

PointerViz - Towards Visualizing Pointers for Novice Programmers

Akhila Sri Manasa Venigalla, Chaitanya S. Lakkundi*, Sridhar Chimalakonda

Intelligent Software & Human Analytics (ISHA) Research Lab

Dept. of Computer Science and Engineering

Indian Institute of Technology

Tirupati, India

{cs18m017, cs18s502*, ch}@iittp.ac.in

Abstract

Pointers are considered as one of the key concepts in

learning programming and are extensively used for

implementing several data structures. They lay the

foundation for handling dynamic aspects of a program,

increase execution speed and handle data types with

more efficiency. This makes it critical for budding

programmers to be well versed with using pointers.

However, most of the novice programmers find it

difficult and tricky to understand concepts such as

address allocations, pointers referring pointers and

data structures containing pointers. Hence, drawing

the physical structure and flow of pointers is

considered to be a common learning practice to gain

better clarity and avoid confusion when learning

pointers. But, it is time consuming and tedious to draw

the flow of pointers on paper while programming. To

help programmers understand these variations in

pointers, we propose PointerViz as a Google Chrome

extension that displays the pictorial representation of

selected code with pointers. We conducted a

preliminary survey with 40 students from various

universities and 83% of the users reported positive

experience with the plugin.

1. Introduction

Good programming skills require sound knowledge

of data structures. Learners of programming languages

face various difficulties in terms of understanding

various functions, attributes and data structures [1].

Several tools have been developed to help novices

learn programming [2,3,4,5,6]. They include games

that help students learn computer programming [7],

environments that support conventional programming

instructions like Mindstorm [4], Scratch [5], Blockly

[6], Snap! [8] and many other code visualization tools

such as Examplore [9] and Python tutor [3].

*This author has discontinued from the

institute.

execution speed, handling complex data structures with

more efficiency and ease. Pointers allow sharing

without copying through pass by reference, which is

advantageous when programmers desire to pass around

big arrays. They also enable programmers to resize

data structures whenever required, supporting dynamic

memory allocation. While security seems to be a

concern when pointers are used by novice

programmers, pointers provide a greater advantage in

terms of performance by speeding up program

execution [11]. Performance being a critical aspect of

programming, trade-off between security and

performance can be considered useful. A study

conducted by Lahtinen et al., states that most of the

students face difficulties in understanding pointers and

references [12]. This reveals that though pointers are

the basic concepts of programming, they are still

difficult to understand.

Visualization is one of the ways that can help

learners to gain a better of data structures. Researchers

have proposed various forms of code visualizations

to improve learning of novice programmers since a

couple of decades [13,3]. Continuous improvements

are being made to develop techniques and tools that can

better support visualization. Online Python Tutor

proposed by Philip Guo is one such tool that visualizes

code written after compilation [3]. Visualizing code

snippets written by programmers helps in better

program comprehension. Visualization can also aid

programmers who are well aware of data structures and

their implementation in helping them with trade-offs of

using pointers. Learners of programming are generally

tested on the address references and pointers to assess

their knowledge of data structures [12], making it

necessary for even novice learners to understand these

concepts.

A common practice of learners is to draw down

the flow of pointers’ data and references with respect to

memory allocations to better understand the code. But

this method demands time, effort and sometimes may

also be incorrect [14]. Hence, there is a strong need to

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 118
URI: https://hdl.handle.net/10125/63754
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/286030076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

provide learners with technology that visualizes

pointers based on the program or pseudo code they

write, which is the main motivation for our work.

Though there are many existing visualization tools

that help in visualizing code snippets, there is not much

work done to visualize pointers and their references

before compilation, to the best of our knowledge.

Hence we propose PointerViz1 to support learners of

programming language to comprehend pointers better.

The remainder of this paper is structured as follows.

Section 2 discusses the related work followed by

Section 3, which focuses on design methodology and

development of PointerViz. Working of PointerViz is

described in Section 4. Section 5 presents user scenario

in the form 4 cases. We present the evaluation and user

survey results in Section 6 and Section 7. Finally, we

discuss the limitations in Section 8 and end the paper

with conclusions and future directions in the Section 9.

