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ABSTRACT 
 
We use trade-level data to examine the role of actively managed funds (AMFs) in earnings news 
dissemination.   AMFs trade 170 percent more on earnings announcement (EA) days than on non-
EA days.  Abnormal AMF participation is disproportionately higher when earnings news is 
bundled with management guidance about future earnings.  When the two pieces of information 
are directionally inconsistent, AMFs trade in the direction of guidance news rather than current 
earnings news.  They exhibit an ability to discern, and adapt their trading to, the bias in managerial 
guidance.  Further, we find that increased AMF trading during EAs reduces post-guidance price 
drift and leads to faster price adjustment.  Collectively, our findings suggest AMFs are relatively 
sophisticated processors of bundled EA news, and their trading generally improves market price 
discovery. 
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1 INTRODUCTION 
 

In this study, we examine the response of active fund managers to information released at 

earnings announcements (EAs).  An estimated $58.4 trillion was run by active fund managers in 

2015 and this number is estimated to grow to $74 trillion by 2020 (PricewaterhouseCoopers 2017).  

However, surprisingly little is known about how actively managed funds (AMFs) respond to key 

sources of information at the release of corporate earnings.1  Using trade-level data, we analyze 

the magnitude of AMF trading during EAs and provide new insights into their specific information 

processing skills.  

Our findings link AMF trading at EAs to the nature and direction of managerial guidance 

released during these events.  Prior literature has documented an increased tendency for firms to 

“bundle” managerial forecasts with the release of earnings news.2  These bundled news releases 

appear to play a significant role in the documented increase in the information content of EAs 

(Anilowski, Feng, and Skinner 2007; Ball and Shivakumar 2008; Rogers and Van Buskirk 2013).  

Our empirical analysis shows that AMFs are particularly efficient at processing information about 

future earnings (i.e., the information contained in bundled guidance).  Furthermore, we show that 

their information processing of management guidance contributes to the speed of price adjustment 

at the EA. 

We have two motives for studying the AMF reaction to earnings releases.  First, we are 

interested in evaluating the extent to which AMF trades reflect sophisticated processing of specific 

                                                           
1 Our AMF sample includes both mutual funds (MFs) that cater to retail investors and other active fund managers 
that cater to institutional clients.  These AMFs typically hold long-only portfolios and do not engage in short-selling.  
A relatively small portion of the trades in our data are by known hedge funds.  We remove these hedge fund trades 
when conducting our analyses. 
2 The increased use of bundling may be related to litigation risk management.  Bliss, Partnoy, and Furchtgott (2018) 
examine the likelihood of litigation in the context of earnings restatements.  They show that non-bundled 
restatements are 5.94 times more likely to result in litigation.  They attribute this result to the confounding effect of 
bundling, which makes it more difficult for plaintiffs to establish loss causation, leading to lower litigation risk. 
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pieces of information released at the EA.   Prior research has documented multiple behavioral 

biases of individual investors, which lead to economically significant losses (Barber and Odean 

2000; Barber, Lee, Liu, and Odean 2009a; Barber, Odean, and Zhu 2009b). 3   Blankespoor, 

deHaan, Wertz, and Zhu (2019) find that individual investors tend to disregard earnings 

information, potentially due to the high costs of incorporating such information into a trading 

strategy.  AMFs are managed by investment professionals, who charge active fees and are 

presumably more sophisticated information processors.  Yet prior studies on AMFs’ ability to add 

investment value have yielded surprisingly mixed results.4  We use an event study setting to 

provide new evidence on AMF skill in processing earnings-related information.   

Our analysis focuses particularly on AMFs’ ability to process the managerial forecast 

information that is frequently bundled in earnings releases.  Management guidance is a form of 

voluntary disclosure that is increasingly released concurrently with corporate earnings.  Recent 

evidence suggests such guidance may be strategically biased (Rogers and Stocken 2005; Baginski, 

Campbell, Ryu, and Warren 2019).  While the forward-looking information contained in such 

guidance is clearly relevant, the accompanying managerial bias gives rise to reliability issues that 

may confound less sophisticated investors.  We examine the ability of AMFs to parse out bundled 

guidance news from EAs.5  Some prior research suggests AMFs are sophisticated processors of 

earnings information.6  Our findings directly link this form of institutional sophistication to AMFs’ 

                                                           
3 For example, individual investors are known to trade too much. They also tend to overreact to salient news events, 
leading to short term price reactions that reverse over subsequent months (e.g., Barber and Odean 2008; Da, 
Engelberg, and Gao 2011).  Individual investors also underreact to earnings, contributing to the post earnings 
announcement drift (PEAD) (Bhattacharya 2001; Battalio and Mendenhall 2005). 
4 The evidence on mutual fund (MF) performance is particularly damning, with some studies finding that even their 
gross returns underperform those of passive benchmarks (Jensen 1968; Malkiel 1995; French 2008; Fama and 
French 2010).  However, these results seem quite sensitive to the choice of benchmark (Lehman and Modest 1987; 
Carhart 1997; Daniel, Grinblatt, Titman, and Wermers 1997; Kothari and Warner 2001).   
5 We calculate unexpected guidance news using the conditional expectations model based on the current period 
unexpected earnings, following Rogers and Van Buskirk (2013). 
6 For example, prior studies find that institutional investors process current earnings information efficiently (e.g., Ke 
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ability to parse out and interpret the forward-looking information in bundled managerial guidance. 

 A second reason to study AMF reaction to EAs stems from the broader issue of market 

efficiency.  The issue of whether institutional investors help correct market mispricing has been 

widely debated.  Some evidence suggests that institutional investors fail to take advantage of 

various pricing anomalies, and in some cases may even exacerbate them (Lewellen 2011; Edelen, 

Ince, and Kadlec 2016; Arif, Ben-Rephael, and Lee 2017).  Other studies find that higher 

institutional trading, ownership, or attention can improve price discovery.7  However, none of 

these studies examine the role of AMF trading in the incorporation of value-relevant information 

in managerial guidance releases.  Building on the evidence in Ng, Tuna, and Verdi (2013) that 

shows a sluggish incorporation of guidance news into price, we show that AMF participation and 

trading during the EA significantly improves the incorporation of guidance news into price. 

We address our research questions by combining an event study setting with the use of 

highly granular trade-level data.  One reason for the mixed prior results on the performance of 

AMF managers could be the low power of portfolio-based performance measures.  As noted by 

Grinblatt and Titman (1994) and Kothari and Warner (2001), portfolio returns are noisy and the 

tests based on portfolio returns may not detect abnormal asset manager skill even if it exists.8  

Kothari and Warner (2001), in particular, note that an event study would provide a much more 

powerful setting for evaluating the information processing ability of asset managers.  We combine 

                                                           
and Ramalingegowda 2005); other studies suggest mutual fund trades predict future earnings (Baker, Litov, Wachter, 
and Wurgler 2010; Chen, Huang, and Jiang 2019).   
7 For example, Cheng, Hameed, Subrahmanyam, and Titman (2017) find that the magnitudes of short-term return 
reversals are higher following declines in the number of active institutional investors.  Similarly, institutional 
ownership or attention is negatively correlated with the size of the post-earnings announcement drift (PEAD) 
(Bartov, Radhakrishnan, and Krinsky 2000; Hou, Xiong, and Peng 2009).  Greater institutional attention to news, as 
measured by Bloomberg terminal searches and the number of news reads, is associated with improved price 
discovery (Ben-Rephael, Da, and Israelsen 2017).   
8 Grinblatt and Titman (1994) address this concern by relying on priors about fund characteristics that determine 
performance, and Kothari and Warner (2001) recommend using time-series datasets on MF holdings to overcome 
the power issue.    
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this insight with detailed data on AMF trades, which allow us to pin down precisely the timing and 

direction (i.e., buyer-initiated vs. seller-initiated nature) of each AMF transaction. 

The event study setting also helps to mitigate concerns about the effect of “flow-induced 

trading.”  Prior studies find that an investor holding a passive market portfolio earns higher after-

cost returns, on average, than the typical active fund manager (French 2008; Fama and French 

2010).  We argue that these results do not necessarily imply a lack of skill in AMF managers.  

AMFs trade for many reasons, and investor flows and the size of funds could drive the 

underperformance of actively managed portfolios (Berk and Green 2004; Coval and Stafford 2007; 

Frazzini and Lamont 2008; Lou 2012).  By focusing on the abnormal AMF trading around EAs, 

our research design reduces the likelihood that the trades we examine are undertaken for liquidity-

related reasons.   

Our analysis is aided by a unique dataset from Abel Noser Solutions (formerly Ancerno 

Limited), a widely recognized consulting firm that provides transaction cost monitoring services 

to a large set of institutional clients.  The Ancerno dataset consists of all trades made by Abel 

Noser’s sizeable client base from January 2003 to December 2010.9  Prior research (e.g., Puckett 

and Yan 2011) shows that the characteristics of stocks held and traded by Ancerno’s institutional 

clients are not significantly different from the characteristics of stocks held and traded by the 

average 13F-filing institution.  The trades in Ancerno account for around 12 percent of CRSP 

volume (Hu, Jo, Wang, and Xie 2018).  We define AMF trades as those conducted by Ancerno’s 

non-pension fund clients (clienttype=2), after removing a set of known hedge funds (Jame 2018).  

Based on conversations with Ancerno, most of the clienttype=2 trades are made by mutual funds 

                                                           
9 During this sample period, Ancerno data featured individual client identifiers.  While actual client names have 
been redacted, these identifier codes allow us to track the trades made by each unique client identification code over 
time.  After 2010, Ancerno data did not contain individual client identification codes.   
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(MFs), but this category may also include some funds that manage money for institutions (other 

than pension funds).  To be safe, we therefore refer to this group of traders as AMFs rather than 

MFs.10  

Our analysis reveals several key findings.  First, we document a significant AMF reaction 

to EAs, particularly when bundled guidance is released.  On average, AMFs place 170 percent 

more trades on the EA day (Day 0) than on adjacent non-EA days, where adjacent non-EA days 

are defined as days [-25, -2] and [+5, +25] relative to the EA.  Controlling for the magnitude of 

the current earnings surprise, AMF trading volume at the EA is significantly higher when there is 

a bundled management forecast.  Prior research report that market reactions to current earnings 

are stronger than those to concurrently disclosed future guidance (Atiase, Li, Supattarakul, and Tse 

2005).  We confirm this finding and further show that, in contrast to the average market participant, 

AMFs respond more to the presence of guidance news and less to the magnitude of earnings news. 

Next, we examine AMFs’ information processing abilities with respect to both current 

earnings news and guidance news.11  Focusing more narrowly on only EAs with bundled guidance, 

we show that non-directional AMF trading volume increases with the magnitude of the unexpected 

guidance news.  Relative to total trading volume, the AMF trading volume responds less to the 

magnitude of unexpected earnings, and more to the magnitude of unexpected guidance.  Prior 

literature has found that managers tend to offset good and bad news (Waymire 1984; Segal and 

Segal 2016).  We find that AMFs do not respond to earnings news when it is inconsistent in 

direction to guidance news, whereas the average market participant still responds to the magnitude 

of earnings news even when it is directionally inconsistent with guidance news.  

                                                           
10 In fact, there is little conceptual distinction between MFs and other AMFs.  Prior literature on AMF performance 
likely focused on MFs because these funds are easier to identify through their 13F filings.  
11 Not only are 90% of management forecasts issued concurrently with earnings, but non-bundled guidance often 
occurs with other events that can “contaminate” or “confound” the analysis (Billings, Jennings, and Lev 2015). 
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We then focus more sharply on the effect of directional AMF trades – i.e., the net buy-sell 

imbalance in AMF trades.  This test is important because it provides a more direct link between 

the AMF trades and the sign and magnitude of the information released at the EA.  We find that 

AMFs generally trade in the same direction as both unexpected earnings and unexpected guidance, 

which suggests their trading activities are not merely supplying liquidity.  Furthermore, when 

unexpected earnings and unexpected guidance are directionally inconsistent, AMFs trade in the 

direction of unexpected guidance rather than unexpected earnings.  These tests support the 

hypothesis that AMFs are particularly sophisticated processors of guidance news.  Choi, Myers, 

Zang, and Ziebart (2011) report that future earnings response coefficients (FERCs) are greater for 

forecasting firms and when forecasts are more frequent and more precise.  Our results suggest 

AMF trading may be one channel through which markets incorporate guidance news into prices.  

