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Abstract:  We develop a Loan Portfolio Risk (LPR) variable that measures time-
varying volatility in default risk for a portfolio of bank loans.  An Equity-to-LPR 
ratio (ELPR) is incrementally important in predicting bank failure up to five years 
in advance, even after controlling for all the CAMELS variables.  Publicly-listed 
banks with higher ELPR have lower market implied costs-of-capital.  ELPR also 
strongly predicts cross-sectional stock returns under stress conditions.  During the 
financial crisis (7/2007-6/2011), a cash-neutral strategy that longs high-ELPR and 
shorts low-ELPR banks yields a monthly alpha of 3.3% to 4.2%.  We conclude 
LPR captures key aspects of bank risk missed by a risk-weighted-asset approach.   
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1.  Introduction  

The adequacy of a bank’s equity capital is of paramount importance, not only to 

banks, but also to society at large.  As the recent financial crisis made painfully 

clear, financial institutions with inadequate capital can inflict extensive harm 

beyond the direct losses suffered by their investors.  To prevent under-capitalized 

banks from imposing such negative externalities on society, regulators around the 

globe have established a relatively uniform set of guidelines and metrics to assess 

the capital adequacy of these financial institutions.   

 

Most of these capital adequacy regulations have been initiated or inspired by the 

work of the Basel Committee on Banking Supervision (BCBS).  The members of 

this committee are central banks and financial regulators drawn from 28 

jurisdictions.    Although the BCBS does not have formal supranational authority 

and its standards do not have legal force, BCBS member countries generally 

incorporate its standards into their national regulations.  Many non-member 

countries also adopt or are substantially influenced by the Basel standards.1 

 

Central in these standards is the notion of a “capital adequacy ratio” (CAR).  

This ratio is used when determining banks’ minimum capital requirements, as 

well as in the ongoing monitoring and supervision of banks worldwide.  Banks 

typically are required to compute their CAR based on pre-specified rules and 

report the details of these computations to regulators on a quarterly basis.  When 

a bank’s CAR falls below certain thresholds, regulators can take a variety of 

“prompt corrective actions” (PCAs) against it.  Such actions typically involve 

some form of regulatory intervention, such as restrictions on capital distributions 

and management fees, restrictions on the growth of certain assets, etc.  Banks 

with extremely low CAR scores are deemed “Critically Undercapitalized” and 

can be taken into conservatorship (see Appendix II). 

 

                                                             
1 Three sets of pronouncements have been issued by the BCBS over time: Basel I (issued in 1988); 
Basel II (issued in 2004); and the post financial crisis enhancements commonly referred to as 
Basel III (issued in 2010).  We present a timeline and an overview of these pronouncements in 
Appendix I. 
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Although the specific details of the CAR calculation have evolved over time, the 

basic concept is straightforward.  Banks are required to hold a minimum amount 

of regulatory capital in relation to their risk-weighted assets (RWA).  Specifically,   

 

 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴
𝑅𝑅𝐶𝐶𝐴𝐴𝑅𝑅 𝑊𝑊𝐴𝐴𝐶𝐶𝑊𝑊ℎ𝐶𝐶𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴

               (1) 

 

Intuitively, the numerator is a measure of the amount of equity capital in the bank; 

the denominator is a measure of the delinquency risk associated with the bank’s 

assets.  Taken as a whole, the ratio is intended to capture the adequacy of a bank’s 

equity capital as a function of its risk exposure to loan defaults.    

 

Over the years, the numerator of this ratio has been largely non-controversial, as 

commonly-used measures of regulatory capital are all highly correlated with book 

equity.2,3  On the other hand, the denominator (i.e., the computation of a bank’s 

“Risk Weighted Assets” or “RWA”), has been the subject of considerable 

regulatory and academic debate.   

 

The RWA calculation under Basel guidelines involves the grouping of bank 

investment holdings into different asset classes or “risk buckets.”  For example, 

the U.S. adoption of Basel I grouped bank assets into four categories, each with 

its own risk weighting: sovereign debts (0%), receivables from other banks (20%), 

                                                             
2  Under the Basel guidelines, the numerator is typically book equity plus adjustments.  For 
example, so-called “Tier-1” or “Core” capital is shareholders’ equity plus/minus disclosed 
reserves.  “Tier-2” or “Secondary” capital is made up of general loss reserves, undisclosed 
reserves, and subordinated term debt.  In practice, the Tier-2 capital of U.S. commercial banks 
consists primarily of loan loss reserves (see Ng and Roychowdhury, 2014).  The sum of Tier 1 
and Tier 2 is called “Total Risk-based Capital.”  Empirically, the impact of these adjustments is 
quite minor: for example, the correlation between US banks’ Tier 1 capital and their reported book 
equity is 0.995.  The correlation between Total Risk-based Capital (Tier 1 + Tier 2) and book 
equity is 0.982.    
3 A significant literature in accounting deals with earnings and capital management by banks using 
their provision for loan losses (for example, Beatty et al. 2002, 2014; Shrieves and Dahl et al. 
2003).  This literature is only tangentially related to our current task – i.e., evaluating the adequacy 
of banks’ equity capital. This is because the main focus in the accounting literature is on the 
veracity of (and incentive for) each periodic loss provision, and its effect on corporate earnings.  
In our setting, the numerator of the CAR ratio represents the cumulative effect of past provisions 
rather than the impact that yearly provisions have on earnings and capital.  Furthermore, in the 
post-BASEL era, financial regulators have always required loan loss allowances to be eliminate 
from the calculation of Tier 1 capital.   
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mortgages (50%), and other corporate receivables (100%).  Subsequent changes 

(i.e., Basel II and Basel III) mandated more granular groupings and allowed some 

large, or internationally active, banks to use their own internal rating-based (IRB) 

method to compute category risk.  But the overall approach of assigning bank’s 

assets into pre-specified risk categories has remained essentially the same under 

the three Basel pronouncements. 
 

The RWA approach to measuring a bank’s risk exposure has been criticized on 

multiple grounds.  For example, the static risk weights in Basel I were broadly 

viewed as too rigid and too insensitive to changing macro conditions (Engle 2009; 

Glasserman and Kang 2014).  While modifications introduced in Basel II and III 

allowed for more flexibility, new problems began to surface.  In particular, it was 

noted that banks’ own internal rating based (IRB) models produced consistently 

lower RWAs than prior methods.  These IRB methods have been criticized for 

being too complex, too opaque, too easily manipulated, and too inconsistently 

applied across banks (Haldane 2012; Le Lesle and Avramova 2012; Basel 

Committee on Banking Supervision 2013a,b; European Banking Authority 2013; 

and Mariathasan and Merrouche 2014).  In the wake of the global financial crisis, 

IRB-based methods have also been blamed for introducing an additional source 

of procyclicality into the banking sector (Andersen 2011; Repullo and Suarez 

2012; Behn et al. 2016).4   

 

Furthering these concerns, academic evidence suggests that the RWA metrics 

derived under Basel guidelines do not in fact perform well in capturing the 

riskiness of banks.  For example, RWA corresponds poorly to market-based risk 

measures, such as stock return volatility (Cordell and King 1995; Das and Sy 

2012; and Vallascas and Hagendorff 2013), particularly during periods of market 

stress (Acharya et al. 2014).  Several studies find RWA-based capital adequacy 

ratios actually underperform simpler CAR constructs that use non-risk-weighted 

                                                             
4 Under the IRB approach, an asset’s risk weight is based on estimates of four parameters: 
probability of default (PD); loss given default (LGD); exposure at default (EAD); and maturity 
(M). The higher the estimate for any of these parameters, the higher the risk weight attributed to 
the loan.  PDs are likely to increase during an economic downturn, implying higher capital 
charges (Behn et al., 2016; Kashyap and Stein, 2004). To the extent that it is difficult or costly 
for a bank to raise fresh external capital in bad times, it will be forced to cut back on its lending 
activity, thereby contributing to a worsening of the initial downturn. 
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denominators, such as total assets (Mayes and Stremmel 2012; Acharya et al. 

2014; and Hogan 2015).   

 

In this study, we develop and empirically evaluate a new measure of bank risk.  

Our approach begins with the observation that a bank’s primary source of risk 

comes from its loan portfolio.  Appendix III shows that, irrespective of size, a 

commercial bank’s balance sheet is invariably dominated by its loan portfolio.  In 

a typical commercial bank, the loan portfolio constitutes roughly two-thirds of its 

total assets, and a much larger proportion of its risk exposure.  Yet despite the 

loan portfolio’s importance, the current RWA framework does not employ a 

portfolio-based approach when evaluating the riskiness of banks.  

 

In this study, we develop a portfolio-level measure of each bank’s exposure to 

default risk, which we dub its Loan Portfolio Risk (LPR).  Our central premise is 

that the current RWA calculations are fundamentally flawed because they 

overlook two important economic drivers of bank failures.  First, RWA 

calculations fail to properly account for the intertemporal volatility (or second 

moment) of the default losses from a bank’s loan portfolio over time.  Current 

methods focus sharply on the average default rates in each loan category.  

However, portfolio theory argues that it is the variance of these default rates over 

time that gives rise to the need for higher levels of capital coverage.  

 

Second, the current guidelines fail to adequately address the contagious nature of 

loan defaults, particularly during a market downturn.  An important feature of 

current RWA calculations is that they are “Property-Portfolio Invariant.”  Under 

current Basel guidelines, the riskiness of a property is invariant with respect to 

the other holdings in the portfolio.  As a result, the current RWA calculations fail 

to account for the risk exposure a bank incurs due to the degree of property 

concentration in its overall loan portfolio.  Clearly the riskiness of a loan portfolio 

is a function of its exposure to each loan category, as well as the degree to which 

incidences of default are correlated across loan categories.  
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We address these problems by extracting loan category information from banks’ 

quarterly Call Reports.5  Using information from these reports, we decompose 

each bank’s loan portfolio holdings into 14 “loan asset categories.”  The riskiness 

of the bank portfolio as a whole is a function of its exposure to each asset category, 

as well as the variance and cross-correlation structure in the delinquency rates 

across the 14 loan categories. 

 

Specifically, we measure of the riskiness of a bank’s loan portfolio as follows: 

  

𝐿𝐿𝐿𝐿𝐶𝐶 = √𝜃𝜃 × Ω × θ𝑇𝑇   ,             (2) 

 

Where: LPR refers to a bank’s Loan Portfolio Risk; 

𝜃𝜃  is a 1x14 vector of the bank’s monetary holdings in each of the 14 loan 

categories, and 𝜃𝜃𝑇𝑇 is its transpose; 

 𝛺𝛺 is a 14x14 Variance-Covariance matrix of the delinquency ratios (DRs) across 

the different loan types.  Each cell in this matrix represents the pairwise 

covariance between two categories in terms of their delinquency ratios, with the 

variances for individual loan types populating the diagonal.  For this purpose, the 

delinquency ratio (DR) of a loan category is defined as the ratio of its non-

performing loans (NPL) to its total loans outstanding. 

 

Intuitively, LPR is the expected dollar losses for the loan portfolio as a whole 

from a one standard deviation move in historical default rates, taking into account 

all default cross-correlations.6  Banks whose loan portfolios are concentrated in 

                                                             
5 Each FDIC-insured institution is required to file a quarterly Consolidated Reports of Condition 
and Income (generally referred to as “Call Reports”).  These reports provide data on each 
institution’s financial condition and the results of its operations in the form of a balance sheet, an 
income statement, and a series of supporting schedules. 
6 To illustrate, consider a bank that holds only two types of loans in dollar amount of L1 and L2.  
Let the vector of quarterly historical default ratios for loan types 1 and 2 be represented by DR1 

and DR2, respectively.  Notationally, 𝜎𝜎1  is the standard deviation of DR1; 𝜎𝜎2  is the standard 
deviation of DR2; and 𝜎𝜎12 is the covariance between DR1 and DR2.  In this setting, we can write 
the square of the Loan Portfolio Risk variable (LPR2) as follows: 
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asset categories with highly volatile delinquency rates will have higher LPR 

scores, particularly if the delinquency rates across these categories exhibit strong 

positive co-movement over time.  Conversely, banks whose holdings are in loan 

categories with low delinquency rate volatility will have lower LPR scores, 

particularly if the delinquency rates across these categories exhibit low co-

movement over time.  

 

Our approach is novel in two important ways.  First, our measure focuses on the 

variance (i.e. the second moment) of the historical default rates for each loan 

category over time, while the current approach focuses on average default rates. 

This distinction is important because the average default rate for each loan type 

is typically well integrated into existing regulatory metrics, while the volatility of 

these default rates (a key measure of portfolio risk) have largely eluded capture.  

Second, our approach takes into account the historical cross-correlation structure 

for these default rates across loan categories.  Thus, LPR incorporates information 

about the default risk of each loan category, as well as the contagious nature of 

these defaults across time and over different macroeconomic conditions.  Prior 

literature on bank risk recognizes the contagious nature of delinquencies across 

different loan types, but provide no concrete solutions.  We develop a relatively 

straightforward method that captures this risk at the loan portfolio level.7  

 

                                                             

LPR2 =  (𝐿𝐿1, 𝐿𝐿2) × �𝜎𝜎1
2 𝜎𝜎12

𝜎𝜎12 𝜎𝜎22
�× �𝐿𝐿1𝐿𝐿2�  = (𝐿𝐿1𝜎𝜎12 + 𝐿𝐿2𝜎𝜎12, 𝐿𝐿1𝜎𝜎12 + 𝐿𝐿2𝜎𝜎22) × �𝐿𝐿1𝐿𝐿2� 

      = (𝐿𝐿1𝜎𝜎12 + 𝐿𝐿2𝜎𝜎12) × 𝐿𝐿1   +   (𝐿𝐿1𝜎𝜎12 + 𝐿𝐿2𝜎𝜎22) × 𝐿𝐿2 

      = 𝐿𝐿12𝜎𝜎12 + 2 𝐿𝐿1𝐿𝐿2 𝜎𝜎12 + 𝐿𝐿22𝜎𝜎22       
 

Note that LPR2 is increasing in 𝜎𝜎12 and 𝜎𝜎22 (the variances of DR1 and DR2 respectively) as well 
as 𝜎𝜎12 (the covariance between DR1 and DR2).  Intuitively, LPR2 measures the time-series variance 
of the dollar default losses for the entire loan portfolio.  Correspondingly, LPR is the time-series 
standard deviation of the expected dollar losses from loan defaults for the entire loan portfolio.   
 
