and the TSP with robot stations (refer to [6, 15]). To
be more precise, the TSP-D-RS combines the concepts
of a drone that travels along with a truck with the
possibility of the truck driver utilizing stations that
house unmanned autonomous units, e.g., robots, which
might be used for performing unattended deliveries.

For the description of the problem, suppose that the
truck-drone tandem is initially located at a central depot.
Furthermore, we accept the presence of one or more
robot stations that provide accommodation to a fixed
number of robots. In the TSP-D-RS, the objective is
to serve a given set of customers by utilizing the truck,
drone, and robots in such a way that all vehicles have
returned to their initial location as quickly as possible,
i.e., with minimal makespan. Alternatively, we consider
an objective that is based purely on the operational
cost. We accept the following assumptions regarding the
nature of the drone and robots [1, 6, 8, 15]:

• When the drone is launched from the truck, it
can serve exactly one customer and afterwards it
needs to return to the truck. Similarly, we ask
that a robot can deliver exactly one parcel to a
customer. Then, it also needs to return to the
station from which it was launched for a resupply.

• We assume that the drone and robots have a
limited endurance of Ed and Er time units per
operation, respectively. Moreover, we ask that the
batteries of the drone and robots are recharged (or
swapped) instantaneously after each operation.

• While the truck is restricted to follow the road
network, the drone and robots might be able to
use different routes with different speeds. Hence,
the times required to travel between two locations
can differ for the truck, drone, and robots.

• In this problem, we assume that at most C ∈ Z≥0
robot stations can be utilized by the truck (which
might be a managerial decision).

Let us present the notation that we are going to use
throughout the paper. Assume that a complete graph
G = (V,E) is given, where V is the set of vertices andE
is the set of edges. We identify several pairwise disjoint
subsets in V :

• {0, n + 1} ⊂ V marks the depot at the start and
end of the tour, respectively.

• VN = {1, . . . , n} ⊂ V is the set of all customers.
Moreover, VD ⊆ VN is the subset of customers
that may be served by either the truck, drone, or
robot. But, VN \ VD is the subset of customers
that may be served by truck only.

• VS = {s1, . . . , sm} ⊂ V is the set of potential
robot station sites that are present in the network.

Thus, V = {0}∪VN ∪VS ∪{n+ 1}, where 0 ≡ n+ 1.
To simplify the notation, we introduce two further sets
named VL = V \ {n+ 1} and VR = V \ {0} that mark
the locations from which a drone may be launched and
retrieved, respectively. A drone operation (or sortie) is
characterized by a triple (i, w, j) ∈ P , where P is the set
of all feasible operations and the following conditions
must be fulfilled [1, 8]:

• The location i, from which the drone is launched,
must be contained in the set VL.

• The customerw ∈ VD, that is served by the drone,
must be different from i.

• At any retrieval location j, w 6= j must hold. In
addition, if i = j, we call it a cyclic operation or
a round trip. Otherwise, if i 6= j ∈ VR, we call it
an acyclic or multi-leg operation.

By the parameters dij , dij , and d̃ij , for all i, j ∈ V ,
we define the distance required to travel from vertex i
to vertex j by truck, drone, and robot, respectively. In
a similar fashion, we use tij , tij , and t̃ij to define the
times required to travel from vertex i to j depending
on the mode of transportation. Furthermore, we assume
that tl (respectively, tr) time units are required to launch
(respectively, recover) the drone [8].

We assume that each robot station accommodates a
limited and identical number of robotsK := {1, . . . , k},
where |K| ∈ Z≥0. A robot delivery is characterized by a
triple (k, s, w) as follows: the robot k ∈ K starts from a
station s ∈ VS , fulfills a request at w ∈ VD, and returns
to the same station from which it was launched [6, 15].