Given prior research that documents managers’ strategic incentives to bias guidance, we 

also calculate the guidance bias based on future realized earnings.  Our results show that AMFs 

seem to have an ability to detect the magnitude of guidance bias.  Specifically, we find that when 

the magnitude of the guidance bias is larger, AMFs trade less.  The reduction in AMF volume is 

disproportionately large relative to the reduction in volume for all market participants.  

Furthermore, in more detailed analyses using directional AMF volume, we show that AMFs buy 

less when managerial guidance is highly optimistically biased.  This result is in sharp contrast to 

the directional response for the aggregate market, which exhibits no ability to discern the direction 

of the bias. 

Finally, we show that AMF participation at the EA improves the speed of price adjustment.  

The fraction of the total [0,+63] return that occurs in the EA period of days [0,+4] is higher when 

AMFs trade more, measured both in absolute terms and as a fraction of total trading volume at the 
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EA.12  We find that directional AMF trades also improve price discovery.  Specifically, when 

AMFs trade in the same direction as the unexpected guidance (“concordant” trading), a much 

higher fraction of the returns occurs in the 5-day EA period.13  We supplement these tests with a 

set of analyses showing that the post-guidance price drift (Ng et al. 2013) exists only when: (a) 

AMF participation in terms of total volume is low, or (b) when AMF trading is not directionally 

concordant to the guidance news.  Taken together, these findings strongly suggest that AMF 

trading during earnings news releases is associated with an improvement in the price discovery 

process. 

The paper proceeds as follows.  Section 2 outlines hypotheses and reviews related 

literature.  Section 3 details our research design and provides results.  Section 4 concludes. 

2 HYPOTHESIS DEVELOPMENT 

In this section, we detail what we expect to find in our analyses.  Our hypotheses, stated in 

alternative form, are: 

H1: AMFs trade in response to EAs, especially when the news release contains concurrent (i.e., 

“bundled”) management guidance on future earnings. 

EAs provide useful fundamental information about firm value.  Earlier studies document a 

price reaction to earnings news (Ball and Brown 1968; Beaver 1968).  While these studies do not 

distinguish between retail and institutional investors, subsequent studies have found that 

institutions in particular influence a firm’s information environment and price formation process 

(e.g., Utama and Cready 1997; El-Gazzar 1998; Jiambalvo, Rajgopal, and Venkatachalam 2002; 

                                                           
12 For this speed of price adjustment test, we use only firms in the top or bottom quintile, as ranked by their [0,+63] 
returns. This ensures: (a) we focus on firm-quarters where a sufficient amount of new information has arrived, and 
(b) the impact of measurement noise due to small denominators is mitigated. 
13 We define “concordant” observations as those with the highest quintile AMF buy-sell imbalance when unexpected 
guidance is high (quintile 5 unexpected guidance) and the lowest quintile AMF buy-sell imbalance when unexpected 
guidance is low (quintile 1 unexpected guidance).   
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Collins, Gong, and Hribar 2003).  Given that EAs contain significant information regarding value 

of a firm, we expect AMFs to participate intensely at the EA.  Cready, Kumas, and Subasi (2014) 

provide tangential evidence on this point in that institutions increase their trade sizes at earnings 

announcements.  Hu, Ke, and Yu (2018) find that transient institutions sell in response to small 

negative earnings surprises.  Relatedly, Engelberg, McLean, and Pontiff (2018) hypothesize that, 

if anomaly returns are due to expectation errors, anomaly portfolios should perform better on days 

when new information is released, because new information leads investors to update their 

expectations.  To the extent that AMFs play a significant role in impounding this new information 

into price, we expect to see significant abnormal AMF trading volume around EAs. 

We are particularly interested in the AMF response to EAs in which managerial guidance 

is bundled with the release of current earnings.  Beyer, Cohen, Lys, and Walther (2010) find that 

55% of accounting-based information is provided by management forecasts, highlighting the 

significant amount of information conveyed by these voluntary disclosures.  Ball and Shivakumar 

(2008) report that the rise in incremental information at the EA in recent years is due, in part, to 

the increasing prevalence of bundled guidance during EAs.  Anilowski et al. (2007) and Rogers 

and Van Buskirk (2013) confirm these findings.  Firms that issue guidance have higher future 

earnings response coefficients, consistent with the information in management guidance 

improving investors’ ability to assess future earnings (Choi et al. 2011).  These findings suggest 

that managerial guidance is particularly relevant in evaluating future firm performance.  However, 

despite their importance, prior evidence shows that in bundled EAs, market reactions to current 

earnings news are stronger than those to concurrently disclosed guidance news (Atiase et al. 2005).  

Most recently, Baginski et al. (2019) find that managers strategically introduce bias into the 

guidance they provide when releasing earnings.  As a result, the usefulness of guidance news 
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involves a tradeoff between relevance and reliability.   

We posit that AMFs may have an information advantage in interpreting information signals 

that are more relevant but possibly less reliable than current earnings.  If their information 

processing skills allow them to better assess the reliability of guidance and isolate biased or self-

serving guidance, then AMFs would likely further increase their trading activities during EAs that 

include concurrent guidance.  Examining AMF trading in a short window around the EA allows 

us to precisely pin down the information that AMFs are responding to.  Finding a disproportionate 

increase in AMF trading volume related to bundled guidance announcements would also be 

consistent with longer-window institutional ownership preferences for guidance, as documented 

in Kalay (2015). 

H2: AMF trading related to bundled guidance EAs reflects efficient processing of information in 

management guidance. 

Management guidance is part of a larger corporate disclosure strategy, and managers face 

a plethora of incentive issues when providing guidance.  For example, prior studies find that 

managers strategically use guidance to benefit from personal trades (Cheng and Lo 2006; Cheng, 

Luo, and Yue 2013), guide analysts’ expectations downward to beatable expectations (Kato, 

Skinner, and Kunimura 2009; Kross, Ro, and Suk 2011), and offset simultaneously released good 

or bad earnings news (Segal and Segal 2016; Baginski et al. 2019).  Managers tend to provide self-

serving forecasts, and their willingness to bias their forecasts is related to market participants’ 

ability to detect this bias (Rogers and Stocken 2005). 

Aside from strategic behavior, managerial guidance can also be less reliable for other 

reasons.  For example, managers may have difficulty forecasting future earnings due to high 

information processing costs and increased corporate complexity (Gong, Li, and Xie 2009; Xu 



10 
 

2010; Gong, Li, and Wang 2011), or behavioral factors such as overconfidence (Hilary and Hsu 

2011).  In a similar vein, Goodman, Neamtiu, Shroff, and White (2014) find managers that make 

more accurate forecasts also make better corporate investment decisions, consistent with intuition 

that both actions require similar skills.   In sum, when noise or bias is introduced into managerial 

guidance, either opportunistically or unintentionally, the process of ferret out its true information 

content becomes more difficult.  

Prior literature finds mixed evidence on market participants’ ability to efficiently process 

information in management guidance.  Gong et al. (2011) report that sell-side analysts 

underestimate the persistence of managers’ forecast errors.  In contrast, Hilary, Hsu, and Wang 

(2014) provide evidence that some sophisticated market participants seem to understand the 

benefits of predictable management forecast errors.  Specifically, Hilary et al. (2014) find that the 

level of ownership by more sophisticated investors, as well as analyst earnings forecast revisions, 

respond more to guidance news when the management forecast error is more consistent.  We build 

on this literature by isolating AMF trades in a short window around the EA.  Our goal is to establish 

a direct link between the magnitude and direction of their EA trades, and the nature and magnitude 

of the news contained in both managerial guidance and current period earnings. 

H3: AMF trading increases the speed of price adjustment at EAs with bundled management 

guidance. 

One manifestation of inefficient processing of guidance news is a pattern of sluggish price 

adjustment.  Ng et al. (2013) document underreaction to management guidance in the form of a 

price drift.  On a related note, Zhang (2012) finds that bundled management guidance with higher 

ex ante accuracy mitigates investors’ underreaction to concurrently related earnings.  We extend 

this literature by directly examining the extent to which AMF trading at the EA: (a) improves the 
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speed of the price adjustment process and (b) reduces the price drift in the market reaction to 

guidance news.  

If investors fully incorporate all information in earnings into price in the first few days after 

the EA, the fraction of longer horizon returns captured in the first few days will be high.  Given 

the potential market price impact of AMFs, we expect their trading will more quickly incorporate 

earnings and guidance news into price.  Therefore, the fraction of long run returns captured in the 

EA period will be higher when AMF trading volume as a fraction of total trading volume is high.  

Furthermore, when AMFs trade in the same direction as management guidance, we expect these 

trades to facilitate price adjustment. 

Prior research has documented that EAs are significant information events during which 

prices correct to fundamental value.  Between 25 and 30 percent of the returns to value strategies 

and 40 percent of the returns to accrual strategies are concentrated in the three days around EAs 

(Lakonishok, Shleifer, and Vishny 1994; La Porta, Lakonishok, Shleifer, and Vishny 1997; Sloan 

1996).  In addition, around 25 percent of momentum profits are clustered in the three days around 

EAs (Jegadeesh and Titman 1993).  Prices adjust toward fundamental value in the EA period 

because fundamental information is revealed at the EA.  Funds with superior stock performance 

around EAs, when fundamental information is released, subsequently outperform those with 

inferior stock performance around EAs (Jiang and Zheng 2018).  To the extent that AMFs speed 

up price adjustment in the EA window, AMFs play an important role in the convergence of price 

to fundamental value. 

3 METHODOLOGY AND RESULTS 

3.1 AMF Trading Around EAs 

We begin our sample selection by taking the intersection of Compustat, CRSP, and IBES 
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data.  We obtain the date and time of the EA from IBES, where the trading date of the EA is the 

IBES EA date if the announcement was made before or during trading hours and the first trading 

day after the EA date if the announcement was made after trading hours.14  We apply a liquidity 

filter and restrict the sample to firm-event observations with a share price greater than $3 and 

market capitalization greater than $150 million at the most recent fiscal quarter end.   

We use AMF trades from Ancerno, dating from 1/1/2003 to 12/31/2010.  The Ancerno 

dataset is uniquely suited to our setting, as it identifies the exact date and execution price of each 

transaction, which allows us to distinguish the trades of each institution and each fund family 

within the institution in the cross section and time series.  The Ancerno data consist of money 

manager trades (client type=2) from 1997 to 2015.  Although the trade-level data is available into 

2015, the client identifiers, which we use to remove hedge funds from the sample, are unavailable 

after 2010.  Post-2010, we have no data on client identifiers.  For our purposes, we require 

identifiers, as we are interested in AMF trading behavior and therefore want to exclude a small 

number of hedge funds from our sample.  The coverage is significantly better in the more recent 

period, so we choose the post-2003 period as relevant data for our analysis.  Because we examine 

the [-25, +25] window around the EA, we restrict the sample period to EA dates between 2/9/2003 

and 11/22/2010.  Following Keim and Madhavan (1997), we filter the data to reduce the impact 

of outliers and potentially corrupt entries.  Specifically, we drop transactions with an execution 

price lower than $1 and greater than $1,000, and we eliminate trades from orders with an execution 

time greater than one month. 

To exclude hedge fund trades from our sample, we use the list of identified hedge fund 

                                                           
14 The IBES timestamp is confirmed to be correct in a large portion of the sample (deHaan, Shevlin, and Thornock 
2015).  According to Table IA.4 of their paper, the EA dates during our sample period (2003-2010) have a minimum 
accuracy of 70.4 to 94.3 percent and a maximum of 95.9 to 98.8 percent. 



13 
 

client-manager pairs in Ancerno from Jame (2018).15  In our 2003-2010 sample, 90.1 percent of 

all trades are AMF trades and 89.0 percent of client-manager pairs are AMFs.  Although our 

analyses are based on 2003-2010 data, with which we can isolate AMF trades, our results are 

robust to an extension of the sample period into 2015 and pooling of AMF and hedge fund trades.  