7 Amiram, Kalay, Sadka (2017) also highlight the importance of industry-level diversification to 
banks.  Specifically, they find lenders demand higher compensation to bear industry-level risk, 
particularly when loan portfolios are less diversified or during periods when diversification is 
difficult. 
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We then propose a new capital adequacy measure that compares a bank’s adjusted 

book equity to its loan portfolio risk (LPR), which we refer to as the Equity-to-

Loan-Portfolio-Risk ratio, or ELPR:8 

 

𝐸𝐸𝐿𝐿𝐿𝐿𝐶𝐶 = 𝑙𝑙𝑙𝑙 �𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅 𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶𝐶𝐶𝑒𝑒−𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝑊𝑊𝐶𝐶𝑏𝑏𝐶𝐶𝐴𝐴 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴
𝐿𝐿𝐿𝐿𝑅𝑅

�      (3) 

 

By accounting for the variability of the portfolio’s default risk over time, this 

measure addresses a fundamental weakness of the current regulatory approach to 

bank risk assessment (promulgated in Basel I through Basel III).  A financial 

institution’s capital adequacy ratio, we argue, is better measured as the ratio of its 

capital base to a standardized measure of its exposure to delinquency risk over 

time.9   

 

Our central hypothesis is that ELPR provides a better measure of banks’ capital 

adequacy than existing regulatory alternatives.  We test this hypothesis in three 

ways.  In our first set of tests, we examine the usefulness of ELPR in predicting 

bank failures.  If ELPR is a good ex ante measure of capital adequacy, we would 

expect low ELPR banks to fail more frequently than high ELPR banks.  As a 

benchmark, we compare the predictive power of ELPR to that of a common 

regulatory measure of capital adequacy, T1CR, defined as a bank’s Tier-1 Capital 

divided by its RWA.  All these tests are out-of-sample, in the sense that we use 

historical data available at each point in time to predict future bank failures.  We 

do not do any in-sample fitting when constructing the prediction indicators. 

 

                                                             
8  We deduct intangible assets from book equity in the numerator because it is a common 
adjustment when regulators compute Tier-1 (or Core) capital for banks.  Empirically, this 
adjustment makes little difference to our results.  We also replaced book equity with banks’ actual 
Tier-1 capital, and again the results remain substantively unchanged.   
9  As an alternative formulation, we can also deduct the expected loss from default from the 
numerator when computing ELPR. For this purpose, expected loss would be defined as the linear 
sum of current holdings in each loan category, multiplied by its historical default rate.  Note that 
if each bank has already accrued for expected loan losses based on prior default rates, this 
adjustment would be redundant, as their reported book equity would already be net of mean 
expected losses.  This is in fact what we find, as the adjustment made no material difference to 
our results.  We thus use the simpler formulation.  
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Our results show ELPR dominates T1CR in bank failure predictions. Over one-

year horizons, the Pseudo-R2 from a Logit failure prediction model using T1CR 

alone is 17.1%, while it is 24.7% using ELPR alone.  Further, as the forecast 

horizon increases, the advantage of ELPR over T1CR becomes increasingly more 

dramatic.  In two-year-ahead predictions, ELPR has a Pseudo-R2 of 17.3%, 

compared to 5.5% for T1CR.  In five-year-ahead predictions, T1CR is essentially 

useless (Pseudo-R2 = 0.7%) while ELPR retains significant predictive power 

(Pseudo-R2 = 7.7%).  Using receiver operating characteristic (ROC) curves and 

other prediction analytics, we show that this main finding is robust to a range of 

perturbations in the test parameters (Demers, and Joos, 2007; Jones, 2017) and 

relative misclassification cost assumptions (Martin, 1977; Sinkey, 1975).  This 

result also remains strikingly clear when we predict bank failures using a hazard-

type model (Shumway, 2001), and when we separately evaluate subpopulations 

of large, small, and medium sized banks (Berger and Bouwman, 2013). 

 

Our second set of tests examine the increment usefulness of ELPR in bank failure 

predictions after controlling for a host of other regulatory indicators of bank 

health.    The set of metrics commonly used by regulators to monitor banks’ 

financial health is often referred to collectively as the “CAMELS” indicators.  

This acronym refers to: C – Capital Adequacy; A – Asset Quality; M – 

Management Efficiency; E- Earnings; and L – Liquidity; and S – Sensitivity to 

Interest Rates (see Appendix V for details on how each variable is constructed).  

If the information about a bank’s structural risk contained in ELPR is already 

captured by other regulatory metrics, we would not expect it to be incrementally 

useful in bank failure prediction after controlling for CAMELS indicators. 

 

Our results show that not only does ELPR dominate each component of CAMELS 

individually, it is also strikingly additive when all the CAMELS variables are 

included in the model.  Furthermore, the usefulness of ELPR increases sharply as 

we increase the forecast horizon.  In one-year-ahead forecasts, ELPR adds 

significantly to the CAMELS variables.  In two- through five-year-ahead 

forecasts, ELPR, as a standalone variable, actually has higher predictive power 

for bank failures than the entire set of CAMELS variables.  Again, the robustness 

of this result is validated across a wide range of parameters using ROC curves 
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and misclassification cost tests, and holds for subpopulations of small, medium, 

and large banks.   

 

Overall, our first two sets of results show ELPR captures a low-frequency form 

of failure risk, which becomes increasingly obvious with time.  This is consistent 

with the economic intuition behind our calculation of LPR: that is, the capital 

adequacy of a bank should be assessed by comparing its equity to the likely range 

(and magnitude) of default losses over time across its entire portfolio.  Our results 

show that ELPR captures important cross-sectional differences in banks’ 

likelihood of failure up to five years in advance, even controlling for the full suite 

of CAMELS variables. 

 

In our third set of tests, we examine the implications of ELPR for the stock prices 

of bank holding companies.  Specifically, we are interested in understanding the 

extent to which public equity pricing of bank holding companies reflects the 

riskiness of banks as captured by ELPR.  Of the 10,995 unique banks in our 

sample, 2,030 (18.46%) were held by publicly-listed bank holding companies.  

Each of these publicly-listed companies controls one or more commercial banks.  

Using textual analysis methods, we trace the ownership information in banks’ 

quarterly Call Reports to its top-level bank holding company.  Matching these 

holding companies to the CRSP database, we were able to assemble a sample of 

791 unique publicly-listed bank holding companies that controlled at least one 

commercial bank during our sample period. 

 

We use this sample of publicly-traded firms to address two empirical questions: 

(a) is the latent risk captured by ELPR reflected in the implied cost-of-capital 

(ICC) of these bank holding companies, and (b) is ELPR useful in predicting the 

future stock returns of these companies.  The first question is focused on market 

awareness: do equity investors demand a higher average rate of return from firms 

with lower ELPRs (i.e. do lower ELPR firms have higher average “price implied 

discount rates”).10  If equity investors are aware of, and price in, the high bank 

                                                             
10 A firm’s market implied cost of capital (ICC) is the internal rate of return that equates the present 
value of its expected cash flows to its current stock price.  Assuming we can reasonably estimate 
a firm’s expected cash flows, its ICC is simply the interest rate that the market is implicitly using 
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failure risk associated with low ELPR firms, we would expect low ELPR firms to 

have higher average implied cost-of-capital (ICC) measures, after controlling for 

other determinants of ICCs. 

 

The second question is focused on market pricing efficiency: that is, whether the 

prices of bank holding companies fully and efficiently reflect the implications of 

ELPR for future stock returns.  Under the null of fully efficient pricing, low ELPR 

firms are “riskier” and should earn higher average returns; conversely, if equity 

investors do not fully appreciate the riskier nature of low ELPR firms, they may 

overpay for these companies.  Under this alternative mispricing hypothesis, low 

ELPR firms (i.e. less adequately capitalized firms) may in fact earn lower returns, 

particularly during economic downturns, when their risk exposure is most likely 

to become transparent. 

 

Our ICC results show that equity markets are aware of the risk associated with 

ELPR.  For our full-sample period (2002-2016), the most capital adequate (top 

ELPR decile) firms have an average ICC that is 1.9% to 2.4% lower than the least 

capital adequate (bottom ELPR decile) firms, after controlling for other known 

determinants of ICCs.  Historically, equity costs-of-capital in the United States 

have ranged from 8% to 12%, so this spread between high and low ELPR firms 

is quite economically important.  Interestingly, the ICC difference associated with 

ELPR is only 1.4% to 1.7% during non-crisis periods.  During the financial crisis 

(2007-2010), this difference in ICC more than doubles, to 3.6% to 4.8% per year.  

Evidently equity market participants were much more aware of banks’ capital 

adequacy risk during the crisis, and demanded a higher risk premium from low 

ELPR firms during these years. 

 

Finally, our returns prediction tests for bank holding companies show that ELPR 

is on average positively correlated with the future returns of these companies.  

                                                             
to discount these cash flows.  ICCs are commonly estimated by equating the expected cash flows 
of each firm to its current stock price, and imputing the implied discount rate.  An extensive 
literature in accounting discusses methodological issues in ICC construction (see Lee, So, and 
Wang, 2017, for a summary of this literature).  In this study, we combine a simple mechanical 
earnings forecasting model with a residual income valuation model to derive our ICC estimates 
(see Section 5 for details).  
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Over the entire sample period, top-decile ELPR firms earn 6.93% higher average 

annualized returns than bottom-decile ELPR firms (t-statistic 4.04).  Further, we 

find that this difference in returns is driven entirely by the global financial crisis 

period.  In the months surrounding the global financial crisis (7/2007-6/2011) top-

decile ELPR firms earned a remarkable 40.21% higher average annualized returns 

than bottom-decile ELPR firms (t-statistic 12.2).  This abnormal return is still an 

extraordinary 3.33% per month after controlling for all five Fama-French factors 

(Fama and French, 2015).   

 

These findings are consistent with market mispricing, and more difficult to 

reconcile with risk-based explanations.  Our earlier results suggest that higher 

ELPR firms are “safer” (i.e. they are less prone to failure) than low ELPR firms.  

Thus rational pricing predicts lower average returns for high ELPR firms.  This 

is not what we observe, as the safer high ELPR firms earn higher average returns.  

Further, contrary to the predictions of rational pricing but consistent with the 

mispricing hypothesis, low ELPR firms dramatically underperform during a 

financial crisis.  On balance, these findings support the notion that the latent risk 

in low ELPR firms is not fully priced in by the market.   

 

Our results contribute to academic and regulatory debates on the design of capital 

adequacy metrics for commercial banks.  A number of studies have raised 

concerns about the inability of regulatory risk-weights to reflect the economic 

risk faced by commercial banks (Engle 2009; Glasserman and Kang 2014).  

Attempts to mitigate this problem by allowing banks greater flexibility through 

the internal rating-based (IRB) models have also been criticized for their opacity, 

and subjectivity (Haldane 2012, LeLesle and Avramova 2012, Basel Committee 

on Banking Supervision 2013a,b, European Banking Authority 2013, and 

Mariathasan and Merrouche 2014), as well as their procyclical tendencies 

(Andersen 2011; Behn et al. 2016; Kashyap and Stein 2004).   

 

Our evidence suggests that a variable based on portfolio-level default volatility, 

such as ELPR, can provide a more satisfying solution.  Unlike static risk weights, 

ELPR captures intertemporal variations in default risk over business cycles.  

Further, because ELPR is based on the long-run variance of delinquency rates 
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rather than recent quarterly estimates, it should significantly mitigate 

procyclicality concerns associated with IRB-based estimates.   Unlike most IRBs, 

our approach does not require on bank-specific inputs beyond what is already 

disclosed in their quarterly filings.  Therefore this approach is more transparent 

and objective than existing IRB methods to risk-weight estimation.  In terms of 

both conceptual appeal and empirical performance, ELPR seems to dominate 

capital adequacy measures commonly used by regulators. 

 

Our results also extends the literature on bank failure predictions.  An early 

literature extending back to the 1970s attempted to identify ex ante predictors of 

bank failures using accounting data (Meyer and Pifer 1970; Sinkey 1975, 1977; 

and Martin 1977).  Most of the factors discussed in this literature are now 

integrated into the CAMELS monitoring system.11   While these studies have 

added to our understanding of bank failure predictability, a recurrent concern is 

the tendency of CAMELS indicators to deteriorate quickly – i.e., their predictive 

power for bank failure becomes quite weak by the second or third quarter after 

rating assignment (Cole and Gunther 1998).  We contribute to this literature by 

demonstrating that ELPR is additive to CAMELS variables, and it is able to 

capture considerable cross-sectional variation in bank failure rates up to five years 

prior to the event.   

 

Overall, our results nominate ELPR as an attractive, and likely superior, approach 

to measuring the riskiness of commercial banks.  One caveat to our empirical 

analysis is that it is based on a relatively short sample period.  Our data spans 

around 15 years (1/2003 to 12/2017 for bank failure prediction; 7/2002 to 6/2017 

for return forecasting).  It remains to be seen whether these results are 

generalizable to other, longer, time periods. That said, we believe the conceptual 

appeal of our approach is intuitive, and the empirical evidence to date shows 

substantial promise. 

 

                                                             
11 Other studies have looked to external sources, such the stock market and credit rating agencies, 
for additional input in bank failure prediction (Pettway and Sinkey 1980; Bongini 2002).  Still 
other studies link the likelihood of a bank failure to the regulatory proclivity towards forbearance 
(Brown and Dinc, 2005, 2011) as well as other firm attributes, as ownership structure (Berger et 
al. 2016) and inter-bank competition (Akins et al. 2016). 
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2.  Data 

We obtain a sample of bank failures from the FDIC “Failed Institutions List” as 

reported by the FDIC. 12   This list provides details about each FDIC-insured 

commercial bank or thrift company (hereafter, bank), that failed or entered FDIC 

conservatorship.  For each failed bank, this database provides: the bank name, its 

location, the effective date of the failure (i.e., the date that failed bank enter into 

FDIC conservatorship), total assets and deposits as of the last Call Report prior 

to the effective date, the estimated cost of the failure to the FDIC, as well as 

information on the acquiring institution (if applicable).13  This list reports 538 

bank failures from 2003 through 2017. 

 

Next, we obtain quarterly financial data on individual banks from the FDIC SDI 

data repository (link).  This repository contains information assembled by the 

FDIC from the Consolidated Reports of Condition and Income (generally referred 

to as “Call Reports”) that each FDIC-insured institution is required to file 

quarterly.  These reports provide quarterly data on each institution’s financial 

condition and the results of its operations in the form of a balance sheet, an 

income statement, and a series of supporting schedules.  For recognition and 

measurement purposes, the Call Reports generally conform to US generally 

accepted accounting principles (GAAP).  However, because each Call Report is 

a bank-level document, each individual bank (together with its consolidated 

subsidiaries) is considered separate reporting entity.14   

 

Our approach calls for the estimation of a variance-covariance matrix of the 

default rates in each of the 14 loan categories.  We compute this matrix using 

quarterly loan delinquency data extracted from the FDIC Quarterly Banking 

Profile (QBP) document.  This quarterly report contains the total amount of non-

performing loans and leases by various loan categories for all FDIC-insured 

                                                             
12 https://www.fdic.gov/bank/individual/failed/banklist.html  
13 The cost of a bank failure is computed by the FDIC following a clear formula. Essentially, it is 
the net cost to the FDIC of the bailout after an orderly dissolution of the bank assets. 
14 Each Call Report is reviewed by the FDIC for errors or omissions using a variety of audit flags, 
but is typically not audited by an independent external auditor.  For private institutions, the Call 
Report is the only publicly-available source of financial information.  Therefore, our sample is 
limited to variables that can be constructed based on these reports. 

https://www5.fdic.gov/sdi/download_large_list_outside.asp
https://www.fdic.gov/bank/individual/failed/banklist.html
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institutions.  For each loan category, the report breaks down: (a) amounts past due 

30-89 days and still accruing interest, (b) 90 or more days past due and still 

accruing interest; and (c) overdue loans on which interest is no longer being 

accrued.  We define the delinquency ratio (DR) for each loan category as the sum 

of these three numbers, divided by the total loan outstanding in that category.  The 

individual entries in the matrix represent pairwise covariances of the DRs across 

the fourteen loan categories, with the variances for individual loan types 

populating the diagonal.15   

 

We use the FDIC QBP data from its first availability (first quarter of 1991) to the 

end of 2001 to estimate our initial covariance matrix.  This ensures our calculation 

makes use of at least 43 quarters of prior data.  In subsequent years, we estimate 

the matrix using an expanding window that includes data starting from Q1 1991 

through to the most recent calendar year that ended at least 12 months before year 

of interest.  This procedure ensures we do not have a “peek ahead” bias when 

predicting future bank failures.  We test our predictions on bank failures that 

occurred during the period 2003-2017. 

