
 

The Attenuating Effect of Intelligent Agents and Agent Autonomy on Managers’ Ability to 
Diffuse Responsibility for and Engage in Earnings Management 

 

Abstract: Advances in IT suggest that computerized intelligent agents (IAs) may soon occupy 
many roles that presently employ human agents. A significant concern is the ethical conduct of 
those who use IAs, including their possible utilization by managers to engage in earnings 
management. Following economics and moral disengagement theory, we investigate how 
financial reporting decisions are affected when they are supported by the work of an IA versus a 
human agent, with varying autonomy. In a 2 x 2 between-participants experiment with 
experienced managers, we manipulate agent type and autonomy, finding that managers engage in 
less aggressive financial reporting decisions with IAs than with human agents, and engage in less 
aggressive reporting decisions with less autonomous agents than with more autonomous agents. 
Path analysis suggests that managers’ perception of control over their agent and ability to diffuse 
responsibility for their financial reporting decisions serially mediate the effect of agent type and 
autonomy on managers’ financial reporting decisions. Our results have implications for 
regulators and practitioners, where the adoption of computerized intelligent agents can attenuate 
managers’ earnings management activity by preventing them from diffusing responsibility for 
their actions to others. 
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I. INTRODUCTION 

Earnings management can be defined as “non-neutral financial reporting in which 

managers intervene intentionally in the financial reporting process to produce some private gain” 

(Schipper 1989; Nelson, Elliott and Tarpley 2002). Earnings management may be used for 

various goals, such as achieving a bonus or earnings benchmark (Marquardt and Wiedman 

2004a), helping a company meet analysts’ forecasts (Balsam, Bartov, and Marquardt 2002), or 

hiding fraud (Broughton 2019). Despite regulatory reforms aimed at inhibiting this behavior, 

earnings management continues to be a pervasive accounting issue. 

We explore a new development in accounting and financial reporting - the use of 

artificial intelligence (A.I.)  and intelligent agents for various tasks supporting and leading up to 

the production of financial reports, and its possible impact on earnings management. Intelligent 

agents (IAs) can support accounting estimates by gathering and evaluating evidence foundational 

to the financial statements, such as historical trends and forward-looking information.1 Little is 

known about how an individual might interact with an IA to support self-enriching activities, 

such as earnings management. Accordingly, we respond to this gap in the literature by 

investigating whether the use of IAs to gather and evaluate evidence to support a manager’s 

financial reporting decision inspires the manager to more or less aggressively manage earnings 

as compared to their use of human agents for the same purpose. 

Advances in information technology are rapidly making their way into everyday business 

functions to enhance processing efficiency, increase the accuracy of information, and change the 

 
1 We define intelligent agents (IAs) as a computer system that is situated in some environment… in order to meet its 
design objectives. Such agents are able to act without the intervention of humans or other systems” (Gao, Wang, Xu, 
and Wang 2007, 63). Intelligent agents vary in autonomy, or the extent to which they have control over their own 
internal state and over their behavior. Intelligent agents are one example of an artificial intelligence (A.I.) solution. 
As such, the terms will be used interchangeably here. 
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nature of business processes, including financial reporting (Deloitte 2018a; PCAOB 2018, 2019). 

Computerized intelligent agents (IAs), software entities with some degree of independence that 

employ knowledge to achieve users’ goals (Gao, Wang, Xu, and Wang 2007), are among such 

innovations. Firms are eager to adopt IAs to reduce costs and gain efficiencies associated with 

this innovative technology (McDonough 2017; Ransbotham, Kiron, Gerbert, and Reeves 2017). 

Relevant to our study, the U.K.’s Financial Reporting Council (FRC) anticipates IAs will play a 

major role in improving the efficiency and effectiveness of a company’s financial processes by 

supporting the corporate reporting process (FRC 2019) and the Public Company Accounting and 

Oversight Board (PCAOB) notes that companies are increasing their use of IAs in financial 

reporting (PCAOB 2018, 2019). 

However, the rapid adoption of IAs and their ability to perform many tasks currently 

performed by human agents raises the question of how managers will utilize IAs and if their 

behavior will vary when directing IAs versus human agents. IAs differ from human agents on a 

number of dimensions, such as ability to engage in moral reasoning, being subject to disciplinary 

action for adverse outcomes, or the certainty humans have of how they will perform a directed 

task. Therefore, it is important to investigate if and how managers’ financial reporting decisions 

are differentially impacted by the use of IAs rather than human agents to support their financial 

reporting decisions. Additionally, both human agents and IAs may possess higher or lower levels 

of autonomy and potentially deviate from a managers’ directions while still pursuing their 

directive, which may affect managers’ perception of control over the agents’ actions and the 

certainty of the agent’s actions in outcome generation (i.e., supporting the financial reporting 

decision). Together, this variation in agent autonomy and agent type could impact managers’ 

directions to the agent to fulfill their supporting role in the financial reporting process. 
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We conduct a 2 x 2 between-participants experiment with 146 experienced managers to 

examine the moral aspects of automation and autonomy by exploring how the use of IAs affects 

managers’ ethical reasoning and their financial reporting decisions in response to Sutton, Holt, 

and Arnold’s (2016) call for research.. We pose a scenario where participants assume the role of 

a division manager responsible for providing a financial reporting decision for future expense 

estimates (e.g., inventory obsolescence, allowance for uncollectible accounts, and warranty 

estimate) to corporate management. Participants are informed they will make a financial 

reporting decision for the future expense estimates and have an agent collect historical and 

forward-looking financial information to support their financial reporting decision. We 

manipulate whether the agent is a human agent or a computerized IA (Agent Type), and whether 

the agent is capable of more or less autonomous behavior in fulfilling their directed task (Agent 

Autonomy). This was operationalized as whether the agent was capable of deviating from the 

manager’s directions in performing their task and acting in an unpredictable manner while still 

ultimately pursuing the directive given to them by the manager, or if the agent would perform 

their directed task in a predictable and foreseeable manner. In addition to providing their 

financial reporting decisions, participants also completed scales on perception of control over 

their agent and diffusion of responsibility to their agent for their financial reporting decisions.  

 We base our hypotheses on theory of mind (Carruthers and Smith 1996; Premack and 

Woodruff 1978; Scassellati 2002; Harbers, van den Bosch, and Meyer 2009) and moral 

disengagement theory (Bandura 1991, 1999, 2002), as well as behavioral economics (Paharia, 

Kassam, Greene, and Bazerman 2009; Hamman, Loewenstein, and Weber 2010; Coffman 2011; 

Bartling and Fischbacher 2012; Erat 2013; Oexl and Grossman 2013). Theory of mind suggests 

that individuals attribute mental states, such as beliefs, intentions, and desires, to others in order 
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to better understand, explain, predict, or even manipulate others’ behavior. This would lead to an 

expectation of the agents’ future behavior and affect managers’ perception of control over the 

agent. Increased perceptions of control would lead to greater certainty over the agent’s actions in 

outcome generation (i.e., supporting the financial reporting decision). Prior research suggests 

that individuals can use uncertainty to decrease their causal role in an outcome (e.g., Dana, 

Weber, and Kuang 2007; Leonhardt, Keller, and Pechmann 2011; Tykocinski, Amit, and Ayal 

2017); in our scenario, the outcome would be the manager’s financial reporting decision. In other 

words, uncertainty over the agent’s actions in completing their supporting role in the financial 

reporting process could be used by managers to diffuse responsibility to the agent for their own 

financial reporting decision. We predict that managers who perceive greater control (and are 

aware others perceive they have greater control) over their agent will be less able to diffuse 

responsibility for their financial reporting decisions to their agent. This should result in more 

conservative financial reporting decisions. We test our hypotheses with a model whereby 

managers’ perception of control over the agent and managers’ subsequent ability to diffuse 

responsibility for their financial reporting decisions to their agent serially mediate the 

relationship between our two agent characteristics (type and autonomy) and managers’ financial 

reporting decisions. Figure 1 presents a theoretical model of our hypothesized relationships. 