Results pooling AMF and hedge fund trades are available upon request.16  We remove hedge fund 

trades and require at least one AMF trade in the [-25,+25] window around the EA.  We select only 

these observations, because our results may not generalize to stocks not traded by AMFs in the 

Ancerno client universe.  Finally, we require data to calculate unexpected earnings relative to IBES 

analyst consensus forecasts for each firm-quarter and, for firm-quarters with bundled guidance, 

data to calculate unexpected guidance (following the conditional forecast news measure in Rogers 

and Van Buskirk 2013).  Our sample selection procedure results in a total of 76,939 firm-quarter 

EA observations for 4,435 unique firms in this sample period. 

Figure 1 presents a plot of AMF volume on each day relative to the event day, the trading 

date of the EA.  Each bar on the plot represents the average, over all firm-quarter EAs, of the AMF 

volume on each day scaled by the AMF volume over the non-EA period.  In Figure 1, the [0,+4] 

volumes, averaged across all firm-quarters, are displayed in red.  The non-EA period consists of 

the [-25, -2] and [+5, +25] trading days around the EA.  These volumes, averaged across all firm-

quarters, are displayed in gray.  The maximum mean AMF trading volume occurs on Day 0 and is 

170 percent higher than the average non-EA period volume.  This volume tapers off in the next 

few days after the EA. 

Descriptive statistics of the raw trading data are reported in Table 1.  The mean AMF 

                                                           
15 The Internet Appendix of Jame (2018) provides details of the procedure used to identify hedge funds. 
16 We note that hedge funds comprise a small portion of clienttype=2 trades.  Hedge funds are better represented in 
clienttype=1 (plan sponsors), but we focus on clienttype=2 trades because we are interested in AMFs. 
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trading volume on Day 0 is higher than the mean AMF trading volume on any other day in the EA 

period, and the mean EA period trading volume is higher than the mean non-EA period trading 

volume.  We also compute measures of abnormal EA volume.  These measures account for the 

average level trading volume for our firm-quarters.  Thus, we scale either AMF or total trading 

volume by total trading volume in the non-EA period.  Abn AMF EA Volume is the average daily 

AMF volume on days [0,+4], scaled by average daily total volume on days [-20,-2].  The mean 

Abn AMF EA Volume is 7%.  Abn EA Tot Volume has a mean of 176% and is defined as the average 

daily total volume on days [0,+4], scaled by average daily total volume on days [-20,-2].  Our final 

measure of abnormal EA volume is AMF EA Vol as a Frac of Tot Volume, which has a mean of 

3% and is calculated as the average daily AMF volume as a fraction of total volume on days [0,+4].  

We use each of these abnormal EA volume measures to develop inferences about AMF EA trading, 

the average market participant’s EA trading, and the disproportionate trading of AMFs at EAs. 

In our first set of tests, we determine whether AMFs participate disproportionately more in 

trading at EAs with bundled guidance.  Our tests of Hypothesis 1 are based on the following OLS 

model: 

Abn EA Volume 

= 

α + β1*ConcurrentGuidance + β2*Abs_UE +Σβc*Controlsc 

+Σβq*YearQtrq + ε 

(1) 

Abn EA Volume is Abn AMF EA Volume, Abn EA Tot Volume, and AMF Vol as a Frac of 

Tot Volume in columns (i), (ii), and (iii) of Table 2, respectively.  ConcurrentGuidance is an 

indicator variable set to 1 if there is bundled management guidance at the EA, and Abs_UE is the 

absolute value of unexpected earnings relative to the analyst consensus.17  We include Controls 

                                                           
17 We measure UE relative to the analyst consensus, following evidence in Ayers, Li, and Yeung (2011) that large 
traders trade in the direction of analyst-based earnings surprises rather than seasonal random walk earnings 
surprises. 
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for loss quarters, an indicator if management predicts a loss, market cap, the book-to-market ratio, 

and stock return volatility.  Our control variables mirror those used by Atiase et al. (2005), and 

each has been associated in prior literature with the magnitude of the market reaction to earnings 

news.  YearQtr fixed effects are included to remove the effect of any common time trends in 

abnormal EA volume during our sample. 

Table 2, column (i) finds positive coefficients on both ConcurrentGuidance and Abs_UE.  

The coefficient on ConcurrentGuidance is positive and significant, which indicates abnormal 

trading by AMFs at the EA is greater when the EA is accompanied by a concurrent management 

forecast.  The coefficient on Abs_UE is positive and marginally significant, indicating greater 

AMF participation at the EA when the magnitude of the earnings surprise is higher.  The 

coefficients on control variables also reveal descriptively interesting observations about AMF 

trading at the EA.  AMFs trade less at the EA for loss quarters, when management forecasts a loss 

in the future, when the firm is larger or has a higher book-to-market ratio, and when the stock has 

higher prior return volatility.  Column (ii) finds similar results on our variables of interest when 

we use abnormal total volume at the EA as our dependent variable.  The inference is that the 

average market participant trades more at the EA when there is concurrent guidance and when the 

magnitude of the earnings surprise is greater. 

The dependent variable in column (iii) is AMF EA volume as a fraction of total volume, 

and the results of this test allow us to infer how intensely AMFs participate in the EA relative to 

the average market participant.  Column (iii) essentially compares the coefficients in column (i) to 

those in column (ii).  Compared to the average market participant, AMFs trade more at the EA 

when there is concurrent guidance and less so on the magnitude of the earnings surprise.  While 

these results on their own do not mean that AMFs process earnings and guidance news efficiently, 
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their disproportionate participation for bundled announcements suggests that they might have an 

information advantage relative to the average market participant in processing guidance news.18  

The fact that AMFs respond less to the magnitude of the earnings news suggests they place lower 

importance on current earnings information, relative to other market participants.  In subsequent 

tests we focus on EAs that contain bundled guidance, to better understand the nature of the AMFs’ 

information advantage in processing such news. 

3.2 AMFs’ Information Processing Ability at the EA 
 

We begin our analyses testing Hypothesis 2 by using the following OLS model, on the 

sample of EAs with bundled guidance only: 

 
Abn EA Volume = α + β1*Abs_UG + β2*Abs_UE +Σβc*Controlsc +Σβq*YearQtrq + ε (2) 

 
where Abn EA Volume is Abn AMF EA Volume, Abn EA Tot Volume, and AMF Vol as a Frac of 

Tot Volume in columns (i), (ii), and (iii) of Table 3, respectively.  Abs_UG is the absolute value of 

unexpected guidance relative to the analyst consensus forecast for the quarter or year that the 

management forecast pertains to, and Abs_UE is the absolute value of unexpected earnings relative 

to the analyst consensus.  We calculate unexpected guidance using the conditional expectations 

model based on the current period unexpected earnings, following Rogers and Van Buskirk (2013).  

We include the same Controls as those in our tests of Model 1.  YearQtr fixed effects are included 

to remove the effect of any common time trends in abnormal EA volume during our sample. 

Table 3, column (i) finds a positive and significant coefficient on Abs_UG and a positive 

but insignificant coefficient on Abs_UE.  When the magnitude of the unexpected guidance is 

                                                           
18 We find similar results during the financial crisis of 2007-2009, as well as when we remove these financial crisis 
years. 
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higher, AMFs participate more at the EA.  However, in contrast to the results in Table 2, within 

bundled guidance announcements, AMFs do not participate significantly more when the 

magnitude of unexpected earnings is higher.  Note that when the dependent variable is abnormal 

total volume at the EA (see column (ii)), the coefficients on both Abs_UG and Abs_UE are positive 

and significant.  In other words, abnormal total volume is responsive to both the magnitude of the 

unexpected guidance and that of the earnings surprise.  In column (iii), we find that, relative to the 

average market participant, AMFs do not trade more on the magnitude of the unexpected guidance, 

but they do trade less on the magnitude of unexpected earnings.  These results are consistent with 

evidence in Atiase et al. (2005) that investors respond more strongly to current earnings news than 

to guidance news.  Note that just because AMFs do not trade more in response to the magnitude 

of unexpected earnings, does not mean that they earnings news more efficiently.  To more directly 

address this question, our next set of tests examines EAs in which the guidance news and the 

earnings news are inconsistent with each other. 

Table 4 reports abnormal volume when unexpected earnings (UE) and unexpected 

guidance news (UG) are directionally inconsistent.  To construct this table, we begin with all firm-

quarters with in which earnings news is bundled with guidance news (N=28,731).  We further 

divide this sample into announcements with positive UE (N=23,180) and announcements with 

negative UE (N=5,551).  As before, we define UE relative to the IBES consensus analyst forecast, 

and we calculate UG using the conditional expectations model in Rogers and Van Buskirk (2013).  

The first row of Table 4, Panel A shows that 56% of bundled guidance observations have 

inconsistent earnings and guidance news.  The second row focuses on EAs with positive UE (the 

majority of our sample) and finds that 55% of these EAs are accompanied by negative UG.  The 

next row shows that among EAs with a negative UE, 59% have bundled guidance with a positive 
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UG.  These descriptive statistics are consistent with evidence in Segal and Segal (2016) and 

Baginski et al. (2019) that managers strategically bundle positive and negative news.   In particular, 

it appears that 59% of the bundling firms that missed earnings will pair the negative earnings news 

with an upgrade in their forward guidance (positive UG).  

In Table 4, Panel B, we report the differential volume response for EAs where UE and UG 

are directionally inconsistent.  To construct this panel, we use the indicator variable Inconsistent 

to denote observations where UG and UE are inconsistent.  We then estimate the following model, 

constraining our analysis to EAs with bundled guidance only: 

 
Abn EA Volume = α + β1*Abs_UE + β2*Inconsistent + β3*Abs_UE×Inconsistent 

+Σβc*Controlsc +Σβq*YearQtrq + ε   , 

(3) 

 
where Abn EA Volume is Abn AMF EA Volume, Abn EA Tot Volume, and AMF Vol as a Frac of 

Tot Volume in columns (i), (ii), and (iii), respectively.   Abs_UE is the absolute value of unexpected 

earnings relative to the analyst consensus.  We include the same Controls as those in our tests of 

Models 1 and 2.  YearQtr fixed effects are included to remove the effect of any common time 

trends in abnormal EA volume during our sample. 

In column (i), the coefficient on Abs_UE is positive and significant, indicating that AMFs 

trade more at the EA when the magnitude of the earnings surprise is greater, for announcements 

where the sign of UE lines up with the sign of UG.  The negative and significant coefficient on the 

interaction Abs_UE×Inconsistent suggests that AMFs respond less to UE when UE is directionally 

inconsistent with UG.  In fact, the sum of the coefficients on Abs_UE and Abs_UE×Inconsistent 

is negative but insignificant (p-value = 0.767), indicating that when UE and UG are inconsistent, 

abnormal AMF volume is not significantly correlated with the magnitude of UE.  In contrast, 
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column (ii) shows that the average market participant trades more at the EA when the magnitude 

of UE is greater, even when this signal is directionally inconsistent with UG (p-value of the sum 

of the coefficients on Abs_UE and Abs_UE×Inconsistent is 0.0002).  Column (ii) reports a 

negative and significant coefficient on the interaction Abs_UE×Inconsistent, suggesting the 

market trades less on Abs_UE when UE is directionally inconsistent with UG.  While this is 

encouraging, the positive and significant sum of coefficients for the aggregate market reaction is 

in contrast to the insignificant sum in column (i).  In column (iii), when the AMF EA volume as a 

fraction of total volume is the dependent variable, we find a negative and significant sum of 

coefficients on Abs_UE and Abs_UE×Inconsistent (p-value=0.0002).  Relative to the average 

market participant, AMFs trade significantly less on the magnitude of unexpected earnings when 

the UG and UE signals are directionally inconsistent. 

Our tests so far have examined nondirectional volume and magnitudes of unexpected 

earnings and unexpected guidance.  Our next set of tests exploits an important feature of the 

Ancerno data that allows us to observe whether a given AMF trade was a buy or sell.  We base our 

tests on the following model:  

 
EA BSI   = α + β1*UG + β2*UE +Σβc*Controlsc +Σβq*YearQtrq + ε  , (4) 

where EA BSI is AMF EA BSI and Total EA BSI in columns (i) and (ii) of Table 5, respectively.  

