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Abstract 

 
In this paper, we seek to identify the factors that 

influence the impact of open source software (OSS) on 

users community through the analysis of the evolution 

of the OSS network. Based on longitudinal data 

collected from the comprehensive R archive network 

(CRAN), we empirically examine how the network of 

R packages evolves over time and exert its influence 

on the scientific community. We find that critical 

network features derived from CRAN, such as page-

rank, closeness, and betweenness centralities, play a 

significant role in determining the impact of each 

package on the research and publication activities in 

the scientific community. Furthermore, the 

performance of R packages can be explained as a flow 

of information from the core to the periphery that 

exhibits strong spillover effects. 

 

 

1. Introduction 

 
“If I have seen further than others, it is by standing 

upon the shoulders of giants” (Isaac Newton). This is 

probably the best way to explain the crucial role of an 

open source software (OSS) network on providing 

support to the scientific community. OSS is a type of 

computer software released under a license that grants 

users the right to change, reuse, and distribute the 

software to anyone for any purpose [1]. OSS facilitates 

open collaboration that includes the contributions of 

thousands of talented volunteers (e.g. programmers 

and scientists) in making conceptual and practical 

impacts in their communities, and not surprisingly 

OSS has become more mainstream and commercially 

viable in recent times [2]. Some popular OSS, such as 

Linux, Python, and R, are developed, maintained, and 

reused both within and outside of academic 

institutions, through the contributions of individuals 

from academia, non-profit organizations, commercial 

organizations, and other professional entities. Many 

authors, whose names are often forgotten or unnoticed, 

spend hundreds of hours of their time to develop OSS 

that supports and empowers the scientific community. 

However, academic metrics do not include a 

systematic way to quantify the value of such effort, 

except for academic citations [3].  

In the research community, very few researchers 

have proposed initiatives to quantify OSS 

contributions. The only exception is probably the open 

source project Depsy.org, developed by Impact Story 

[4]. Specifically, it tracks not only citations within 

academic literature, but also alternative metrics such 

as number of downloads, software reuse through 

reverse dependencies, and contributors to the OSS. 

Their dataset facilitates the creation of contributors 

and dependencies networks that, in turn, allows one to 

estimate or quantify the impact of the packages’ 

network features on the performance, namely number 

of downloads and citations [5, 6]. Although datasets 

like this have assisted researchers to obtain some 

interesting results [5, 7], past research lacks the 

longitudinal perspective to have causal relationship 

between package attributes and performance (since 

such a causal relationship may take a long time to 

realize). 

Despite the lack of approaches to credit scientists 

and programmers for their efforts, the OSS ecosystem 

has expands significantly, particularly in the last two 

decades [7]. The introduction of technological artifacts 

and software-based artifacts for knowledge sharing 

and creation has been crucial for the OSS ecosystem 

[8]. For example, the literature on free/libre open 

source software (FLOSS) emphasizes the role of 

knowledge exchange and collaboration in OSS 

development [9, 10]. Online OSS free repository 

facilitates collaboration and social interaction among 

developers that, in turn, improve the effectiveness of 

distributed teams [11]. Such repositories also record 

and keep track of critical usage information beyond 

software description, such as authorship, date of 
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publication, number of daily/monthly downloads, 

version, dependencies, reverse dependencies, and 

scientific publications. This, in turn, allows both the 

authors and users to see the source of contribution and 

the path of adoption. The approach used in past 

research focusing on the OSS collaboration networks 

is largely cross-sectional quantitative or qualitative 

evolutionary. Hence, one can observe that there is a 

lack of quantitative analysis on the evolution of OSS 

collaborative networks over a period of time.  

Leveraging the longitudinal data collected through 

web scraping of the comprehensive R archive network 

(CRAN), our analysis contributes to theory and 

practice of OSS movements in three ways. First, we 

identify the factors that have the most significant 

contributions to the performance of R packages, prior 

to establishing causal relationship between such 

factors and the outcomes over an extensive period of 

time during which the network grows. Second, our 

longitudinal approach allows us to uncover how the 

network structure changes over time and examine if 

such dynamics can affect the package’s performance. 