3.1. Minimal Makespan TSP-D-RS

To formulate the TSP-D-RS, we use the decision
variables according to Table 1. Using this notation, we
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Table 1. Decision variables used for the TSP-D-RS formulation.
τ ∈ R≥0 defines the makespan. ai ∈ R≥0

∀i∈V
indicates the arrival time of the truck at i.

xij ∈ {0, 1}
∀i∈VL,j∈VR,i 6=j

is equal to 1, iff arc (i, j) is used by the
truck.

si ∈ R≥0
∀i∈V

states the earliest possible departure time of
the truck from i.

yiw ∈ {0, 1}
∀i∈VL,w∈VD,i 6=w

is equal to 1, iff the drone serves w from i,
i.e., arc (i, w) is the start of a multi-leg.

ri ∈ R≥0
∀i∈V

indicates the earliest possible release time of
the drone at i.

y′wj ∈ {0, 1}
∀w∈VD,j∈VR,w 6=j

is equal to 1, iff the drone returns fromw to
j, i.e., arc (w, j) is the end of a multi-leg.

si ∈ R≥0
∀i∈V

states the earliest possible departure time of
the drone from i.

ŷiw ∈ {0, 1}
∀i∈VL,w∈VD,i 6=w

is equal to 1, iff the drone performs a round
trip (i, w, i).

yi ∈ {0, 1}
∀i∈V

is equal to 1, iff the drone is available for an
operation at i.

zksw ∈ {0, 1}
∀k∈K,s∈VS ,w∈VD

is equal to 1, iff robot k serves customer w
from station s.

introduce the following MILP formulation (1) - (27):

min τ (1)
subject to sn+1 ≤ τ (2)

as +
∑
w∈VD

(t̃sw + t̃ws)z
k
sw ≤ τ : ∀s ∈ VS , k ∈ K (3)

In the TSP-D-RS, according to (1), the objective is to
minimize the makespan τ . The makespan has multiple
lower bounds which are given by the time at which the
truck-drone tandem has returned to the depot as well as
the time at which each robot station has concluded its
operation. These bounds are defined in constraints (2)
and (3) for all vehicle types.∑

j∈VR

x0j =
∑
i∈VL

xi,n+1 = 1 (4)

∑
i∈VL,
i6=h

xih =
∑
j∈VR,
h 6=j

xhj : ∀h ∈ VN ∪ VS (5)

The flow of the truck is defined through constraints (4)
and (5). More precisely, according to constraints (4),
the truck should commence and conclude its tour exactly
once. Moreover, for each vertex h, that is visited by the
truck in between, the flow must be conserved according
to constraints (5). ∑

i∈VL,
i 6=w

xiw = 1 : ∀w ∈ VN \ VD (6)

∑
i∈VL,
i6=w

(xiw + yiw + ŷiw)

+
∑
s∈VS

∑
k∈K

zksw = 1 : ∀w ∈ VD
(7)

In the TSP-D-RS, every customer must be served
exactly once. Constraints (6) cover the customers

that can be served exclusively by the truck. For the
remaining customers, constraints (7) guarantee that they
are served exactly once by either truck, drone, or robot.

yiw ≤
∑
j∈VR
i 6=j

xij : ∀i ∈ VL, w ∈ VD, i 6= w (8)

ŷiw ≤
∑
j∈VR
i 6=j

xij : ∀i ∈ VL, w ∈ VD, i 6= w (9)

y′wj ≤
∑
i∈VL
i 6=j

xij : ∀w ∈ VD, j ∈ VR, w 6= j (10)

∑
i∈VL
i 6=w

yiw =
∑
j∈VR
w 6=j

y′wj : ∀w ∈ VD (11)

The TSP-D-RS has intensive operational
synchronization requirements. For the truck and
the drone, these are handled through constraints (8)
- (10). To be more precise, through constraints (8)
(respectively, (9)), the truck is required to visit every
vertex i that serves as a starting point for a multi-leg
(respectively, round trip) operation. Furthermore, when
a drone is retrieved at some vertex j after a multi-leg
operation, the truck is required to visit the vertex due to
constraints (10). Finally, constraints (11) guarantee that
the flow is conserved during multi-leg operations.

ai ≤ si : ∀i ∈ V (12)

M(xij − 1) + si + tij ≤ aj
: ∀i ∈ VL, j ∈ VR, i 6= j

(13)

Temporal constraints for the truck are given through
constraints (12) and (13). The first set of constraints
applies the arrival time as a lower bound on the departure
time. In addition, the second set of constraints provides
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a lower bound on the arrival time at j for every arc (i, j)
that is used by the truck.