2. Related Work

Researchers have developed various visualization

tools to help novice programmers learn programming

quicker have been developed. Scratch [5] is a block-

based visualization tool that helps users to program

easier by supporting drag and drop of blocks than

writing the program. Blockly is also a block-based tool

that provides visualization of programs [6]. Coding

concepts are represented as interlocked blocks and

Blockly generates syntactically correct code in

programming language of our choice [6]. Tools like

Examplore provide visualization of API usage

examples to help users understand various correct ways

of using APIs in programming languages [9].

Progranimate, an e-learning web based tool assists

users in programming using flow chart representations.

It provides code generation, inspects variables and thus

provides syntax and semantic learning of programmers

to the users. This helps users to gain an in-depth sound

knowledge of the programming language [15]. NetBlox

is another visualization tool that has been developed to

enhance understanding of distributed programming

[16]. In this tool, messages that are communicated

among systems are represented as blocks with message

payloads. Programmers are provisioned to provide

Message Type that defines data present in the message.

Games is another direction of research that has

been leveraged to make programming interesting and

easy [17,18,19,20].One of the games developed by

Leutenegger et al. teaches fundamental programming

concepts in C++language, with the help of 2D game

development [18].Robot ON! is a game developed to

improve program

1https://github.com/AkhilaSriManasa/

PointerViz

Comprehension among learners. It helps players in

understanding of control flow, program statements,

data types and function calls by allowing players to

demonstrate their understanding of the above in a given

program [19]. RoBUG game has been developed to

support and motivate players in learning of effective

debugging. It comprises of four levels that require

player to do certain tasks in each of them, like code

tracing, using print statements to identify bugs, use

divide-and-conquer strategy to spot the bugs and using

breakpoints to analyze variable values [20].

Extensions to GCspy tool have been developed, that

track and visualize dynamic memory allocations as

nodes and graphs [21]. BlueJ is an IDE that provides

UML notation of Java code which helps users visualize

structure of the application [22]. Users can view source

code of classes present in UML diagrams by clicking

on them. CoffeeDregs, a dynamic analysis tool, has

been developed to support and visualize debugging

facilities [23]. VisuAlgo has been introduced to

visualize a set of predefined algorithms. It shows the

visual execution of an algorithm for a given input [24].

Jeliot3 has been developed as a programming tool that

enables users program and visualize step by step

execution of the program in the form of animations. It

is mainly focused on expression evaluation and is

depicted by the movement of messages, method calls,

values and references in the code [25]. Java Visualizer

illustrates dynamic run-time behavior of program by

moving back and forth in program execution2.

JavelinaCode, a web-based IDE, supports synchronized

visualization of static and dynamic aspects of Java

source code [26]. Pythontutor, proposed by PhilipGuo

visualizes the code by displaying the data structures

used [3]. Another visualization tool called

PlayVisualizerC (PVC) that dynamically visualizes the

code in terms of memory allocations has been proposed

by Ryosuke et al. in [27]. Visualization tools have been

developed to help students learn programming,

debugging and explore various possible ways of

writing programs. Games have been developed to

support students in program comprehension, various

concepts of programming such as function calls,

values, movement of messages and so on. To the best of

our knowledge, there is no visualization tool or a game

that can help programmers comprehend concepts of

pointers and their implementation in the program

without compilation of. Hence, in this paper, we

propose PointerViz to address this issue. PointerViz

aims to visualize the statements insitu IDE, before

compilation, rather than visualizing

2http://www.cs.princeton.edu/˜cos126/java_

visualize/

Page 119

https://github.com/AkhilaSriManasa/PointerViz
https://github.com/AkhilaSriManasa/PointerViz
http://www.cs.princeton.edu/~cos126/java_visualize/
http://www.cs.princeton.edu/~cos126/java_visualize/

Figure 1. Approach for design of PointerViz

them after compilation of the code unlike existing works

such as pythontutor [3] that visualizes the code after

compilation. Visualizing statements on the go will help

novice programmers in identifying and rectifying the

mistakes if any, at the early stages of the code, as a result

reducing the debugging efforts. Also, PointerViz displays

primitive visualization of pointers, which is identical to

the way budding programmers draw on paper, unlike

PVC [27] which displays memory locations and internal

details. This primitive representation can help novice

programmers relate better to their interpretations.