[Insert Figure1 about here] 

 Our results are consistent with our hypotheses. We find that agent type and agent 

autonomy interact to affect managers’ perception of control over their agent. We also find that 

managers engage in more conservative financial reporting decisions when their agent is an IA 

versus a human agent and when their agent is less autonomous versus more autonomous. Finally, 

structural equation modeling reveals that the effect of agent type and agent autonomy on 
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managers’ financial reporting decisions are serially mediated by manager perception of control 

over their agent and diffusion of responsibility for their financial reporting decisions to their 

agent.  

 We contribute to the accounting and IA literatures in several ways. First, building on 

Dechow, Ge, Larson, and Sloan (2011), we investigate two previously unexplored factors (agent 

type and autonomy level) that may influence earnings management. Our study capitalizes on the 

comparative advantages of experiments (Libby, Bloomfield, and Nelson 2002) by capturing the 

intervening process variables, including manager perception of control over their agent and 

diffusion of responsibility, for their financial reporting decisions, for which their agent is then 

expected to find support. This approach allows us to map how agent type and autonomy level 

affect managers’ decision process. 

 Second, we extend the IA literature by investigating users’ perception of control over the 

agent. The majority of the intelligent agent literature investigates users’ perceptions of trust in 

their agent (e.g., Choi and Ji 2015; Hoff and Bashir 2015; Körber, Baseler, and Bengler 2018). 

We complement these findings by highlighting a boundary condition of IA use. Specifically, we 

find that while managers perceive they are in greater control of IAs and less autonomous agents, 

we also document that managers are less willing to engage in aggressive financial reporting 

when utilizing IAs or less autonomous agents in our setting. This is due to the manager’s 

perception that the agent is under their control, will perform their duties in a certain manner, and 

thus the manager is unable to diffuse responsibility for their decisions to the agent. 

Third, we are among the first to investigate the use of IAs on financial reporting decisions 

in an accounting setting, responding to the call for research from Sutton et al. (2016) on A.I. in 

the accounting domain. In doing so we also extend the behavioral economics literature on the 
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delegation of tasks to agents. While this literature has demonstrated that managers may delegate 

tasks to agents in order to feel more detached and less responsible for their decisions, it has not 

explored how the nature of the agent impacts willingness to delegate or the extent to which 

detachment is achieved. We vary both the type and autonomy of the delegated agent to evaluate 

the impact on feelings of control, diffusion of responsibility for outcomes, and aggressiveness of 

the financial reporting decision. Our results suggest that IAs attenuate managers’ aggressive 

financial reporting behavior, as do less autonomous agents. These results should be of interest to 

accounting practitioners, regulators, and those charged with governance as IAs occupy more and 

more sensitive functions in the coming years.  

II. THEORETICAL FRAMEWORK AND HYPOTHESES DEVELOPMENT 

Earnings Management 

U.S. Generally Accepted Accounting Principles (GAAP) give managers the freedom to 

take advantage of the uncertainty of future events and information asymmetry to purposefully 

fulfill their own goals, to some extent, through self-serving accounting estimates (Pan and Patel 

2018). Managers can intervene in the financial reporting process because: (1) accounting rules 

allow a company to choose between different accounting methods, (2) certain entries in 

accounts involve an unavoidable degree of estimation, judgement, and prediction, and (3) 

genuine transactions can be timed so as to give an advantageous impression in the accounts. 

Prior research in accounting investigates both how managers manipulate accounting information 

to their advantage (e.g., Healy 1985; DeAngelo 1986; Jones 1991, Defond and Jiambalvo 1994; 

Perry and Williams 1994; Teoh, Welch, and Wong 1998; Kasznik 1999; Richardson 2000; 

Marquardt and Wiedman 2004b) as well as issues related to manager/subordinate relationships 

such as how managers pressure subordinates to influence financial reporting outcomes and 
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whether subordinates acquiesce to this pressure (e.g., Bishop, DeZoort, and Hermanson 2017; 

Brink, Gouldman, and Victoravich 2018; Johnson, Kidwell, Lowe, and Reckers 2019; Murphy 

and Dacin 2011). 

Characteristics of Agents 

Intelligent Agents 

The rapid adoption of automated systems and IAs has led some to suggest that 35 percent 

of managers’ work can be replaced by automation and that 25 percent of CEO tasks can be 

handled by IAs (McKinsey 2017). Some estimates suggest that most business roles could migrate 

to automation by 2027 (Allen, Root, and Schwedel 2017). In Deloitte’s 2018 U.S. CEO Outlook, 

85% of over 3,000 executive respondents believe that IAs will perform tasks that normally 

require human intelligence (Ransbotham et al. 2017). “Roboadvisors” already offer competent 

financial advice, on par with human contemporaries (The Economist 2015; Hodge, Mendoz, and 

Sinha 2018), demonstrating that IAs can substitute for human actors in traditionally human roles. 

Regulatory bodies foresee A.I. and IAs as playing an important role in financial reporting in the 

future (PCAOB 2018, 2019). As the U.K.’s FRC puts it, “it is not a question of whether AI will 

become important for corporate reporting, but when” (FRC 2019, 18). 

The introduction of IAs into business operations has been met with widespread 

excitement and concern (McDonough 2017; Cooper, Holderness, Sorensen, and Wood 2019; 

FSB 2017; Mann 2019; Ovaska-Few 2017). IAs are often cited as opportunities to reduce bias, 

errors, and inefficiencies within business processes, from natural language processing and 

generation (Allee, Deangelis, and Moon 2017; FRC 2019; EY 2017) to investment advice (The 

Economist 2015; Hodge et al. 2018) to fraud detection with machine learning algorithms (Perols 

2011; Perols, Bowen, Zimmerman, and Samba 2017). However, some caution that we do not 



8 
 

fully understand how the integration of IAs into business processes will affect either the results 

they achieve or their interactions with humans who direct them.  

These concerns from regulators suggest that attention must also be given to the behavior 

of those using IAs and how individuals could misuse IAs. The FRC notes that IAs do not operate 

in a vacuum (FRC 2019), but are tailored to meet the demands of issuers, investors, and other 

users. Both Google and Microsoft have issued warnings in their 10-K filings that their use of A.I. 

and IAs could adversely impact their business; Microsoft specifically states that “Inappropriate 

or controversial data practices… could undermine the decisions, predictions, or analysis AI 

applications produce” (Microsoft 2019; 22). Therefore, substantial concern exists among 

industry experts and regulators that the emergence of IAs could result in their use to support 

unethical decision-making. A major report on the dangers of A.I. warns that “Policymakers 

should collaborate closely with technical researchers to investigate, prevent, and mitigate 

potential malicious uses of AI.” (Brundage et al. 2018, 4). However, these concerns are 

supported only by anecdotes, while no empirical research has explored the issue. 

Agent Autonomy 

IAs and humans, alike, vary in their degree of autonomy on a continuum from more 

autonomous behavior to less autonomous behavior. While both more autonomous and less 

autonomous agents can perform their duties without oversight from a manager, more 

autonomous agents have been described as those entities who behave in an unpredictable manner 

and less autonomous agents as those entities who behave in a more predictable manner (e.g., 

Choi and Ji 2015; Eyssel, Kuchenbrandt, and Bobinger 2011; Hoff and Bashir 2015; Körber et 

al. 2018).  Several examples exist of A.I.’s performing in unpredictable ways, including 

Google’s DeepMind A.I. (Leibo et al. 2017) and Facebook’s chatbots (Baraniuk 2017) among 
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others. In accounting, for example, a more autonomous IA in a tax setting could adopt an overly 

aggressive tax position that is in a client’s best interest, and therefore consistent with its 

programming and training, but not explicitly specified by the programmer or user. 

For financial reporting purposes, it is well documented that human agents can engage in 

predictive analytics and selectively include forward-looking information to complement 

historical information while forming financial reporting positions that are favorable to the 

manager (Bergstresser and Philippon 2006; Cornett, Marcus, and Tehranian 2008; Dechow and 

Dichev 2002; Richardson 2000). Similarly, IAs may be programmed by managers and trained to 

perform activities that support the financial reporting process, such as creating predictive models 

that support aggressive expense estimates, to assist managers in engaging in earnings 

management. Further, the level of agent autonomy could impact the nature of managers’ 

financial decision-making. This delegation of supporting activities to agents with greater 

autonomy may be used by managers to distance themselves from the financial reporting decision 

and disclaim responsibility for the decision, as anecdotal evidence suggests (from Enron, Wells 

Fargo, and GM, among others). We describe below how agent characteristics of type and 

autonomy will affect managers’ perception of control over their agent and their certainty in how 

the agent will support the outcome activity (i.e., financial reporting decision), allowing managers 

to morally disengage from and disclaim responsibility for their decisions. 