AMF EA BSI is defined as the buy-sell imbalance of AMF trades on days [0,+4] of the EA, 

calculated as AMF buys in that window minus AMF sells in that window, scaled by all AMF buys 

and sells in that window.  It is set to 0 if there are no AMF trades in that window.  Total EA BSI is 

the buy-sell imbalance of all trades on days [0,+4] of the EA, calculated as total buy-initiated 

volume in that window minus total sell-initiated volume in that window, scaled by all buys and 

sells in that window.  It is set to 0 if there are no trades in that window.  Each trade is classified as 
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a buy or a sell based on the Lee and Ready (1991) tick test.  UG is the unexpected guidance, and 

UE is the unexpected earnings.  We include the same Controls as those in our tests of the previous 

models.  YearQtr fixed effects are included to remove the effect of any common time trends in 

abnormal EA buy-sell imbalance during our sample. 

In column (i), we find a positive and significant coefficient on UG, indicating that 

directional trading of AMFs at the EA has a positive association with unexpected guidance.  In 

other words, AMFs buy more when unexpected guidance is more positive, and they sell more 

when unexpected guidance is more negative.  In contrast, the coefficient on UE is insignificant.  

After accounting for the relation between buy-sell imbalance and UG, there is no significant 

relation between buy-sell imbalance and UE.   

In column (ii), the inferences with Total EA BSI as the dependent variable are quite 

different.  Neither the coefficient on UG nor the coefficient on UE is significant.19  Combined with 

the results in Table 2 of increased total volume when Abs_UE is greater, these results suggest 

investor are more attentive when earnings surprises are larger in magnitude, but the greater 

attention does not necessarily translate into efficient processing of this news (Merton 1987; Barber 

and Odean 2008; Brown, Hillegeist, and Lo 2009). 

Our next set of tests is based on model (3) but uses directional volume and directional 

unexpected guidance and unexpected earnings: 

 
EA BSI   = α + β1*Unexpected + β2*Inconsistent + β3*Unexpected×Inconsistent 

+Σβc*Controlsc +Σβq*YearQtrq + ε     , 

(5) 

 
                                                           
19 A caveat is that the assignment of each trade as either a buy or a sell to construct Total EA BSI is noisier, 
compared to the measurement of AMF EA BSI.  We use the Lee and Ready (1991) tick test on TAQ trading data to 
assign each trade as either buy- or sell-initiated for Total EA BSI, and there may be issues with using this tick test on 
recent data, as shown in Easley, López de Prado, and O’Hara (2012) and Johnson and So (2018). 
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where EA BSI is AMF EA BSI and Total EA BSI in columns (i)-(ii) and (iii)-(iv) of Table 6, 

respectively.  The Unexpected variable is UE (unexpected earnings) in columns (i) and (iii) and 

UG (unexpected guidance) in columns (ii) and (iv).  We include the same Controls as in our 

previous tests.  YearQtr fixed effects are included to remove the effect of any common time trends 

in abnormal EA buy-sell imbalance during our sample. 

In Table 6 column (i), the coefficient on UE is positive and significant, indicating that 

AMFs’ buy-sell imbalance at the EA is more positive when the earnings surprise is more positive, 

for announcements where the sign of UE lines up with the sign of UG.  The sum of the coefficients 

on UE and UE×Inconsistent is negative but insignificant (p-value = 0.777), which suggests that 

AMFs do not trade more in the direction of unexpected earnings when it is inconsistent with 

unexpected guidance.  

Table 6 column (ii) shows that AMFs’ buy-sell imbalance at the EA is more positive when 

unexpected guidance is more positive, for announcements with consistent UE and UG.  In contrast 

to the results in column (i), column (ii) finds that the sum of the coefficients on UG and 

UG×Inconsistent is positive and marginally significant (p-value = 0.067), which suggests that 

AMFs trade in the direction of unexpected guidance even when it is directionally inconsistent with 

unexpected earnings.  These results strikingly convey AMFs’ perception of the relative importance 

of each of these pieces of news at the EA. 

In contrast to the AMFs, the average market participant does not trade more in the direction 

of UE when it is more positive (column iii), nor does the average market participant trade more in 

the direction of UG when it is more positive (column iv).  The sum of coefficients in both columns 

are insignificant, consistent with total directional trading at the EA having no relation with the 

magnitude of unexpected earnings or unexpected guidance, regardless of whether these two pieces 
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of information are directionally consistent or inconsistent with each other.20 

Our nondirectional and directional tests thus far have revealed that AMFs focus on 

guidance news at bundled guidance earnings announcements, and they trade in the direction of this 

guidance news even when it is inconsistent with earnings news.  Our next set of tests assesses 

whether AMFs process guidance news efficiently.  Specifically, we examine whether their trading 

behavior at the EA takes into account the potential bias embedded in guidance news.  As before, 

we first conduct tests of nondirectional volume using the following OLS model, on the sample of 

EAs with bundled guidance: 

Abn EA Volume = α + β1*Abs_UG + β2*Abs_UE + β3*Abs_Guide_Bias +Σβc*Controlsc 

+Σβq*YearQtrq + ε     , 

(6) 

This test follows model (2) exactly, with an additional variable Abs_Guide_Bias, which is 

the absolute value of the difference between the realized earnings and the management forecast 

for that quarter or year.   Abn EA Volume is Abn AMF EA Volume, Abn EA Tot Volume, and AMF 

Vol as a Frac of Tot Volume in columns (i), (ii), and (iii) of Table 7, respectively. YearQtr fixed 

effects are included to remove the effect of any common time trends in abnormal EA volume 

during our sample. 

In Table 7 column (i), the coefficient on Abs_Guide_Bias is negative and significant, 

indicating that AMFs trade less at the EA when the magnitude of the guidance bias greater.  

Similarly, column (ii) finds a negative and marginally significant coefficient on Abs_Guide_Bias, 

consistent with the average market participant trading less at the EA when the magnitude of the 

                                                           
20 In the subsample with the crisis years of 2007-2009 removed, we find some evidence of a positive and marginally 
significant coefficient on UE, but only when it is consistent in sign with UG.  In contrast, we do not find a 
significant association between Abn EA Tot Volume and UG, irrespective of the sign of UE. 
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guidance bias is greater.21  This result is consistent with Yang (2012), who finds that investors 

respond less to management forecasts when the manager has lower historical accuracy.  In our 

case, both AMFs and the average market participant seem to pull back from trading when the bias, 

which has yet to be realized, is greater.  

In column (iii), when the dependent variable is AMF Vol as a Frac of Tot Volume, the 

coefficient on Abs_Guide_Bias is negative and significant, suggesting that AMFs trade 

disproportionately less than the average market participant when there is a greater guidance bias.  

Thus, at least at first blush, it appears AMFs are relatively more sensitive to the presence of a bias 

in managerial guidance. 

We further evaluate the AMF response to guidance bias by examining their directional 

trading.  Table 8 presents results of regressing AMF EA BSI and Total EA BSI on unexpected 

earnings (UE), unexpected guidance (UG), and guidance bias.  These tests are similar to model 

(6), but link the directional volume to directional UG and UE, as well as directional guidance bias.  

Specifically, we estimate the following equation: 

 
EA BSI   = α + β1*UG + β2*UE + β2*Guide_Bias_Variable +Σβc*Controlsc 

+Σβq*YearQtrq + ε          , 

(7) 

 
where EA BSI is AMF EA BSI and Total EA BSI in columns (i)-(vi) and (vii)-(ix) of Table 8, 

respectively.  Guide_Bias_Variable (used in columns (i) and (vii)) is the difference between the 

guidance and the subsequently reported earnings.  In columns (ii) to (vi), the Bias_ExtremeY 

variable is an indicator that is set to 1 when guidance bias is in the most extreme (i.e., the most 

                                                           
21 When we exclude the 2007-2009 financial crisis years, we find that the average market participant does not pull 
back from trading when there is a higher magnitude of guidance bias. In contrast, AMFs pull back from trading 
when there is a higher magnitude of guidance bias, both during the crisis and in non-crisis years. 
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excessively positive) Y decile(s).  For example, in column (ii), the indicator variable is set to 1 

when the guidance bias is in the top decile.  In column (iii), it is set to 1 when guidance bias is in 

the top two deciles.  The sample includes only firm-quarters with bundled guidance.  Controls 

include: MktCap, BTM, and Volatility and are standardized to have a mean (standard deviation) of 

0 (1). YearQtr fixed effects are included to remove the effect of any common time trends in 

abnormal EA buy-sell imbalance during our sample. 

The coefficient on Guide_Bias in Table 8 column (i) is negative and insignificant, 

suggesting no relation between AMFs’ buy-sell imbalance and the continuous guidance bias 

variable.  However, when Bias_Extreme1 is used as the bias proxy, we observe a negative and 

significant coefficient on Bias_Extreme1 (column ii).  Evidently, AMFs throttle back their buying 

when management guidance is extremely optimistically biased (i.e., in the top decile ex post).  

We again observe a negative and significant coefficient on Bias_Extreme2 in column (iii), 

indicating that AMF buying is reliably lower when managerial bias is in the top two deciles.  

Columns (iv), (v), and (vi) find no significant relation between AMF EA BSI and Bias_Extreme3, 

Bias_Extreme4, and Bias_Extreme5 (top 3 deciles, top 4 deciles, above median guidance bias, 

respectively).  These results suggest that AMFs can detect optimistic bias in guidance when it is 

extreme (i.e., in the top quintile of optimistic bias). 

In contrast, columns (vii) and (viii) show that the EA buy-sell imbalance for the aggregate 

market does not have a significant relation with managerial guidance bias.  In column (vii), we 

find an insignificant coefficient on Guide_Bias, and in column (viii) we find an insignificant 

coefficient on Bias_Extreme.  Untabulated analyses find insignificant coefficients on the four 

additional cutoffs for Bias_Extreme.  Our inference is that, while the market may trade less when 

the magnitude of the managerial bias is high (see Table 7), the typical trader is unable to determine 
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the direction of the bias.  In contrast, AMFs can detect directional optimistic bias in management 

forecasts, and adjust their trading accordingly.  These results further support the view that AMFs 

have a greater ability to efficiently process the information in bundled management guidance.22 

3.3 Speed of Price Adjustment 

3.3.1 Return Accumulation in Days [0,+4] 

We examine whether AMF trading in the EA period results in faster price adjustment.  

Specifically, we test whether the fraction of the [0,+63] return realized in days [0,+4] is greater 

when the intensity of AMF EA trading is high in the [0,+4] period.  We retain only observations 

with very positive or very negative raw [0,+63] returns, to avoid small denominators.  Specifically, 

we restrict the sample to [0,+63] raw returns that are in the top or bottom quintile, within the year 

of the EA.  CRSP returns are delisting-adjusted, based on Shumway (1997) and Beaver, 

McNichols, and Price (2007).  Table 9, Panel A presents descriptive statistics of firm-quarters with 

bundled guidance where the [0,+63] returns is also in the top or bottom quintile.  Panel B presents 

results when the fraction of [0,+63] returns that occurs in days [0,+4] is regressed on abnormal 

volume variables.  Controls include: MktCap, BTM, and Volatility and are standardized to have a 

mean (standard deviation) of 0 (1).  YearQtr fixed effects are included to remove the effect of any 

common time trends in EA price adjustment during our sample. 

The dependent variable is Abn AMF EA Volume, AMF Vol as a Frac of Tot Volume, and 

Concordant AMF EA Trading in columns (i), (ii), and (iii) of Table 9, Panel B, respectively.  

Concordant AMF EA Trading is an indicator variable set equal to 1 for firm-quarters where the 

AMF trading and the UG news are directionally concordant.  Specifically, Concordant AMF EA 

                                                           
22 In general, we find similar results when we focus on the financial crisis of 2007-2009 and when we exclude these 
financial crisis years. Under both regimes, AMFs seem to process guidance news more efficiently. 
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Trading is equal to 1 when AMF EA BSI in the top quintile and UG is also in the top quintile, or 

when AMF EA BSI in the bottom quintile and UG is also in the bottom quintile.  We include the 

same Controls as those in our previous tests. 