M(yiw − 1) + si + (tl + tiw) ≤ rw
: ∀i ∈ VL, w ∈ VD, i 6= w

(14)

M(y′wj − 1) + sw + (twj + tr) ≤ rj
: ∀w ∈ VD, j ∈ VR, w 6= j

(15)

For every multi-leg (i, w, j) performed by the drone,
constraints (14) and (15) provide lower bounds on the
release time of the drone at the customer and retrieval
location. These constraints incorporate the departure
time of the drone as well as the overhead times and flight
times associated with each leg.

ri +
∑
w∈VD,
i 6=w

(tl + tiw + twi + tr)ŷiw

≤ si : ∀i ∈ V
(16)

si + tl
∑
w∈VD,
i 6=w

yiw ≤ si : ∀i ∈ V (17)

aj + tr
∑
w∈VD,
w 6=j

y′wj ≤ rj : ∀j ∈ V (18)

Due to constraints (16), the earliest possible departure
time si of the drone depends on its release time ri at i
and the time spent performing round trips at the same
vertex. Moreover, the earliest possible departure time of
the truck is bounded by the earliest possible release time
of the drone. If a drone starts a multi-leg, the overhead
time to launch the drone must be applied which is
stated through constraints (17). Similarly, expressed
through constraints (18), when a drone is retrieved after
a multi-leg, the overhead time to retrieve the drone must
be considered before the drone can be released again.

(tiw + twi)ŷiw ≤ Ed : ∀i ∈ VL, w ∈ VD, i 6= w (19)∑
i∈VL,
i6=w,
i 6=j

tiwyiw + (rj − sw) ≤ Ed +M(1− y′wj)

: ∀w ∈ VD, j ∈ VR
(20)

Constraints (19) and (20) define the maximum
endurance for round trips and multi-leg drone flights.

(1− xij) + yi +
∑
w∈VD,
w 6=i
w 6=j

(−yiw + y′wj)

≥ yj : ∀i ∈ VL, j ∈ VR, i 6= j

(21)

Constraints (21) account for the availability of the drone:
for every arc (i, j) used by the truck, these constraints
place a valid upper bound on the variable yj depending
on the previous availability, i.e., yi, as well as starts of a
multi-leg at i and recoveries after a multi-leg at j.∑

w∈VD,
w 6=i

yiw ≤ yi : ∀i ∈ VL (22)

∑
w∈VD,
w 6=j

y′wj ≤ yj : ∀j ∈ VR (23)

∑
w∈VD,
i6=w

ŷiw ≤ nyi : ∀i ∈ VL (24)

If a drone is available, it can start or end a multi-leg
at most once and perform an arbitrary number of round
trips at the same location. This behavior is expressed
through constraints (22) - (24). At this point, we
have fully specified the interaction of the truck and
drone. Next, we will integrate the robot stations into
the TSP-D-RS.∑

i∈VL

∑
s∈VS
i 6=s

xis ≤ C (25)

∑
k∈K

∑
w∈VD

zksw ≤ n
∑
i∈VL,
i 6=s

xis : ∀s ∈ VS (26)

We say that a station is used if it is visited by the truck.
Through constraints (25), we require that at most C ∈
Z≥0 stations may be used. Furthermore, constraints (26)
guarantee that an arbitrary number of robot deliveries
might be performed at each station s that is visited by
the truck. We conclude our model with constraints (27)
that guarantee the maximum endurance to be respected
for all robot operations.