3. Design of PointerViz

PointerViz prototype is currently developed as an

extension3 to Google Chrome. As a proof of concept,

we developed PointerViz as a plugin to support an

online compiler and interpreter, ideone.com4, as shown

in Figure 1. However, our plugin can be extended to

support any other online coding playgrounds such 5

might motivate users to view representations and thus

comprehend the concepts better. As the first step of

design, we formulated regular expressions that portray

various ways in which pointers are defined. The regular

expressions used to match the statements written in the

code by users, are as follows:

as codepad.org and compileonline.com. In its current

form, PointerViz can also be added as an extension to

browsers other than Google Chrome, such as Mozilla

Firefox. Visualizations are generated using an open

source Javascript framework, vis.js6. Vis.js enables us

to dynamically visualize graphs within the browser by

facilitating manipulation of and interaction with

dynamic data and also customization of nodes. Vis.js

also helps in handling large amounts of dynamic data,

making it a suitable choice to generate visualizations in

coding environments which involve considerably large

amounts of dynamic data.

PointerViz is designed to support novice

programmers get a better view of pointer data structures.

It provides interactive visualization to the users. The

floating representations of links among various nodes

3PointerViz can be installed on Mozilla Firefox as well.
4https://ideone.com/
5http://codepad.org/
6https://visjs.org/

Regular expression [A] points to pointer declarations

alone, where in the pointers point to a garbage value.

Statements in which pointers are assigned NULL values

are recognized by Regular expression [B]. Regular

Regular expression [A]:
/[a-z]+\ *\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\;/gm;
recognizes examples such as : int *p;

Regular expression [B]:
/[a-z]+\ *\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\ *=\

*null\;/gmi;
recognizes examples such as : int *p = NULL;

Regular expression [C]:
/[a-z]+\ *\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\ *=
\ *\&\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\;/gm;
recognizes examples such as : int *p = &a;

Regular expression [D]:
/[a-z]+\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\

*\[\ *([0-9]+)\ *\]\;/g;

recognizes examples such as : int p[10];

Regular expression [E]:
/[a-z]+\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\

*\[\ *([0-9]+)\ *\]\;/g;

recognizes examples such as : int p[9][10];

Regular expression [F]:
/[a-z]+\ **\ *([a-zA-Z$_][a-zA-Z0-9$_]*)\

*=\ *\"([a-zA-Z0-9$_]+)\"\ *;/gm;
recognizes examples such as : char *p="test";

Regular expression [G]:
[a-z]+\ *([a-zA-Z$_][a-zA-Z0-9$_]*)\ *\[\

*([0-9]+)\ *\]\ *\=\ *((\{('([[a-z]|[A-Z]|

[0-9]+|[$_]])' *\,*)*\})
|(\{(([0-9]+)\ *\,*)*\}));/gm;

recognizes examples such as : int p[2]={1,2};

Regular expression [H]:
/[a-z]+\ *([a-zA-Z$_][a-zA-Z0-9$_]*)\ *\[\

*([0-9]+)\ *\]\ *\[\ *([0-9]+)\ *\]=\

*((\{('([[a-z]|[A-Z]|[0-9]+|[$_]])'

\,)*\})|(\{(([0-9]+)\ *\,*)*\}));/gm;
recognizes examples such as :

char p[2][3]={'a','b','1','d','c','2'}

Page 120

https://ideone.com/
https://ideone.com/
http://codepad.org/
http://codepad.org/
https://visjs.org/

expression [C] recognizes statements in which the

pointers are assigned the address of a variable. Arrays

of a given size can be obtained from Regular expression

[D]. Two dimensional arrays of given row and column

sizes are recognized by Regular expression [E]. Pointers

to strings are recognized by Regular expression [F].

One dimensional arrays whose elements are defined are

recognized by Regular expression [G] and 2D arrays

whose elements are defined at the time of declaration

are recognized by Regular expression [H].

For every regular expression that has been

formulated, a function is defined to generate the

corresponding visualization. Every visualization is a set

of nodes with connections between them that are

represented using edges. Node shapes are defined in

functions in a way, such that they convey the semantic

meaning of statements written by the user. The

difference in address space between nodes is also

represented in by a numeric value between the nodes,

representing the number of bytes. These nodes and

edges are passed as a dataset to previously stated

visualization framework, vis.js to render visualizations.