Finally, the longitudinal approach may reveal patterns 

and characteristics of the network and its components 

that are not identifiable through cross-sectional 

analysis. A better understanding of the network 

dynamics will contribute to the development of 

alternative metrics that reveal the under-recognized 

contribution of many scientists and programmers [3] 

and provide better incentives to facilitate the 

development efforts and consequently the growth of 

the network. This is the contribution we seek to make 

in this paper. 

In this paper, we use data collected from CRAN on 

R packages to generate 77 monthly snapshots in the 

time window between October 2012 and February 

2019. The data for each package includes the number 

of monthly downloads, dependencies and reverse 

dependencies, the eventual scientific paper that builds 

on the package (if any), and the date of publication. 

This allows us to derive a graphical representation of 

the relationships among the various packages on 

monthly basis. Such a dynamic network construction 

provides a systematic way to identify the structural 

features of the network, which are then used as the 

predictors of each package’s performance. Through 

our empirical analysis of this comprehensive panel 

dataset, we find that network measures, such as 

closeness and page rank, significantly influence the 

number of downloads. Moreover, we show that the 

number of downloads reflects the flow of information 

from the core to the periphery with a salient spillover 

effect. Finally, we demonstrate that the network of 

packages evolve over time with a consistent pattern, 

which applies to not only established entries but also 

new entries that are recently added to the network. 

The rest of the paper is organized as follows. The 

next section provides background information on R 

packages, followed by a brief review of the literature. 

Then, we introduce our methodology and statistical 

approach. Finally, we present and discuss the 

implications of the results and conclude the paper, as 

well as discussing the implications for both research 

and practice.  

 

2. Background 

 
R is a free programming environment for statistical 

computing released in 2000 under the general public 

license GNU. It is available for various operating 

systems, and is highly extensible through user-

submitted packages for specific functions or domains. 

This makes R one of the fastest growing data analysis 

software on the market. In particular, the 

multiplatform orientation and the ease of extending the 

functionalities through its lexical scoping rules have 

fostered the growth of an ecosystem, in terms of 

packages that interact with each other to provide 

hundreds of thousands of functionalities. In addition, 

the object-oriented nature of R language makes the 

reuse of functionalities included in other packages 

extremely easy. This generates a network of 

dependencies that offers a broad range of statistical 

techniques and graphs widely accepted in scientific 

publications, and high-quality documentation, such as 

LaTex-like output. 

To manage the growing body of the releases of the 

new packages and the updates of the existing ones, in 

2012 the CRAN was developed for users to submit 

their improvements to address reported bugs / 

vulnerabilities and for systematically storing the most 

recent releases of R code and documentation. Since 

then, the number of packages through CRAN has 

increased from 3,350 to 13,750 (as of February 2019). 

CRAN checks each submission to ensure compliance, 

verifies the consistency of the dependency network 

and the compatibility of packages with the R version, 

tracks the package’s version, checks the code for 

malicious or antisocial activity, and then makes the 

compiled package available publicly. Such activities 

assure a set of high-quality standards is consistently 

applied to the large number of packages offered to the 

growing community of users across a wide range of 

domains. Although these packages contribute to 

scientific progress, there are no well-established 

measures that evaluate such contributions and their 

benefit. Hence the key objective of this research is to 
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develop metrics that give credit to the “unsung heroes” 

of scientific software for their contributions and 

explore the different metrics that can be used to predict 

the growth of the network. 

 

3. Related Work 
 

The creators of Depsy, a free website launched in 

2015 that tracks the “value of software that powers (or 

empowers?) science”, discuss the need to measure the 

contribution of software for academic purposes. In 

academia, publications are, probably, the most used 

metric to measure one’s research achievements, 

although publications may not be representative of all 

contributions made by the researcher. For example, 

they do not cover the efforts devoted to developing a 

reusable software and its scientific benefits. Even 

when researchers are highly encouraged to explicitly 

cite the source of the software used in their research, 

merely doing so does not fully address the issue. For 

example, a software package may depend on multiple 

other packages published earlier. Hence, only citing 

the software used for the research does not give credit 

to the chain of dependencies on these earlier packages. 