(t̃sw + t̃ws)z
k
sw ≤ Er : ∀k ∈ K, s ∈ VS , w ∈ VD (27)

Even though MILP (1) - (27) formulates the TSP-D-RS,
the linear relaxation can be improved by including some
simple yet highly effective valid inequalities (see [14]).
For the purpose of this work, we adapt them through
constraints (28) and (29) as follows:∑

i∈VL

∑
j∈VR,
i 6=j

tijxij

+
∑
i∈VL

∑
w∈VD,
i 6=w

tlyiw +
∑
w∈VD

∑
j∈VR,
w 6=j

try
′
wj

+
∑
i∈VL

∑
w∈VD,
i6=w

(tl + tiw + twi + tr)ŷiw ≤ τ

(28)

Page 1312



∑
i∈VL

∑
w∈VD,
i 6=w

(tl + tiw)yiw

+
∑
w∈VD

∑
j∈VR,
w 6=j

(twj + tr)y
′
wj

+
∑
i∈VL

∑
w∈VD,
i 6=w

(tl + tiw + twi + tr)ŷiw ≤ τ

(29)

These constraints state that the makespan is bounded
by the time spent traveling by either the truck or
drone and the time shared by both vehicles when
they perform synchronized actions: these actions occur
during the launches and recoveries associated with
multi-leg operations, i.e., whenever the overhead times
tl and tr are applied, as well as during round trips.

As a general remark, our model loosely follows
the MILP models presented in [6, 14, 15]. However,
with respect to modelling the interaction between the
truck and drone, the model provided in this paper
is far more compact. In particular, through the
introduction of constraints (21), we explicitly account
for the availability of the drone at every vertex without
tracking circumjacent drone operations (refer to [13,
14]). Through this procedure, we significantly reduce
the number of variables and constraints involved in the
formulation. In fact, we only require O(|V |2) variables
and constraints for modelling the problem. Furthermore,
in contrast to existing models (see, e.g., [6, 8, 15]),
we require no explicit subtour elimination constraints.
In fact, constraints (13) - (15) already eliminate the
possibility of any subtour. Finally, we need only a
few M -type constraints. To be more precise, these
constraints only appear in the temporal constraints (13)
- (15) and endurance constraints (20), which helps to
strengthen the linear relaxation further. As a result of
these improvements, to the best of our knowledge, at
this time, we are the first to effectively solve a multitude
of instances with 10 or more customers to optimality
within acceptable runtime and to approach instances
with up to 20 customers reasonably well through a
general-purpose MILP solver (refer to Section 4).

3.2. Minimal Operational Cost TSP-D-RS

As an alternative to the makespan minimization, we
might be interested in cost minimization instead. While
minimizing the cost, we might be interested in the
variable cost-per-mile that might be associated with the
truck, drone, and every robot. To this end, we might use

the following objective function:

min ct
∑
i∈VL

∑
j∈VR
i 6=j

dijxij

+cd
∑
i∈VL

∑
w∈VD,
i 6=w

((
diw + dwi

)
ŷiw + diwyiw

)
+cd

∑
w∈VD

∑
j∈VR,
w 6=j

dwjy
′
wj

+cr
∑
s∈VS

∑
k∈K

∑
w∈VD

(d̃sw + d̃ws)z
k
sw

(30)

In this objective function, the parameters ct, cd, cr ∈ R+

determine the relative cost for each mile that the truck,
drone, and robots are in operation, respectively.

As a concluding remark, as the TSP-D-RS (with
either objective) generalizes the NP-hard Traveling
Salesman Problem, the TSP-D-RS is also NP-hard.

4. Computational Experiments and their
Numerical Results

We implemented the model (1) - (29) and solved it
by the MILP solver Gurobi Optimizer 8.1.0 [4] with a
time limit of 30 minutes. We carried out all experiments
on compute nodes in an Intel Xeon E5-2670 CPU cluster
where each node was allocated 8 GB of RAM.