Functions take parsed tokens as inputs and verify if

they match any of the defined regular expressions. They

return options of shapes, nodes and edges in the form of

data. The function in script below deals with statements

of the form defined in Regular expression [A].

Definitions for Edges, nodes and shape options are

shown in the script below considering Regular

expression [A] as an example, where nodes are defined

to be displayed as circles and edges as arrows.

Variables and pointers are defined to be displayed as

circles and arrays are represented as rectangular boxes.

Visualization is updated regularly at the end of every

statement. Code is processed in the form of tokens,

which are fed into each of the pattern recognizing

functions. The function which contains matching

regular expression is executed. New patterns that are

not defined previously can easily be added, by defining

new functions the newly defined patterns, making it

easy to extend this plugin from a developer’s

perspective.

4. Working of PointerViz

The main aim of PointerViz is to display the

references of pointer data structures as used in the code

written by the user. Workflow of PointerViz is a seven

step mechanism, as shown in Figure 2.

• Step 1: User enters a statement in desired

programming language among C or C++ in the

text space provided by ideone.com, as the current

prototype is being tested forideone.com.

• Step 2: Tokens are extracted from these

statements and are considered as individual

statements. Token extraction is done with help of

pointerViz.js script that filters out statements by

semi colons used. Even if users enter various

statements in the same line, they can be separated

out by considering semi colon symbols.

• Step 3: Extracted tokens are passed to

pointerViz.js file, which forms the basis of plugin.

Functions written in the script process these

tokens and compare them with regular

expressions which are defined apriori.

• Step 4: The pointerViz.js file generates nodes

edges based on the matched regular expressions.

It then renders shapes corresponding to these

regular expressions, as defined in each function.

• Step 5: Resulting nodes and edges are passed to

vis.js framework to produce results by processing

them. It provides overlays for the same as

mentioned in the pointerViz.js file.

size: 30,

font: { size: 30,
multi: true

},
borderWidth: 2,
shadow:true

},

edges: {
width: 3,
}

};

const identifier = m[1];
const nodes = [

{id:0, label: identifier,

group: "0", title: code},
{id:2, shape: 'dot',

label: "Garbage"}

];
const edges = [

{from: 0, to: 2, arrows: 'to'}

];
const options = {

nodes: {

shape: 'circle',

function ptr_type1(code) {

const regex_1 =/[a-z]+\
([a-zA-Z$_][a-zA-Z0-9$_])\;/gm;

const m = regex_1.exec(code);
const identifier =m[1];

.

.
const data = {

nodes: nodes,edges: edges};
return [data, options];

}

Page 121

Figure 2. Stepwise Working of PointerViz

• Step 6: Results are produced in the form of

visualizations based on the code entered by user.

• Step 7: The results obtained in the previous step

are displayed to the user in the space provided

below the existing text space. Users are provided

with facilities to change orientations of the

figures and also to view code that resulted in

creation of the node by hovering on the first

node.

For each line entered by the user on the console

provided, PointerViz compares the statement with

predefined regular expressions. For a correct match, the

shapes and their relations are displayed. These shapes

help novice users to differentiate among various types

of pointer declarations. The pointers are visualized

using circles with arrows emerging from these circles.

These arrows point to the referenced variables as per

the identified tokens. The shapes used to represent

these data structures contain respective variables that

have been used by users in their code for better

readability.

Semi colons are used as delimiting symbols to

separate tokens in monolithic code. As we have

implemented PointerViz for programming languages

like C and C++, it identifies next line or statement by

semi colon. As new statements are entered, new

visualizations with respect to those statements are

generated and displayed to the user. Visualizations of

previously entered statements are maintained to help

users revisit those structures instead of re-writing the

same statements. Visualizations are done in First Come

First Display pattern i.e., visualizations of latest

statements are displayed at the bottom, similar to push

operations in queue. Users can select and drag nodes in

the displayed visualizations to alter their orientation.

5. User Scenario

Suppose Veda is a novice programmer working on

C programming language and she wishes to learn the

how pointers refer to various variables in the program.

She then visits ideone.com, an online coding

playground, selects C as the language she wishes to

code.