In Table 9, Panel B column (i), the coefficient on Abn AMF EA Volume is positive and 

significant, suggesting that the return accumulation at the EA is faster when AMFs trade more 

during the EA.  Similarly, the coefficient on AMF Vol as a Frac of Tot Volume in column (ii) is 

positive and significant, indicating that the return accumulation is faster when AMF trading at the 

EA is a larger proportion of total trading volume at the EA.  We do not find evidence that 

directional trading of AMFs helps to incorporate information into prices more quickly in column 

(iii).  Specifically, we find that when AMFs trade in the same direction as unexpected guidance 

(i.e., when Concordant AMF EA Trading = 1), the fraction of [0,+63] returns that occurs in days 

[0,+4] is not significantly higher.  We again find similar results when we focus on the financial 

crisis of 2007-2009 and when we exclude these financial crisis years. 

3.3.2 Drift 

We supplement our tests of return accumulation by examining the impact of AMF trading 

at the EA on the post-guidance price drift.  We first confirm the existence of such a price drift in 

the incorporation of UG news into returns, for smaller firms’ bundled guidance announcements 

only.  To control for firm size and unexpected earnings, we first sort each observation into three 

UE terciles.  Within each of the three UE terciles, we sort each observation into three market cap 

terciles.  Our sample of smaller firms includes those with market cap in the first and second terciles 

(i.e., we remove firms in the largest tercile). CRSP returns are delisting-adjusted, based on 

Shumway (1997) and Beaver et al. (2007).  For each firm-quarter, we calculate the [+4,+63] return 

as the post-EA return.  These returns are winsorized at the 1st and 99th percentile, by fiscal quarter 
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end date.  These returns are then size-adjusted, with the market value calculated at the fiscal quarter 

end date and sorted into deciles based on all other stocks in the CRSP universe at that date.  Before 

calculating the size-decile returns, we winsorize all firms’ buy and hold returns in the [+4,+63] 

window around all dates at the 1st and 99th percentile, by date.  We then subtract out the equal-

weighted average [+4,+63] return, relative to the EA date, of those firms in the size decile to obtain 

the equal-weighted size-adjusted returns. 

Table 10, Panel A presents descriptive statistics for this sample.  The following OLS model 

tests for the existence of a guidance-related drift: 

AbnRet[+4,+63] = α + β1*UG + β2*UE +β3*Abn EA Tot Volume +β4*AbnRet[0,+4] 

+Σβc*Controlsc + ε 

(8) 

We use the same Controls variables as in our prior models, with the addition of Abn EA 

Tot Volume and AbnRet[0,+4].  Future returns may be related to total trading volume or returns at 

the EA, and we want to account for these variables when assessing the impact of AMF participation 

at the EA.  Column (i) of Table 10, Panel B finds a positive and significant coefficient on UG, 

suggesting that unexpected guidance is incorporated into returns slowly.  This positive coefficient 

is consistent with evidence in Ng et al. (2013) that the market underreacts to guidance.  In 

untabulated analyses, we find no evidence of guidance drift in large firms (i.e., insignificant 

coefficient on UG).  Consistent with literature that finds that PEAD in recent years has essentially 

disappeared, we find an insignificant coefficient on UE (Ayers, Li, and Yeung 2011; Dechow, 

Sloan, and Zha 2014). 

After documenting a guidance-related price drift in our sample, we test for the effect of 

AMF EA trading on this drift, using the following OLS model: 
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AbnRet[+4,+63] = α + β1*UE + β2*HighAMFVariable +β3*UG×HighAMFVariable 

+β4*UG×LowAMFVariable +β5*Abn EA Tot Volume 

+β6*AbnRet[0,+4] +Σβc*Controlsc + ε 

(9) 

We use three different empirical proxies to capture a high level of AMF participation during the 

EA (the HighAMFVariable in the above equation).  The first proxy, High Abn AMF EA Volume, 

is an indicator variable set to 1 when Abn AMF EA Volume is above the median (see column (ii)).23  

The second proxy, High AMF Vol as a Frac of Tot Volume, is an indicator variable set to 1 when 

AMF Vol as a Frac of Tot Volume is above the median (see column (iii)).  The third proxy, 

Concordant AMF EA Trading, is an indicator variable set to 1 for firm-quarters with both AMF 

EA BSI and UG in the top quintile, or both AMF EA BSI and UG in the bottom quintile (see column 

(iv)).  In each of the three instances, we include a LowAMFVariable, which is defined as the ones’ 

complement of each of the HighAMFVariable variables in their respective columns (e.g., in 

column ii, the HighAMFVariable is High Abn AMF EA Volume and the LowAMFVariable is Low 

Abn AMF EA Volume).24 

Table 10, column (ii) finds an insignificant coefficient on UG×High Abn AMF EA Volume, 

suggesting no guidance-related drift when AMF EA trading volume is above median.  In contrast, 

we find a positive and marginally significant coefficient on UG×Low Abn AMF EA Volume, which 

                                                           
23 To control for firm size and unexpected earnings, we first sort each observation into three UE terciles.  Within 
each of the three UE terciles, we sort each observation into three market cap terciles, forming nine subgroups.  We 
then classify each firm-quarter observation based on its AMF participation variable into above-median and below-
median categories, within each of the nine subgroups.  We do this ranking within subgroups and within year, to 
mitigate the effect that the magnitude of earnings news and firm liquidity may have on the magnitude of the UG 
drift. 
24 Specifically, the coefficient on UG×HighAMFVariable is equivalent to the coefficient on UG when 
HighAMFVariable=1.  The coefficient on UG×LowAMFVariable is equivalent to the coefficient on UG when 
LowAMFVariable=1.  We omit the main effect UG from the regression, because it is a linear combination of 
UG×HighAMFVariable and UG×LowAMFVariable.  We omit the main effect LowAMFVariable from the 
regression, because it is a linear combination of 1 and HighAMFVariable (and the regression estimates an intercept 
α). 
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provides some evidence of guidance-related drift when AMF EA trading volume is below median.  

In column (iii), we find no guidance-related drift when AMFs disproportionately participate at the 

EA, and we also find no guidance-related drift when AMFs participate less relative to the average 

market participant at the EA.  In column (iv), we continue to find results consistent with our 

Hypothesis 3.  When AMFs trade in the same direction as UG, there is no evidence of guidance-

related drift.  However, when AMFs do not trade in the same direction as UG, there is a positive 

and marginally significant coefficient on UG×Discordant AMF EA Trading, which is evidence of 

guidance-related drift.25 

In sum, our results in Tables 9 and 10 provide evidence generally consistent with the 

hypothesis that AMFs’ trading at the EA facilitates price discovery.  The return accumulation in 

days [0,+4] is greater and the guidance-related drift does not exist, when AMFs participate more 

at the EA.  We obtain consistent results using multiple measures of AMF participation at the EA. 

4 CONCLUSION 
 

This study has two goals: 1) to evaluate whether AMFs efficiently respond to the 

information at quarterly EAs, and 2) to understand how AMF actions relate to the price discovery 

mechanism in the market.  Our analysis of 76,939 firm-quarters for 4,435 unique firms finds that 

AMFs have high trading volume at the EA, especially when there is a concurrent management 

forecast in 37% of the firm-quarters. 

We document relatively unambiguous evidence of AMF skill in processing EA news, 

particularly guidance news.  When the two main pieces of EA news are directionally inconsistent, 

                                                           
25 When we focus on the financial crisis years of 2007-2009, we do not find evidence of post-guidance price drift. 
Excluding the financial crisis years from our sample, we find similar results to those presented in Table 10. Post-
guidance price drift exists in small firms only when AMF EA trading volume is low and when AMFs do not trade in 
the same direction as UG. 
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AMFs focus on guidance news rather than earnings news.  Further, they appear able to detect 

guidance bias and adjust their trading accordingly.  Our focus on AMFs, excluding hedge funds, 

is important because prior studies have distinguished the two groups from each other in terms of 

their skill levels, sometimes referring to hedge funds as “smart money” and other AMFs as “dumb 

money” (Ha and Hu 2018).26  Our study shows that AMFs possess an informational advantage, 

relative to the average market participant, in the processing of relevant news at the EA.  At the 

same time, we address the need for more trade-level evidence in accounting research when 

studying the market response to corporate events (Hu et al. 2018). 

Our results also speak to the broader issue of market efficiency.  Specifically, we find that 

AMFs play a significant role in facilitating the integration of EA information into price.  Using 

multiple tests, we show that increased AMF trading leads to a faster and more complete price 

adjustment process in relation to guidance news.  These findings extend the literature on price 

underreaction by directly linking the magnitude of the price drift to the amount of EA intervention 

by AMFs.  In addition, our results on the effect of directional AMF trading among small firms 

suggest that the persistence of the drift could be due to elevated arbitrage costs, which can limit 

AMF involvement among these stocks.   

Previous literature has found that the short window around EAs is a period of “correction” 

to stock prices, as a substantial fraction of the abnormal returns to various strategies are realized 

in the days around the EA (Sloan 1996; Jegadeesh and Titman 1993; La Porta et al. 1997; 

Engelberg et al. 2018).  We contribute to this literature by showing that AMF trading in this short 

window facilitates the convergence of stock prices to fundamental value.  Specifically, we find 

that both the level and the direction of AMF trades at the EA are associated with increased speed 

                                                           
26 Another study that finds skill in hedge funds is Agarwal, Jiang, Tang and Yang (2013). The study finds that the 
confidential filings of hedge funds exhibit superior performance and are consistent with private information. 
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of price adjustment and reduced post-guidance price drift. 

Finally, our findings contribute to the longstanding literature on AMF performance. Most 

prior studies on AMF, and particularly MF, performance conclude that they dramatically 

underperform.  However, these results are difficult to reconcile with costly information acquisition 

and the continued existence of a large active management industry (Ippolito 1989; Berk and Green 

2004).  Two possible reasons for the documented underperformance of AMFs are: (a) investor 

flows (Edelen 1999), and (b) lack of power (Kothari and Warner 2001).  We address these 

problems using an event study approach, highly granular trade-level data, and specific earnings 

releases that require some unbundling.27   

Our evidence shows that AMFs possess significant skill in incorporating EA information 

into prices.  They are particularly skilled in interpreting management guidance, which may be 

biased by firms’ strategic disclosure behavior.  Our findings suggest professional active 

managers who run individual investors’ money may be important agents in the market price 

discovery process.  These findings seem particularly noteworthy as the move from active to 

passive asset management continues to gain prominence.  Our results show active managers 

enhance price discovery within the context of earnings releases.  Clearly, further research on the 

skill of active managers and their effects on the market in other settings will be necessary to help 

round out the picture. 

 

                                                           
27 Other papers have also used trade-level data to infer the skill of institutional investors (e.g., Gallagher, Looi, and 
Pinnuck 2010; von Beschwitz, Lunghi, and Schmidt 2017; Huang et al. 2016; Di Mascio, Lines, and Naik 2017).  
Our study is unique in that we link trade-level AMF data to specific news items released during a bundled EA 
period.   
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APPENDIX A: VARIABLE DEFINITIONS 
 

Variable Name Description Source 

[0,+4] Ret as a Fraction of [0,+63] 
Ret 

Fraction of total post-EA [0,+63] returns that accumulates in the first 5 
days, calculated as the buy-and-hold raw return on days [0,+4] of the EA 
scaled by the buy-and-hold raw return on days [0,+63] of the EA. 

CRSP 

Abn AMF EA Volume Average daily AMF volume on days [0,+4] divided by average daily total 
volume on days [-20,-2]. 

Ancerno, 
CRSP 

Abn EA Tot Volume Average daily total volume on days [0,+4] divided by average daily total 
volume on days [-20,-2]. 