4.1. Instance Generation

Several different assumptions have been made with
regards to the technical coefficients that apply to trucks,
drones, and robots. For trucks, these assumptions
include speeds that range from 15 . . . 35 mph (refer to
[2, 5, 7, 8, 12]) and, as drones are not exposed to the
limitations of the road network, it is commonly assumed
that they move faster than trucks. In the literature, for
drones, the speed varies from 25 . . . 50 mph along with
15 . . . 40 minutes of flight time (refer to [5, 7, 8, 12]).

Generally, when it is of interest to minimize the
makespan, faster drones are more favorable; however,
the marginal utility is diminishing as we speed up drones
[1, 14]. For the purpose of this work, we conservatively
assume that we have a truck that moves at 20 mph and
a drone that moves at 25 mph with a maximum flight
time of 20 minutes. Moreover, we differentiate between
robots that move close to walking speed, i.e., 5 mph, and
faster robots that move at 15 mph [2, 15]. For both cases,
we set the robots’ endurance to 40 minutes. Further, we
assume that the Manhattan distance applies to the truck
while the Euclidean distance applies to the drone and
robots. This is a reasonable assumption to make because
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Table 2. Summary of the technical coefficients that are used for studying the TSP-D-RS

Scenario
Truck Drone Robots

vt [mph] ct vd [mph] ED [min] cd vr [mph] Er [min] cr

Slow robot 20 1 25 20 1/10 5 40 1/20
Fast robot 20 1 25 20 1/10 15 40 1/20

drones might move as the crow flies and robots might
follow routes that are inaccessible to the truck such as,
e.g., pedestrian zones. For both of these networks, we
assume that the distances are symmetric. Finally, we
set the overhead times associated with a launch and
recovery of the drone to tl = tr = 1 minute [5, 8].

To the best of our knowledge, there is no work
that quantifies the variable cost-per-mile associated with
trucks in comparison to (delivery) drones and robots.
However, related works consider drones to be 10 to 25
times more cost-efficient than trucks (refer to [5, 12]). In
this study, we accept these assumptions and use the cost
ratios ct = 1, cd = 1/10, cr = 1/20 for the minimal
cost objective in (30). Table 2 contains the technological
coefficients, under which the problem is studied.

Apart from the problem parameters, an instance
is specified by a graph G(V,E) that determines the
locations of the depot, stations, and customers as well as
the distances between them. As the TSP-D-RS is a new
concept, we generated several graphs that match to the
problem.2 More precisely, for each number of customers
n ∈ {10, 15, 20}, we generated 10 instances as follows:

• The locations of the depot and n customers have
been randomly placed within an 8×8 mile square
region [8].

• For comparative purposes, we placed two robot
stations that might be used. The first robot station
is placed randomly within the square grid. The
second robot station is placed at the coordinates
(xs, ys) that depend on the locations of the n
customers according to formula (31). This station
might be located closer to customer clusters.

(xs, ys) :=
1

n

∑
w∈VN

(xw, yw) (31)

Afterwards, we solved these instances in four different
ways. As a baseline, we treated them as a TSP. For
comparative purposes, we also solved them (under the
minimal makespan and cost objectives) as a TSP-D, i.e.,
when C = 0. For the TSP-D-RS, under the minimal
makespan objective, we did the experiments with C ∈
{1, 2} and |K| ∈ {1, 2}. In contrast, under the minimal
cost objective, as no fixed cost is incurred for deploying
the second robot, we only tested with |K| = 1.