• Case 1: She starts typing the first statement:

i n t * p ;

Visualization of this statement is displayed. She

then hovers on the node p displayed in the

visualizations. The code that resulted in creation

of node p is displayed above this node as shown

in Figure 3.

Figure 3. Visualization of code for Case 1

• Case 2: She writes another statement in addition

to the previous statement resulting in the

following code

i n t * p ;

i n t * q = NULL;

i n t * s = &a ;

A visualization of the statement is displayed with

s as a circular node and an arrow originating from

this node to another circular node a as shown in

Figure 4. Also, the statement where a pointer is

assigned a NULL value is represented with a

circular node q pointing to another circular node

having the value as NULL. These statements are

visualized and displayed below the previous

statement as shown in Figure 4.

Page 122

Figure 4. Screenshot of PointerViz showing

visualization of code for Case 2

• Case3: Veda adds another statement that

declares an empty array of size five.

i n t p [5] ;

Veda can view visualization of the statement by

scrolling down the page as in Figure5. The

difference between memory address of one

element of the array to the next element is

represented with the numeric value of number of

bytes that differ, on a line between the elements.

Since the entered array is an integer array, each

element occupies a memory of 4 bytes and hence,

memory locations of consequent elements differ

by 4 bytes, as indicated between the nodes in

Figure 5.

Figure 5. Visualization of code for Case 3

• Case 4: When Veda writes a statement with a

two dimensional character array of two rows and

three columns.

char p [2] [3] ;

Veda can view visualization on the page as in

Figure 6. Since, the array is a character array,

each element of the array occupies 1 byte in the

memory and hence, it indicates that one element

occupies the memory location that is equal to

memory location of the preceding element+1.

Figure 6. Visualization of code for Case 4

• Case 5: Veda, then writes a statement

representing a pointer to string:

char *p = "moksha";

The above statement is then displayed to Veda as

shown in Figure 7, where the pointer variable p

points to the given string and stores the address

of the first character in the string (m in this

example).

Figure 7. Visualization of code for Case 5

• Case 6: Veda writes another statement that

defines a character array of size3.

i n t p [3] = { ' a ' , ' s ' , 'm ' } ;

Visualization of the above statement is displayed

as shown in Figure 8.

• Case 7: Visualization of a two dimensional array

defined at the time of declaration as given below,

is displayed as shown in Figure 9.

i n t p [2] [3] = { 1 , 3 , 5 , 7 , 9 , 2 } ;

Page 123

Q1: How easy was it to use PointerViz interface?

(1=very easy, 5=very difficult)

Q2: PointerViz has visualized pointer data

structures clearly and correctly. (1=strongly

agree, 5=strongly disagree)

Q3: PointerViz has helped me in learning

about various ways of usages of pointer data structures.

(1=strongly agree, 5=strongly disagree)

Q4: PointerViz has kept the whole experiment

interesting and informative. (1=strongly agree,

5=strongly disagree)

Q5: I will recommend PointerViz to my peers.

(1=strongly agree, 5=strongly disagree)

Figure 8. Visualization of code for Case6

Figure 9. Visualization of code for Case7

6. Evaluation

To evaluate PointerViz, we have conducted a user

experience study with 40 volunteers, in the age group

of 18-20 years, from various universities. The

participants were asked to install our PointerViz plugin

as an extension to Google Chrome browser, on their

personal desktops or laptops. They were also provided

with a slide-show depicting the procedure to install

PointerViz, a sample working video of the plug-in and

few sample statements that contain pointers, which

served as a basic tutorial. They were then asked to

write code that involved snippets containing pointers

usingideone.com. The participants were suggested to

view and verify visualizations displayed based on the

code that they have written. A user survey has been

conducted with the help of a five point Likert Scale. A

questionnaire as provided in Table 1, in which each

question has to be rated on a scale of 1 to 5, has been

sent to volunteers to assess their experience and

evaluate PointerViz.

7. Results

As reported in Figure 10, PointerViz had a good

user-friendly interface (83% in Q1). In Q2, about

Table 1. Questions in survey using a 5-point Likert

Scale.