For example, the partial least squares package, 

“plspm” [12], depends on the functionalities offered 

by five other packages, and in other cases the chain of 

dependencies can be longer. Therefore, it is not 

feasible to use citations as a measure of impact.  

From an Altmetrics perspective, Zhao and Wei [6] 

propose three influence indicators to evaluate the 

impact of OSS, namely the number of downloads, the 

number of academic citations, and the network 

dependency factor. These three indicators reflect the 

three aspects of software reuse. First, software 

downloads reflect the usage, the visibility, and, to a 

certain extent, the reputation of the software. Second, 

the number of citations in scientific publications 

measures the usefulness and the direct impact of 

software on the research outcomes (although it is still 

not a widely-established practice to cite the software 

in scientific publications). Third, the network 

dependency factor reflects the chain of reuse of a 

software, thus measuring the indirect contributions to 

a research. From a network structure perspective, 

Korkmaz and Kelling [5] propose an approach that 

focuses on the relationship between centrality 

measures in coauthorship networks and scientific 

productivity [13]. They show that network measures, 

such as indegree, outdegree, closeness centrality, 

betweenness, eigencentrality, and clustering 

coefficient, are significantly associated with number 

of downloads and citations in both packages’ 

dependency network and contributor social network. 

Conversely, they provide evidence that pagerank is not 

associated with the number of downloads in the 

dependency network. Although these studies provide 

interesting results, the cross-sectional nature 

embedded in these studies does not enable the 

inference of causality among variables. In addition, 

past research on co-citation networks was based on 

undirected networks [14], thus failing to recognize the 

asymmetric relationship between nodes. 

As proposed by Korkmaz, OSS development for 

scientific research is closely related to the social 

network of collaborative production [5]. Indeed, 

patterns of contribution and interaction among the 

contributors’ network are crucial in explaining the 

success of FLOSS projects [15]. The topological 

properties of the OSS development community enable 

fast communication of information that optimizes 

resource allocation [16]. Perhaps, this highlights the 

crucial role of communication and information 

transfer in the development of FLOSS. Knowledge 

reuse, one of the mechanisms that enables information 

transfer, benefits the development of OSS in many 

ways, such as reduced projects’ costs, shorter 

development time, and enhanced quality of the 

software produced [17]. Therefore, the inclusion of 

one or more OSS artifacts, such as R packages, in a 

project is a form of knowledge reuse. Given the nature 

of the interactions, the open source package network 

is directed and non-acyclic. It is directed because the 

dependency relationship is directional, reflecting the 

fact that package A requires package B. It is non-

acyclic because it is not possible to return to the same 

node following a non-trivial path. In social networks, 

including the coauthors network, if author A is linked 

to B, B to C, and C to A, it is possible to follow a (non-

trivial) path A -> B -> C -> A that returns to the 

starting point, which is the definition of cyclic 

network. In a dependency network, cyclic paths, such 

as the one shown above, are not possible due to the 

nature of the relationships. Since the direction of a link 

contains important information such as asymmetric 

influence or the direction of the information flow, a 

link between a pair of nodes may represent a 

fundamentally different dynamic when its direction is 

reversed. Therefore, disregarding the direction may 

fail to explain the dynamics and the function of the 

network.  

We propose to approach the study of OSS networks 

from a one-to-many information dissemination 

perspective, which will contribute in two ways to the 

understanding of this topic. First, the broadcast of 

information to all recipients reflects the flow of 

information that exists between a package and its 
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dependents. In this sense, the creators of a package are 

like broadcasters of information that may benefit other 

users in the community [18]. Past research that 

adopted this perspective has focused on examining 

information dissemination in blogs [19] or microblogs 

(like Twitter) [20]. Second, the information flow 

perspective allows us to introduce the temporal 

dimension to our network analysis. For example, 

Yasseri and Sumi [21] estimate the geographical 

distribution of a network of editors through the study 

of differences in their temporal activity. For these 

reasons, our approach is consistent with the directed 

acyclic nature of OSS networks and adds the temporal 

perspective that, in our opinion, is crucial to 

understand the behavior of dynamic networks. 