2See https://doi.org/10.5281/zenodo.3446016

For the TSP-D-RS, based on our choice of
parameters C, |K|, and the two different scenarios
portrayed in Table 2, we have 23 parameter vectors
for the minimal makespan objective and 22 parameter
vectors for the minimal cost objective. Therefore,
given the 30 different problem instances, we have a
total of 30 TSP, 60 TSP-D, as well as 120 minimal
cost TSP-D-RS and 240 minimal makespan TSP-D-RS,
which are all solved by the MILP solver. Notably,
for a problem that is solved according to the minimal
makespan objective, we also calculate the cost that
can be associated with the solution. Analogously,
under the minimal cost objective, we also compute the
corresponding makespan. For solving the instances, we
assumed that VN coincides with VD, i.e., all customers
are drone- and robot-eligible. From a computational
point of view, due to the complicating constraints (7),
this is the most challenging case. As the decision of
whether a customer should be served by the truck, drone,
or robot must be made for all customers, VN = VD
provides the largest solution space.

4.2. Numerical Results

In this section, we provide the numerical results of
our computational study. In particular, we comment on
the performance of the MILP solver in addressing the
proposed instances and the potential makespan and cost
savings. Afterwards, we analyze the way in which the
drone and robots are utilized depending on the selected
objective function.

MILP Solver Performance Table 3 provides some
insights into the performance of the MILP solver. More
precisely, this table contains the average runtime and
Mixed Integer Programming (MIP) gaps for the studied
cases. Moreover, the table indicates how often the MILP
solver was able to identify the provably optimal solution
within the runtime limit of 30 minutes.

Regarding the TSP-D cases, overall, the numerical
results show that our MILP formulation is well-suited
for solving small-sized problems. Under the minimal
cost objective, we can solve all instances to proven
optimality within reasonable runtime. Moreover, under
the minimal makespan objective, our formulation can
solve instances with 10 customers to optimality within
short runtime. Furthermore, we are able to approach
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Table 3. Detailed results obtained through Gurobi Solver 8.1.0. This table contains the average runtime (in

seconds), the average MIP gap after runtime, and the number of times (opt.) in which the provably optimal

solution was found (values are averaged over 10 instances). The parameters n, vr, |K|, and C are the number of

customers, velocity of the robots, the amount of robots, and the number of stations that can be utilized.

n vr C

TSP-D (C = |K| = 0) TSP-D-RS
min cost min makespan min cost min makespan (|K| = 1) min makespan (|K| = 2)

time gap opt. time gap opt. time gap opt. time gap opt. time gap opt.

10
5

1

1.2 0.0% 10/10 18.9 0.0% 10/10

1.7 0.0% 10/10 101.8 0.0% 10/10 62.9 0.0% 10/10
2 2.2 0.0% 10/10 144.3 0.0% 10/10 108.6 0.0% 10/10

15
1 1.1 0.0% 10/10 12.4 0.0% 10/10 5.6 0.0% 10/10
2 1.2 0.0% 10/10 13.2 0.0% 10/10 4.8 0.0% 10/10

15
5

1

12.5 0.0% 10/10 739.1 1.5% 7/10

29.2 0.0% 10/10 883.8 1.8% 8/10 711.1 1.8% 8/10
2 40.9 0.0% 10/10 949.0 2.0% 7/10 896.0 2.3% 7/10

15
1 4.7 0.0% 10/10 774.0 2.0% 8/10 204.8 0.0% 10/10
2 4.9 0.0% 10/10 699.0 1.8% 8/10 160.3 0.0% 10/10

20
5

1

193.8 0.0% 10/10 1,645.2 9.0% 1/10

365.1 0.0% 10/10 1,678.4 9.5% 1/10 1,571.9 9.8% 2/10
2 451.4 0.0% 10/10 1,637.1 11.1% 2/10 1,614.8 9.4% 2/10

15
1 46.4 0.0% 10/10 1,711.1 10.1% 2/10 1,780.6 10.6% 1/10
2 45.9 0.0% 10/10 1,800.0 15.9% 0/10 1,580.2 10.5% 3/10

Average 69.2 0.0% 30/30 801.1 3.5% 18/30 82.9 0.0% 120/120 867.0 4.5% 76/120 725.1 3.7% 83/120

instances with 15 customers with low MIP gaps and can
even solve 7 out of 10 to proven optimality. However, it
also becomes apparent that performance degrades as the
instance size is increased to n = 20, in particular, when
we are optimizing the makespan instead of cost.