 

3.  Institutional Background and Descriptive Statistics 

3.1 The Importance of Loan Portfolios to Banks 

The core operation of a commercial bank involves taking in funds from depositors 

and lending these funds out to individuals and businesses.  As a result, the most 

important asset on its balance sheet is its loan portfolio.  Although banks prefer 

to make loans as their primary business, excess liquidity is also invested into other 

debt securities, such as Agency MBSs, US Treasury securities, US Government 

obligations, securities issued by states & political subdivisions, other domestic 

                                                             
15 We use the delinquency data from FDIC QBP documents rather than summing up the loan 
default data from individual banks because, prior to March 31, 2001, the quarterly reports on 
individual banks did not include information on loans that are 30 to 89 days past due.  Although 
regulators have consistently found 30-89 day past due information helpful in identifying potential 
problem banks, prior to 2001, this information was deemed too sensitive and confidential to be 
included in FDIC quarterly reports on individual banks.  Because we only need the quarterly 
aggregated delinquency ratio for each loan category to construct the variance-covariance matrix, 
the QBP document offers us a longer time series. 
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debt securities, and foreign debt securities.  Among them, US Government 

obligations make up the vast majority. 

 

In Appendix III, we present summary statistics on the importance of the loan 

portfolios and debt securities to U.S banks over our sample period (2001 to 2015).  

To construct this table, we sort all banks into ten size deciles based on end-of-

year total asset.  Decile 1 (10) represents the largest (smallest) banks.  For each 

size decile, we report the mean and median loan portfolio and debt securities, 

each expressed as a percentage of total assets.  This table shows that loan 

portfolios represent roughly 55 to 70 percent of banks’ total assets. The loan 

portfolio is the most important asset, irrespective of bank size.  Debt securities, 

as the second largest component of assets, usually constitute around 20% of total 

assets.  Clearly banks’ loan portfolios are crucial, both as a driver of expected 

returns and as a source of risk.  When loans go bad, banks fail, especially during 

an economic downturn.  Our analysis therefore focuses on the delinquency risk 

of banks’ loan portfolios.16 

 

3.2 Bank Loan Portfolio Composition 

Appendix IV presents descriptive statistics on banks’ loan portfolios.  Our sample 

consists of 111,453 firm-years from 2001 to 2015.  Using FDIC’s loan 

classifications as a starting point, we divide bank loans into 14 different 

categories17.  We present summary statistics for each loan category, arranged in 

descending order according to their relative importance in the aggregate portfolio.  

Columns 1 and 2 report Aggregate Level statistics, whereby outstanding loans are 

summed across all banks before averages are computed.  Column 1 reports the 
                                                             
16  Adding debt securities to the loan portfolio when constructing ELPR yields no significant 
improvement in terms of failure prediction or return forecasting.  
17 The FDIC Quarterly Banking Profile divides total loan and leases into 9 categories: 1) Total 
real estate loans; 2) Loans to depository institutions; 3) Agricultural production loans; 4) 
Commercial & industrial loans; 5) Credit cards; 6) Other loans to individuals; 7) Loans to foreign 
governments and official institutions; 8) All other loans; 9) Lease financing receivables.  Among 
these categories, real estate loans are by far the largest category, accounting for over 50% of the 
aggregate loan portfolio.  To improve granularity, we further divide real estate loans into six 
groups based on information provided by the FDIC Quarterly Banking Profile: 1) Construction 
and development loans; 2) Real estate loans secured by farmland; 3) Real estate loans secured by 
1-4 family residential properties; 4) Real estate loans secured by multifamily residential properties; 
5) Real estate loans secured by nonfarm nonresidential properties; 6) Real estate loans in foreign 
offices. 
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percentage share of the aggregate loan portfolio represented by each loan type 

(Ratio).  Column 2 reports the aggregate non-performing loan (NPL) in each loan 

category.  Columns 3-8 report bank-level results.  Specifically, table values in 

Column 3 are the loan type percentage when variables are first computed at the 

bank-level and then averaged across all banks.  Columns 4-8 report descriptive 

bank-level statistics for each loan type, in millions of dollars.  

 

The most important loan category is Real Estate loans secured by 1-4 family 

residential properties (RES), constituting 33.90% of total loans.  Commercial and 

industrial loans (C&I) comes in a distant second at 18.67%.  Real estate loans 

secured by nonfarm nonresidential properties (NRES) account for 13.32%, and 

other consumer loans (CONOTH) make up 8.73%, followed by credit card loans 

(CRCD) at 6.96%, and construction and development loans (CONSTRUCTION) 

at around 5%.  All other loans types are less than 5%.  Construction and 

development loans (CONSTRUCTION) had the highest delinquency rate during 

our sample period, with an average non-performing loan ratio of 6.19%.  The 

second riskiest loans are residential real estate loans (RES), with a default rate of 

5.43%.  In contrast, loans to depository institutions (INSTITUTION) had the 

lowest delinquency ratio, at only 0.13%.  Columns 4 to 8 report bank-level 

descriptive statistics for each loan type, in millions of dollars.  These statistics 

show the wide variation in loan composition across banks.  Coupled with the wide 

variation in NPL ratios across loan types, this evidence suggests loan portfolio 

composition can be an important driver of bank risk. 

 

3.3 Correlation in Delinquency Rates and Variance-covariance Matrix 

Panel A of Table 2 presents the Pearson Correlations for quarterly NPL ratios 

across different loan categories from 1991Q1 to 2015Q4.  To construct this table, 

we compute aggregate non-performing loan (NPL) ratios for each loan category 

at the banking industry level.  Specifically, an NPL ratio is defined as the 

aggregate non-performing loans divided by aggregate total loans, for that industry 

and quarter.18  Correlation coefficients above 0.5 are presented in bold italic.   

                                                             
18 We compute aggregate NPL ratios at the industry-level because bank-level or state-level NPL 
data is not always available.  First, loan amounts past due 30-89 days for individual bank were 
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The pairwise correlations in delinquency rates across loan categories are broadly 

positive, indicating a significant contagion effect.  Nearly 65% (59 out of 91) of 

the pairwise correlations are above 0.5; and only 7 are negative.  Figure 1 presents 

time-series graphs of the quarterly aggregate NPL ratios for each loan type.  

Clearly delinquency rates across the 14 categories tend to move up or down 

together over the time.  However, at any given point in time, these ratios vary 

significantly in the cross-section.19   

 

Panel B of Table 2 reports the variance-covariance matrix of aggregate 

delinquency rates across different loan types for the corresponding period.  The 

variances for individual loan types populate the diagonal, indicating the volatility 

of default rate.  Other cells in the matrix represent pairwise covariance terms 

across different loan categories in terms of their quarterly delinquency ratios.  

Higher value indicates greater joint variability between two loan types over time.  

Note that this panel can be used, in conjunction with each bank’s quarterly call 

report, to produce a measure of its current quarter ELPR. 

 

3.4 Bank Failures in the U.S. 

A bank failure is the closing of a bank by a federal or state banking regulatory 

agency.   Typically, a bank is closed when it becomes critically undercapitalized 

or is unable to meet its obligations to depositors and others.  This determination 

is made by the bank’s appropriate Federal banking agency (usually the FDIC; the 

Board of Governors of the Federal Reserve System; or the Office of the Controller 

of the Currency, aka OCC).  In the event of a failure, the FDIC has two 

                                                             
not publicly available until 2001, so we can’t calculate the bank-level NPL ratio.  Second, some 
states (such as Alaska) have only a small number of banking institutions, so state-level loan 
exposures may be unreliable.  Finally, not all banks supply a breakdown for every loan type each 
quarter, which can lead to omissions in NPL calculation.  To ensure the variance-covariance 
matrix can be calculated for a sufficiently long time-series, industry-level aggregation turned out 
to be the most practical solution. 
19 Prior studies that examine loan composition (Liu and Ryan 1995; Bhat, Lee and Ryan 2019; 
Harris, Khan and Nissim 2018) generally emphasize differences in mean default rates across loan 
types, rather than the variance and covariance of these default rates.  Our analysis suggests both 
concentration in high variance loans and default rate correlation across loan types, can convey 
meaningful information about the riskiness of a loan portfolio risk. 
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responsibilities.  First, as the insurer of the bank's deposits, the FDIC pays 

insurance to the depositors up to the insured limit.  Second, as the receiver of 

failed banks, the FDIC assumes responsibility for the orderly disposal of bank 

assets and the settling of its debts, including claims for deposits in excess of the 

insured limit. 

 

Table 1 provides descriptive statistics for U.S. bank failures between 2003 and 

2017.  Column 1 reports the number of FDIC insured banks and thrifts (including 

savings and loans associations and saving banks) at the beginning of each year.  

Column 2 reports the number of bank failures that occurred during the year.  

Column 3 reports failures as a percentage of banks that existed at the beginning 

of the year.  Column 4 reports the estimated loss arising from these failures.20 

 

As Table 1 shows, banks failures are not rare events in the United States.  

Furthermore, these failures tend to be clustered over time, increasing sharply after 

the collapse of Lehman Brothers (September 15, 2008).  The failure rate remained 

high in the 2009-2012 period, only tapering off gradually in the subsequent years.  

Most recently, there were 5 failures in 2016 and 8 failures in 2017.  Figure 2 

provides a graphic depiction of these results.   

 

The data on estimated losses show that bank failures can exert significant pressure 

on the FDIC insurance fund.  For example, the estimated cost to FDIC was $18.16 

billion in 2008, $26.96 billion in 2009 and $16.36 billion in 2010.  As bank 

failures rise, the DIF fell to the lowest point in its history by year-end 2009: a 

negative $20.9 billion on an accounting basis.21 In aggregate the 538 bank failures 

during our sample period resulted in an estimated cost of $74.47 billion to the 

FDIC.  

 

                                                             
20 This estimated loss is obtained from the FDIC Failed Institutions report, and represents the 
difference between the amount disbursed from the Deposit Insurance Fund (DIF) to cover 
obligations and the amount recoverable from the liquidation of the receivership estate.  In ongoing 
cases, these losses are based on estimates, which are routinely adjusted with updated information 
from new appraisals and asset sales.  The estimated loss reported in Table 1 are as of December 
31, 2017.   
21 https://www.fdic.gov/bank/historical/crisis/overview.pdf  

https://www.fdic.gov/bank/historical/crisis/overview.pdf
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4.  Bank Failure Predictions 

In this section we evaluate the usefulness of ELPR and other classifiers in 

predicting bank failures.  Consistent with prior literature (e.g., Ng and 

Roychowdhury 2014), our main tests are based on a logistic regression model:22 

 

     𝐹𝐹𝐶𝐶𝐹𝐹𝐿𝐿𝐶𝐶,𝐶𝐶  =  𝛽𝛽ℎ 𝑋𝑋𝐶𝐶,𝐶𝐶−ℎ + 𝜀𝜀𝐶𝐶,ℎ   ,        

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  ℎ = 2, … ,6                       (4) 

 

The dependent variable, 𝐹𝐹𝐶𝐶𝐹𝐹𝐿𝐿𝐶𝐶,𝐶𝐶, is an indicator variable: set equal to 1 when bank 

i is identified as having failed during year t; it is set equal to 0 if bank i survives 

the year.  Only banks that are operational at the beginning of year t are included.  

Banks that have already failed, or banks that ceased to exist due a merger or an 

acquisition, are excluded. 
 

We evaluate the predictive performance of the model at a various time horizons, 

ranging from 1- to 5-years (h = 2,…,6) prior to the year of interest.   We use h=2 

to designate the one-year-ahead forecast because the financial data used for this 

forecast comes from fiscal year ended December 31, t-2. 23   In this equation, 

𝑋𝑋𝐶𝐶,𝐶𝐶−ℎ is a vector of predictor variables for bank i, as reported on December 31st 

in t-h year, where h equals 2,…,6.  𝛽𝛽ℎ is a vector of regression coefficients for 

explanatory variables at the end of year t-h.  𝜀𝜀𝐶𝐶,ℎ  is the error term.  We cluster 

standard errors at the bank level to account for the lack of independence between 

bank-year observations (Petersen 2009). 

 

4.1 ELPR versus T1CR 

We begin by empirically evaluating the predictive power of ELPR relative to that 

of a commonly used regulatory capital adequacy ratio (T1CR).  T1CR is defined 

                                                             
22  We use Logit as its assumption of fatter-tailed error distributions corresponds better to the 
frequency of bank failure events (e.g., Van den Berg, Candelon and Urbain, 2008).  Our robustness 
tests show the main results all hold when a Hazard model (Shumway 2001) is used instead. 
23  This procedure ensures all data used in our model are publicly available at the time of the 
forecast.  For example, First Commercial Bank of Florida closed down on January 07, 2011, which 
is only seven days after fiscal year ended 2010.  By imposing an h=2 requirement, our one-year-
ahead forecasting model will use data from fiscal year ended December 31, 2009, thus ensuring 
no peek-ahead bias. 
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as a bank’s Tier 1 capital divided by its risk-weighted-asset (RWA).  The inputs 

for this calculation are extracted from each bank’s quarterly Call Report.  T1CR 

is the first component of the CAMELS indicators.  Conceptually, it is also closest 

in spirit to the ELPR variable developed in this paper. 24  We evaluate the 

performance of these predictor variables using three traditional metrics: Pseudo-

R2 (also known as McFadden’s LRI); the area under Receiver Operating 

Characteristic (ROC) curves; and misclassification cost. 

 

Table 3 presents the results of logistic regression models with different prediction 

horizons.  Panel A results show that in one-year-ahead forecasts, both ELPR and 

T1CR exhibit excellent predictive power, with pseudo-R2s of 24.7% and 17.1%, 

respectively.  The combined model achieves a pseudo-R2 of 25.5%, indicating 

ELPR provides additive information about future failures in the presence of T1CR.  

When the forecast horizon is extended, the superiority of ELPR over T1CR is 

even more noticeable.  In two-year-ahead forecasts, the pseudo-R2 for T1CR falls 

to 5.5% while the pseudo-R2 of ELPR remains quite high at 17.3%.  With even 

longer forecast horizons, T1CR’s usefulness plummets (pseudo-R2s of 1.5%, 

0.9%, and 0.7%, in the 3-, 4-, and 5-year horizons respectively), while the ELPR 

continues to exhibit reliable predictive power (pseudo-R2 s of 12.8%, 9.8% and 

7.7%, in the 3- to 5-year horizons, respectively).  Overall, Table 3 results show 

ELPR is superior to T1CR over every forecast horizon, with the difference being 

especially clear in longer horizons.  