82% of participants have agreed that PointerViz has

visualized the statements clearly and correctly. The

ratings in Q3 and Q4 indicate that PointerViz has helped

about 77% of participants learn about various ways of

using pointers and that the experiment has been

considerably interesting (80% in Q4). However, they

have also suggested increasing the scope of

visualization to various definitions of pointers. In Q5,

most of the participants have agreed that they would

recommend PointerViz to their peers (83%).

8. Discussion and Limitations

The core idea of this paper is to apply the concept

of visualization to aid users in understanding critical

concepts in programming languages. One of the critical

aspects as identified by researchers is pointers [12].

PointerViz prototype is a first step towards supporting

critical programming concepts through visualization. In

order to do an in-line visualization of code, the current

implementation of the tool uses lexical analysis and

parsing at statement level instead of block level. We

have limited the scope of PointerViz to understand

individual statements and visualize the same. We shall

hence extend PointerViz to support analysis of

complete code considering relations among the

statements in code in the future versions. While we

initially planned to map understanding pointers with

different levels of Bloom’s taxonomy, we limited our

scope to basic concepts in the current version.

While the idea seems to be simple, we aim to extend

this to support visualization of pointers in cases where

Page 124

Figure 10. Results of User Survey Questionnaire

pointers deal with various programming concepts such as

use of pointers in a function, array of pointers, linked lists

and use of pointers in user defined data types such as

structures. Though the current prototype focuses only on

visualizing code statement wise, based on the feedback
we received, PointerViz could help novices get a better

understanding of the pointers and references.

9. Conclusion and Future Work

In this paper, we have introduced PointerViz to

visualize pointers, as a prototype extension to Google

Chrome web browser that augments ideone.com. As

pointers are considered to be one of the critical aspects

of learning programming, our work aims to support

novice programmers learn better [12,1]. PointerViz

prototype has visualized code written by users upto a

decent level of satisfaction, owing to 82% of

participants willing to recommend this plugin to their

peers. PointerViz can easily be extended to support other

online coding platforms as well. As reported by survey

participants, one most important suggestion is to extend

PointerViz for other usages of pointers such as linked

lists and doubly linked lists. We plan to extend the

plugin to support multiple scenarios of pointers pointing

to pointers, array of pointers. We shall also extend the

plugin to include display of timely visualizations of

code blocks. We see this work as a first step towards

improving program comprehension through

visualization that could help novice programmers.

Acknowledgements

We thank all the volunteers for their valuable time

and honest feedback that helped us in evaluating

PointerViz.

References

[1] Y. Bosse and M. A. Gerosa, “Why is programming so
difficult to learn?: Patterns of difficulties related to
programming learning mid-stage,” ACM SIGSOFT
Software Engineering Notes, vol. 41, pp. 1–6, 01 2017.

[2] A. Luxton-Reilly, E. McMillan, E. Stevenson,
E. Tempero, and P. Denny, “Ladebug: an online tool to
help novice programmers improve their debugging
skills,” in Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer
Science Education, pp. 159–164, ACM, 2018.

[3] P. J. Guo, “Online python tutor: embeddable web-based
program visualization for cs education,” in Proceeding of
the 44th ACM technical symposium on Computer science
education, pp. 579–584, ACM, 2013.

[4] S. H. Kim and J. W. Jeon, “Programming lego
mindstorms nxt with visual programming,” in Control,
Automation and Systems, 2007. ICCAS’07. International
Conference on, pp. 2468–2472, IEEE, 2007.

[5] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk, “Programming by choice: Urban youth
learning programming with scratch,” in Proceedings of
the 39th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’08, (New York, NY, USA),
pp. 367–371, ACM, 2008.

[6] A. Marron, G. Weiss, and G. Wiener, “A decentralized
approach for programming interactive applications with
javascript and blockly,” in Proceedings of the 2nd edition
on Programming systems, languages and applications
based on actors, agents, and decentralized control
abstractions, pp. 59–70, ACM, 2012.

[7] M. Muratet, P. Torguet, J.-P. Jessel, and F. Viallet,
“Towards a serious game to help students learn computer
programming,” International Journal of Computer
Games Technology, vol. 2009, p. 3, 2009.

[8] C. North and B. Shneiderman, “Snap-together
visualization: can users construct and operate
coordinated visualizations?,” International Journal of
Human-Computer Studies, vol. 53, no. 5, pp. 715–739,
2000.