CRSP 

AbnRet[+4,+63] 

Size-adjusted buy-and-hold abnormal return on days [+4,+63] of the EA, 
where the size adjustment is the equal-weighted [+4,+63] buy-and-hold 
return for stocks in the size decile, calculated using market cap as of the 
end of the month of the most recent fiscal quarter end 

Compustat, 
CRSP 

AbnRet[0,+4] 

Size-adjusted buy-and-hold abnormal return on days [0,+4] of the EA, 
where the size adjustment is the equal-weighted [0,+4] buy-and-hold 
return for stocks in the size decile, calculated using market cap as of the 
end of the month of the most recent fiscal quarter end 

Compustat, 
CRSP 

Abs_Guide_Bias 

Absolute value of the bias in management guidance, calculated as the 
absolute value of the difference between annual guidance for EPS and the 
realized annual EPS, scaled by price at the most recent fiscal quarter end. 
If annual guidance for EPS is unavailable, then calculated as the absolute 
value of the difference between quarterly guidance for EPS and the 
realized quarterly EPS, scaled by price at the most recent fiscal quarter 
end. 

IBES, CRSP 

Abs_UE Absolute value of unexpected earnings, calculated as the absolute value of 
actual EPS less the median analyst EPS forecast, scaled by price at the 
most recent fiscal quarter end. 

IBES, CRSP 

Abs_UG 

Absolute value of unexpected guidance, calculated as the absolute value of 
the difference between annual guidance for EPS and the median analyst 
EPS forecast for the year for which management provides guidance, scaled 
by price at the most recent fiscal quarter end and adjusted for the current 
earnings news, following the conditional forecast news measure in Rogers 
and Van Buskirk (2013). If annual guidance for EPS is unavailable, then 
we use quarterly guidance for EPS and the median analyst EPS forecast 
for the quarter for which management provides guidance. 

IBES, CRSP 

AMF EA BSI 
Buy-sell imbalance of AMF trades on days [0,+4] of the EA, calculated as 
AMF buys in that window minus AMF sells in that window, scaled by all 
AMF buys and sells in that window. Set to 0 if there are no AMF trades in 
that window. 

Ancerno 

AMF EA Vol as a Frac of Tot 
Volume Average daily AMF volume as a fraction of total volume, measured on 

days [0,+4] of the EA. 

Ancerno, 
CRSP 
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Bias_ExtremeY 

Indicator variable set to 1 if the within-year ranking of Guide_Bias is in 
the top Y decile(s). The ranking of Guide_Bias is done separately for 
annual guidance and quarterly guidance, then combined (using annual 
guidance when available and quarterly guidance when annual guidance is 
unavailable). 

IBES, CRSP 

BTM 

Book-to-market ratio, calculated as of the most recent fiscal year end at 
"date." The book-to-market ratio is Compustat AT divided by the sum of 
market value of equity (PRCC_F*CSHO) and the book value of debt (AT 
- CEQ) 

Compustat 

Concordant AMF EA Trading 

Indicator variable set to 1 if either: 1) AMF EA BSI is in the top quintile 
and UG is in the top quintile, or 2) AMF EA BSI is in the bottom quintile 
and UG is in the bottom quintile. Quintile rankings are done within year, 
and the ranking of UG is done separately for annual guidance and 
quarterly guidance, then combined (using annual guidance when available 
and quarterly guidance when annual guidance is unavailable). 

Ancerno, 
IBES 

ConcurrentGuidance Indicator variable set to 1 if management issues a forecast on days [0,+2] 
of the EA. 

IBES 

Discordant AMF EA Trading 

The ones’ complement of Concordant AMF EA Trading. Specifically, an 
indicator variable for non-concordant trading, or 1 - Concordant AMF EA 
Trading. 

Ancerno, 
IBES 

EarnLoss Indicator variable set to 1 if current earnings are negative. Compustat 

GuidanceLoss Indicator variable set to 1 if the management forecasts a loss in the future, 
whether it is a future quarter or future year, in the bundled guidance. 

IBES 

Guide_Bias 

Bias in management guidance, calculated as the difference between annual 
guidance for EPS and the realized annual EPS, scaled by price at the most 
recent fiscal quarter end. If annual guidance for EPS is unavailable, then 
calculated as the difference between quarterly guidance for EPS and the 
realized quarterly EPS, scaled by price at the most recent fiscal quarter 
end. 

IBES, CRSP 

High Abn AMF EA Volume 
Indicator variable set to 1 if Abn AMF EA Volume is above the median. 

Ancerno, 
CRSP 

High AMF Vol as a Frac of Tot 
Volume Indicator variable set to 1 if AMF Vol as a Frac of Tot Volume is above 

the median. 

Ancerno, 
CRSP 

Inconsistent 
Indicator variable set to 1 if UG is positive and UE is negative, or if UG is 
negative and UE is positive. If either the quarterly guidance news or the 
annual guidance news is positive (negative), then UG is considered to be 
positive (negative) for the purpose of the calculation of this variable. 

IBES, CRSP 

Low Abn AMF EA Volume The ones’ complement of High Abn AMF EA Volume. Specifically, below 
median Abn AMF EA Volume, or 1 - High Abn AMF EA Volume. 

Ancerno, 
CRSP 

Low AMF Vol as a Frac of Tot 
Volume 

The ones’ complement of High AMF Vol as a Frac of Tot Volume. 
Specifically, below median AMF Vol as a Frac of Tot Volume, or 1 - High 
AMF Vol as a Frac of Tot Volume. 

Ancerno, 
CRSP 

MktCap Market cap as of the most recent fiscal quarter end. CRSP 
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Total EA BSI 
Buy-sell imbalance of all trades on days [0,+4] of the EA, calculated as 
total buy-initiated volume in that window minus total sell-initiated volume 
in that window, scaled by all buys and sells in that window. Set to 0 if 
there are no trades in that window. Each trade is classified as a buy or a 
sell based on the Lee and Ready (1991) tick test. 

CRSP, TAQ 

UE Unexpected earnings, calculated as the actual EPS less the median analyst 
EPS forecast, scaled by price at the most recent fiscal quarter end. 

IBES, CRSP 

UG 

Unexpected guidance, calculated as the annual guidance for EPS and the 
median analyst EPS forecast for the year for which management provides 
guidance, scaled by price at the most recent fiscal quarter end and adjusted 
for the current earnings news, following the conditional forecast news 
measure in Rogers and Van Buskirk (2013). If annual guidance for EPS is 
unavailable, then we use quarterly guidance for EPS and the median 
analyst EPS forecast for the quarter for which management provides 
guidance. 

IBES, CRSP 

Volatility 
Stock return volatility, annualized and calculated as the standard deviation 
of log of 1 plus daily stock returns over days [-102,-2] relative to the EA. 

CRSP 
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Figure 1: Actively Managed Fund Trading around Earnings Announcements 
 
 

 
 

This figure presents the abnormal trading volume by actively managed funds (AMFs) in the 51 
trading days centered around quarterly earnings announcements (EAs).  Abnormal trading volume 
is defined as the average daily trading volume by AMFs, scaled by the average daily AMF trading 
volume during non-announcement days.  We compute average abnormal trading volume for each 
firm-quarter and graph the average over all firm-quarters in our sample.  The time period covered 
is 2003 to 2010. 
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Table 1: Descriptive Statistics 
 

This table presents descriptive statistics for untransformed variables.  All variables are defined in 
Appendix A. 

  N Mean Std Dev   P1   P25   Median  P75 P99 
AMF Volume Variables         
Day 0 AMF Volume 76,939 100,713.32 386,849.14 0.00 0.00 5,032.00 60,424.00 1,483,370.24 
Day 1 AMF Volume 76,939 55,281.40 222,997.22 0.00 0.00 1,683.00 29,200.00 854,783.56 
Day 2 AMF Volume 76,939 44,603.34 200,109.57 0.00 0.00 1,250.00 23,330.00 673,861.22 
Day 3 AMF Volume 76,939 41,679.28 171,779.86 0.00 0.00 1,200.00 21,800.00 647,805.66 
Day 4 AMF Volume 76,939 41,032.85 162,242.26 0.00 0.00 1,100.00 20,892.50 644,778.46 

         
EA Volume Variables         
AMF Average EA [0,+4] Daily Volume 76,939 56,662.04 172,040.33 0.00 992.20 10,953.80 46,957.40 689,179.08 
Total Average EA [0,+4] Daily Volume 76,939 2,280,926.74 10,190,625.58 11,443.59 231,286.90 650,323.40 1,852,293.40 25,421,464.00 

         
Non-EA Volume Variables         
AMF Average [-20,-2] Daily Volume 76,939 35,161.83 94,510.86 0.00 1,790.26 9,181.42 31,638.21 406,641.86 
Total Average [-20,-2] Daily Volume 76,939 1,517,170.44 6,974,973.40 10,244.84 143,566.95 391,477.84 1,141,162.32 17,696,862.21 

         
Firm-Quarter Variables, Full Sample         
Abn AMF EA Volume 76,939 0.07 0.16 0.00 0.00 0.02 0.08 0.69 
Abn EA Tot Volume 76,939 1.80 1.32 0.48 1.13 1.50 2.07 6.54 
AMF EA Vol as a Frac of Tot Volume 76,939 0.03 0.05 0.00 0.00 0.02 0.04 0.25 
ConcurrentGuidance 76,939 0.37 0.48 0.00 0.00 0.00 1.00 1.00 
Abs_UE 76,939 0.01 0.04 0.00 0.00 0.00 0.00 0.06 
EarnLoss 76,939 0.18 0.38 0.00 0.00 0.00 0.00 1.00 
GuidanceLoss 76,939 0.01 0.12 0.00 0.00 0.00 0.00 1.00 
MktCap 76,939 5,298.62 18,865.43 154.26 410.91 1,025.91 3,006.15 78,969.48 
BTM 76,939 0.64 0.27 0.13 0.43 0.65 0.87 1.19 
Volatility 76,939 0.03 0.01 0.01 0.02 0.02 0.03 0.08 

         
Firm-Quarter Variables, Bundled Guidance Sample        

Abn AMF EA Volume 28,731 0.08 0.15 0.00 0.01 0.04 0.09 0.68  
Abn EA Tot Volume 28,731 1.88 1.12 0.60 1.22 1.60 2.19 6.19  
AMF EA Vol as a Frac of Tot Volume 28,731 0.04 0.05 0.00 0.01 0.02 0.05 0.25  
AMF EA BSI 28,731 0.01 0.72 -1.00 -0.71 0.00 0.74 1.00  
Total EA BSI 28,731 0.02 0.08 -0.20 -0.02 0.00 0.05 0.27  
Abs_UG 28,731 0.01 0.36 0.00 0.00 0.00 0.00 0.05  
Abs_UE 28,731 0.00 0.02 0.00 0.00 0.00 0.00 0.02  
Abs_Guide_Bias 28,731 0.02 0.39 0.00 0.00 0.00 0.01 0.21  
UG 28,731 0.00 0.36 -0.04 0.00 0.00 0.00 0.02  
UE 28,731 0.00 0.02 -0.01 0.00 0.00 0.00 0.01  
Guide_Bias 28,731 0.01 0.39 -0.04 0.00 0.00 0.00 0.20  
EarnLoss 28,731 0.11 0.31 0.00 0.00 0.00 0.00 1.00  
GuidanceLoss 28,731 0.04 0.19 0.00 0.00 0.00 0.00 1.00  
MktCap 28,731 6,588.27 20,879.94 168.13 621.27 1,544.46 4,161.34 87,994.50  
BTM 28,731 0.60 0.24 0.14 0.41 0.58 0.78 1.14  
Volatility 28,731 0.02 0.01 0.01 0.02 0.02 0.03 0.06  

  



44 
 

Table 2: Analysis of Volume and Concurrent Guidance 
 
This table presents the results of regressing Abn AMF EA Volume, Abn EA Tot Volume, and AMF 
Vol as a Frac of Tot Volume on an indicator variable for management guidance concurrent with 
the EA and the absolute value of unexpected earnings.  We measure unexpected earnings relative 
to the IBES consensus forecast.  Controls include: MktCap, BTM, and Volatility, each of which 
has been standardized to have a mean (standard deviation) of 0 (1).  Fiscal year-quarter fixed 
effects are included in all models.  Standard errors are clustered by firm and EA date.  All variables 
are defined in Appendix A.  T-statistics are in parentheses. *** indicates significance at 1%; ** at 
5%; and * at 10%. 