Theoretical Constructs 

 Regulators suggest the adoption of IAs will alter an organization’s financial reporting 

process (FRC 2019; PCAOB 2018, 2019). The purpose of this section is to explicate the 

cognitive processes by which the use of IAs may result in increased earnings management. 

Specifically, we assert that the use of human (versus intelligent) agents and autonomous (versus 
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nonautonomous) agents will reduce perceived control over the outcome of agents’ activities, 

which allows managers to diffuse responsibility for their financial reporting decisions to their 

agent. Reduced perceptions of control and greater diffusion of responsibility will result in more 

aggressive financial reporting. 

Manager Control 

The majority of the agency literature suggests that individuals prefer increased control 

over a decision because control tends to eliminate uncertainty over the decision outcome 

(Simonsohn 2009). However, when the decision outcome involves moral consequences, 

individuals exhibit a preference for uncertainty where they may distance themselves from their 

decision and deflect possible blame (Dana et al. 2007; Leonhardt et al. 2011; Tykocinski et al. 

2017). Dana et al. (2007) suggest that when the relationship between an individual’s actions and 

the resulting outcome is uncertain, individual’s self-interested behavior increases. Tykocinski et 

al. (2017) demonstrate that individuals prefer a more uncertain option when their personal 

responsibility is high. Leonhardt et al. (2011) find that when individuals wish to avoid 

responsibility for their decision, they will engage in uncertainty-seeking behavior to decrease 

their causal role in outcome generation. In our scenario, managers are assigned an agent, rather 

than given their choice. However, this literature suggests perceptions of decreased control over 

an individual, whether assigned or selected, allows managers to morally disengage from the 

outcomes produced by that individual or agent, by sharing or diffusing their personal 

responsibility with the agent. 

Theory of mind suggests that individuals attribute mental states such as beliefs, 

intentions, and desires to others in order to better understand, explain, predict, or even 

manipulate their behavior (Carruthers and Smith 1996; Premack and Woodruff 1978; Scassellati 
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2002; Harbers et al. 2009). We posit that managers’ will perceive variable levels of independent 

intentions, beliefs, and desires within their agent based on the varying agent characteristics (type 

and autonomy), which will impact managers’ expectation of the agent’s future behavior and 

perception of control over their agent. 

In regard to agent type, theory of mind suggests an agent will be better able to attribute 

familiar mental states to humans than to computers. Even though humans and computers may 

perform the same tasks and possess the same level of autonomy, we expect the fact that IAs are 

‘created’ by humans should lead managers to have a greater sense of control over IAs than 

human agents. Lemley and Casey (2019, 35) state that “Robots are only as “neutral” as the data 

they are fed and only as “objective” as the design choices of those who create them,” suggesting 

it would be the manager who is ultimately in control and responsible for the directed output of 

IAs. Theory of mind suggests that managers would perceive that IAs do not possess independent 

intentions, beliefs, and attitudes to guide their behavior and, therefore, have an increased sense of 

control over the agent’s behavior. Following theory of mind, we predict that managers will 

perceive the existence of independent intentions, beliefs, and attitudes in human agents but not in 

intelligent agents, thereby envisioning how the human agent could perform in an unexpected 

manner while still pursuing their directive.  

 In regard to agent autonomy, this same predictability could lead managers to perceive 

greater control over less autonomous agents than more autonomous agents. We posit it will be 

easier to perceive independent intentions, beliefs, and attitudes in agents (whether human or IA) 

described as more autonomous, and whose behavior would be more unpredictable to the 

manager, than less autonomous, resulting in greater perceived control for less autonomous agents 

than more autonomous agents. When managers envision the agent could deviate from their 
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instructions, perform in an unexpected manner, and operate outside the manager’s purview while 

still pursuing the manager’s directive, the manager’s sense of control will decline. As a result of 

these expectations, we also expect agent type and agent autonomy to interact to impact 

managers’ perception of control over their agent.  

H1a: Managers will perceive greater control over intelligent agents than human agents. 

H1b: Managers will perceive greater control over less autonomous agents than more 

autonomous agents. 

H1c: Agent type and agent autonomy will interact to impact managers’ perception of 

control over their agent.  

Diffusion of Responsibility 

Moral disengagement theory (Bandura 1991, 1999, 2002) suggests that, if an individual is 

faced with a situational inducement to behave unethically and act contrary to their moral 

principles, they must first morally disengage from the unethical behavior.2 One way individuals 

disengage from unethical behavior is to diffuse responsibility for their actions (Detert, Treviño, 

and Sweitzer 2008; Murphy and Dacin 2011; Mayew and Murphy 2014; Reinstein and Taylor 

2017). Prior research suggests that individuals are less likely to engage moral norms, and 

therefore are more likely to engage in unethical behavior, when they can diffuse decision 

responsibility to others (e.g., Charness 2000; Barsky 2008; Beaudoin, Cianci, Tsakumis 2015). 

For example, Libby, Proell, and Smith (2018) find that managers with decision responsibility 

 
2 Ethical accounting is defined as “being truthful about the facts and as having a sufficiently high probability of 
being truthful about the future. Omissions of relevant facts or probable future events would also be considered 
unethical.” (Smieliauskas, Bewley, Gronewold, and Menzefricke 2018, 439).  
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report more honestly while Church, Hannan, and Kuang (2012) find that shared responsibility in 

budgetary slack makes dishonest reporting more self-justifiable to the manager.  

A large literature in economics supports the notion that managers intentionally create 

distance from their decisions in order to diffuse responsibility. This literature suggests that 

managers may delegate tasks to subordinates (i.e., agents) in order to feel more detached or 

distant, and thus less responsible for their decisions or actions (Paharia et al. 2009; Hamman et 

al. 2010; Coffman 2011; Bartling and Fischbacher 2012; Erat 2013; Oexl and Grossman 2013). 

Oexl and Grossman (2013) show that, by delegating to an intermediary agent, a principal is 

effectively punished less for their self-serving behavior. For a recent example, Wells Fargo CEO 

John Stumpf blamed employees for creating fictitious customer bank accounts, stating “there 

was no incentive to do bad things” despite a corporate incentive structure heavily geared towards 

meeting unrealistic sales goals (WSJ 2016). 

Perception of Control and Diffusion of Responsibility 

The economics literature suggests that managers delegate tasks to agents in order to feel 

more detached and less responsible for their actions (Coffman 2011). Further, Leonhardt et al. 

(2011) suggest that individuals may seek out situations that are more uncertain to minimize their 

causal role in outcome generation and disclaim responsibility. For a manager making aggressive 

financial reporting decisions, the uncertainty inherent in how an agent will support the outcome 

activity (i.e., financial reporting decision) can be seized upon by the manager to minimize 

responsibility for their actions. For example, Ken Lay, the former chairman of Enron, testified 

that he was a “hands-off” manager, who let his employees spread their wings, suggesting he was 

utilizing his ignorance and uncertainty of employees’ actions to disclaim responsibility for 

Enron’s collapse (NPR 2006). This literature suggests that managers will direct agents to engage 
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in supporting activities, such as building models for predictive analytics or selectively seeking 

out historical information, rather than performing these tasks themselves, in order to create 

“distance” from their financial reporting decision. Greater uncertainty over the agent’s actions in 

fulfilling the outcome of the directed task will result in greater perceived “distance” from the 

manager’s financial reporting decision. 