 

4. Methodology 
4.1 Data 

 
We collected data on all the R packages listed on 

CRAN (13,572 packages as of March 7th, 2019) and 

scraped the monthly downloads statistics using the R 

function cran_stats included in the package dlstats 

[https://cran.r-project.org/package=dlstats]. In total, 

the information collected spans over 76 time points 

(months), from November 2012 to February 2019, and 

includes several key characteristics for each package 

at each time point, such as the dependency and 

reverse-dependency list, monthly downloads, 

contributors' names, publication date, citations of the 

scientific papers that build on the package (if they 

exist), and tags (labels identifying additional 

characteristics of the OSS package). Table 1 presents 

the network statistics in two-year intervals  throughout 

our sample period (except the last interval which 

covers only one year). One can observe that the nodes, 

edges, and the number of downloads increase steadily, 

along with the average Indegree measure and network 

diameter. At the same time, the number of packages 

with a zero indegree value also increases, and the list 

of top downloaded packages has shown a moderate 

turn-over rate, with several constant top performers 

constantly showing up on the list. 

One can also observe from Table 1 that the top 

three downloaded packages are ‘ggplot2’, a popular 

graph package, ‘plyr’, a package that offers a set of 

function to manage datasets, and ‘rcpp’, a package to 

integrate c++ programs into R. The average indegree 

value changes over time, reflecting the fact that the 

complexity of the network is increasing. This is also 

confirmed by the increase in the network diameter, 

defined as the longest of the collection of shortest 

paths between each pair of nodes. The number of 

packages without indegree is almost stable at 75 

percent of the whole population. These packages can 

be considered as the passive receivers of the flow of 

information in the network. 

Table 1: Network statistics over time 

Time 

Point 
Nodes Edges 

Number of 

Downloads 

Top Downloaded 

Packages 

Avg 

Indegree 

Packages 

w/out 

inDegree 

Network 

Diameter 

Nov 2012 3,438 3,846 529,359 plyr / colorspace / stringr 1.90 2,469 9 

Feb 2014 4,644 5,881 3,085,126 digest / plyr / ggplot2 2.06 3,394 9 

Feb 2016 7,482 12,627 15,485,019 rcpp / ggplot2 / digest 2.42 5,545 9 

Feb 2018 11,785 27,709 33,665,863 rcpp / tibble / rlang 2.96 8,800 11 

Feb 2019 13,752 35,315 72,492,261 rlang / rcpp / ggplot2 3.14 10,335 11 

 
4.2 Dependency Network 

 
We perform the analysis of the OOS network based 

on approaches used in the information broadcast 

literature. In social network analysis, information 

relationships reflect the type and amount of 

information exchanged between actors (or nodes) [18]. 

The pattern of such relationships reveals the 

probability for actors to be included into an exchange 

of information which, in turn, is instrumental in 

assessing the level of influence of each node in the 

communications at a local level and across the whole 

network. The directional patterns of the 

communication describe how information moves 

around and how much actors can facilitate or control 

the flow. A number of aspects of information can be 

studied using approaches in social network analysis, 

including information needs, information exposure, 

information flow, information control, and 

information opportunities [22]. As discussed in the 

introduction, the major drawback of the social network 

approach lies in its cyclic nature. In our case, a cyclic 

network characterization is not possible due to the 

nature of the relationships between packages. In 
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addition, the increasing popularity of the analysis of 

communication network has led to the emergence of 

new and more sophisticated ways to model network 

structures [23]. Among these models, the broadcast 

communication network is a good fit for our study. 

The broadcast communication network is a form of 

acyclic directed network in which the information 

flows from sources of information toward the 

community of users [24]. This approach is useful in 

identifying patterns of information flow from a sender 

to receivers and to identify influential actors and 

gatekeepers in the network [25].  