  Dependent variable: 

 Abn AMF EA Volume Abn EA Tot Volume 
AMF Vol as a Frac of 

Tot Volume     
 (i) (ii) (iii)     
ConcurrentGuidance 0.015*** 0.158*** 0.006*** 

 (10.23) (12.05) (8.98)     
Abs_UE 0.368* 13.660*** -0.108*** 

 (1.65) (8.09) (-3.75)     
EarnLoss -0.013*** -0.153*** -0.005*** 

 (-5.60) (-8.61) (-5.23)     
GuidanceLoss -0.008* 0.051 -0.004** 

 (-1.75) (1.18) (-2.28)     
MktCap -0.010*** -0.104*** -0.003*** 

 (-17.86) (-16.71) (-12.30)     
BTM -0.003*** -0.106*** 0.001*** 

 (-4.01) (-15.01) (3.08)     
Volatility -0.008*** -0.022*** -0.004*** 

 (-8.85) (-3.03) (-11.74)     
Firm and Date Clustered 
SEs Yes Yes Yes 
Qtr Fixed Effects Yes Yes Yes 
Observations 76,939 76,939 76,939 
R2 0.036  0.053  0.038  
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Table 3: Analysis of Bundled Guidance Earnings Announcements 
 
This table presents results of regressing Abn AMF EA Volume, Abn EA Tot Volume, and AMF Vol 
as a Frac of Tot Volume on the absolute value of unexpected guidance (Abs_UG) and the absolute 
value of unexpected earnings (Abs_UE).  Unexpected earnings is computed relative to the IBES 
Consensus forecast.  Unexpected guidance news is calculated using the conditional expectations model 
based on the current period unexpected earnings (Rogers and Van Buskirk 2013).  The sample includes 
only firm-quarters with bundled guidance.  Controls include: MktCap, BTM, and Volatility and are 
standardized to have a mean (standard deviation) of 0 (1).  Fiscal year-quarter fixed effects are 
included in all models.  Standard errors are clustered by firm and EA date.  All variables are defined 
in Appendix A.  T-statistics are in parentheses. *** indicates significance at 1%; ** at 5%; and * 
at 10%. 
 

  Dependent variable: 

 Abn AMF EA Volume Abn EA Tot Volume 
AMF Vol as a Frac of 

Tot Volume     
 (i) (ii) (iii)     
Abs_UG 0.653*** 13.062*** 0.050 

 (4.04) (8.45) (0.84)     
Abs_UE 0.182 14.193*** -0.229*** 

 (0.71) (4.12) (-2.79)     
EarnLoss -0.008*** -0.131*** -0.001 

 (-2.76) (-5.05) (-1.02)     
GuidanceLoss -0.015*** -0.081* -0.006*** 

 (-3.23) (-1.72) (-3.13)     
MktCap -0.011*** -0.126*** -0.003*** 

 (-14.41) (-15.79) (-8.43)     
BTM -0.005*** -0.141*** 0.001** 

 (-4.30) (-13.32) (2.07)     
Volatility -0.009*** -0.024* -0.004*** 

 (-5.97) (-1.81) (-5.92)     
Firm and Date Clustered 
SEs Yes Yes Yes 
Qtr Fixed Effects Yes Yes Yes 
Observations 28,731 28,731 28,731 
R2 0.042  0.064  0.041  
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Table 4: Analysis of Bundled Announcements in which UG and UE are Inconsistent 
 

This table reports abnormal volume when unexpected earnings (UE) and unexpected guidance news (UG) are 
directionally inconsistent.  UE is calculated relative to the IBES consensus forecast.  UG is calculated using the 
conditional expectations model in Rogers and Van Buskirk (2013).  We begin with all firm-quarters with bundled 
guidance (N=28,731).  We further divide this sample into positive UE (N=23,180) and negative UE (N=5,551) 
observations.  Panel A reports the fraction of each group where UG and UE are directionally inconsistent.  We then 
use the indicator variable Inconsistent to denote observations where UG and UE are inconsistent.  Panel B reports 
results when we regress Abn AMF EA Volume, Abn EA Tot Volume, and AMF Vol as a Frac of Tot Volume on the 
absolute value of unexpected earnings (Abs_UE), Inconsistent, Abs_UE x Inconsistent, and a set of control variables.  
Controls include: MktCap, BTM, and Volatility and are standardized to have a mean (standard deviation) of 0 (1).  
Fiscal year-quarter fixed effects are included in all models.  Standard errors are clustered by firm and EA date.  All 
variables are defined in Appendix A.  T-statistics are in parentheses. *** indicates significance at 1%; ** at 5%; and 
* at 10%. 
 
Panel A: Descriptive Statistics, Inconsistent UG and UE  

  N Mean    
% Inconsistent UG and UE 28,731 0.56    
% Inconsistent, for Positive UE 23,180 0.55    
% Inconsistent, for Negative UE 5,551 0.59 

 
Panel B: Effect of Inconsistent UG and UE on the Relation between Volume and Abs_UE 

  Dependent variable: 

 Abn AMF EA Volume Abn EA Tot Volume 
AMF Vol as a Frac of 

Tot Volume     
 (i) (ii) (iii)     
Abs_UE 1.522*** 32.480*** -0.048 

 (3.93) (7.16) (-0.39)     
Inconsistent 0.004* -0.012 0.001 

 (1.93) (-0.72) (1.42)     
Abs_UE x Inconsistent -1.586*** -19.044*** -0.238 

 (-3.58) (-3.45) (-1.63)     
EarnLoss -0.007** -0.111*** -0.001 

 (-2.39) (-4.32) (-0.94)     
GuidanceLoss -0.013*** -0.023 -0.006*** 

 (-2.69) (-0.48) (-3.03)     
MktCap -0.011*** -0.126*** -0.003*** 

 (-14.37) (-15.56) (-8.42)     
BTM -0.005*** -0.132*** 0.001** 

 (-4.01) (-12.53) (2.09)     
Volatility -0.008*** -0.004 -0.004*** 

 (-5.47) (-0.32) (-5.99)     
P-value that Sum{Abs_UE + Abs_UE x 
Inconsistent} is different from zero 0.767 2e-04*** 2e-04*** 
Firm and Date Clustered SEs Yes Yes Yes 
Qtr Fixed Effects Yes Yes Yes 
Observations 28,731 28,731 28,731 
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R2 0.042  0.060  0.042  
 

Table 5: Analysis of Bundled Guidance Earnings Announcements and Directional Trading 
 
This table presents results of regressing AMF EA BSI and Total EA BSI on unexpected guidance 
and unexpected earnings.  The sample includes only firm-quarters with bundled guidance.  
Controls include: MktCap, BTM, and Volatility and are standardized to have a mean (standard 
deviation) of 0 (1).  Fiscal year-quarter fixed effects are included in all models.  Standard errors 
are clustered by firm and EA date.  All variables are defined in Appendix A.  T-statistics are in 
parentheses. *** indicates significance at 1%; ** at 5%; and * at 10%. 
 

  Dependent variable: 
 AMF EA BSI Total EA BSI    

 (i) (ii)    
UG 2.665*** 0.017 

 (3.24) (0.29)    
UE 0.838 -0.044 

 (0.45) (-0.36)    
EarnLoss -0.036 -0.003 

 (-1.63) (-1.37)    
GuidanceLoss -0.028 -0.002 

 (-1.07) (-0.63)    
MktCap 0.001 0.001 

 (0.18) (1.18)    
BTM -0.002 0.003*** 

 (-0.34) (3.32)    
Volatility 0.027*** -0.011*** 

 (2.98) (-10.59)    
Firm and Date 
Clustered SEs Yes Yes 
Qtr Fixed Effects Yes Yes 
Observations 28,731 28,731 
R2 0.007  0.083  
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Table 6: Analysis of Bundled Guidance Earnings Announcements and Directional Trading, 
Inconsistent UG and UE 

 
This table presents results of regressing AMF EA BSI and Total EA BSI on unexpected earnings 
and unexpected guidance, and tests whether the coefficient differs for firm-quarters with 
inconsistent unexpected guidance and unexpected earnings.  The sample includes only firm-
quarters with bundled guidance.  Controls include: MktCap, BTM, and Volatility and are 
standardized to have a mean (standard deviation) of 0 (1).  Fiscal year-quarter fixed effects are 
included in all models.  Standard errors are clustered by firm and EA date.  All variables are defined 
in Appendix A.  T-statistics are in parentheses. *** indicates significance at 1%; ** at 5%; and * 
at 10%. 
 
  Dependent variable: 

 AMF EA BSI Total EA BSI      
 (i) (ii) (iii) (iv)      
Inconsistent 0.002 0.005 0.000 -0.001 

 (0.21) (0.46) (-0.32) (-0.50)      
UE 3.579**  0.077  

 (1.97)  (0.41)       
UE x Inconsistent -4.320  -0.188  

 (-1.35)  (-0.87)       
UG  2.683***  0.098 

  (3.15)  (1.21)      
UG x Inconsistent  0.064  -0.180 

  (0.04)  (-1.42)      
EarnLoss -0.036* -0.038* -0.003 -0.002 

 (-1.67) (-1.72) (-1.39) (-1.25)      
GuidanceLoss -0.041 -0.027 -0.002 -0.002 

 (-1.56) (-1.02) (-0.58) (-0.69)      
MktCap 0.001 0.001 0.001 0.001 

 (0.19) (0.18) (1.18) (1.17)      
BTM -0.004 -0.002 0.003*** 0.003*** 

 (-0.52) (-0.34) (3.33) (3.32)      
Volatility 0.025*** 0.027*** -0.011*** -0.011*** 

 (2.84) (3.06) (-10.67) (-10.67)      
P-value that Sum{UE + UE x 
Inconsistent} is different from zero 0.777  0.430  
P-value that Sum{UG + UG x 
Inconsistent} is different from zero  0.0666*  0.368 
Observations 28,731 28,731 28,731 28,731 
R2 0.006  0.007  0.083  0.083  
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Table 7: Analysis of Bundled Guidance Earnings Announcements and Guidance Bias 
 

This table presents results of regressing Abn AMF EA Volume, Abn EA Tot Volume, and AMF 
Vol as a Frac of Tot Volume on the absolute value of unexpected guidance, the absolute value 
of unexpected earnings, and the absolute value of the guidance bias.  The sample includes 
only firm-quarters with bundled guidance.  Controls include: MktCap, BTM, and Volatility 
and are standardized to have a mean (standard deviation) of 0 (1).  Fiscal year-quarter fixed 
effects are included in all models.  Standard errors are clustered by firm and EA date.  All 
variables are defined in Appendix A.  T-statistics are in parentheses. *** indicates 
significance at 1%; ** at 5%; and * at 10%. 

 
  Dependent variable: 

 Abn AMF EA Volume Abn EA Tot Volume 
AMF Vol as a Frac of 

Tot Volume     
 (i) (ii) (iii)     
Abs_UG 0.781*** 14.093*** 0.098 

 (4.49) (7.34) (1.56)     
Abs_UE 0.209 14.412*** -0.219** 

 (0.78) (4.14) (-2.56)     
Abs_Guide_Bias -0.126*** -1.012* -0.046*** 

 (-3.97) (-1.87) (-3.68)     
EarnLoss -0.008*** -0.129*** -0.001 

 (-2.67) (-4.99) (-0.94)     
GuidanceLoss -0.016*** -0.082* -0.006*** 

 (-3.30) (-1.77) (-3.19)     
MktCap -0.011*** -0.126*** -0.003*** 

 (-14.31) (-15.79) (-8.33)     
BTM -0.005*** -0.138*** 0.001** 

 (-3.93) (-12.62) (2.33)     
Volatility -0.008*** -0.020* -0.004*** 

 (-5.89) (-1.67) (-5.87)     
Firm and Date 
Clustered SEs Yes Yes Yes 
Qtr Fixed Effects Yes Yes Yes 
Observations 28,731 28,731 28,731 
R2 0.043 0.064 0.042 
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Table 8: Analysis of Bundled Guidance Earnings Announcements and Directional 
Trading, Guidance Bias 

 
This table presents results of regressing AMF EA BSI and Total EA BSI on unexpected earnings (UE), 
unexpected guidance (UG), and guidance bias.  The Guide_Bias variable (used in columns (i) and (vii)) is 
the difference between the guidance and the actual subsequently reported earnings.  The Bias_ExtremeY 
variable is an indicator variable that is set to 1 when guidance bias is in the most extreme (i.e., the most 
excessively positive) Y decile(s).  For example, in column (ii), the indicator variable is set to 1 when the 
guidance bias is in the top decile.  In column (iii), it is set to 1 when guidance bias is in the top two deciles.  
The sample includes only firm-quarters with bundled guidance.  Controls include: MktCap, BTM, and 
Volatility and are standardized to have a mean (standard deviation) of 0 (1).  Fiscal year-quarter fixed effects 
are included in all models.  Standard errors are clustered by firm and EA date.  All variables are defined in 
Appendix A.  T-statistics are in parentheses. *** indicates significance at 1%; ** at 5%; and * at 10%. 