 

A Receiver Operating Characteristics (ROC) curve provides a concise graphic 

representation of the diagnostic ability of different model over alternative 

threshold cut-off values (e.g., Demers and Joos 2007; Jones 2017).  Specifically, 

these graphs plot a model’s Sensitivity against {one minus its Specificity}; where 

Sensitivity is the fraction of observed positive outcomes that are correctly 

classified (i.e., it is one minus the type I error), and Specificity is the fraction of 

observed negative outcomes that are correctly classified (i.e., one minus the type 

                                                             
24 If, instead of T1CR, we benchmarked ELPR against other variations of the regulatory capital 
adequacy ratio, such as total risk-based capital ratio, the main results would remain virtually 
unchanged.  Some prior studies (e.g., Meiselman, Nagel, and Purnanandam 2018) also used 
Scaled-RWA (RWA divided by total assets) as a performance benchmark.  We find Scaled-RWA 
performs much weaker than T1CR in our tests. 
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II error).  The area under the ROC curve (denoted AUC) ranges from 0 to 1, and 

provides a summary measure of the discriminative ability of each model.  The 

closer a ROC curve is to the upper left corner, the more efficient is the prediction 

model.  For reference, a perfect classifier has an AUC equal to 1, while a coin 

toss has an expected AUC of 0.5.  We can convert an AUC to an Accuracy Rate 

(AR) measure, aka a Gini coefficient, by the formula: AR=2×AUC-1. 

 

Figure 3 depicts ROC curves for ELPR, T1CR and a predictive model that 

combines both variables.  Consistent with Table 3 findings, ELPR dominates 

T1CR across all forecast horizons.  Further, ELPR exhibits incremental usefulness 

when added to T1CR in across all forecast horizons.  Specifically, adding ELPR 

to the model increases the accuracy rate by 7.02%, 17.12%, 25.36%, 25.58%, and 

24.84%, for 1- through 5-year forecast horizons, respectively.25  We can also see 

that the relative advantage of ELPR over T1CR is much more pronounced for 

longer horizons.   

 

Evidence that ELPR yields superior classification accuracy does not necessarily 

imply it is superior in terms of misclassification costs.  This is because: (a) prior 

probabilities of a failure are low (i.e., bank failures do not occur frequently), and 

(b) misclassification costs are typically asymmetric (i.e. costs associated with a 

false negative are typically much higher than costs associated with false positives).   

These highly unbalanced prior probabilities and misclassification costs suggest a 

need to take misclassification costs into account when evaluating the performance 

of the predictive variables.   

 

In our Online Appendix, we perform extensive misclassification cost analyses 

using a wide range of relative cost assumptions consistent with prior studies on 

bank failures predictions (e.g., Frydman et al. 1985; Tam and Kiang 1992).  Our 

results show ELPR dominates T1CR in every relative cost assumption category.  

                                                             
25 Take the 1-year forecast horizon as an example.  In the T1CR model, AUC is 0.8722 and the 
corresponding accuracy rate is 74.44%.  After including ELPR, AUC becomes 0.9073 and the 
accuracy rate is 81.46%.  Therefore, the accuracy rate in the combined model represents an 
increase of 7.02% (81.46%-74.44%) over that of the T1CR model.  
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These results provide additional support for the superiority of ELPR over T1CR 

in terms of their ability to predict future bank failures.  

 

4.2 Silver State Bank: A Case Study 

In Appendix VI, we provide a case study that illustrates the source of the 

informational advantage of ELPR over T1CR.  On September 5, 2008, Silver State 

Bank was closed by the Nevada Financial Institutions Division and control of its 

assets was handed over to the FDIC as Receiver.  The underlying cause of this 

bank’s failure was its overexposure to risky real estate loans, especially 

mortgages on undeveloped land purchased for home construction.  Looking back 

to financial data reported by the bank at the end of 2006, just before global 

financial crisis, we show that its ELPR places the bank in the lowest percentile by 

historical distributions as of 31/12/2006.  Thus, ELPR would have clearly flagged 

Silver State Bank as being undercapitalized and at high risk of failure by the end 

of 2006.  Note that this analysis was done using only historical NPL ratios and 

cross-correlation patterns that were publicly available as of 31/12/2006. 

 

Unfortunately, as our analysis shows, the main regulatory metrics used to monitor 

banks, such as T1CR and other CAMELS variables, would have classified the 

bank as being well capitalized.   The T1CR variable failed to capture the 

deteriorating conditions in the commercial real estate and home construction loan 

categories, and the high correlation in the NPL rates between these two loan types 

(pairwise correlation of 0.86).  The other CAMELS indicators failed to pick up 

the mounting risk in this bank in part because of their reliance on profitability (the 

bank was quite profitable in 2006 and 2007).  Even as late as year-end 2007, bank 

regulators still regarded Silver State Bank as well-capitalized.  However, the 

riskiness of its loan portfolio can be detected by ELPR as early as 2006.   

 

4.3 ELPR versus CAMELS  

In 1979, the Uniform Financial Institutions Rating System (UFIRS), globally 

known by the abbreviation CAMEL, was introduced by the Federal Financial 

Institutions Examination Council (FFIEC) in the United States.  CAMEL stands 

for: capital adequacy (C), asset quality (A), management experience (M), 
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earnings (E), and liquidity (L).  In 1995, in response to rapid changes in the 

banking industry, the Federal Reserve and the OCC upgraded the original rating 

by adding a measure of the bank’s sensitivity to market risk (S).  The resulting 

CAMELS rating system is now used by regulators around the world to monitor 

banks’ financial health.  To prevent potential bank runs in the event of a large 

rating downgrade, the actual rating scores are only relayed to the bank’s senior 

management, and not released to the public.  

 

Academic studies that have examined the usefulness of CAMELS indicators in 

predicting bank failures have, by and large, found that they do contain useful 

information (e.g., Tam and Kiang 1992; Bongini, Claessens and Ferri 2001; 

Kerstein and Kozberg 2013; Betz, Oprică, Peltonen and Sarlin 2014).  Note that 

these studies do not have the actual CAMELS scores computed by regulators 

(which are not released).  Instead, academics have developed proxies for each 

variable in the CAMELS system using publicly available financial data.  In this 

section, we compare the performance of the CAMELS variables to ELPR.  

Following prior literature (e.g., Bushman and Williams 2015; Duchin and 

Sosyura 2012, 2014; Berger and Roman 2015), we compute a proxy for each 

CAMELS variable using public data: C (tier 1 capital), A (non-performing loan 

ratio), M&E (ROA), L (cash/deposits), S (net short-term assets as a percentage of 

total assets).  These variables’ constructions are detailed in Appendix V.26 

 

Table 4 examines the performance of ELPR and CAMELS variables across 

different forecast horizons.  These results focus on Pseudo-R2 and Accuracy Rates.  

For the 1-year horizon, the CAMEL system performs quite well (pseudo-R2 = 

33.3%; accuracy rate = 86.00%).  However, ELPR alone achieves prediction 

power comparable to the entire CAMELS system (pseudo-R2 of 24.7% and an 

                                                             
26  Because regulatory rating scores are confidential, the proxies in appendix V are only 
approximations designed to capture each of the six dimensions of the CAMELS system.  Our 
construction follows prior academic studies.  In particular, we follow Bushman and Williams 
[2011] in using a bank’s ROA to proxy for management quality.  This approach is motivated by 
findings from DeYoung [1998].  Using confidential information on actual CAMELS ratings, 
DeYoung [1998] shows that regulators’ assessment of management quality correlates with 
multiple bank characteristics, among which ROA is the most important.  We also use alternative 
accounting ratios to proxy for other CAMELS content (for example, measuring capital adequacy 
as the ratio of book equity to total assets), but found little difference in the results. 



25 
 

accuracy rate of 80.91%).  ELPR also dominates each of the individual 

components of CAMELS.  After adding ELPR, the predictive ability of the 

CAMELS system increases, with the pseudo-R2 increasing from 33.3% to 37.5% 

and the Accuracy Rate from 86.00% to 88.74%.  As we move to longer horizons, 

the predictive capability of the CAMELS system deteriorates quickly (Cole and 

Gunther (1998) reports a similar finding).   In longer horizon predictions, ELPR 

begins to dominate CAMELS.  For instance, over a 3-year forecast period, the 

CAMELS model only achieves a pseudo-R2 of 6.8% and Accuracy Rate of 

54.36%.  After adding ELPR into the CAMELS framework, the combined model 

achieves a pseudo-R2 of 17.1% and an Accuracy Rate of 72.24%.  A more detailed 

misclassification cost analysis, reported in our Online Appendix, further validates 

the benefits of adding ELPR to the suite of CAMELS predictors in each relative 

cost assumption category.   

 

In sum, our results show that ELPR dominates each component of CAMELS 

individually, and is also strikingly additive to the CAMELS indicators when all 

variables are included in the prediction model.  Furthermore, the relative 

usefulness of ELPR increases sharply as the forecast horizon is lengthened.   

 

4.4 Relative Importance of Variance and Covariance Information 

Our results thus far show ELPR contains important information about future bank 

failures beyond what is being captured by the CAMELS variables.  This 

information can reflect two (related) types of bank-level risk: (a) Variance risk, 

whereby high ELPR banks are primarily those exposed to categories with highly 

volatile default rates (i.e. high DR variance loans), and (b) Covariance risk, 

whereby high ELPR banks are primarily those exposed to categories with high 

covariance over time (i.e. high DR covariance loans).  To better understand the 

source of this informational advantage, we parse ELPR into a variance-related 

and a co-variance related component. 

 
First, for each bank-year observation, we derive a version of LPR using only 

information in the off-diagonal of its variance-covariance matrix of DRs.  

Specifically, we compute: 
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 COVAR = ln �𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅 𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶𝐶𝐶𝑒𝑒−𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝑊𝑊𝐶𝐶𝑏𝑏𝐶𝐶𝐴𝐴 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴
𝐿𝐿𝐿𝐿𝑅𝑅_𝐶𝐶𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴

�;  

 

where LPR_Covariance is estimated from variance-covariance matrix with the 

variance terms set to zero.   We then regress ELPR on COVAR as follows: 

 
𝐸𝐸𝐿𝐿𝐿𝐿𝐶𝐶 = 𝛼𝛼 + 𝛽𝛽 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜀𝜀             (5) 

 

The unique information in the variance (VAR_unq) is then defined as the residual 

from estimating equation (5).  

 

Symmetrically, we can allow the variance-related information to have first shot 

by computing a version of LPR using only information in variance terms: 

 

 VAR = ln �𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅 𝐴𝐴𝑒𝑒𝐴𝐴𝐶𝐶𝐶𝐶𝑒𝑒−𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝑊𝑊𝐶𝐶𝑏𝑏𝐶𝐶𝐴𝐴 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴
𝐿𝐿𝐿𝐿𝑅𝑅_𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴

�;  

 

where LPR_Variance is derived from the variance-covariance matrix with the 

covariance terms set to zero.   We can then regress ELPR on VAR as follows: 

 

𝐸𝐸𝐿𝐿𝐿𝐿𝐶𝐶 = 𝛼𝛼 + 𝛽𝛽 × 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜀𝜀           (6) 

 

The unique information in covariance (COV_unq) can then be defined as the 

residual from estimating equation (6).27 

 

In Table 5, we report the results of a set of logistic regressions of future bank 

failure on (a) VAR and COV_unq, and (b) COVAR and VAR_unq.  In each case, 

we include all the CAMELS variables as controls.  In these regressions, the 

coefficient on VAR_unq (COV_unq) captures the incremental explanatory power 

of the variance- (covariance-) related information, after allowing the covariance- 

(variance-) related information to have a first shot at predicting bank failures.    

 

                                                             
27  Because LPR_Variance and LPR_Covariance are highly correlated, it’s inappropriate to 
compare the Pseudo-R2s of COV and COVAR without orthogonalizing these variables. 
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Table 5 results show that both variance-related information and covariance-

related information provide incremental explanatory power over each other, after 

controlling for the CAMELS variables.  With the exception of the covariance-

related information in the 5-year-ahead forecast, this result is robust across all 

prediction horizons.  On a stand-alone basis, the variance-related (VAR) 

information appears to be more important than the covariance-related information 

(COVAR).  Taken together, these results indicate that bank-level risk derives from 

both the high volatility of DRs in individual loan types, as well as strong 

contagion effects between different loan categories. 

 

5.  Implications for the Stock Market 

In this section, we examine the implications of ELPR for the stock prices of 

publicly traded bank holding companies (BHCs).  We explore two questions.  

First, do equity prices of these holding companies reflect the ELPR risk of its 

underlying banks?  If investors recognize, at least partially, the latent risk captured 

by ELPR, then lower ELPR firms will have higher average implied costs of capital.  

Second, do equity prices fully incorporate the information contained ELPR?  If 

investors do not completely impound related information into stock price, then 

banks with high (low) ELPR should earn higher (lower) ex-post returns. 

 

To answer these questions, we need to map banks identified in the FDIC Call 

Report to their respective publicly-traded holding companies from CRSP.  The 

mapping procedure starts from the CRSP-FRB link table provided by the Federal 

Reserve Bank of New York. 28   This dataset links regulatory identification 

numbers (RSSD ID) from the National Information Center (NIC) to the 

permanent company number (PERMCO) used in CRSP.  For each insured 

institution identified by a unique certificate number (CERT), FDIC provides 

information on the RSSD ID for both the reporting institution and for its banking 

holding company.  However, the RSSD ID in the CRSP-FRB link table does not 

necessarily refer to the highest holding company in the regulatory hierarchy.  The 

RSSD ID in the CRSP-FRB link table may belong to the highest ranking 

corporate parent, or an intermediate corporate parent within the regulatory 
                                                             
28 https://www.newyorkfed.org/research/banking_research/datasets.html 

https://www.newyorkfed.org/research/banking_research/datasets.html
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ownership structure,29 or the reporting entity itself.   Similarly, the RSSD ID of 

banking holding company provided by the FDIC also may not belong to the 

highest ranking corporate parent.  Therefore, merging the FDIC Call Report 

dataset with the CRSP-FRB link table using the RSSD ID will result in many 

incorrectly identified observations.   