We posit, based on the literatures from experimental economics and moral 

disengagement, that managers’ ability to diffuse responsibility for their financial reporting 

decisions is driven by managers’ perception of control over their agent. Specifically, we contend 

that, if there is a high degree of certainty over the agent’s actions in fulfilling the outcome of the 

directed task, the manager will perceive a high degree of control over the agent. Increased 

control over a task has been shown to be associated with increased feelings of personal 

responsibility (Leonhardt et al. 2011) since the manager cannot claim they were not aware of 

how the outcome was reached. Alternatively, if the manager expects they will have less control 

over the agent, they can more easily imagine how the agent could perform unpredictably or 

contrary to their specific directions, increasing uncertainty over the agent’s actions in fulfilling 

the outcome of the task and making it easier to disclaim fault and diffuse responsibility for the 

results of the financial reporting decision to the agent. Thus, control would be an input into 

diffusion of responsibility. 

Detert et al. (2008) hypothesize and find that moral disengagement is positively related to 

unethical decision making. In our study, managers are motivated to engage in aggressive 

financial reporting in order to achieve unreasonable reporting expectations. Specific to this 

context, Bandura, Underwood, and Fromson (1975) studied disinhibition of aggressive behavior 

through processes that weaken self-deterring consequences, finding that lessened personal 
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responsibility enhanced aggressiveness of actions. Similarly, we expect that managers with 

greater ability to diffuse responsibility will engage in more aggressive financial reporting. 

 Specifically, we expect that managers, motivated to frame financial results more 

positively for their company, who (1) perceive a lack of control over their agent and (2) are able 

to rationalize diffusion of responsibility for their actions to their third-party agent given a 

perceived lack of control over the agent’s actions in fulfilling the outcome of the task, will 

engage in aggressive financial reporting decisions. Therefore, we expect managers will engage in 

more aggressive financial reporting decisions with human agents versus IAs and with more 

autonomous agents versus less autonomous agents, due to their ability to diffuse responsibility 

for their actions to their respective agents through their perception of control over their agent. 

We therefore predict the following serial mediation hypothesis and indicate the expected 

direction of these relationships in Figure 1: 

H2: Managers’ perception of control over their agent and diffusion of responsibility for 

their financial reporting decisions to their agent will serially mediate the relationship 

between agent type, agent autonomy, and aggressive financial reporting decisions. 

 

III. METHOD 

 We test our hypotheses using a 2 x 2 (Agent Type x Agent Autonomy) between-

participants experimental design. The experimental task asks individual managers to review the 

status of their division for the most recent year, develop accounting estimates and make a 

financial reporting decision to either enhance or diminish their chances of meeting an earnings 

benchmark. They are informed that a subordinate agent, Bob, will selectively include forward-

looking information to support the accounting estimates so that their financial reporting decision 
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would be realized. Our primary dependent measure is managers’ financial reporting decision. In 

order to model managers’ decision-making process, we also elicit measures of managers’ 

perception of control over the agent and managers’ diffusion of responsibility to their agent for 

their financial reporting decision.  

Participants 

Participants are 146 individuals recruited from Amazon’s Mechanical Turk (AMT) 

platform in exchange for a $3.00 payment.3 4 Prior research suggests that AMT workers exert a 

similar level of effort on experimental tasks as more traditional participant pools (Farrell, 

Grenier, and Leiby 2017). Several accounting studies have employed participants from AMT 

(e.g., Brasel, Doxey, Grenier, and Reffet 2016; Dworkis 2013; Koonce, Miller, and Winchel 

2015; Krische 2019; Rennekamp 2012; Rennekamp, Rupar, and Seybert 2015). 

To qualify for the study, participants were required to take a short demographic survey 

asking if they possess white collar work experience and management work experience, among 

other irrelevant questions to prevent demand effects in their answers. Participants qualified for 

participation in the study if they possessed white-collar work experience and had prior 

experience either managing employees for their organization, giving employees directions to 

complete their job functions, or making decisions that financially impact their organization. Later 

in the instrument, we evaluated their knowledge of accounting estimates by completing a short 

comprehension check to test their understanding of how changing the accounting estimates that 

would comprise their financial reporting decision would impact the financial statements (e.g., 

does increasing inventory obsolescence increase or decrease earnings?). Ten participants failed 

 
3 Importantly, participants’ compensation is independent of their responses to our dependent measure. Therefore, 
participants did not have an extrinsic motivation to report more aggressively for additional compensation. 
4 Use of human participants for this study was approved by the Institutional Review Board (IRB) at the university 
from which the study was administered online. 
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this comprehension check and were not allowed to continue the experiment, resulting in 146 

complete observations for analysis. 

Participants took an average of 26.15 minutes to complete the instrument for an effective 

hourly wage of $6.88. Sixty-four percent of participants are male. The average (standard 

deviation) participant in our study was 37.90 (9.88) years old with 12.22 (8.38) years of 

professional work experience. Participants reported an average (standard deviation) of 5.75 

(6.36) years of management work experience, of which 5.68 (5.96) years was spent supervising 

others, 3.23 (4.58) years is spent preparing financial budgets, and 2.63 (4.02) is spent preparing 

financial statements.5 Based on these demographics, we believe our participants are a reasonable 

proxy for mid-level managers.6 

Experimental Task 

The experimental task was administered online through Qualtrics, a web-based survey 

platform. Participants were asked to assume the role of a divisional manager for Felten-Miller 

Materials, Inc. (FMM), a fictitious publicly traded company on the NASDAQ Stock Exchange. 

Participants were asked to assume they have been in their current role for five years and are 

hoping for a promotion soon. In their role as a divisional manager, participants are expected to 

meet or exceed last year’s financial performance in order to achieve their aspiration of 

promotion, a scenario adapted from Clor-Proell, Kaplan, and Proell (2015). The case suggests 

that, unfortunately, the preliminary financial results for the present year are disappointing and 

 
5 We believe that these participant demographics are comparable to those of participants in contemporaneous studies 
who are assigned to the role of a superior in order to examine their potentially unethical behavior (e.g., Brink, Coats, 
Rankin 2017; Brink, Hobson, and Stevens 2017; Brown, Fisher, Peffer, and Sprinkle 2017). 
6 ANOVA suggests that none of our demographic variables differ significantly between conditions. We do note that 
managerial work experience and supervisory experience are both correlated with Reporting Decision (manager’s 
financial reporting decision) at the α < 0.05 level. However, running our analysis with either variable individually or 
both variables together as covariates does not qualitatively change our results or inferences. Therefore, we omit 
these measures as covariates from our analysis. 
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participants will not be able to meet their financial performance expectations without an 

aggressive approach to their financial reporting by reducing expenses. Participants are then 

informed that U.S. GAAP allows managers to use their professional judgment to estimate future 

expenses and liabilities. These accounting estimates include the allowance for uncollectible 

accounts, inventory obsolescence, and warranty expense reserve. All of these accounts represent 

future liabilities and expenses that would decrease earnings in the current period.  

We provide several contextual influences to ‘constrain’ the strong motivation we created 

for earnings management. First, the background materials continue to suggest that it would be 

more appropriate to increase rather than decrease these expense estimates due to lagging sales 

and deteriorating economic conditions across the participant’s division. Further, participants 

were informed that, at fiscal year-end, an external auditor would audit the division and the 

auditor would only accept the accounting estimates if they were more likely than not to be 

realized (i.e., were truthful about the future). Finally, participants were informed that if the 

external auditor rejects the accounting estimates, the auditor will report the responsible party to 

corporate management, who may take action against the responsible party, up to and including 

termination. This scenario creates tension by stressing the need for the best possible financial 

performance for the division and the manager themselves while also emphasizing the potential 

negative impact if the auditors felt estimated expenses were too low for the current year. The 

incentive for participants to decrease the estimated expenses would be to impress corporate 

management and potentially earn a promotion; all consequences that would be self-fulfilling, but 

potentially harmful for the firm’s other stakeholders. After thoroughly explaining the three 

accounting estimates they would be asked to make, participants were screened for knowledge 
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(e.g., does increasing inventory obsolescence increase or decrease earnings?), and those failing 

more than one out of three questions were excluded from continuing the survey.  

Independent Variables 

Participants were assigned an agent to support their financial reporting decision in 

selecting historical and forward-looking information that would be consistent with managers’ 

estimates. The first independent variable, Agent Type, was manipulated within the background 

information presented to participants. In the human agent condition, participants were informed 

they had been assigned Bob, “a senior accountant, [who] is very competent, and has several 

years’ experience in forecasting allowances, reserves, and inventory obsolescence.” In the 

intelligent agent condition, participants were informed they had been assigned B.O.B. (Brilliant 

Operations Build), a “computerized intelligent agent designed to be very competent [that] has 

been used for several years in forecasting allowances, reserves, and inventory obsolescence. 