For the TSP-D-RS, we are able to solve instances
with 10 to 15 customers reasonably well and achieve
optimality in almost all cases. Indeed, under the
minimal cost objective, we can even approach instances
with 20 customers and achieve performance that rivals
the TSP-D cases. Specifically, in the presence of fast
robots, i.e., vr = 15, the problem often becomes easier
to solve. However, it also becomes apparent that, in
general, the minimal makespan problem is much more
difficult to solve: for n = 20 the remaining MIP gaps
after runtime increase and the number of instances that
are solved to optimality decreases significantly.

Makespan versus Cost Minimization For the
purpose of illustrating the benefits of utilizing the
drone and robots with regards to cost versus makespan
reduction, we introduce the following metrics:

∆τ =
τ

τ∗TSP
and ∆c =

c

c∗TSP
, (32)

where, τ and c are the objective values returned by the
solver and τ∗TSP as well as c∗TSP stand for the optimal
makespan and cost of the TSP solution, i.e., where no
drone is present and no station is visited or used.

Figure 2 highlights the numerical results for the
minimal makespan objective. Specifically, this figure
shows the average savings over the TSP, i.e., ∆τ and ∆c,
based on the number of available robots |K| and their

velocity vr for a given value of using at most C = 1
stations. Note that, in this figure, the values for K = 0
are taken from the TSP-D solution (where C = |K| = 0
but the drone can be used). Notably, under the makespan
objective, the costs are also reduced significantly. Based
on the selected technological coefficients (refer to Table
2), the savings are of similar magnitude. In particular,
robots that move close to walking speeds of 5 mph
have a hardly noticeable influence under the minimal
makespan objective. In contrast, as their speed is
increased to 15 mph, they become increasingly useful.

Figure 3 visualizes the results for the minimal cost
objective. As expected, under this objective, costs of
much smaller magnitude can be realized. However,
in contrast to the makespan objective, the costs and
delivery time show a contrary development (see also
[5]): as we increase the speed of the robots, the relative
costs decrease further but there is a sharp increase in
the makespan. As a possible explanation, an increase in
speed also raises the robots’ range (see constraints (27));
and while operating robots might be cheap (due to the
cost factor cr), this throttles the makespan nonetheless.

Station Utilization Regarding the use of the robot
stations, we present Table 4, on which we can make
the following observations. When the objective is to
minimize the operational cost or if the number of used
stations is limited to C = 1, it is much more likely
that the weighted station is utilized. In contrast, this
ratio becomes less definite under the minimal makespan
objective, where it can also make sense to visit the
randomly placed station. In these cases, it might also
be useful to utilize a station as an intermediate hub in
order to launch or recover the drone (see also [13]).
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Figure 2. The relative makespan ∆τ and cost ∆c for the minimal makespan objective. These values are shown

for C = 1 (C = 0 for the TSP-D solution, i.e., where |K| = 0) and averaged over 10 instances.
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Figure 3. The relative makespan ∆τ and cost ∆c for

the minimal cost objective. These values are shown

for C = |K| = 1 (C = 0 for the TSP-D solution, i.e.,

where |K| = 0) and averaged over 10 instances.

Operational Characteristics We are also interested
to investigate the operational characteristics of the drone
and robots. For this purpose, Table 5 illustrates the share
of customers that are served by the truck, through a
multi-leg or a round trip, and by a robot.