 

To create a complete mapping, we utilized the information on organization 

structures of banking holding companies (BHC), which can be found in FR Y-6 

Annual Report.  Applying textual analysis methods, we identified all the 

subsidiaries belonging to each reporting entity in the CRSP-FRB link table.  We 

then matched the RSSD ID of the entity itself, or one of its subsidiaries, to the 

RSSD ID in the FDIC dataset.  This process allowed us to obtain a comprehensive 

mapping between FDIC Call Report data and CRSP stock return data.  After 

eliminating observations with missing variables, BHCs that are not primarily 

commercial lenders, and firms with a stock price less than $1, we arrived at a final 

sample of 6,505 BHC-years over the period 2001-2015.30  

 

Appendix VII provides descriptive summary statistics on BHCs by year.  Over 

our sample period, we had an average of 434 BHCs per year.  These BHCs had 

an average market capitalization (MCAP) of 1.453 billion dollars and each 

controlled, on average, 1.67 commercial banks.  Both the number of BHCs and 

the number of banks have declined over time.  Specifically, the number of BHC 

decreased from 474 in 2001 to 360 in 2015, while the number of banks decreased 

from 1032 in 2001 to 442 in 2015.  The average number of banks owned by each 

BHC has also declined over time, from 2.18 in 2001 to 1.23 in 2015.  Not 

surprisingly, both MCAP and ROE plummeted during the crisis period.  After the 

crisis, average MACP began to recover and increased to 1.941 billion in 2015, 

                                                             
29 For example, although the regulatory high-holder of Unionbancal Corporation (PERMCO 841 
and RSSD ID 1378434) is Mitsubishi UFJ Financial Group, Inc. (RSSD ID 2961897), the 
PERMCO 841 is not linked to the regulatory high-holder because Unionbancal Corporation was 
publicly traded as a separate entity. 
30 To determine a whether a BHC is primarily a commercial lender, we summed the total assets of 
the lending institutions under its control.  If the total assets of these lending subsidiaries summed 
up to 80% or more of the BHC’s total assets, we regarded the BHC as a commercial lender.  238 
BHC-year observations were dropped due to this restriction. 
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which is higher than in the pre-crisis level.  Although ROE also showed some 

sign of recovery after the crisis, it has not returned to pre-crisis levels.  

 

5.1 Implied Cost of Capital 

To understand the market’s perception of the risk captured by ELPR, we examine 

the relation between each BHC’s ELPR and its implied cost of capital (ICC).  We 

construct each BHC’s ELPR by aggregating the corresponding variable across all 

its controlled banks.  Specifically, we compute a BHC’s exposure to each loan 

category by summing up the bank-level holdings for each bank under its control.  

We then apply the historical variance-covariance matrix of DRs to these holdings 

(equation (2)) to derive each BHC’s LPR.  For the numerator, we aggregate the 

book equity of its banking subsidiaries.  We then calculate a BHC’s ELPR based 

on equation (3).  ICC is the discount rate that the market applies to a firm’s 

expected future cash flows in determining its current market value.  In other 

words, it’s the required rate of return given the market’s assessment of firm risk.  

If the market perceives ELPR as a risk factor, it should assign a higher discount 

rate to lower ELPR firms.  We employ following model to test the relationship 

between ELPR and ICC: 

 

𝐹𝐹𝐶𝐶𝐶𝐶 = 𝛽𝛽𝑏𝑏 + 𝛽𝛽1𝐶𝐶𝐸𝐸𝐿𝐿𝐿𝐿𝑅𝑅 + 𝛽𝛽2𝑆𝑆𝐹𝐹𝑆𝑆𝐸𝐸 + 𝛽𝛽3𝐿𝐿𝐸𝐸𝐶𝐶 + 𝛽𝛽4𝑀𝑀𝑀𝑀 +

                            𝑌𝑌𝑒𝑒𝑌𝑌𝑒𝑒 𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒𝐹𝐹 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸 + 𝜀𝜀   ,                              (7) 

 

Where ICC is the implied cost of equity estimated in year t.  Penman (1998) 

demonstrated that all equity valuation models can be recast as the dividend 

discount model with a particular terminal value calculation.  We employ a simple 

form of Penman’s generic valuation model, expressed below:   

 

        𝑀𝑀𝐶𝐶𝐶𝐶 = 𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡+1
1+𝐷𝐷𝐶𝐶𝐶𝐶

+ 𝐷𝐷𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐸𝐸𝐷𝐷𝐷𝐷𝑡𝑡+2
(1+𝐷𝐷𝐶𝐶𝐶𝐶)2

+ 𝐸𝐸𝐴𝐴𝑅𝑅𝐷𝐷𝑡𝑡+2
(1+𝐷𝐷𝐶𝐶𝐶𝐶)2∗𝐷𝐷𝐶𝐶𝐶𝐶

        (8) 

Where: 

 𝑀𝑀𝐶𝐶𝐶𝐶=market value in year t; 
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 𝐷𝐷𝐹𝐹𝐶𝐶𝐹𝐹𝐷𝐷𝐸𝐸𝐷𝐷𝐷𝐷𝐶𝐶+1, (𝐷𝐷𝐹𝐹𝐶𝐶𝐹𝐹𝐷𝐷𝐸𝐸𝐷𝐷𝐷𝐷𝐶𝐶+2) = dividends paid during year t+1 (year t+2); 

  𝐸𝐸𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶+2 = earnings for year t+2.  

An important element in ICC construction is finding a suitable proxy for the 

market’s expectation of future earnings.  For our purposes, we invoke rational 

expectation and assume market has perfect foresight with respect to near-term 

cash flows (i.e., we use actual reported numbers for DIVDENDt+1, DIVDENDt+2, 

and EARNt+2).  This assumption allows us to focus on the implications of ELPR 

for firms’ market implied discount rates without conflating them with errors in 

cash flow forecasting. 

 

The variable of primary interest in equation (7) is RELPR, a scaled version of each 

bank’s ELPR decile rank.  To construct this variable, banks are divided into 10 

deciles according to their year-end ELPR.  We then define RELPR as the firm’s 

decile rank, minus 1, and then divided by 9.  After this transformation, RELPR 

ranges from 0 (lowest ELPR decile) to 1 (highest ELPR decile).  If firms’ stock 

prices reflect the riskiness of the underlying loan portfolios as measured by RELPR, 

then we should observe a negative coefficient on RELPR.  Following prior studies 

(Gebhardt, Lee and Swaminathan 2001; Chen et al. 2011), we control for: firm 

size (SIZE), measured as the natural logarithm of market value; leverage (LEV), 

computed as the ratio of total long-term debt to total market value of equity; 

market-to-book ratio (MB); and year fixed effects.  All independent variables are 

calculated using the closest year-end data before the estimation of ICC (i.e., year 

t-1).  Consistent with prior tests, ELPR calculation starts from 2001 and ends in 

2015; the corresponding period for ICC spans from 2002 to 2016.  Robust 

standard errors are clustered at the bank level.  

 

Table 6 presents results for the implied cost of capital regressions.  The first two 

columns report results for the full sample period (ICC during the period 2002-

2016).  In model 1, we examine the impact of RELPR on the implied cost of capital, 

controlling for year fixed effects.  We find that the coefficient on RELPR is negative 

and statistically significant at the 1% level, suggesting firms with lower ELPR 

have significantly higher costs of capital.  This significant relation continues to 

hold in model 2, which includes bank-specific control variables (SIZE, LEV and 
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MB).    Economically, the estimated coefficient in Model 2 implies that a move 

from the lowest ELPR decile to the highest ELPR decile is associated with an 

increase in ICC of 1.89%.  Given that average cost of equity capital in the U.S. 

over the long run is between 8 and 12%, this cross-sectional spread is quite 

economically significant. 

 

Columns 3 and 4 report the results during normal (non-crisis) times.  Again we 

find ELPR rank is associated with a lower cost of capital.  However, the 

coefficient on RELPR is much lower during non-crisis periods than that in the full-

sample regression, with the value of 0.0171 in model 3 and 0.0144 in model 4.  

The last two columns report results for the financial crisis subsample (ICC during 

the period 2007-2010).  We can see that RELPR loads negatively at the 1 percent 

level, with a t-statistics of -6.02 in model 5 and -5.25 in model 6.  Strikingly, the 

coefficient on RELPR in model 6 is -0.0361, indicating that the market imposes a 

much higher cost of capital on low ELPR firms during crisis periods.  During the 

crisis, the lowest ELPR banks have a 3.61% higher ICC than highest ELPR banks.  

Overall Table 6 suggests that the implied cost of capital is an important channel 

through which the market prices ELPR and investor awareness about ELPR risk 

increases during an economic downturn.    

 

5.2  Stock Return Prediction 

We also examine the ability of ELPR to predict cross-sectional stock returns.  To 

be specific, we sort all BHCs into deciles based on the value of ELPR for each 

year and examine the realized returns on the resulting portfolios over the next 12 

months.  To ensure all relevant financial information is already publicly available, 

we use accounting data from year t to predict stock returns from July year t+1 

through June -year t+2.  Specifically, we examine annual stock returns for 

portfolios formed on July- of each year, from 2002 through to 2015.  

 

5.2.1 Portfolio Returns 

Table 7 reports next 12-month portfolio returns to firms sorted by their ELPR and 

T1CR.  In these strategies, ELPR is adjusted book equity divided by loan portfolio 

risk (LPR), as described in Section 1.  T1CR is a capital adequacy ratio commonly 
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used by bank regulators, defined as each bank’s Tier-1 capital divided by its risk-

weighted asset.  To construct this table, we sort individual firms by its ELPR or 

T1CR measure annually as of June 30.  The sample consists of all publicly-traded 

bank holding companies with at least one FDIC-monitored bank, and 80% or 

more of its total assets in banking subsidiaries.  The top decile contains stocks 

with the highest ELPR score while the bottom decile contains stocks with lowest 

ELPR.  Column 1 reports results for the full sample period (holding period returns 

between July 2002 and June 2017); Column 2 reports results for non-crisis years; 

and Column 3 reports results for the financial crisis years (holding period returns 

between July 2007 and June 2011).  The bottom rows present tests of differences 

in mean returns between decile 10 and decile 1 portfolios.   

 

The bottom two rows report returns to a hedged portfolio that goes long in top 

10% high ELPR ( or T1CR) firms and sells short the bottom 10% ELPR ( orT1CR) 

firms.  For the full sample period, the difference in mean return between the 

lowest and highest ELPR decile is 6.93% (9.69%-2.76%) and is statistically 

significant at 1% level (t=4.04).  This result suggests that over the full sample 

period, firms with superior capital adequacy as measured by ELPR actually 

earned higher returns.  This is curious for several reasons.  First, high ELPR firms 

are less exposed to bank failure risk and one might expect lower average realized 

returns to reflect their lower risk.  Second, we have seen from the ICC tests that 

these firms on average have lower implied costs of capital.  It is curious to see 

firms with lower ICC earn higher realized returns.  Note that these mean returns 

do not show a monotonic trend across deciles.  Further, we do not see a significant 

difference when firms are sorted by T1CR. 

 

Column 2 reports the results for non-crisis periods.  We can see that the ELPR 

strategy generates stock returns of -3.78% under normal market conditions.  

However, the mean returns do not decline in a monotonic way across deciles.  

Column 3 reports the results for the financial crisis years.  For this subsample, we 

sort BHCs into decile portfolios based on year-end prediction variables between 

2006 and 2009 and correspondingly analyze the stock returns from July 2007 to 

June 2011.  As shown, when the economy deteriorates, ELPR strongly predicts 

BHCs’ future stock returns. During the crisis, a hedged strategy going long in 
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BHCs with the highest ELPR and selling short those with the lowest ELPR, yields 

40.21% (=-0.45%+40.66%) per year with a t-statistic of 12.19.  The portfolio 

returns generally exhibit a monotonically increasing trend moving from the 

lowest to the highest ELPR decile.  Returns to a T1CR strategy much more muted, 

yielding annualized returns of only 19.98% (t=5.85).   

 

Figure 4 depicts the annual performance of an ELPR-based hedged trading 

strategy for each year in our sample period.  Consistent with Table 7, the 

strategy’s performance peaked during the global financial crisis.  In contrast, the 

ELPR strategy does not outperform during normal times, even yielding negative 

hedge returns for many years.  However, most of these negative hedge returns are 

not statistically significant, indicating ELPR doesn’t have obvious predictive 

power for returns during normal times.   

  

These results make intuitive sense.  During crisis periods, the greater risk 

exposure of low ELPR firms becomes transparent, and investors put more weights 

on the adequacy of banks’ equity capital.  Our results show that during such times, 

the insolvency factor is more fully reflected in the cross-section of stock prices.  

Our results correspond well with the notion that firms taking greater risk may 

show higher profits during normal times, but are nonetheless much riskier during 

periods of economic stress (Meiselman, Nagel, and Purnanandam 2018).  Our 

results are also consistent with mounting prior evidence that various forms of 

return predictability concentrate in bad times (Cujean and Hasler, 2017; Cen, Wei, 

and Yang, L., 2016; Henkel, Martin, and Nardari, 2011).31  

 

5.2.2 Regression Results 

In this section, we further examine whether the predictive ability of ELPR during 

the poor economic will be subsumed after controlling risk factors widely used in 

asset pricing.  Firstly, we form hedge portfolios long in highest ELPR decile and 

short in lowest ELPR decile.  Following previous studies (e.g., Loughran and 

                                                             
31  Cujean and Hasler (2017) find that current excess returns and disagreement have better 
predictive power in bad times.  Similarly, Cen, Wei and Yang (2016) find that return predictability 
using investor disagreement concentrates in bad times.  Henkel, Martin, and Nardari (2011) 
provide evidence that aggregate return predictors such as the dividend and short rate better predict 
future returns in bad times. 
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Ritter, 1995), we conduct a set of time-series portfolio regressions using monthly 

returns for 12 months after the portfolio formation.  If the predictability effect of 

ELPR is merely a manifestation of previously documented confounding effects, 

then the intercept, representing the excess hedge return, should not be 

economically and statistically different from zero.  The identified risk factors 

considered include Market (Rm–Rf), Size (SMB), Book-to-market (HML), 

Momentum (MOM), Profitability (RMW) and Investment (CMA).  Market is the 

excess market return over the risk-free rate.  SMB is the return on small stock 

portfolios minus the return on big stock portfolios.  HML is the return on the value 

portfolios minus the return on growth portfolios.  MOM is the return on high prior 

return portfolios minus the return on low prior return portfolios.      RMW is the 

return on robust operating profitability portfolios minus the return on weak 

operating profitability portfolios.  CMA is the return on conservative investment 

portfolios minus the return on aggressive investment portfolios. More specific 

definitions can be found in Ken French’s data library32.  

 

Column 1 of table 8 documents the results for Fama-French (1993) three-factor 

model.   We can see that ELPR-based trading strategy has a positive alpha of 4.08 

(61.59% annualized), statistically significant at 1% level (t=4.08).  In column 2, 

we augment the Fama-French three-factor model with Carhart’s (1997) 

momentum factor.  The results show that the alpha slightly increases to 4.16 

(63.08% annualized) with t-statistic of 4.14.  The last column presents the results 

for the Fama-French (2015) five-factor model.  Profitability (RMW) loads 

positively for the hedge strategy, leading alpha decrease to 3.33 (48.16% 

annualized).  To sum up, the results from table 8 provide strong support for our 

conclusion that the efficacy of ELPR-based trading strategy still holds after 

controlling for common risk factors.   

 

                                                             
32 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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6 Robustness tests 

In this section, we report results for a battery of robustness tests. For parsimony, 

we do not include these analyses in the paper.  However, they are available upon 

request. 

 

6.1 Alternative definitions of failure.  First, we employ an alternative definition 

of failure.  In the main analyses, we classify all bank closures as failures.     

Sometimes, regulators may fail to close economic insolvent financial institutions 

due to other considerations, such as the agency conflicts between regulators and 

taxpayers (Cole, 1993).  Therefore, following Wheelock and Wilson (2000), we 

define as technical failure any bank with an equity/asset ratio below 0.02.  Then, 

we place both bank closures and technical failures in the fail group and rerun the 

main tests.  This new definition does not alter our conclusion.  