B.O.B. uses sophisticated machine-learning algorithms to collect information and make 

recommendation.” To reinforce the manipulation, participants were also shown a picture of a 

human male with a neutral facial expression (desktop computer) in the Human Agent (Intelligent 

Agent) condition.  

The second independent variable, Agent Autonomy, was also manipulated within the 

background information at two levels. Less autonomous agents were described as having a 

performance history of following managers’ instructions and performing in a foreseeable way 

(Less Autonomous). More autonomous agents were described as usually following managers’ 

instructions, but having a performance history of deviating from managers’ instructions and 

using the information collected from past experiences to inform their actions, yet still working 

towards what the manager instructed them to do (More Autonomous); in other words, the agent 
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may perform in an unforeseeable way to arrive at the directed accounting estimates. The 

descriptions of both more autonomous and less autonomous agents indicated that Bob’s 

(B.O.B.’s) past work usually turned out to truthfully represent the future, suggesting to 

participants that their agent, regardless of condition, would accomplish the task directed by the 

manager. 7 Please see Appendix A for excerpts of our experimental materials. 

Dependent Variables  

Our primary variable of interest was managers’ financial reporting decision. After 

reviewing the information in the case and being assigned to their experimental treatment, 

participants were asked to make financial reporting decisions for three separate accounts: 

allowance for uncollectible accounts, inventory obsolescence, and warranty expense reserve. All 

three accounts were measured on 11-point Likert scales (-5 = Decrease by $100,000, 0 = No 

change, and 5 = Increase by $100,000) where lower values (i.e., decreasing the estimated 

expense account) would indicate a more aggressive position and be consistent with achieving 

managers’ financial performance benchmark. We sum the combined changes in the three 

accounts to comprise our measure of Reporting Decision.8 We reverse-code Reporting Decision 

for our analysis so that higher values reflect more aggressive financial reporting decisions. 

Participants were informed that Bob would seek supporting inputs for the model used for the 

accounting estimates to help justify the manager’s financial reporting decisions to corporate 

management and the external auditor. This is consistent with practice, where both human agents 

and IAs, more autonomous agents and less autonomous agents can selectively include 

 
7 For parsimony, we refer to the agent as Bob within this manuscript when not speaking to a specific experimental 
treatment. 
8 The three dependent measures are highly correlated (all Pearson correlations > 0.70, p < 0.001), and Cronbach’s 
alpha is 0.910. Our results are qualitatively and inferentially similar when we test our hypotheses with any one 
account as the dependent measure. 



21 
 

prescriptive information and, along with historical data, develop a forward-looking estimate. We 

include this language in our instrument to reinforce to managers that the financial reporting 

decision is theirs, but to put them in a superior position over their agent and give them the 

opportunity to diffuse responsibility to their agent. 

To capture perception of control over their agent, participants were asked their agreement 

with two statements: “I expect Bob to always follow orders” and “I expect that Bob will always 

follow instructions” both measured on 7-point Likert scales anchored at 1 = Completely disagree 

and 7 = Completely agree. These two measures are highly correlated (Pearson correlation = 

0.790, p < 0.001), and Cronbach’s alpha is 0.881 which is above the cutoff suggested by 

Peterson (1994). Therefore, we average them into a single measure, Control, for our analysis. 

To measure diffusion of responsibility for their financial reporting decisions to their 

agent, participants were asked to indicate their agreement with three statements.9 Participants’ 

responses to these three statements are highly correlated (all Pearson correlations > 0.670, p < 

0.001), and Cronbach’s alpha is 0.864. Therefore, we average these three items into a single 

measure, Diffusion of Responsibility, for our analysis.  

IV. RESULTS 

Manipulation Checks 

 Participants completed two manipulation checks. The first asked whether BOB was a 

computer or a human. Ninety-seven percent (141 out of 146) of participants responded correctly 

to this question. The second manipulation check asked if BOB was capable of deviating from 

participants’ instructions on a 7-point Likert scale (anchored at 1 = Totally incapable, 7 = Totally 

 
9 These statements include: “I should not be blamed for the trouble caused by Bob”, “If Bob decides to do something 
harmful, it is unfair to blame me for it”, “You can’t blame me for the accounting estimates Bob develops because I 
played only a small part in it” all measured on 7-point Likert scales anchored at 1 = Strongly disagree and 7 = 
Strongly agree (i.e., higher values indicate greater levels of diffusion of responsibility). 
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capable). An independent samples t-test with the above measure is significant (t144 = 4.035, p < 

0.001) with the mean for More Autonomous (M = 4.97) significantly greater than the mean for 

Less Autonomous (M =3 .56).10 The results of these tests suggest that our manipulations were 

effectively attended to by participants. Therefore, we retain all participants for analysis.11  

Descriptive Statistics 

We provide descriptive statistics for managers’ financial reporting decisions for each 

individual account in Table 1. We provide descriptive statistics and depict the magnitude of 

managers’ perception of control over their agent, diffusion of responsibility to their agent, as 

well as their financial reporting decisions in Table 2. We formally test our predictions using 

ANOVA and path analysis, with participants’ perception of control over their agent, diffusion of 

responsibility for their financial reporting decision to their agent, and financial reporting decision 

as our dependent measures of interest. We report our ANOVA results in Table 3.  

[Insert Tables 1, 2, and 3 about here] 

Table 3, Panel A presents the results of our tests of H1a, H1b, and H1c. H1a predicts that 

managers will perceive greater control over intelligent agents than human agents, H1b predicts 

that managers will perceive greater control over less autonomous agents than more autonomous 

agents, and H1c predicts that agent type and agent autonomy will interact to impact managers’ 

perception of control over their agent. We test H1a, H1b, and H1c with a two-way ANOVA. The 

results of the ANOVA are insignificant for Agent Type (F (1, 142) = 0.000, p = 0.996), failing to 

provide support for H1a. There is a significant effect for Agent Autonomy (F (1, 142) = 117.047, 

p < 0.001) with the mean for More Autonomous Agents (M = 6.23) significantly greater than the 

 
10 All reported p-values are two-tailed unless otherwise noted. 
11 Excluding the five participants who failed the Agent manipulation check does not qualitatively change our results 
or inferences. 
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mean for Less Autonomous Agents (M = 4.03), providing support for H1b. Finally, there is a 

significant Agent Type*Agent Autonomy interaction (F (1, 142) = 7.991, p = 0.005). Follow-up 

simple effects analysis reveals that when Agent Autonomy is held at Less Autonomous, managers 

perceive they are in less control of Human Agents (M = 5.93) than Intelligent Agents (M = 6.50); 

the difference of 0.57 is significant (p = 0.05). However, when Agent Autonomy is held at More 

Autonomous, managers perceive they are in less control of Intelligent Agents (M = 3.74) than 

Human Agents (M = 4.31); the different of 0.57 is significant (p = 0.045). As depicted in Figure 

2, these results suggest that managers do not perceive they are in control over more autonomous 

agents. Interestingly, the means for Intelligent Agents represent the two extremes – when the IA 

are autonomous, managers perceived to have the least control of the four conditions and when 

the IA were nonautonomous, managers perceived to have the most control. Human agents 

demonstrated a similar effect for autonomy, but with less extreme differences. Together, these 

results provide support for H1c. 

Although not hypothesized, we conduct a similar ANOVA for the dependent variable, 

Managers’ Financial Reporting Decisions. The results of the ANOVA (Panel B, Table 3) are 

marginally significant for Agent Type (F (1, 142) = 2.943, p = 0.088) with the mean for Human 

Agent (M = 3.44) greater than the mean for Intelligent Agent (M = 1.66). There is also a 

marginally significant effect for Agent Autonomy (F (1, 142) = 3.313, p = 0.070) with the mean 

for More Autonomous Agents (M = 3.45) significantly greater than the mean for Less 

Autonomous Agents (M = 1.59). The Agent Type*Agent Autonomy interaction is not significant 

(F (1, 142) = 0.401, p = 0.527, two-tailed).  