In the same way, we can identify packages as 

actors in a communication network, and the reuse of a 

package is a relationship directed from the receiver 

toward the source of information. Under this setup, the 

dependency structure between packages available in 

the online repository CRAN defines the sender-

receiver relationship in the network. The dependency 

is instrumental in measuring the flow of information 

within a network. An edge directed from package ‘A’ 

to package ‘B’ indicates that package ‘A’ reuses 

functionalities from package ‘B’. From an information 

broadcast perspective, the direction of the link goes in 

the opposite direction of the flow of information. In 

other words, the link points towards the source of 

information. The network defined in this way is 

directed and acyclic, since it is impossible for a 

software project to be dependent upon itself. The OOS 

network is thus suitable to be analyzed as a 

communication broadcast network. From here 

thereafter, we will use the terms “information 

network”, “broadcast communication network”, and 

“communication network” interchangeably. Figure 1 

shows an overview of the R packages network. Graph 

visualizations enable one to more easily understand 

the complexity and underlying structure of the graph. 

For example, Figure 1 depicts the evolution of the R 

packages network over three point of time 

(respectively 11/01/2012, 02/01/2016, and 

02/01/2019). The size of each node reflects their 

inDegree centrality measure and the color reflect their 

respective cluster. These clusters can be explained by 

the functions and disciplines of the packages [14] and 

take the name of the most influential package.  

 

 
Figure 1. Evolution of the R packages network over time 

4.3 Measures 

 
The focus of this research is to examine how the 

performance of a package, as measured by the number 

of downloads, is affected by its network properties and 

measures of centrality such as indegree, outdegree and 

measures of dependency between nodes. As predictors 

of our model, we select centrality measures that are 

relevant for directed acyclic network. The selection is 

limited to the most commonly used measures of 

centrality in social network analysis, namely indegree, 

outdegree, betweenness, closeness centrality, and a 

variant of Eigenvector centrality, PageRank [26]. In 

our OOS network, the value of the indegree measure 

reflects how many times each package has been 

reused. Accordingly, the outdegree value shows how 

many packages have been reused in each package. 

From a flow of information perspective, the two most 

frequently used measures in the analysis of 

information transmission in social networks are the 

vertex betweenness and vertex closeness centrality 

[27]. These centrality measures are based on the 

assumption that when possible, information is 

transmitted along the shortest paths. While 

betweenness centrality measures the degree to which a 

node (vertex) may control the communication channel 

between any two vertices (the number of shortest paths 

that passes this node for a given pair of vertices), and 

closeness is just the inverse of the average shortest 

distance to other vertices. Intuitively, betweenness 

centrality represents the degree to which a node stands 

between each other. For example, a node with higher 
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betweenness centrality would have more control over 

the communication within the network, because more 

information will pass through that node. On the other 

hand, closeness centrality reflects the nominal 

definition of centrality. The more central a node is, the 

closer it is to all other nodes.  

In this research, we use the normalized form of 

closeness and betweenness centrality that allows 

comparisons between nodes of graphs of different 

sizes. In addition to these four centrality measures, 

indegree, outdegree, closeness and betweenness, we 

also include a measure of network influence, the 

pageRank centrality measure [28]. PageRank 

measures a node’s influence by taking into account 

how well connected a node is, and how many links 

their connections have, and so on, through the 

network. This measure fits our approach because high 

values indicate a strong influence over nodes that are 

more than a step away. In contrast to other measures 

of network influence, such as EigenCentrality, 

PageRank is designed specifically for directed 

networks. Therefore, it is able to uncover influential or 

important nodes in a directed graph whose reach 

extends beyond just their direct connections. In respect 

to an undirected network approach, our approach 

through an information flow perspective has some 

advantages. First, it fits very well the acyclic directed 

network of OSS packages. A flow of information 

assumes a sender (that creates the information) and a 

receiver (that uses the information). The inDegree and 

outDegree centrality scores of each package 

respectively measure the creation and the use of 

information. In contrast, in an undirected network, 

inDegree and outDegree will have the same value for 

each node. Second, from the information flow 

perspective closeness and betweenness centrality 

reflect the speed and frequency of exchange of 

information within a network. These are salient 

features of our longitudinal dataset, and first well fits 

our proposed panel data analysis (to be discussed 

later). Finally, using the amount of downloads as a 

proxy for package performance is consistent with our 

approach. The reuse of a package through inclusion in 

the dependency list reflects a transfer of knowledge 

between nodes in the network.  