 

6.2 Hazard Models.  Because bank failures occur infrequently, a hazard model is 

a natural alternative to using a logistic regression model.   Shumway (2001) points 

out that hazard models can produce more consistent estimates compared to static 

models.  Therefore, we also employed a Shumway hazard model to examine the 

classifiers’ performances, and found that the results are quite similar to those 

derived from a logistic regression.  However, we note that one limitation of the 

hazard model is the need to make additional assumptions about the functional 

model (Ng and Roychowdhury, 2014). 

 

6.3 Cross-Validation Tests.  Although we always estimate our model coefficients 

using historical data prior to the forecast date, it is possible our models are still 

somewhat informed (and thus contaminated) by the findings of prior studies that 

used overlapping samples.  Cross-validation tests, proposed by Geisser (1975), 

are commonly used to adjust the bias stemming from in-sample validation (see, 

for example, Perols, Bowen, Zimmermann, and Samba (2016)).  As a robustness 

check, we performed an out-of-sample ten-fold cross-validation test.  This 

technique randomly splits the whole data set into ten equal folds.  One fold is 

retained as validation data for testing the model, and the remaining 9 folds are 

used as training data for building the model.  The cross-validation process is then 
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repeated 10 times, with each of the 10 folds used exactly once as the validation 

data.  Ultimately, the results over the 10 processes are averaged to produce a 

single estimation.  We find the results estimated from a ten-fold cross-validation 

test are quite consistent with those of the main test we conducted.  

 

6.4 The Effect of Bank Size.  Risk absorption ability differs considerably across 

large, medium, and small banks (Berger and Bouwman 2009).  One possible 

concern is that our results are driven by the small banks in the sample, because of 

the predominance of such banks in the U.S.  To address this concern, we split our 

sample into three groups according to bank size (gross total assets, as defined in 

Berger and Bouwman 2013) and reran our main tests separately for each group.  

Consistent with their work, we defined small banks as those with gross total assets 

up to $1 billion; medium banks as those with gross total asset between $ 1 billion 

and $3 billion; and large banks as those with gross total asset exceeding $ 3 billion.  

We find that the main results are clearly evident in all three bank size categories.   

 

7 Summary 

In this study, we develop, and empirically evaluate, an intuitive and conceptually 

appealing alternative to the current regulatory risk metrics that we call Loan 

Portfolio Risk (LPR).  Our approach makes use of the time-varying volatility of 

default rates for each loan category, as well as the historical cross-correlation 

structure for these default rates across different loan types.  Our results show that 

the Equity-to-LPR ratio (ELPR) is additively important in predicting bank failure 

up to five years in advance, even after controlling for all the CAMELS variables.   

 

Publicly-listed banks with higher ELPR have lower market implied costs-of-

capital.  ELPR also strongly predicts cross-sectional stock returns under stress 

conditions.  During the financial crisis (7/2007-6/2011), a cash-neutral strategy that 

longs high-ELPR and shorts low-ELPR banks yields a monthly alpha of 3.3% to 

4.2%.  We conclude LPR captures key aspects of bank risk missed by a risk-

weighted-asset approach. 
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As an alternative regulatory measure of capital adequacy, ELPR at least three 

clear advantages over the risk-weighted asset (RWA) approach.  First, by focusing 

on the time-varying variance in default risk for the portfolio as a whole, ELPR 

captures an important intertemporal dimension of bank risk that is clearly missing 

from the RWA-based metrics. This is evident from the exceptional performance 

of ELPR in bank failure predictions as well as its correlation with market-based 

risk metrics during periods of economic distress.   

 

Second, ELPR is more straightforward to calculate and more objective than many 

RWA-based metrics.  Because it can be updated quickly using only each bank’s 

quarterly call report, ELPR alleviates some of the moral hazard problems 

associated with the internal-rate based (IRB) methods.  Third, because ELPR is 

based on the long-run variance of delinquency rates rather than the most recent 

quarterly estimates, it will significantly mitigate the procyclical concerns 

associated with IRB-based estimates (Andersen 2011; Behn et al. 2016; Kashyap 

and Stein 2004).  In other words, using ELPR to measure capital adequacy means 

banks are less likely to be forced to cut back on their lending activity in bad times, 

thereby contributing to a worsening of the initial downturn. 

 

Ten years after the collapse of Lehman Brothers, experts agree that an important 

cause of the global financial crisis was the underestimation of downside risk in 

the period leading to that fateful September 14, 2008 event (see Gennaioli and 

Shleifer 2018). Market-wide expectations for economic growth were too 

optimistic and the risk building up in the financial system was not fully factored 

into asset prices. The Lehman bankruptcy had enormous impact precisely because 

it triggered a major correction in these expectations. 

 

Our study provide a novel and more economically sensible measure of banks’ 

default risk.  We recognize this is a small step forward in the much broader 

problem of bank regulation.  However, we believe our study illustrates the 

potential of alternative risk metrics that reflect portfolio-level default volatility.  

Our hope and expectation is that our analysis will stimulate further research along 

such lines.   
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Figure 1.  Aggregate delinquency rates by loan type over time 

 
This figure depicts time-series plots of quarterly aggregate delinquency ratios by 
different loan types from 1991Q1 to 2015Q4.  The delinquency ratio is calculated 
as aggregate non-performing loans divided by aggregate total loans for each loan 
category.  These statistics are aggregated across all FDIC-insured institutions for 
each quarter.  We obtain the relevant information from FDIC Quarterly Banking 
Profile.  Appendix IV provides a more detailed definition of each loan type.   

0.00

0.05

0.10

0.15

0.20

0.25

CONSTRUCTION FARMLAND RES RESMULT NRES

FOREIGN INSTITUTION AGRICULTURAL C&I CRCD

CONOTH SOVEREIGN OTHER LEASE

CONSTRUCTION 

SOVEREIGN 
RES 



45 
 

Figure 2.  The Number of Bank Failures by Year 
 

 

 
 
This figure presents the frequency of bank failures in the United States from 2003 
to 2017.  Our sample includes all FDIC insured banks and thrifts (including 
savings and loans associations and savings banks).  Source: the FDIC Failed 
Institutions List. 
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Figure 3.  Receiver Operating Characteristic (ROC) curves 

ELPR at 1-year horizon T1CR at 1-year horizon BOTH at 1-year horizon 

   
AUC=0.9045 AUC=0.8722 AUC=0.9073 
ELPR at 2-year horizon T1CR at 2-year horizon BOTH at 2-year horizon 

   
AUC=0.8639 AUC=0.7802 AUC=0.8658 
ELPR at 3-year horizon T1CR at 3-year horizon BOTH at 3-year horizon 

   
AUC=0.8237 AUC=0.7155 AUC=0.8423 
ELPR at 4-year horizon T1CR at 4-year horizon BOTH at 4-year horizon 

   
AUC=0.7945 AUC=0.6869 AUC= 0.8148 
ELPR at 5-year horizon T1CR at 5-year horizon BOTH at 5-year horizon 

   
AUC= 0.7666 AUC=0.6614 AUC=0.7856 
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Figure 3 depicts curves from a receiver operating characteristics (ROC) analysis 
across different horizons, based on different prediction models.  The diagonal line 
in each graph divides the ROC space and illustrates the appearance of a ROC 
curve for a naive model with no classification power.  Points above the diagonal 
line represent good classification results (better than random) while points below 
the line represent bad results (worse than random).  AUC is the area under the 
ROC curve.  A higher value of AUC indicates a model with stronger ability to 
distinguish between failures and survivors.  ELPR is the ratio of shareholder 
equity to amount of loan portfolio risk in logarithmic form, as described in section 
1.  T1CR is tier 1 risk-based capital ratio as defined by regulator.  Specifically it 
is the bank’s Tier-1 capital divided by its risk-weighted asset.  BOTH represents 
the combination of ELPR and T1CR.  
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Figure 4.  Annual hedged returns to an ELPR-based strategy 
 

 
 
Figure 4 depicts the yearly hedged returns to an ELPR-based trading strategy.  
The strategy is implemented using financial data reported by publicly-traded bank 
holding companies (BHCs) during the period 2001-2015 (corresponding to 
portfolio holding periods from July 2002 to June 2017).  The hedged return is the 
difference in mean returns between an equal-weighted portfolio of BHCs in the 
highest ELPR decile and those in the lowest ELPR.  ELPR is the ratio of 
shareholder equity to amount of loan portfolio risk in logarithmic form for each 
BHC, as described in section 1.  
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Table 1.  U.S. Bank Failures from 2003 to 2017 
 

Year Num of  
Banks 

Num of  
Failures 

Failure  
Rate  

Estimated Loss 
(in $ thousands) 

2003 9,354 3 0.03% 62,646 
2004 9,181 4 0.04% 3,917 
2005 8,976 0 0.00% 0  
2006 8,833 0 0.00% 0  
2007 8,680 3 0.03% 161,851 
2008 8,534 25 0.29% 1,8160,993 
2009 8,305 140 1.69% 26,957,643 
2010 8,012 157 1.96% 16,359,499 
2011 7,658 92 1.20% 6,617,073 
2012 7,357 51 0.69% 2,461,603 
2013 7,083 24 0.34% 1,247,973 
2014 6,812 18 0.26% 392,245 
2015 6,509 8 0.12% 866,542 
2016 6,182 5 0.08% 47,114 
2017 5,913 8 0.14% 1,132,364 
Total  538  74,471,463 

 

This table provides descriptive statistics for U.S. bank failures between 2003 
and 2017.  Column 1 reports the number of FDIC insured banks and thrifts 
(including savings and loans associations and saving banks) at the beginning 
of each year. Column 2 reports the number of bank failures that occurred 
during the year.  Column 3 reports failures as a percentage of banks that 
existed at the beginning of the year.  Column 4 reports the estimated loss 
arising from these failures.  This estimated loss is obtained from the FDIC 
Failed Institutions report, and represents the difference between the amount 
disbursed from the Deposit Insurance Fund (DIF) to cover obligations to 
depositors and the amount recoverable from the liquidation of the 
receivership estate.  These estimates are routinely adjusted with updated 
information from new appraisals and asset sales, which ultimately affect the 
asset values and projected recoveries.  The estimated loss reported above are 
as of December 31, 2017.  (Source: the FDIC Failed Institutions List.) 
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Table 2.   
Panel A.  Correlations of Aggregate Delinquency Rates across Loan Categories 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
(1) CONSTRUCTION 1.00              
(2) FARMLAND 0.75*** 1.00             
(3) RES 0.66*** 0.25* 1.00            
(4) RESMULT 0.86*** 0.82*** 0.26** 1.00           
(5) NRES 0.86*** 0.86*** 0.31** 0.98*** 1.00          
(6) FOREIGN 0.63*** 0.81*** -0.08 0.84*** 0.84*** 1.00         
(7) INSTITUTION 0.54*** 0.69*** -0.14 0.82*** 0.82*** 0.86*** 1.00        
(8) AGRICULTURAL 0.38*** 0.84*** -0.19 0.59*** 0.59*** 0.76*** 0.62*** 1.00       
(9) C&I 0.62*** 0.77*** -0.06 0.79*** 0.76*** 0.89*** 0.83*** 0.72*** 1.00      
(10) CRCD 0.30** 0.33*** -0.18 0.33*** 0.21* 0.50*** 0.31** 0.51*** 0.62*** 1.00     
(11) CONOTH 0.51*** 0.53*** 0.20* 0.44*** 0.38*** 0.47*** 0.28** 0.54*** 0.55*** 0.78*** 1.00    
(12) SOVEREIGN 0.30** 0.57*** -0.29** 0.58*** 0.57*** 0.69*** 0.80*** 0.56*** 0.83*** 0.31** 0.19 1.00   
(13) OTHER 0.60*** 0.55*** 0.15 0.56*** 0.49*** 0.63*** 0.49*** 0.47*** 0.80*** 0.74*** 0.65*** 0.48*** 1.00  
(14) LEASE 0.42*** 0.50*** -0.10 0.49*** 0.41*** 0.63*** 0.56*** 0.53*** 0.86*** 0.77*** 0.59*** 0.65*** 0.89*** 1.00 

This panel reports the pairwise Pearson correlations for quarterly delinquency ratios across different loan types.  The sample period includes 1991 
Q1 to 2015 Q4 (100 quarterly observations).  The delinquency ratio is calculated as aggregate non-performing loans divided by aggregate total 
loans for each loan category.  We obtain the relevant information from the FDIC Quarterly Banking Profile.  Please refer to Appendix IV for the 
detailed definition of each loan type.  Correlation coefficients shown in bold and italic are higher than 0.5.  ***, **, and * denote significance at 
the 0.001, 0.01, and 0.05 levels, respectively.  
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Panel B.  Variance-covariance Matrix of Aggregate Delinquency Rates across Loan Categories 

   (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
(1) CONSTRUCTION 38.58              
(2) FARMLAND 3.85 0.68             
(3) RES 12.23 0.63 8.97            
(4) RESMULT 13.30 1.68 1.97 6.17           
(5) NRES 12.00 1.59 2.07 5.45 5.04          
(6) FOREIGN 8.73 1.49 -0.56 4.61 4.19 4.91         
(7) INSTITUTION 1.15 0.20 -0.14 0.70 0.63 0.65 0.12        
(8) AGRICULTURAL 2.20 0.64 -0.52 1.36 1.22 1.56 0.19 0.86       
(9) C&I 5.38 0.90 -0.26 2.76 2.39 2.78 0.40 0.94 1.97      
(10) CRCD 1.82 0.27 -0.53 0.80 0.47 1.06 0.10 0.46 0.84 0.93     
(11) CONOTH 1.38 0.19 0.27 0.48 0.37 0.46 0.04 0.22 0.34 0.33 0.19    
(12) SOVEREIGN 8.05 2.04 -3.80 6.21 5.58 6.65 1.18 2.23 5.03 1.29 0.36 18.76   
(13) OTHER 3.64 0.44 0.44 1.36 1.07 1.37 0.16 0.43 1.10 0.70 0.28 2.04 0.96  
(14) LEASE 1.48 0.23 -0.17 0.69 0.52 0.79 0.11 0.28 0.68 0.42 0.15 1.59 0.49 0.32 

This panel reports the variance-covariance matrix for quarterly delinquency ratios across different loan types.  The delinquency ratio is calculated 
as aggregate non-performing loans divided by aggregate total loans for each loan category.  Table values in the diagonal are time-series variances 
of the quarterly default rates for each category; off-diagonal variables are pair-wise covariance terms.  We obtain default rate information from the 
FDIC Quarterly Banking Profile reports.  Each number is multiplied by 10,000 for ease of exposition.  The sample period used in constructing this 
table includes 1991 Q1 to 2015 Q4 (100 quarterly observations).  Appendix IV provides the detailed definition of each loan type. 
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Table 3.  Bank Failure Prediction: ELPR vs. T1CR 
 
Panel A 1-Year Horizon 
 ELPR T1CR BOTH 
ELPR -4.439***  -3.669*** 
 (-22.95)  (-17.92) 

T1CR  -65.274*** -18.000*** 
  (-10.85) (-4.10) 