Means for Control and Managers’ Financial Reporting Decisions are graphed in Figures 

2 and 3. 
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[Insert Figures 2 and 3 about here] 

 

Test of H2 - Structural Equation Modeling 

H2 predicts manager perception of control over their agent and diffusion of responsibility 

for their financial reporting decisions to their agent will serially mediate the relationship between 

agent type, agent autonomy, and aggressive financial reporting decisions.  

We conduct our formal test of serial mediation with path analysis. This analysis tests the 

concurrent relationships of the entire set of variables, allowing us to examine relationships with 

the effects of all measured variables accounted for. Figure 4, Panels A and B illustrates the 

results of our path analysis. We develop a multi-group model by grouping our analysis by Agent 

Type. We first test our full theoretical model illustrated in Figure 1 for acceptable model fit. Hu 

and Bentler (1999) suggest model statistics of χ2/df < 3.00, CFI > 0.95, and SRMR < 0.08 are 

representative of good model fit. Following these guidelines and reported in Table 4, our 

hypothesized model has good fit (χ2/df = 0.868, CFI = 1.000, SRMR = 0.033). Therefore, we 

conduct our test of serial mediation for H2 with the hypothesized model.12 

[Insert Figure 4 about here] 

[Insert Tables 4, 5, and 6 about here] 

The results of H2 are presented in Tables 5 and 6. To directly test H2 and disentangle the 

indirect effects of agent type and agent autonomy on accounting estimate aggressiveness, we 

conduct estimand-based analyses (95 percent confidence interval, bootstrapping with 5,000 

 
12 The hypothesized model is saturated. Therefore, model fit statistics cannot be estimated. In order to estimate 
model fit statistics, we include a single covariate in our model, Management Experience. The reported model fit 
statistics and all reported path coefficients are taken from the model estimated with the covariate Management 
Experience. Omitting the covariate from the model does not qualitatively change our results or inferences from our 
path analysis. 
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iterations) in IBM SPSS AMOS to assess the significance of specific indirect paths (Ababneh, 

Hackett, and Schat 2014; Crespo, Jose, Kielpikowski, and Pryor 2013; Saab, Tausch, Spears, and 

Cheung 2015; see Arbuckle 2013 for macro). The results of our analysis provide evidence that 

the effect of Agent Autonomy on Reporting Decision is serially mediated through Control and 

Diffusion of Responsibility for Human Agents (Z = 1.500, p = 0.015; the 95% CI does not contain 

zero: LL: 0.087; UL: 1.807) but not for Intelligent Agents (Z = 0.078, p = 0.622; the 95% CI 

does contain zero: LL: -0.858; UL: 0.338). Together, these results suggest that Control and 

Diffusion of Responsibility serially mediate the effect of Agent Autonomy on Reporting Decision, 

but that this effect depends on the level of Agent Type, consistent with moderated-mediation (i.e., 

the effect of the serial mediation depends on the level of agent autonomy).  

To directly test for moderation in our multi-group analysis, we follow the approach 

detailed in Macho and Ledermann (2011). We specify equality constraints for specific, 

individual paths and compare the chi-square fit statistic from the constrained model to the chi-

square fit statistic from the baseline model to get a chi-square difference statistic. If the chi-

square statistic changes by a statistically significant amount by forcing the path to be equivalent 

across the groups, it would suggest that the effect of the path is moderated by Agent Type. We 

individually constrain the paths from Agent Autonomy→Control, Agent Autonomy→Diffusion of 

Responsibility, Control→Diffusion of Responsibilty, Control→Reporting Decision, and Diffusion 

of Responsibility→Reporting Decision to identify where moderation occurs. 

The results of the chi-square difference tests may be found in Table 7. The path from 

Agent Type→Control is significant (p = 0.004) and the path from Control→Reporting Decision 

is marginally significant (p = 0.081) suggesting agent type moderates managers’ assessments of 
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control over their agent and their diffusion of responsibility to their agent. Together, these results 

support H2. 

[Insert Table 7 about here] 

V. DISCUSSION AND CONCLUSION 

 We report the results of an experiment that inform our understanding of managements’ 

use of intelligent agents in contrast to their use of human agents in the financial reporting 

process. Specifically, we find that managers’ use of IAs versus human agents attenuates their 

aggressive financial reporting decisions as does managers’ use of less autonomous agents versus 

more autonomous agents. We provide evidence with path analysis that this effect is due to 

managers’ perception of control over their respective agent and their inability to effectively 

diffuse responsibility for their financial reporting decision to their agent. The results suggest that, 

despite having an agent available to delegate activities to support their financial reporting 

decision, managers are unable to morally disengage from their self-serving behavior due to 

increased perceptions of control over IAs and less autonomous agents and certainty of the 

agent’s actions in outcome generation. Several concerns are frequently voiced in the press and 

elsewhere regarding the use of A.I. While our results cannot address fears of job loss, they do 

suggest A. I. may not plunge us into a world totally devoid of human control or responsibility. 

 Our results offer a number of contributions for research and practice. First, we provide 

preliminary evidence on a potential mechanism through which the misuse of IAs could be 

attenuated: perceptions of control. These results should be of interest to practitioners and 

regulators and have design implications for IAs deployed in a business setting, where IAs used in 

financial reporting process should be developed and designed to increase managers’ perception 

of control over the IA and attenuate possible aggressive financial reporting behavior. 
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 Second, we are among the first to explore how the use of IAs might impact the financial 

reporting process. Regulators have expressed both excitement and concern at the introduction of 

IAs in the financial reporting process. Our results begin to explore how managers would use IAs 

differently from human agents and the results that practitioners could expect from financial 

reports produced with the assistance of IAs. Our study also capitalizes on the comparative 

advantages of experiments (Libby et al. 2002) by capturing the intervening process variables of 

perception of control and diffusion of responsibility that precede managers’ financial reporting 

decision. 

 Third, we respond to the call for research from Sutton et al. (2016) on A.I. in the 

accounting domain, and extend the delegation literature from economics in the process. 

Specifically, we demonstrate that, while all managers had the opportunity to delegate to an 

intermediary agent across conditions and diffuse responsibility for self-serving earnings 

management activity, their financial reporting decisions are ultimately affected by the 

characteristics of their agent.  

Our study is subject to several limitations, specifically those that are normally associated 

with experimental research. The case materials provide a brief description of the company and 

only limited information about the division’s financial situation. Mangers would certainly have 

more complete information before making any financial reporting decision. Further, since this is 

among the first study to explore IAs in accounting, our operationalization of the IAs in our 

setting was kept very simple, with a short description of an IA and a picture of a desktop 

computer. A large literature exists on several other attributes of intelligent agents, including 

physical presence, anthropomorphism, and dynamic interaction, among others (Pickard, 

Schuetzler, Valacich, and Wood 2019). Future research could investigate how one or more of 
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these attributes impact manager decision-making and could decrease managers’ “explainability” 

for the results produced by an IA, which may affect aggressive financial reporting.  

Our results also offer opportunities for future research. While our setting focuses on 

managers’ ability to engage in self-serving behavior in an industry setting, IAs will be adopted 

and deployed across tax, assurance, and advisory service lines (Cooper et al. 2019). Future 

research could explore if increasing individuals’ perception of control over IAs in these settings 

will attenuate any potential self-serving behavior. Future research may also investigate what 

design features of an IA increase individuals’ perceptions of control over the agent. Finally, 

future research may investigate if individuals’ diffuse responsibility to an IA when their roles are 

reversed and human actors receive orders or instructions from an IA. 
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Appendix A – Experimental Treatments 

Human Agent 
 
You have chosen to have Bob help you gather inputs for the accounting estimates. Bob is 
a senior accountant, is very competent, and has several years experience in forecasting 
allowances, reserves, and inventory obsolescence.  
 
Intelligent Agent 
 
You have chosen to have B.O.B. (Brilliant Operations Build) help you gather inputs for the 
accounting estimates. B.O.B. is a computerized intelligent agent designed to be very competent 
and has been used for several years in forecasting allowances, reserves, and inventory 
obsolescence. B.O.B. uses sophisticated machine-learning algorithms to collect information and 
make recommendations. 
 