If the objective is to achieve minimal operational
cost, the utilization of the truck is expensive. Moreover,
the cheaper modes of delivery, i.e., the drone and in
particular the robots, are utilized to a large extent.
Indeed, the predominant mode of operating the drone is
the round trip. Noteworthy, to the best of our knowledge,
most research works (existing in the literature) that study
related problems under a minimal cost objective, do
not permit drones to perform round trips (see, e.g.,
[5, 12]). However, if only the variable cost-per-mile is

Table 4. The share of times the weighted or

randomly located stations are used under the minimal

cost and minimal makespan (time) objective

(averaged over 30 instances for n ∈ {10, 15, 20}).

vr C
min cost min time (|K| = 1) min time (|K| = 2)

weighted random weighted random weighted random

5 1 63.3% 16.7% 16.7% 43.3% 26.7% 40.0%
2 70.0% 16.7% 40.0% 50.0% 36.7% 43.3%

15 1 96.7% 3.3% 63.3% 33.3% 83.3% 16.7%
2 96.7% 10.0% 93.3% 66.7% 100.0% 76.7%

considered, a round trip clearly is the most cost-effective
operation that a drone can perform. More precisely,
consider a feasible multi-leg (i, w, j) ∈ P . Based on
the objective defined in (30), if diw < dwj , it is always
feasible and, in particular, more cost-efficient to perform
the round trip (i, w, i) instead. Note that, analogous
considerations are possible for the case of diw > dwj .

On the contrary, when the objective is to achieve
minimal makespan, the utilization of the truck ramps
up significantly. Equally important, the predominant
mode of drone delivery is the multi-leg and the share
of customers served by robots declines noticeably. It
is interesting to note that when fast robots are used,
the shares of customers served by the drone and robot,
respectively, are of a similar magnitude.

5. Conclusion

In this work, we introduced the TSP-D-RS, which
combines the concepts of a truck-drone tandem with
the possibility of robot stations. After a brief literature
review, we formulated the problem as a MILP, and
presented the numerical results of our computational
study. We have shown that a state-of-the-art solver
yields acceptable results within reasonable runtime for
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Table 5. Share of customers served by each vehicle (averaged over 10 instances for C = 1).

minimal cost (|K| = 1) minimal makespan (|K| = 1) minimal makespan (|K| = 2)
n vr truck multi-leg round trip Robot truck multi-leg round trip Robot truck multi-leg round trip Robot

10
5 20.0% 0.0% 74.0% 6.0% 63.0% 31.0% 0.0% 6.0% 63.0% 31.0% 0.0% 6.0%
15 14.0% 0.0% 16.0% 70.0% 54.0% 22.0% 0.0% 24.0% 40.0% 25.0% 0.0% 35.0%

15
5 21.3% 0.0% 72.7% 6.0% 67.3% 26.7% 0.0% 6.0% 64.7% 25.3% 0.0% 10.0%
15 12.0% 0.0% 14.7% 73.3% 60.7% 21.3% 0.0% 18.0% 50.7% 18.7% 0.0% 30.7%

20
5 23.5% 0.0% 65.5% 11.0% 69.0% 25.0% 0.0% 6.0% 67.5% 25.5% 0.0% 7.0%
15 12.0% 0.0% 15.5% 72.5% 62.5% 21.5% 0.0% 16.0% 53.0% 16.5% 0.0% 30.5%

instances with up to 20 customers. According to
the numerical results, combining a truck-drone tandem
along with properly situated robot stations can bring
significant reductions in the delivery time or operational
costs. Furthermore, drone round trips are a suitable
mode of operation when the objective is to minimize the
costs; however, we believe that one must be careful with
the impact that this might have on the delivery time.

As the TSP-D-RS defines a new concept, the
future research directions are numerous. A subsequent
sensitivity analysis on parameters (e.g., drone speed)
might provide some more in-depth insights on their
respective impact. While our MILP formulation has
shown favorable behavior, it will be necessary to rely on
heuristic methods in order to address larger instances.
Moreover, in the context of same-day-delivery, it
might be of interest to formulate the TSP-D-RS as
a multi-objective problem: to achieve an improved
trade-off, we might weigh time against cost savings and
include advanced cost metrics such as, e.g., a cost that
is imposed for waiting (refer to [5]). Finally, it is also
interesting to consider the impact of multiple trucks,
several drones per truck or the possibility of enhanced
robots with multiple compartments (see, e.g., [14, 16]).
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