Constant 2.563*** 2.190*** 3.311*** 
 (9.24) (3.68) (8.34) 

Observations 111453 111453 111453 

Pseudo R2 0.247 0.171 0.255 
Incremental Power of ELPR   8.4% 

 
Panel B 2-Year Horizon  
 ELPR T1CR BOTH 
ELPR -3.285***  -3.634*** 
 (-20.25)  (-23.52) 

T1CR  -22.407*** 6.173*** 
  (-5.14) (4.32) 

Constant 0.970*** -2.292*** 0.799*** 
 (3.79) (-4.44) (3.18) 

Observations 101557 101557 101557 

Pseudo R2 0.173 0.055 0.177 
Incremental Power of ELPR   12.2% 

 
Panel C 3-Year Horizon  
 ELPR T1CR BOTH 
ELPR -2.589***  -3.282*** 
 (-17.19)  (-22.26) 

T1CR  -7.157*** 9.141*** 
  (-3.47) (12.53) 

Constant -0.046 -4.085*** -0.026 
 (-0.18) (-14.16) (-0.12) 

Observations 92014 92014 92014 

Pseudo R2 0.128 0.015 0.148 
Incremental Power of ELPR   13.3% 
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Panel D 4-Year Horizon  
 ELPR T1CR BOTH 
ELPR -2.103***  -2.791*** 
 (-14.41)  (-19.47) 

T1CR  -5.039*** 8.463*** 
  (-3.21) (13.64) 

Constant -0.784*** -4.318*** -0.656*** 
 (-3.00) (-18.79) (-3.04) 

Observations 82828 82828 82828 

Pseudo R2 0.098 0.009 0.118 
Incremental Power of ELPR   10.9% 

 
Panel E 5-Year Horizon  
 ELPR T1CR BOTH 
ELPR -1.746***  -2.408*** 
 (-12.98)  (-18.14) 

T1CR  -3.921*** 7.729*** 
  (-2.87) (13.09) 

Constant -1.323*** -4.402*** -1.118*** 
 (-5.23) (-21.37) (-5.42) 

Observations 74038 74038 74038 

Pseudo R2 0.077 0.007 0.096 
Incremental Power of ELPR   8.9% 

This table reports the results from a set of logistic regressions of bank failure indicators 
on predictor variables across various prediction horizons.  The predictor variables in 
Panels A-E are measured at the year-end over 1- to 5-year horizon, respectively.   
Predictor variables are ELPR, T1CR and the combination of these two variables in 
model (1), model (2) and model (3) in each table.  ELPR is the ratio of shareholder 
equity to amount of loan portfolio risk in logarithmic form, as described in section 1.  
T1CR is tier 1 risk-based capital ratio as defined by regulator.  Specifically it is the 
bank’s Tier-1 capital divided by its risk-weighted asset.  The bottom two rows of each 
table present the Pseudo-R2 for each model and the incremental explanatory power of 
ELPR relative to T1CR.  The t-statistics in parentheses are based on standard errors 
clustered at the bank level.  *, **, *** indicate statistical significance at the 10 percent, 
5 percent, and 1 percent levels for two-tailed tests, respectively.  
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Table 4.  Pseudo R2 and Accuracy Rate: ELPR vs. CAMELS 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 ELPR C A M&E L S CAMELS Combined 
1-year Horizon         
Pseudo R2 0.247 0.171 0.188 0.156 0.004 0.004 0.333 0.375 
Accuracy rate 80.91% 74.44% 69.22% 67.58% 18.58% 12.08% 86.00% 88.74% 
2-year Horizon         
Pseudo R2 0.173 0.055 0.050 0.050 0.015 0.000 0.142 0.229 
Accuracy rate 72.78% 56.04% 32.57% 36.50% 35.22% 4.91% 68.70% 79.36% 
3-year Horizon         
Pseudo R2 0.128 0.015 0.003 0.013 0.020 0.007 0.068 0.171 
Accuracy rate 64.74% 43.09% -1.66% 13.56% 38.52% 16.96% 54.36% 72.24% 
4-year Horizon         
Pseudo R2 0.098 0.009 0.001 0.002 0.016 0.013 0.050 0.135 
Accuracy rate 58.90% 37.38% 14.07% 2.46% 33.96% 21.11% 46.17% 65.14% 
5-year Horizon         
Pseudo R2 0.077 0.007 0.002 0.003 0.009 0.014 0.042 0.108 
Accuracy rate 53.31% 32.27% 19.66% 6.77% 25.46% 22.06% 41.27% 59.13% 

This table reports the pseudo R2s and Accuracy Rates (ARs) derived from bank failure prediction models that feature ELPR and CAMELS-related 
variables. Model 1 uses ELPR as a stand-alone input variable.  Accuracy rate (AR) is a composite measure that combines a model’s type-1 and 
type-2 error rates.  It is based on the area under the ROC curve (AUC): AR=2×AUC-1.  ELPR is the ratio of shareholder equity to amount of loan 
portfolio risk in logarithmic form, as described in section 1.  CAMELS variables are used by regulators to monitor bank health and are defined in 
Appendix V.  Models 2-6 use each individual component of CAMELS as input on a stand-alone basis.  Model 7 uses all CAMELS variables 
together.  Model 8 combines all CAMELS proxies with ELPR to predict bank failures.  Results are separately reported for 1-year to 5-year 
forecasting horizons.   
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Table 5.  Variance-related Information and Covariance-related Information 
Panel A 
 1-year 2-year 3-year 4-year 5-year 
VAR_unq -3.606*** -3.689*** -3.572*** -3.271*** -3.229*** 

 (-11.85) (-14.27) (-15.10) (-13.03) (-12.66) 

COVAR -1.987*** -2.639*** -2.612*** -2.276*** -1.822*** 
 (-8.07) (-14.91) (-14.95) (-13.80) (-11.99) 

CAMELS Control Control Control Control Control 
 

Panel B 
 1-year 2-year 3-year 4-year 5-year 

COV_unq -1.510** -2.143*** -1.980*** -1.218** -0.333 
 (-2.25) (-4.27) (-4.24) (-2.54) (-0.75) 

VAR -2.408*** -2.853*** -2.780*** -2.359*** -1.977*** 
 (-11.02) (-18.54) (-18.98) (-16.12) (-14.73) 

CAMELS Control Control Control Control Control 

 
This table examines the relative importance of variance- and covariance-related 
information conveyed by ELPR.  The table values represent the results of a set of 
logistic regression models to predict bank failures.  The dependent variable is an 
indicator for future bank failure in year t+i, where i = 1 (column 1) to 5 (column 5).  
The independent variable of particular interest is either VAR_unq (in Panel A), or 
COV_unq (in Panel B).  VAR_unq is the unique variance-related information in ELPR 
after controlling for the information in COVAR; and COV_unq is the covariance-related 
information in ELPR after controlling for the information in VAR.  The independent 
variable in each regression is first orthogonalized with respect to the other regressor, 
(see construction details in Section 4.4).  For all estimations, we include the CAMELS 
variables as control.  The t-statistics in parentheses are based on standard errors 
clustered at the bank level.  *, **, *** indicate statistical significance at the 10 percent, 
5 percent, and 1 percent levels for two-tailed tests, respectively. 
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Table 6.  ELPR Rank and the Market Implied Cost of Capital (ICC) for Publicly-
listed Bank Holding Companies 
 
 Full Sample Period Non-Crisis Financial Crisis 

 (1) (2) (3) (4) (5) (6) 

RELPR -0.0235*** -0.0189*** -0.0171*** -0.0144*** -0.0475*** -0.0361*** 
 (-8.13) (-7.29) (-6.79) (-6.09) (-6.02) (-5.25) 

SIZE  -0.0006  -0.0002  -0.0021* 
  (-0.98)  (-0.31)  (-1.72) 

LEV  0.0101***  0.0099***  0.0099*** 
  (9.16)  (7.79)  (4.67) 

MB  -0.0045***  -0.0029**  -0.0103*** 
  (-3.06)  (-2.03)  (-2.72) 

Constant 0.0945*** 0.0950*** 0.0913*** 0.0882*** 0.0851*** 0.1035*** 
 (48.30) (24.69) (50.06) (23.69) (15.26) (10.64) 

Observations 4936 4936 3721 3721 1215 1215 
Year FE YES YES YES YES YES YES 
Adjusted R2 0.193 0.280 0.232 0.301 0.131 0.240 

This table reports results from pooled regressions of firms’ implied cost of capital (ICC) 
on their scaled ELPR rank (RELPR) and controls.  The sample consists of all publicly 
traded financial service firm with at least one FDIC-monitored bank.    Columns 1 and 
2 report results for the full sample period (2002-2016), columns 3 and 4 report results 
for non-crisis periods (2002-2006; 2011-2016) and columns 5 and 6 report results for 
the financial crisis years (2007-2010).  The dependent variable is each firm’s implied 
cost of capital (ICC), estimated using equation (8).  RELPR is a scaled decile rank 
measure where we subtract 1 from each firm’s year-end ELPR decile rank, and divide 
the result by 9.  By construction, this variable ranges from 0 to 1, and the estimated 
coefficient captures the difference in mean between the Decile 1 and Decile 10 firms.  
The control variables are: Bank size (SIZE), defined as the natural logarithm of the 
equity market value; the market-to-book ratio (MB), measured as of the last fiscal year-
end; and Bank leverage (LEV), defined as the ratio of long-term debt to market value 
of equity.  The t-statistics in parentheses are based on standard errors clustered at the 
bank level.  *, **, *** indicate statistical significance at the 10 percent, 5 percent, and 
1 percent levels for two-tailed tests, respectively. 
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Table 7.  Average Next-Twelve-Month Returns for ELPR Decile Portfolios 
 

 Full Sample 
Period 

(7/2002-6/2017) 

Non-Crisis Years 
(7/2002-6/2007; 
7/2011-6/2017) 

Financial Crisis 
Period 

(7/2007-6/2011) 
ELPR Deciles RET RET RET 
1 2.76% 17.43% -40.66% 
(Low) (1.82) (14.26) (-14.36) 

2 6.33% 18.1% -25.99%  
(4.79) (16.44) (-9.20) 

3 6.21% 17.89% -25.15%  
(4.80) (16.77) (-9.06) 

4 8.11% 16.77% -15.44%  
(6.71) (15.65) (-5.58) 

5 6.55% 15.00% -15.43%  
(5.85) (15.34) (-6.00) 

6 9.15% 16.09% -9.38%  
(8.85) (17.44) (-3.77) 

7 7.95% 13.49% -6.89%  
(7.94) (14.13) (-2.89) 

8 8.91% 14.09% -4.76%  
(9.33) (14.57) (-2.30) 

9 8.52% 12.27% -1.23%  
(10.22) (14.06) (-0.68) 

10 9.69% 13.65% -0.45% 
(High) (11.37) (15.43) (-0.24) 

High-Low 6.93% -3.78% 40.21% 
(ELPR strategy) (4.04) (2.52) (12.19) 

High-Low 2.42% -2.90% 19.98% 
(T1CR strategy) (1.59) (2.14) (5.85) 

This table examines next 12-month portfolio returns to firms sorted by their ELPR and 
T1CR.  In these strategies, ELPR is adjusted book equity divided by loan portfolio risk 
(LPR), as described in Section 1.  T1CR is a capital adequacy ratio commonly used by 
bank regulators, defined as each bank’s Tier-1 capital divided by its risk-weighted asset.  
To construct this table, we sort individual firms by its ELPR or T1CR measure annually 
as of June 30.  The sample consists of all publicly-traded bank holding companies with 
at least one FDIC-monitored bank, and 80% or more of its total assets in banking 
subsidiaries.  The top decile contains stocks with the highest ELPR score while the 
bottom decile contains stocks with lowest ELPR.  Column 1 reports results for the full 
sample period (holding period returns between July 2002 and June 2017); Column 2 
reports results for non-crisis years; and Column 3 reports results for the financial crisis 
years (holding period returns between July 2007 and June 2011).  The bottom rows 
present tests of differences in mean returns between decile 10 and decile 1 portfolios.  
T-statistics are reported in parentheses.     
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Table 8.  Average Monthly Returns to an ELPR-based hedge strategy during the 
Financial Crisis (2007-11), after Controlling for Common Risk Factors 
 
 (1) (2) (3) 
 Fama French three-

Factor 
Carhart Four-Factor Fama French Five-Factor 

Alpha 4.0830*** 4.1645*** 3.3322*** 
 (4.08) (4.14) (3.21) 

Rm-Rf -0.0040 0.0441 0.2627 
 (-0.02) (0.21) (1.14) 

SMB -0.2317 -0.2354 -0.4337 
 (-0.52) (-0.53) (-0.99) 

HML -0.7898** -0.6849* -0.9096** 
 (-2.44) (-1.99) (-2.50) 

MOM  0.1480  
  (0.91)  

RMW   1.1611* 
   (1.69) 

CMA   1.0382 
   (1.44) 

Observations 48 48 48 
Adjusted R2 0.136 0.132 0.188 

This table reports the results of time-series regression of monthly portfolio hedge 
returns to ELPR strategy on well-documented risk factors.  The regression has 48 
observations from July 2007 until June 2011, inclusively.  Common risk factors 
considered include Market (Rm–Rf), Size (SMB), Book-to-market (HML), Momentum 
(MOM), Profitability (RMW) and Investment (CMA).  Market is the excess market 
return over the risk-free rate; SMB is the return on small stock portfolios minus the 
return on big stock portfolios; HML is the return on the value portfolios minus the return 
on growth portfolios; MOM is the return on high prior return portfolios minus the return 
on low prior return portfolios; RMW is the return on robust operating profitability 
portfolios minus the return on weak operating profitability portfolios; CMA is the return 
on conservative investment portfolios minus the return on aggressive investment 
portfolios.  Models 1-3 document the results for Fama French three-Factor model(1993), 
Carhart Four-Factor model (1997), and Fama French Five-Factor model (2015), 
separately.  T-statistics are reported in parentheses.  *, **, *** indicate statistical 
significance at the 10 percent, 5 percent, and 1 percent levels for two-tailed tests, 
respectively. 
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Appendix I.  A Timeline of Basel Pronouncements 
 
 
 
 

July 1988: 
Basel I 

End of 1992:  
Basel I in US 

Basel I: 
Asset Risk Weighting 
System: 
 

The Risk Weighted Assets 
(RWA) of a financial 
institution is defined as the 
linear sum of its holdings in 
each asset class, each 
multiplied by a fixed risk 
weight: 
• 0% (e.g., sovereign 

debts) 
• 20% (e.g., receivables 

from other banks) 
• 50% (e.g., mortgages) 
• 100% (e.g., other 

corporate receivables) 

Jun 2004: 
Basel II 

Apr 2008: 
Basel II in US 

Basel II: 
Background: 
Basel II was developed in response to perceived shortcomings in Basel I, 
particularly with the asset risk weighting system (too arbitrary, static, 
insensitive variations in risk within each asset group).  It allowed some, 
larger, banks a second, more flexible, way to estimate its risk exposure. 
Risk Weights: 
1) Standardized approach:  
    Similar to Basel I, but with more granular risk categories. 
2) Advanced approach (Internal Ratings-based approach, IRB) 

Core banks and Opt-in banks are allowed to determine some of the 
key elements needed to calculate their own capital requirements: 
probability of default (PD), loss given default (LGD), exposure at 
default (EAD), or effective maturity (M). The risk parameters are then 
put into a formula provided by regulators and then transformed to K 
(the risk weight for each asset class) 

IRB Application: 
1) Core banks (required): (i) total assets>=$250 billion or (ii) foreign 
exposure >=$10 billion; (2) Opt-in banks: banks that voluntarily adopt 
advanced approaches; 3) A subsidiary of a core bank or opt-in bank. 
Property-Portfolio Invariance: 
Note that under Basel II, the risk-based capital requirement for a particular 
exposure still does not depend on the other property exposures held by the 
bank. Under both the Standardized approach and the IRB-based approach, 
the total capital at risk for the bank is simply the sum of the risk-weighted 
capital for each individual exposure. 