 
4.4 The Temporal Perspective 

 
In a highly dynamic network such as the open 

source network for the R package, the temporal 

dimension contains rich information about the growth 

and evolution of the network. We find that the average 

number of dependencies per node increased by three 

times over the time frame of our study. Such a speed 

of evolution is usually not observed in a static 

network. In addition, the number of downloads 

increased 140 times in the same period, reflecting the 

increasing popularity of this statistics framework. 

Table 1 shows the change of the average indegree 

value over time, reflecting the fact that the complexity 

of the network is increasing. This is also confirmed by 

the increase in the network diameter, defined as the 

longest of the collection of shortest paths between 

each pair of nodes.  

 
4.5. Analysis 

 
We perform the longitudinal analysis of our sample 

through a panel data analysis. A key benefit of panel 

data is the ability to control for the effect of all stable 

covariates without explicitly including them in the 

model. We apply a longitudinal fixed-effect model 

that uses within-package variance to estimate the 

coefficients and then averages the estimates across the 

packages. The fixed-effect models are optimal for 

removing the pernicious effect of omitted variable bias 

when multiple panels (sections) of data are present and 

available. Moreover, the Hausman test [29] suggests 

some evidence against the random effects model and 

in favor of the fixed effects model. Due to the nature 

of our dependent variable (count data), we adopt a 

generalized linear model approach through the 

Poisson regression. Furthermore, to avoid the 

underestimation of the standard errors caused by 

overdispersion of the number of downloads, we adopt 

the quasi-likelihood estimation [30]. Instead of 

specifying a probability distribution for the data, only 

the relationship between the mean and the variance is 

specified by a function that includes a multiplicative 

factor (overdispersion or scale parameter) that is 

estimated directly from the data. Past research shows 

that the quasi-likelihood estimation for a Poisson 

distribution gives a better fit to the overall variance-

mean relationships [31]. Given the dynamic nature of 

the OSS network, we cannot assume the invariance 

over time of the predictors’ effects on performance. 

Therefore, to test for moderating effects we introduce 

interaction terms for each variable in the model [32]. 

We perform forward selection including the first-order 

interactions between predictors to identify only the 

significant variables.  

We use normalized measures of indegree and 

outdegree centrality in order to allow for comparisons 

between nodes of graphs of different sizes. For the 

same reason, for each cross-section we normalize the 

number of downloads as the percentage of the number 

of downloads of the whole network. We would like to 

point out that the centrality measures are derived from 
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the network configuration at the first day of each 

month, while the number of downloads refers to the 

total number of daily downloads in that month. The 

purposely introduced time lag between the two 

measures provide additional support to the claim of 

causal relationship between predictors and dependent 

variable.  

Another issue to address before running the 

analysis is the multicollinearity between many of the 

centrality measures included in this study. For 

example, the pageRank score depends upon the 

number of indegree links, therefore we can expect high 

variance inflation factor (VIF) values when both 

features are included in the model. Moreover, we 

expect the closeness to be correlated with indegree, 

because the higher the number of incoming links, the 

shorter the average path to each node of the network. 

Indeed, the Pearson correlations of pageRank with 

indegree and closeness are 0.76 and 0.79, respectively, 

thus implying that multicollinearity may be an issue. 

The correlation coefficient between closeness and 

indegree is 0.83. Following the best practices in 

literature, we set the VIF cutoff equal to 5. Table 2 

reports the VIF scores for all the variables included in 

our model. The values are below the cutoff value. 

 
Table 2: Variance Inflation Factors (VIF) 

Variable VIF 

closeness 4.18 

betweenness 1.37 

indegree 4.34 

outdegree 1.02 

pRank 3.25 

 

5. Findings 

 
Table 3 reports the results of the regression for the 

panel data analysis. All the centrality measures that we 

have included in our study have a significant effect on 

the dependent variable except for Page Rank (PR). 