More Autonomous Agents 
 
You have worked with Bob before. The inputs he has gathered and recommendations he has 
made in the past usually turn out to truthfully represent the future. You have reviews of Bob's 
performance and have noted that Bob will usually follow the manager's instructions but will 
often use knowledge acquired from prior experiences and deviate from your 
instructions when gathering inputs to best justify the preferred position on the accounting 
estimates. In other words, Bob will seek out evidence that supports the preferred position on the 
accounting estimates, but may perform in an unforeseeable way to arrive at the desired 
accounting estimate. 
 
Less Autonomous Agents 
 
You have worked with Bob before. The inputs he has gathered and recommendations he has 
made in the past usually turn out to truthfully represent the future. You have reviews of Bob's 
performance and have noted that Bob will always follow the manager's instructions and will not 
deviate from your instructions when gathering inputs to best justify the preferred position on 
accounting estimates. In other words, Bob will perform in a totally foreseeable way to arrive at 
the desired accounting estimate. 
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Figure 1 
Theoretical Model 

Agent Type
(1 = Human, 2 = 

IA)
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Agent Type:   Agent type coded as 1 = Human agent, 2 = Intelligent agent 
Agent Autonomy:   Agent autonomy coded as 1 = More autonomous, 2 = Less autonomous 
Control: Average of two questions: “I expect Bob to always follow orders” and “I expect that Bob will always follow instructions” both measured on 7-

point Likert scales anchored at 1 = Completely disagree and 7 = Completely agree. 
Diffusion of Responsibility:  Average of participants agreement with three measures: “I should not be blamed for the trouble caused by Bob”, “If Bob decides to do something 

harmful, it is unfair to blame me for it”, and “You can’t blame me for the accounting estimates Bob develops because I played only a small part 
in it” all measured on 7-point Likert scales anchored at 1 = Strongly disagree and 7 = Strongly agree. 

Reporting Decision:  Composite measure of aggressiveness of reporting; comprised of three questions asking what estimates managers to report for their division 1) 
Inventory obsolescence, 2)Allowance for doubtful accounts, and 3) Warranty expense reserve anchored at 1 = Increase by $100,000, 5 = No 
change, and 11 = Decrease by $100,000. 
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Type:    Agent type coded as 1 = Human agent, 2 = Intelligent agent 
Autonomy: Agent autonomy coded as 1 = More autonomous, 2 = Less autonomous 
Control:   Average of two questions: “I expect Bob to always follow orders” and “I expect that Bob will always follow 
instructions” both measured on 7-point Likert scales anchored at 1 = Completely disagree and 7 = Completely agree. 

 

 
Type:     Agent type coded as 1 = Human agent, 2 = Intelligent agent 
Autonomy:  Agent autonomy coded as 1 = More autonomous, 2 = Less autonomous 
Reporting Decision:  Composite measure of aggressiveness of reporting; comprised of three questions asking what 
estimates managers to report for their division 1) Inventory obsolescence, 2)Allowance for doubtful accounts, and 3) 
Warranty expense reserve anchored at 1 = Increase by $100,000, 5 = No change, and 11 = Decrease by $100,000. 
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Figure 2: Mean Plots of Managers' Perception 
of Control over their Agent 
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Figure 4 
Panel A: Serial Mediation Model – Human Agents 

Agent Autonomy
(X)

Control
(M1)

Diffusion of 
Responsibility

(M2)

Reporting 
Decision

(Y)

1.628***
(0.550)

0.109
(0.408)

-0.355***
(0.138)

1.044**
(0.445)

-3.673
(1.544)

0.872
(0.545)

 
Indirect Effects:    
 Effect LLCI ULCI 
Agent Type→Control of Agent→Financial 
Reporting Decision 

1.418 -0.261 3.642 

Agent Type→Diffusion of Responsibility→ 
Financial Reporting Decision 

0.114 -0.740 1.316 

Agent Type→Control of Agent→ Diffusion of 
Responsibility→Financial Reporting Decision 

-0.603 -1.806 -0.091 

 

Panel B: Serial Mediation Model – Intelligent Agents 

Agent Autonomy
(X)

Control
(M1)

Diffusion of 
Responsibility

(M2)

Reporting 
Decision

(Y)

2.802***
(0.275)

-0.359
(0.533)

-0.114
(0.146)

-0.091
(0.470)

-0.247
(2.133)

-0.292
(0.586)

 

Indirect Effects:    
 Effect LLCI ULCI 
Agent Type→Control of Agent→Financial 
Reporting Decision 

-0.818 -4.176 2.444 

Agent Type→Diffusion of Responsibility→ 
Financial Reporting Decision 

0.033 -0.438 0.965 

Agent Type→Control of Agent→ Diffusion of 
Responsibility→Financial Reporting Decision 

0.029 -0.342 0.836 

Figure 2 is an illustration of the serial mediation model with managers’ perceived control over their agent (M1) and diffusion of responsibility to 
their agent (M2) as causally linked serial mediators for the relationship between Agent Autonomy (X) and manager’s financial reporting decision 
(Y). Analysis was conducted using SPSS AMOS estimand-based analyses (95 percent confidence interval, bootstrapping with 5,000 iterations, 
see Arbuckle (2013) for macro). Path coefficients (standard error) are reported next to each path label in the figure. Model is estimated with 
Management Experience as a covariate in order to estimate model fit statistics. 

Two-tailed p-values: ***<0.01, **<0.05, *<0.10, respectively. 
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Table 1 
Descriptive Statistics - Mean (Standard Deviation) of Inventory Obsolescencea, Allowance for 

Uncollectible Accountsb, and Warranty Expense Reservec 
  Agent Type  

  Human Agent Intelligent 
Agent Total 

Inventory Obsolescence 
A

ge
nt

 A
ut

on
om

y More 
Autonomous 

1.46 
(2.15) 
n =39 

3.74 
(1.47) 
n = 36 

4.03 
(1.48) 
n = 75 

Less 
Autonomous 

0.50 
(2.51) 
n = 34 

0.11 
(0.97) 
n = 37 

0.30 
(1.23) 
n = 71 

Total 
1.01 

(2.36) 
n = 73 

0.53 
(2.18) 
n = 73 

0.77 
(2.28) 

n = 146 
 

Allowance for Uncollectible Accounts 

A
ge

nt
 A

ut
on

om
y 

More 
Autonomous 

1.33 
(2.06) 
n = 39 

0.58 
(2.30) 
n = 36 

0.97 
(2.19) 
n = 75 

Less 
Autonomous 

0.85 
(2.15) 
n = 34 

0.49 
(1.77) 
n = 37 

0.66 
(1.96) 
n = 71 

Total 
1.11 

(2.10) 
n = 73 

0.53 
(2.03) 
n = 73 

0.82 
(2.08) 

n = 146 
 

Warranty Expense Reserve 

A
ge

nt
 A

ut
on

om
y 

More 
Autonomous 

1.77 
(1.94) 
n =39 

0.69 
(2.40) 
n = 36 

1.25 
(2.22) 
n = 75 

Less 
Autonomous 

0.79 
(2.48) 
n = 34 

0.49 
(1.73) 
n = 37 

0.63 
(2.11) 
n = 71 

Total 
1.32 

(2.25) 
n = 73 

0.59 
(2.07) 
n = 73 

0.95 
(2.19) 

n = 146 
a Inventory Obsolescence is the change in estimate from prior years that management reports for the inventory obsolescence 
account for the division that they manage anchored at 1 = Increase by $100,000, 5 = No change, and 11 = Decrease by $100,000. 
b Allowance for Uncollectible Accounts is the change in estimate from prior years that management reports for the allowance for 
uncollectible accounts account for the division that they manage anchored at 1 = Increase by $100,000, 5 = No change, and 11 = 
Decrease by $100,000. 
c Warranty Expense Reserve is the change in estimate from prior years that management reports for the warranty expense reserve 
account for the division that they manage anchored at 1 = Increase by $100,000, 5 = No change, and 11 = Decrease by $100,000. 
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Table 2 
Descriptive Statistics - Mean (Standard Deviation) of Controla, Diffusion of Responsibilityb, and 