Dec 2010: 
Basel III 

Jan 2014: 
Basel III in US 

Basel III: 
Background: 
Basel III was developed in response to the 
global financial crisis, which highlighted many 
shortcomings of the IRB-based approaches 
(easy to manipulate, inconsistent, opaque, 
complicated). 
Nature of Revisions: 
1) To enhance the robustness and risk 
sensitivity of the standardized approaches 
2) To constrain the use of the IRB-based 
methods. 
  (i) Removed the option to use the advanced 
IRB approach for certain asset classes; 
  (ii) Adopted “input” floors (for metrics such 
as probabilities of default (PD) and loss-given-
default (LGD)) to ensure a minimum level of 
conservativism in model parameters for asset 
classes where the IRB approaches remain 
available; 
  (iii) Provided greater specificity in terms of 
appropriate parameter estimation practices to 
reduce RWA variability.  
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Appendix II.  Prompt Corrective Action (PCA) Guidelines 
Prompt Corrective Action (PCA) guidelines were issued by the FDIC to establish the 
capital measures and threshold levels that are used to determine supervisory actions.  
The following table summarizes the threshold values used to define PCA categories 
before Basel III and under Basel III, respectively.  Banks in the three lowest PCA 
categories –Undercapitalized; Significantly Undercapitalized; or Critically 
Undercapitalized – are subject to a variety of possible regulatory interventions.  If a 
bank is Critically Undercapitalized, the PCA framework generally prohibits the 
payment of interest on subordinated debt.   Further, no later than 90 days after a bank 
becomes Critically Undercapitalized, its primary Federal banking agency will either (i) 
appoint a receiver or (ii) require other action (for an extendable period up to an 
additional 180 days) that it determines better achieves the purposes of the PCA 
framework. In these tables, Total risk-based capital is (Tier-1 capital + Tier-2 
capital)/RWA; T1CR is Tier-1 capital divided by RWA; Leverage capital is Tier-1 
capital divided by total assets; and Common equity Tier-1 risk-based capital is (Tier-1 
capital – additional Tier-1 capital)/RWA.  In all cases RWA is risk-weighted assets as 
defined by Basel guidelines.    

 

PCA Capital Categories (before Basel III) 

Capital category Total risk-based 
capital  

Tier-1 risk-based capital 
(T1CR) 

Leverage  
capital 

Well capitalized 10% 6% 5% 
Adequately capitalized 8% 4% 4% 
Undercapitalized < 8% < 4% < 4% 
Significantly 
undercapitalized < 6% < 3% <3% 

Critically undercapitalized Tangible Equity / Total Assets <= 2% 

 
PCA Capital Categories (under Basel III) 

Capital category 
Total risk-

based 
capital 

Tier-1 risk-
based 
capital 

Common Equity 
Tier-1 risk-based 

capital 

Leverage 
capital 

Well capitalized 10% 8% 6.5% 5% 
Adequately 
capitalized 8% 6% 4.5% 4% 

Undercapitalized < 8% < 6% <4.5% < 4% 
Significantly 
undercapitalized < 6% < 4% 3% <3% 

Critically 
undercapitalized Tangible Equity / Total Assets <= 2% 
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Appendix III.  Main Components of Bank Assets 
This appendix provides a breakdown of the two main components on the asset side of 
banks’ balance sheets: loan portfolios and debt securities (typically government debt).   
Our sample consists of all FDIC-insured banks and thrift companies that filed 
regulatory reports in the years 2001 to 2015, inclusively.  The unit of observation is a 
firm-year.  To construct this appendix, we sort all banks into ten size deciles based on 
their total asset, as reported at the end of each calendar year.  Decile 1 (10) represents 
the largest (smallest) banks by total assets.  For each size decile, we report the size of 
their loan portfolio and the amount of their debt securities, each expressed as a 
percentage of total assets.   
Column 1 (2) reports the mean (median) loan portfolio as a percentage of each bank’s 
total assets; Column 3 (4) reports the mean (median) debt securities as a percentage of 
each bank’s total assets.  The corresponding statistics for all FDIC-insured banks in our 
sample, without conditioning on size, are presented in the bottom line.  
 

Bank Size 
Deciles by 
Total Asset 

Loan (Mean) Loan (Median) Debt securities 
(Mean) 

Debt securities 
(Median) 

1 (largest) 65.74% 68.11% 20.93% 18.55% 
2 67.62% 69.66% 19.98% 17.71% 
3 66.23% 68.47% 20.96% 18.27% 
4 66.20% 68.03% 20.59% 18.50% 
5 65.16% 66.86% 21.38% 18.88% 
6 64.35% 66.44% 21.47% 19.01% 
7 62.51% 64.33% 22.50% 20.34% 
8 61.25% 62.96% 22.98% 20.76% 
9 59.20% 60.57% 23.50% 21.39% 

10 (smallest) 55.49% 56.67% 22.59% 20.58% 
Total 63.37% 65.51% 21.69% 19.23% 

  



62 
 

Appendix IV.  Loan Categories and Delinquency Rates 
This appendix presents summary statistics for loan categories.  The sample consists of 
111,453 bank-year observations from 2001 to 2015.  To construct this table, we use data 
from FDIC Quarterly Banking Profile (QBP) reports to create 14 loan categories: 
 
 

Loan type Definitions 
CONSTRUCTION  Construction and development loans. 
FARMLAND  Real estate loans secured by farmland. 
RES Real estate loans secured by 1-4 family residential properties. 
RESMULT Real estate loans secured by multifamily residential properties. 
NRES Real estate loans secured by nonfarm nonresidential properties. 
FOREIGN Real estate loans in foreign offices. 
INSTITUTION Loans to depository institutions. 
AGRICULTURAL Agricultural production loans. 
C&I Commercial & industrial loans. 
CRCD Credit cards. 
CONOTH Other loans to individuals. 
SOVEREIGN Loans to foreign governments and official institutions. 
OTHER All other loans. 
LEASE Lease financing receivables. 

We present summary statistics for each loan category, arranged in descending order of 
importance in the aggregate portfolio.  Columns 1 and 2 report Aggregate Level 
statistics, whereby outstanding loans are summed across all banks before averages are 
computed.  Column 1 reports the percentage share of the aggregate loan portfolio 
represented by each loan type (Ratio).  Column 2 reports the aggregate non-performing 
loan ratio (NPL) in each loan category.  Columns 3-8 report bank-level results.  
Specifically, table values in Column 3 are the loan type percentage when variables are 
first computed at the bank-level and then averaged across all banks.  Columns 4-8 report 
descriptive bank-level statistics for each loan type, expressed in millions of dollars.   
 

 

 Aggregate Level Bank Level 
Loan type Ratio NPL Ratio Mean SD P25 P50 P75 
RES 33.90% 5.43% 31.76% 292.39 5401.7 7.98 22.45 59.54 
C&I 18.67% 2.09% 13.82% 163.64 3065.3 3.01 8.82 24.47 
NRES 13.32% 2.38% 22.16% 117.06 1138.6 4.02 16.6 53.33 
CONOTH 8.73% 2.78% 7.54% 75.81 1473.6 1.39 3.5 8.51 
CRCD 6.96% 3.96% 0.55% 62.36 1812.1 0 0 0 
CONSTRUCTION 5.00% 6.19% 7.36% 42.59 437.3 0.62 3.82 15.86 
OTHER 4.05% 1.79% 0.57% 37.75 1248.7 0 0.04 0.27 
RESMULT 2.92% 1.72% 2.44% 25.9 476.9 0 0.79 4.58 
LEASE 1.97% 1.48% 0.41% 16.06 351.9 0 0 0 
INSTITUTION 1.79% 0.13% 0.12% 14.92 593.8 0 0 0 
AGRICULTURAL 0.88% 1.53% 6.97% 7.65 73.2 0 0.54 4.66 
FARMLAND 0.88% 2.10% 6.30% 7.79 43.2 0 1.39 6.08 
FOREIGN 0.85% 3.09% 0.01% 7.46 521.9 0 0 0 
SOVEREIGN 0.08% 1.40% 0.00% 0.65 33.7 0 0 0 
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Appendix V.  Descriptive Statistics for of Main Bank Failure Predictors 
 
This appendix presents descriptive statistics for various bank failure predictors used in 
our paper.  The primary predictor of interest is the equity-to-loan-portfolio-risk (ELPR) 
variable, introduced in this study.  ELPR is the ratio of a bank’s shareholders’ equity 
minus intangible assets, all divided by its loan-portfolio-risk (LPR), expressed in 
logarithmic form.  For this purpose, LPR is the expected dollar loss due to default for a 
bank’s loan portfolio, as described in Section 1.  The predictive power of ELPR is 
compared to the following CAMELS indicators commonly used by regulators to 
monitor banks. 
 
CAMELS proxy Definition 
C(capital adequacy) Also referred to as T1CR, this variable is computed 

by dividing Tier 1 (Core) capital by a bank’s risk-
weighted assets (RWA).   
 

A(asset quality) Total non-performing loans and leases, scaled by 
each bank’s total loans and leases. 
 

M(management experience) 
& 
E(earnings) 

DeYoung (1998) report that regulatory scoring of 
management quality and earnings ability is highly 
correlated with each bank’s return on assets (ROA), 
measured as the ratio of net income after taxes and 
extraordinary items (annualized) to average total 
assets. 
 

L(Liquidity) The ratio of cash holdings to total deposit. 
 

S(sensitivity to interest rates) Net short-term assets as a percentage of total assets; 
computed as the difference between short-term assets 
and short-term liabilities, all divided by total assets. 
 

 
 Mean SD P1 P5 P25 P50 P75 
LPR (in thousands) 5922  17694  40  109  481  1386  3812  
ELPR 2.3928 0.7178 1.0841 1.4180 1.8751 2.2806 2.8036 
T1CR 0.1720 0.1051 0.0763 0.0931 0.1142 0.1419 0.1894 
A 0.0288 0.0285 0.0000 0.0005 0.0092 0.0204 0.0387 
M&E 0.0076 0.0110 -0.0453 -0.0113 0.0047 0.0089 0.0128 
L 0.0840 0.0846 0.0095 0.0183 0.0343 0.0546 0.0994 
S 0.0844 0.1719 -0.2774 -0.1662 -0.0233 0.0664 0.1778 
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Appendix VI.  The failure of Silver State Bank 
 
Silver State Bank (SSB) was a Nevada commercial bank with 17 branches in the Las 
Vegas and Phoenix metropolitan areas and loan operations across the western United 
States.  On September 5, 2008, the bank couldn't meet the demands of depositors and 
was deemed insolvent by the state.  The net cost to FDIC associated with the closing of 
Silver State Bank was estimated at between $450 million and $550 million.  
 
Using a one-year forecast horizon, the ELPR value for this bank at the end of 2006 was 
0.978.  Based on the historical distribution of ELPR values at the end of 2006, SSB’s 
ELPR is lower than the 1th percentile cutoff of 1.084.  Therefore, ELPR would have 
flagged SSB as severely undercapitalized (with a probability of failing by Dec 2008 of 
14.47%; much higher than the base rate of 2%).  On the other hand, regulators using 
T1CR would have arrived at an opposite conclusion.  The value of SSB’s T1CR was 
9.67%.  According to the Prompt Corrective Action framework in place at the time, a 
T1CR ratio above 6.0% would place the bank in the “Well Capitalized’ category.  
Therefore, T1CR would not identify SSB as a failure candidate in 2006.  
 
The underlying cause of this bank’s failure was its overexposure to risky real estate 
loans, especially mortgages on undeveloped land purchased for home construction (see 
table below).  T1CR failed to consider the risk the bank faces from its highly 
concentrated holdings in these loan categories whose NPL rates are also highly 
correlated (historical pairwise correlation of 0.86).  In contrast, ELPR took into account 
the imbalance in SSB’s loan types, its high exposure to loan classes with high NPLs, 
and the high correlation between its loan holdings.  Banks can remain profitable even 
as their loan portfolio risk increases.  During the last quarter of 2007, Silver State’s net 
income increased to $26.42 million from $22.51 million in the same quarter 2006.  
Other CAMELS indicators failed to pick up the mounting risk in this bank in part 
because of their reliance on profitability.  Even as late as year-end 2007, bank regulators 
still regarded the SSB as well-capitalized.   
 

 Loan Composition of Silver State Bank in 2006 
Loan Type Dollar amounts  

in thousands Proportion 

CONSTRUCTION 560,723 60.157% 
FARMLAND 8 0.001% 
RES 28836 3.094% 
RESMULT 7161 0.768% 
NRES 215,370 23.106% 
FOREIGN 0 0% 
INSTITUTION 0 0% 
AGRICULTURAL 0 0% 
C&I 113,520 12.179% 
CRCD 0 0% 
CONOTH 4,505 0.483% 
SOVEREIGN 0 0% 
OTHER 1,551 0.166% 
LEASE 411 0.044% 
Total 932,085 100% 
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Appendix VII.  Bank Holding Companies (BHC) Statistics by Year 
 

Year N of BHC N of Banks  
held by BHCs 

Average banks 
per BHC 

Avg MCAP 
(in millions) Avg ROE 

2001 474 1032 2.18 1,605  11.04% 
2002 472 970 2.06 1,443  11.83% 
2003 474 951 2.01 1,522  11.72% 
2004 473 923 1.95 1,561  11.03% 
2005 475 914 1.92 1,505  11.02% 
2006 463 862 1.86 1,658  10.22% 
2007 467 870 1.86 1,346  7.85% 
2008 451 795 1.76 1,099  -1.03% 
2009 425 654 1.54 1,037  -5.50% 
2010 412 593 1.44 1,153  0.07% 
2011 404 558 1.38 1,092  2.95% 
2012 392 512 1.31 1,322  6.48% 
2013 394 504 1.28 1,641  7.63% 
2014 369 464 1.26 1,863  7.75% 
2015 360 442 1.23 1,941  7.86% 

Average 434 736 1.67 1,453 6.73% 

 
This table reports year-by-year statistics on bank holding companies.  N of BHC 
represents the number of bank holding companies.  N of Banks represents the number 
of FDIC-insured banks.  Average number of banks within each BHC is defined as the 
number of banks divided by the number of BHCs.  Avg MCAP represents the average 
market capitalization (measured in $ millions).  Avg ROE represents the average return 
on equity.  The bottom row reports corresponding values when annual results are 
averaged over the entire sample period.  
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