This result echoes the findings reported in [5], and can 

be explained by looking at the definition of this 

centrality measure. Page Rank [33] is designed to 

reflect a global ranking of all web pages based solely 

on their location in the network. It performs very well 

on strongly connected and static networks, such as 

identifying influential websites on the Internet. 

However, it suffers from a number of limitations when 

analyzing dynamic and weakly connected topologies, 

such as identifying influential leaders in social 

networks [34]. In our case, the network or R packages 

is weakly connected and the topology changed rapidly 

since the beginning. This makes Pagerank not so 

useful for predicting influential nodes and, in turn, 

their performance. 

Table 3: Results for Panel Data Fixed Error 
Poisson Regression with Robust Error Estimates 

DV=Downloads Coef. 
Rob Std 

Err. 
95% CI 

closeness 7.473* 3.04 1.517 13.43 

betweenness -11658*** 2686 -16924 -6392 

indegree 52.64*** 13.34 26.48 78.80 

outdegree 1019.9*** 102.4 819.1 1220 

prank -33.97ns 19.32 -71.85 3.907 

time*inDegree -.4009*** .1105 -.6175 -.1842 

time*outDegree 8.855*** 2.541 3.873 13.83 

Note: ‘***’ p < 0.001; ‘**’ p < 0.01; ‘*’ p < 0.05; ns = not 
significant 

Within our approach of modeling the OOS network 

as a flow of information, closeness centrality plays a 

crucial role as it represents the speed of transmission. 

A node that is closer, on average, to all other nodes in 

the network, will have faster communication with 

nodes in the network. In other words, betweenness 

reflects frequency of arrival (or transit) of information, 

and closeness reflects time-until-arrival of the 

information flowing through the network. The 

betweenness score reflects how often the node plays a 

role in the communication between two randomly 

chosen nodes. Nodes with high betweenness score are 

more influential for the flow of information, because 

the removal of such nodes could seriously disrupt the 

communications [35]. In other words, packages that 

reuse more functionalities from other packages and 

that are reused by many packages become more 

influential in the network. This perspective explains 

the positive effect of closeness on the number of 

downloads. Surprisingly, betweenness centrality has a 

negative influence on the packages’ performance 

(Figure 2). A plausible explanation is that, in a more 

complex network, it is easier to find an alternate route 

in respect to the path through the influential node.  

The role of inDegree centrality shows a temporal 

pattern consistent with our approach. The number of 

incoming links reflects the number of packages that 

reuse the information included in each node. This 

reflects the level of influence of each node that, in turn, 

affects the number of downloads. In addition, the 

interaction term with time is significant and negative. 

This means that inDegree has more influence on the 

performance in the early stages of the network. In 

other words, high scores of inDegree centrality are 

more important in small networks than in bigger ones. 

There are two potential explanations. First, as shown 
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in Table 4, the proportion of nodes with incoming 

links slightly decreases over time, which, in average, 

negatively influences the effect of inDegree on the 

number of downloads over time. Second, over time the 

network become more complex. Table 1shows that the 

network diameter, a measure of complexity, increases 

from 9 in 2012 to 11 in 2019. In a more complex 

network, there is more competition among packages 

that, in turn, negatively affects the relationship 

between inDegree and performance.  

Finally, outDegree has a strong positive influence 

on the number of downloads. This finding aligns with 

cross-sectional results in past studies [5]. From a 

communication perspective, in the OSS context, 

outDegree reflects the reuse of information provided 

by other packages. Therefore, a package with higher 

levels of outDegree centrality is more likely to 

contribute more to the local flow of information that, 

in turn, influences the visibility and performance of the 

node. Interestingly, the outDegree increases its 

influence on the performance when the network 

becomes more complex. This suggests that there are 

substantial network externalities in the OSS networks 

such that an increase in network size may 

exponentially leverage the impact of various network 

properties on outcome variables such as the number of 

downloads. 