[9] E. L. Glassman, T. Zhang, B. Hartmann, and
M. Kim, “Visualizing api usage examples at scale,” in
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, p. 580, ACM, 2018.

[10] B. W. Kernighan and D. M. Ritchie, The C programming
language. 2006.

[11] A. D. Robison and P. F. Dubois, “C++ gets faster for
scientific computing,” Computers in Physics, vol. 10,
no. 5, pp. 458–462, 1996.

[12] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A
study of the difficulties of novice programmers,” Acm
Sigcse Bulletin, vol. 37, no. 3, pp. 14–18, 2005.

[13] S. Bassil, R. K. Keller, et al., “Software visualization
tools: Survey and analysis.,” in IWPC, pp. 7–17, 2001.

[14] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning
barriers in end-user programming systems,” in 2004
IEEE Symposium on Visual Languages-Human Centric
Computing, pp. 199–206, IEEE, 2004.

[15] A. Scott, M. Watkins, and D. McPhee, “E-learning for
novice programmers; a dynamic visualisation and
problem solving tool,” in Information and
Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International
Conference on, pp. 1–6, IEEE, 2008.

Page 125

[16] B. Broll, A. Le´deczi, P. Volgyesi, J. Sallai, M.Maroti, A.
Carrillo, S. L. Weeden-Wright, C. Vanags, J. D. Swartz,
and M. Lu, “A visual programming environment for
learning distributed programming,” in Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer

Science Education, pp. 81–86, ACM, 2017.
[17] A. Vahldick, A. J. Mendes, and M. J. Marcelino, “A

review of games designed to improve introductory
computer programming competencies,” in Frontiers in
Education Conference (FIE), 2014 IEEE, pp. 1–7, IEEE,
2014.

[18] S. Leutenegger and J. Edgington, “A games first approach
to teaching introductory programming,” in ACM SIGCSE

Bulletin, vol. 39, pp. 115–118, ACM, 2007.
[19] M. A. Miljanovic and J. S. Bradbury, “Robot on!: a

serious game for improving programming comprehension,”
in Games and Software Engineering (GAS), 2016
IEEE/ACM 5th International Workshop on, pp. 33–36,
IEEE, 2016.

[20] M. A. Miljanovic and J. S. Bradbury, “Robobug: A serious
game for learning debugging techniques,” in

Proceedings of the 2017 ACM Conference on
International Computing Education Research, pp. 93–
100, ACM, 2017.

[21] A. M. Cheadle, A. Field, J. Ayres, N. Dunn, R. A. Hayden,
and J. Nystrom-Persson, “Visualising dynamic memory

allocators,” in Proceedings of the 5th international
symposium on Memory management, pp. 115–125,
ACM, 2006.

[22] M. Ko l̈ling, B. Quig, A. Patterson, and J.
Rosenberg, “The bluej system and its pedagogy,”

Computer Science Education, vol. 13, no. 4, pp. 249–268,
2003.

[23] C. Huizing, R. Kuiper, C. Luijten, V. Vandalon, et al.,
“Visualization of object-oriented (java) programs.,” in
CSEDU (1), pp. 65–72, 2012.

[24] S. Halim, “Visualgo,” Dostupne ́net/en, 2015.
z:¡ https://visualgo.

[25] A. Moreno and M. S. Joy, “Jeliot 3 in a demanding

educational setting,” Electronic Notes in Theoretical
Computer Science, vol. 178, pp. 51–59, 2007.

[26] J. Yang, Y. Lee, and D. Hicks, “Synchronized static
and dynamic visualization in a web-based programming
environment,” in Program Comprehension (ICPC), 2016
IEEE 24th International Conference on, pp. 1–4, IEEE,
2016.

[27] R. Ishizue, K. Sakamoto, H. Washizaki, andY. Fukazawa,

“Pvc: Visualizing c programs on web browsers for
novices,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pp.245–
250,ACM,2018.

Page 126

	Abstract
	1. Introduction
	2. Related Work
	5. User Scenario
	6. Evaluation
	7. Results
	8. Discussion and Limitations
	9. Conclusion and Future Work
	Acknowledgements
	References