 
 Dependent variable: 
  AMF EA BSI Total EA BSI 

  (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) 
          

UG 2.645*** 2.596*** 2.628*** 2.661*** 2.670*** 2.663*** 0.019 0.016 
 (3.23) (3.19) (3.22) (3.25) (3.25) (3.24) (0.33) (0.28) 
          

UE 0.588 0.505 0.472 0.645 0.708 0.887 -0.021 -0.048 
 (0.35) (0.29) (0.26) (0.36) (0.39) (0.48) (-0.17) (-0.40) 
          

Guide_Bias -0.272       0.025  
 (-0.97)       (0.56)            

Bias_Extreme1   -0.046***       -0.001 
  (-2.85)       (-0.18)           

Bias_Extreme2    -0.034**       
   (-2.57)                 

Bias_Extreme3     -0.016      
    (-1.45)                

Bias_Extreme4      -0.009     
     (-0.93)               

Bias_Extreme5       0.003   
      (0.25)             

EarnLoss -0.035 -0.034 -0.035 -0.035 -0.036 -0.035 -0.003 -0.003 
 (-1.61) (-1.56) (-1.60) (-1.63) (-1.64) (-1.61) (-1.40) (-1.36) 
          

GuidanceLoss -0.028 -0.027 -0.027 -0.028 -0.028 -0.028 -0.002 -0.002 
 (-1.09) (-1.04) (-1.04) (-1.06) (-1.07) (-1.07) (-0.61) (-0.62)           

MktCap 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.001 
 (0.13) (0.08) (0.01) (0.07) (0.12) (0.19) (1.20) (1.17)           

BTM -0.002 0.000 -0.001 -0.002 -0.002 -0.002 0.003*** 0.003*** 
 (-0.24) (-0.06) (-0.09) (-0.25) (-0.31) (-0.33) (3.29) (3.38) 
          

Volatility 0.028*** 0.029*** 0.028*** 0.027*** 0.027*** 0.027*** -0.011*** -0.011*** 
 (3.19) (3.27) (3.11) (3.08) (3.01) (2.96) (-10.50) (-10.56) 
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Firm and Date 
Clustered SEs Yes Yes Yes Yes Yes Yes Yes Yes 
Qtr Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 28,731 28,731 28,731 28,731 28,731 28,731 28,731 28,731 
R2 0.007  0.007  0.007  0.007  0.007  0.007  0.083  0.083  
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Table 9: Analysis of Speed of Price Adjustment 
 

Panel A presents descriptive statistics of firm-quarters with bundled guidance where the [0,+63] 
returns are also in the top or bottom quintile.  Panel B presents results of regressing the fraction of 
[0,+63] returns that occurs in days [0,+4] on abnormal volume variables.  Controls include: 
MktCap, BTM, and Volatility and are standardized to have a mean (standard deviation) of 0 (1).  
Fiscal year-quarter fixed effects are included in all models.  Standard errors are clustered by firm 
and EA date.  All variables are defined in Appendix A.  T-statistics are in parentheses. *** 
indicates significance at 1%; ** at 5%; and * at 10%. 
 

Panel A: Descriptive Statistics, Extreme Returns Sample  

  N Mean 
Std 
Dev P1 P25 Median P75 P99 

[0,+4] Ret as a Fraction of [0,+63] Ret 10,904 0.26 0.64 -0.97 0.01 0.23 0.46 1.79 
Abn AMF EA Volume 10,904 0.08 0.12 0.00 0.01 0.04 0.10 0.69 
AMF EA Vol as a Frac of Tot Volume 10,904 0.04 0.05 0.00 0.01 0.02 0.05 0.24 
Concordant AMF EA Trading 10,904 0.21 0.40 0.00 0.00 0.00 0.00 1.00 
Abs_UE 10,904 0.00 0.01 0.00 0.00 0.00 0.00 0.03 
EarnLoss 10,904 0.14 0.34 0.00 0.00 0.00 0.00 1.00 
GuidanceLoss 10,904 0.05 0.22 0.00 0.00 0.00 0.00 1.00 

 

Panel B: Effect of AMF EA Participation on the Speed of Price Adjustment 
 

  Dependent variable: 
 [0,+4] Ret as a Fraction of [0,+63] Ret     

 (i) (ii) (iii)     
Abn AMF EA Volume 0.453***   

 (8.94)       
AMF Vol as a Frac of Tot Volume   0.237**  

  (2.01)      
Concordant AMF EA Trading    0.016 

   (1.00)     
Abs_UE -0.188 0.045 -0.030 

 (-0.18) (0.04) (-0.03)     
EarnLoss -0.042** -0.044** -0.045** 

 (-2.03) (-2.14) (-2.15)     
GuidanceLoss 0.027 0.023 0.022 

 (1.17) (1.01) (0.95)     
MktCap 0.002 -0.004 -0.004 

 (0.15) (-0.40) (-0.44)     
BTM -0.008 -0.010 -0.010 

 (-1.03) (-1.30) (-1.34)     
Volatility -0.031*** -0.037*** -0.038*** 

 (-2.69) (-3.22) (-3.38)     
Firm and Date Clustered SEs Yes Yes Yes 
Extreme [0,+63] Returns Only Yes Yes Yes 
Observations 10,904 10,904 10,904 
R2 0.031  0.024  0.023  
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Table 10: Analysis of Guidance News Drift 
 

Panel A presents descriptive statistics of firm-quarters with bundled guidance and market cap in 
the first and second tercile.  Panel B presents results of regressing abnormal [+4,+63] returns on 
unexpected guidance (UG), and tests whether the post-UG price drift effect is a function of the 
magnitude and/or the direction of AMF trading during the earnings announcement.   We use three 
different empirical proxies to capture a high level of AMF participation during the EA.  The first 
proxy, High Abn AMF EA Volume, is an indicator variable set to 1 when Abn AMF EA Volume is 
above the median (see column (ii)).28  The second proxy, High AMF Vol as a Frac of Tot Volume, 
is an indicator variable set to 1 when AMF Vol as a Frac of Tot Volume is above the median (see 
column (iii)).  The third proxy, Concordant AMF EA Trading, is an indicator variable set to 1 for 
firm-quarters with both AMF EA BSI and UG in the top quintile, or both AMF EA BSI and UG in 
the bottom quintile (see column (iv)).  In each of the three instances, we include a 
LowAMFVariable, which is defined as the ones’ complement of each of the HighAMFVariable 
variables in their respective columns (e.g., in column ii, the HighAMFVariable is High Abn AMF 
EA Volume and the LowAMFVariable is Low Abn AMF EA Volume).29  Controls include: MktCap, 
BTM, and Volatility and are standardized to have a mean (standard deviation) of 0 (1).  Standard 
errors are clustered by firm and EA date.  All variables are defined in Appendix A.  T-statistics are 
in parentheses. *** indicates significance at 1%; ** at 5%; and * at 10%. 
 
Panel A: Descriptive Statistics, Small Firm Sample  

  N Mean 
Std 
Dev P1 P25 Median P75 P99 

AbnRet[+4,+63] 17,049 0.00 0.16 -0.38 -0.10 -0.01 0.09 0.45 
UG 17,049 0.00 0.01 -0.04 0.00 0.00 0.00 0.02 
UE 17,049 0.00 0.01 -0.02 0.00 0.00 0.00 0.01 
Abn AMF EA Volume 17,049 0.09 0.13 0.00 0.01 0.04 0.11 0.69 
AMF EA Vol as a Frac of Tot Volume 17,049 0.04 0.05 0.00 0.00 0.02 0.05 0.25 
Concordant AMF EA Trading 17,049 0.21 0.41 0.00 0.00 0.00 0.00 1.00 
Abn EA Tot Volume 17,049 1.96 1.10 0.56 1.24 1.67 2.33 6.54 

 
 

                                                           
28 To control for firm size and unexpected earnings, we first sort each observation into three UE terciles.  Within 
each of the three UE terciles, we sort each observation into three market cap terciles, forming nine subgroups.  We 
then classify each firm-quarter observation based on its AMF participation variable into above-median and below-
median categories, within each of the nine subgroups.  We do this ranking within subgroups and within year, to 
mitigate the effect that the magnitude of earnings news and firm liquidity may have on the magnitude of the UG 
drift. 
29 Specifically, the coefficient on UG×HighAMFVariable is equivalent to the coefficient on UG when 
HighAMFVariable=1.  The coefficient on UG×LowAMFVariable is equivalent to the coefficient on UG when 
LowAMFVariable=1.  We omit the main effect UG from the regression, because it is a linear combination of 
UG×HighAMFVariable and UG×LowAMFVariable.  We omit the main effect LowAMFVariable from the 
regression, because it is a linear combination of 1 and HighAMFVariable (and the regression estimates an intercept 
α). 
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Panel B: Effect of AMF EA Participation on Guidance News Drift 

  Dependent variable: 
 AbnRet[+4,+63]      

 (i) (ii) (iii) (iv)      
UG 0.570**    

 (1.97)         
UE -0.114 -0.112 -0.119 -0.113 

 (-0.10) (-0.10) (-0.11) (-0.10)      
High Abn AMF EA Volume   -0.005   

  (-1.15)        
High AMF Vol as a Frac of Tot Volume    -0.001  

   (-0.28)       
Concordant AMF EA Trading     -0.002 

    (-0.56)      
UG x High Abn AMF EA Volume   0.595   

  (1.53)        
UG x Low Abn AMF EA Volume   0.535*   

  (1.82)        
UG x High AMF Vol as a Frac of Tot Volume    0.257  

   (0.71)       
UG x Low AMF Vol as a Frac of Tot Volume    0.454  

   (1.35)       
UG x Concordant AMF EA Trading     0.469 

    (1.38)      
UG x Discordant AMF EA Trading     0.616* 

    (1.78)      
Abn EA Tot Volume 0.007*** 0.008*** 0.007*** 0.007*** 

 (5.39) (5.36) (5.39) (5.41)      
AbnRet[0,+4] 0.039* 0.039* 0.039* 0.039* 

 (1.78) (1.80) (1.79) (1.78)      
EarnLoss 0.006 0.006 0.006 0.006 

 (1.12) (1.10) (1.11) (1.13)      
GuidanceLoss -0.003 -0.003 -0.003 -0.003 

 (-0.35) (-0.43) (-0.40) (-0.35)      
MktCap -0.091*** -0.090*** -0.091*** -0.092*** 

 (-3.30) (-3.31) (-3.30) (-3.30)      
BTM 0.003 0.003 0.003 0.003 

 (1.54) (1.56) (1.54) (1.57)      
Volatility 0.005** 0.005** 0.005** 0.005** 

 (2.32) (2.30) (2.33) (2.33)      
Constant -0.042*** -0.040*** -0.041*** -0.041*** 

 (-4.67) (-4.67) (-4.64) (-4.66)      
Firm and Date Clustered SEs Yes Yes Yes Yes 
Small Firms Only Yes Yes Yes Yes 
Observations 17,049 17,049 17,049 17,049 
R2 0.006  0.007  0.006  0.006  
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