 

 
Figure 2. Betweenness vs Standardized 
Downloads 

 

 

 

Table 4: InDegree and outDegree over time 

Time Point Graph Size Number of Edges Nodes with indegree>0 Nodes with outdegree>0 

Nov 2012 3,438 6,525 969 (28%) 2,224 (65%) 

Feb 2014 4,644 9,580 1,250 (27%) 3,093 (67%) 

Feb 2016 7,482 18,117 1,936 (26%) 5,298 (71%) 

Feb 2018 11,785 34,939 2,985 (25%) 8,901 (76%) 

Feb 2019 13,752 43,166 3,417 (25%) 10,956 (77%) 

6. Discussion and Conclusions 

 
This paper focused on the evolution of the OSS 

network of R packages over time and the effect of the 

network dynamics on each package’s performance. By 

compiling a longitudinal dataset collected from the 

online repository CRAN, we were able to apply an 

information transmission approach for analyzing the 

network dynamics through a panel data analysis. We 

found that the betweenness, closeness, inDegree, and 

outDegree centrality measures influence the 

performance of each package, as measured by the 

monthly downloads. When starting an OSS project, 

the contributors should take into account the 

positioning of their software in a complex network 

such as CRAN. Their package should be strategically 

positioned in a way that can be accessed and reused by 

a meaningful number of relevant projects. Doing so 

will positively influence the centrality scores and, as a 

consequence, the visibility of the package. In addition, 

a package’s betweenness centrality measure should be 

minimized by positioning the project close to the 

center of a specific area of the network. In other words, 

package developers should focus on features and 

functionalities that are related to the most popular 

packages currently available in the network. Over 

time, closeness and outDegree centrality measures are 

the best predictors of package performance. Within a 

network characterized with frequent communication 

and collaboration, and thus highlighting the fact that 

communications are most effective when conducted 

through shorter paths. On the other hand, the 

outDegree measure reflects the amount of information 

reused and subsequently propagated by the package to 

other downstream packages. Such a measure captures 
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the levels of connectivity and influence of each node 

within the communication network and, to some 

extent implies the ability of a network to inherit 

knowledge and pass it from generation to generation.  

 

 

 
6.1 Implications for research 

 
We offered a new approach to explore the factors 

that affect the impact of OSS packages on the users’ 

community. From a methodological standpoint, due to 

the longitudinal perspective and the panel data 

analysis approach, it is not surprising that some of our 

results contradict past findings [5]. Past research 

focuses mainly on scientific literature contributions 

(i.e. citations), thus shifting the focus away to 

outcomes that are exogeneous to the network and 

failing to capture the important directional and 

noncyclical nature of the OSS networks. To address 

these limitations, our study seeks to capture the above 

network characteristics by modeling the creation and 

transmission of information through a directional 

network. With R packages and their contributors as 

nodes and information broadcast (package 

dependencies) as directional relationships, the 

resulting network and the relevant centrality measures 

allow us to assess the crucial role of generating 

scientific knowledge in term of influence and 

performance. Further conceptual work and literature 

review are required to fully validate our perspective. 

The longitudinal approach to the evolution of the OSS 

network from an altmetrics perspective should 

incorporate additional measures of performance (e.g. 

number of citations). In addition, it may be interesting 

to explore the potential interactions between the OSS 

artifacts network and the FLOSS developers’ network. 

In short, do the developer team’s social connections 

affect the positioning of the OSS artifact (e.g. 

dependency list)? 

 
6.2 Implications for practice 

 
The present research, even in its exploratory state, 

offers some suggestions for OSS artifact design. In the 

early stages of the artifact design, the developer team 

decides the functionalities that need to be created and 

what functionalities can be reused from other artifacts. 

These choices will affect the artifact initial positioning 

within the network and its future trajectory. Through 

our analysis, regular patterns of information flow 

reveal opportunities for the packages contributors in 

terms of exposure and performance. Moreover, the 

longitudinal perspective contributes to the discovery 

of the trajectory of each package’s influence and 

performance over time, thus enabling the scientific 

community to recognize and evaluate the 

contributions of various network participants, and 

informing the contributors on the best routes for 

delivering scientific values. A detailed understanding 

of the factors that influence the artifact success would 

help FLOSS contributors in optimizing the artifact 

design and maximizing the impact on the community.  
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