Reporting Decisionc 
  Agent Type  

  Human Agent Intelligent 
Agent Total 

Control 
A

ge
nt

 A
ut

on
om

y More 
Autonomous 

4.31 
(1.48) 
n =39 

3.74 
(1.47) 
n = 36 

4.03 
(1.48) 
n = 75 

Less 
Autonomous 

5.93 
(0.94) 
n = 34 

6.50 
(0.85) 
n = 37 

6.23 
(0.93) 
n = 71 

Total 
5.06 

(1.48) 
n = 73 

5.14 
(1.83) 
n = 73 

5.10 
(1.66) 

n = 146 
 

Diffusion of Responsibility 

A
ge

nt
 A

ut
on

om
y 

More 
Autonomous 

3.68 
(1.55) 
n = 39 

3.48 
(1.36) 
n = 36 

3.58 
(1.46) 
n = 75 

Less 
Autonomous 

3.22 
(1.52) 
n = 34 

2.76 
(1.60) 
n = 37 

2.98 
(1.56) 
n = 71 

Total 
3.46 

(1.54) 
n = 73 

3.11 
(1.52) 
n = 73 

3.29 
(1.53) 

n = 146 
 

Reporting Decision 

A
ge

nt
 A

ut
on

om
y 

More 
Autonomous 

4.56 
(5.60) 
n =39 

2.25 
(6.80) 
n = 36 

3.45 
(6.27) 
n = 75 

Less 
Autonomous 

2.15 
(6.39) 
n = 34 

1.08 
(4.88) 
n = 37 

1.59 
(5.64) 
n = 71 

Total 
3.44 

(6.06) 
n = 73 

1.66 
(5.90) 
n = 73 

2.51 
(0.49) 

n = 146 
a Control is the average of two questions: “I expect Bob to always follow orders” and “I expect that Bob will always follow 

instructions” both measured on 7-point Likert scales anchored at 1 = Completely disagree and 7 = Completely agree.  
b Diffusion of Responsibility is the average of participants agreement with three measures: “I should not be blamed for the trouble 

caused by Bob”, “If Bob decides to do something harmful, it is unfair to blame me for it”, and “You can’t blame me for the 
accounting estimates Bob develops because I played only a small part in it” all measured on 7-point Likert scales anchored at 1 
= Strongly disagree and 7 = Strongly agree. 

c Reporting Decision Composite measure of three questions asking what estimates managers to report for their division 1) 
Inventory obsolescence, 2) Allowance for doubtful accounts, and 3) Warranty expense reserve anchored at 1 = Increase by 
$100,000, 5 = No change, and 11 = Decrease by $100,000. 
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Table 3 
 

Panel A: Two-Way ANOVA examining the effects of Agent Type and Agent Autonomy on 
Manager’s Perception of Control over their Agent (H1a, H1b, and H1c) 

 
Source SS df MS F-statistic p-value 

Agent Type:  0.000 1 0.000 0.000 0.996 

Agent Autonomy: 174.842 1 174.841 117.047 < 0.001* 

Agent Type x Agent Autonomy:   11.936 1 11.936 7.991 0.005* 

Error 212.117 142 1.494   
*One-tailed equivalent p-value consistent with directional hypothesis. 

 
 
 

Panel B: Two-Way ANOVA examining the effects of Agent Type and Agent Autonomy on 
Manager’s Financial Reporting Decisions (H3a) 

 
Source SS df MS F-statistic p-value 

Agent Type:  103.998 1 103.998 2.943 0.088 

Agent Autonomy: 117.053 1 117.053 3.313 0.070 

Agent Type x Agent Autonomy:   14.180 1 14.180 0.401 0.527 

Error 5017.361 142 35.334   
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Table 4 
Fit Statistics for Multi-Group SEM 

 χ2 df χ2/df CFI SRMR 

 1.736 2 0.868 1.000 0.033 

Fit? Yesa Yesa Yesa 

a Hu and Bentler (1999) recommend fit statistics of: χ2/df < 3.00, CFI > 0.95, and SRMR < 0.08. 
 

 
Table 5 

Path Analysis Results for the Hypothesized Model (Agent Type = Human)1 

Panel A – Direct Path Coefficients 
Link Path 

Coefficient 
Standardized 
Coefficient 

Standard 
Error 

Z-stat p-value 
(two-
tailed)2 

Agent Autonomy → Control of 
Agent 1.628 0.550 0.291 5.595 < 0.001 

Agent Autonomy → Diffusion of 
Responsibility 0.109 0.036 0.408 0.267 0.789 

Agent Autonomy → Financial 
Reporting Decision -3.673 -0.303 1.544 -2.379 0.017 

Control of Agent → Diffusion of 
Responsibility -0.355 -0.343 0.138 -2.568 0.010 

Control of Agent → Financial 
Reporting Decision 0.872 0.212 0.545 1.599 0.110 

Diffusion of Responsibility → 
Financial Reporting Decision 1.044 0.263 0.445 2.345 0.019 

 
Panel B – Indirect Path Coefficients 

Link Path 
Coefficient 

Standard 
Error 

Z-stat p-
value 
(two-
tailed)2 

Agent Autonomy → Control of Agent → 
Financial Reporting Decision 1.419 0.961 1.477 0.107 

Agent Autonomy → Diffusion of Responsibility 
→ Financial Reporting Decision 0.114 0.481 0.237 0.661 

Agent Autonomy → Control of Agent→ 
Diffusion of Responsibility → Financial 
Reporting Decision 

-0.603 0.402 -1.500 0.015 

1 Both direct effects and indirect effects were estimated with bootstrapping (95 percent confidence interval, 5,000 
iterations). 
2 Paths significant at the α < 0.10, two-tailed level are bolded. 
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Table 6 
Path Analysis Results for the Hypothesized Model (Agent Type = Intelligent Agents)1 

Panel A – Direct Path Coefficients 

Link Path 
Coefficient 

Standardized 
Coefficient 

Standard 
Error 

Z-stat p-value 
(two-
tailed)2 

Agent Autonomy → Control of 
Agent 2.802 0.765 0.275 10.198 < 0.001 

Agent Autonomy → Diffusion of 
Responsibility -0.359 -0.119 0.533 -0.674 0.500 

Agent Autonomy → Financial 
Reporting Decision -0.247 -0.021 2.133 -0.116 0.908 

Control of Agent →Diffusion of 
Responsibility -0.114 -0.138 0.146 -0.777 0.437 

Control of Agent → Financial 
Reporting Decision -0.292 -0.091 0.586 -0.498 0.618 

Diffusion of Responsibility → 
Financial Reporting Decision -0091 -0.023 0.470 -0.194 0.846 

 
Panel B – Indirect Path Coefficients 

Link Path 
Coefficient 

Standard 
Error 

Z-stat p-
value 
(two-
tailed)2 

Agent Autonomy → Control of Agent → 
Financial Reporting Decision -0.818 1.702 -0.481 0.621 

Agent Autonomy → Diffusion of Responsibility 
→ Financial Reporting Decision 0.033 0.318 0.104 0.653 

Agent Autonomy → Control of Agent → 
Diffusion of Responsibility → Financial 
Reporting Decision 

0.029 0.258 0.112 0.622 

1 Both direct effects and indirect effects were estimated with bootstrapping (95 percent confidence interval, 5,000 
iterations). 
2 Paths significant at the α < 0.10, two-tailed level are bolded. 
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Table 7: Chi-Square Difference Test of Moderation for Multi-Group Path Analysis 

Path Constraint Chi-Square df Chi-Square 
Difference 

df Difference p-value 

Unconstrained Model 1.736 2 N/A N/A N/A 
Agent Autonomy → 
Control 10.002 3 8.266 1 0.004 

Agent Autonomy → 
Diffusion of 
Responsibility 

2.219 3 0.483 1 0.487 

Control → Diffusion 
of Responsibility 3.166 3 1.430 1 0.232 

Control → Reporting 
Decision 3.835 3 2.009 1 0.156 

Diffusion of 
Responsibility → 
Reporting Decision 

4.777 3 3.041 1 0.081 
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