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Abstract

How precise should accounting measurements be, if management has discretion to strate-

gically withhold? We examine this question by nesting an optimal persuasion mechanism,

which controls what measurements are conducted, within a voluntary disclosure frameworkà

la Dye (1985) andJung and Kwon(1988). In our setting, information has real effects because

the firm uses it to make a continuous operating decision, increasing in the market’s belief. Ab-

sent frictions other than uncertainty about information endowment, we show that imprecision

can reduce strategic withholding but always weakly decreases firm value. We then examine

plausible environments under which, by contrast, there is an optimal level of imprecision fea-

turing coarseness at the marginal discloser. We offer additional implications in the contexts of

enforcement against strategic withholding and financing with collateralized assets.
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1 Introduction

In this study, we examine a framework that brings together two classic paradigms in accounting

theory: the first paradigm is that of ex-ante design of measurement systems or persuasion, in which

a company board or an accounting regulator chooses a measurement that controls what information

is collected and reported; the second paradigm is that of strategic voluntary disclosure, such that

management may, after receiving unfavorable information, choose to withhold unfavorable news.

Both paradigms are relevant to accounting questions given that the practice of accounting fea-

tures choices about how to measure transactions and what to report about the measurement. As a

continuing motivating example for our analysis, consider the problem of measuring an asset which

may have gained or lost value. The firm’s accounting standards specify which measurements are

conducted during the operating cycle. The process of valuing assets is not straightforward because

on occasion, the firm may not always be able to know or show verifiable evidence about changes

in value. In the case of a patent, there may not be information about the future cash flows from

exploiting the patent; in the case of a property or a private business, no recently traded compara-

bles may be available; in the case of inventories, the firm may be unsure as to whether a decline in

demand is permanent or temporary, etc.

Uncertainty about whether the measurement has or has not produced information to be reported

in the financial statements creates strategic incentives to withhold information. Specifically, at

the end of the accounting cycle, management receives what information has been gathered, if

any. Even if evidence has been received that would trigger an impairment test, management may

exert discretion not to make this evidence public. Alternatively, we can think about the output of

the information gathering stage as information that is initially soft (Gao and Liang 2018). The

accounting system makes some of the information hard by collecting the supporting evidence (Ijiri

1975; Bertomeu and Marinovic 2015).

Whatever information the measurement produces affects withholding incentives. Understand-

ing this interaction is the objective of this study. Naturally, our model applies to a variety of em-

pirical settings with (a) control over what information is collected, (b) uncertainty about whether
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the event has occurred or there is information to be collected. We briefly discuss a few illustrations

below - while our model is not intended as descriptive of the institutional details of each of these

examples, the settings are meant to offer applications in which the trade-off discussed here would

likely be at play.

First, a firm may implement a finer accounting system that brings about information about the

occurrence of past misstatements (Dechow, Ge, Larson and Sloan 2011): for example, this may be

achieved in the form of internal controls (Marinovic 2013) including recurrent reviews and checks

on past transactions, hiring more effective auditors or increasing oversight by boards (Laux 2010).

The market does not know whether such evidence has been received, and the manager may decide

to conduct the restatement based on the potential impact on earnings or any further reputational

consequence. Or, the firm may conduct a restatement stealthily, within venues that make it less

forthcoming to market participants (Files, Swanson and Tse 2009). Management must make a

choice whether to report information about a misstatement event to an outside party, but have no

simple means to report the absence of the event.

Second, the economic trade-offs may be considered in the context of disclosure of material

events, which are in principle required in the US as a filing of form 8-K. In principle, any signifi-

cant material event should be reported but, in practice, many events may or may not be objectively

considered material, and firms can be strategic as to which events to file, or when to file (Li 2013).

The reporting policy of the firm will be a function of how much operational information is col-

lected and transmitted into the financial reporting system. In addition, many material events that

could be reported in these filings contain proprietary information, which firms can choose to redact

(Verrecchia and Weber 2006; Heinle, Samuels and Taylor 2018).

Third, the design of the measurement system may interact with accounting measurement, but

need not concern only accounting related events. The Foreign Corrupt Practices Act (FCPA) for-

bids U.S. companies to engage in bribery of foreign officials. Monetary transfers in the process of

bribing can, however, be uncovered by accounting internal controls and, therefore, the quality of

the accounting system will determine a firm’s ability to detect whether its employees violate the
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provisions of the FCPA (Cooper, Ho, Hunter and Rodgers 1985). More generally, the quality of

the measurement system chosen by the company will allow firms to know whether an illegal act

has been committed by an employee. Rogue trading events (Barings, Sociét́e Géńerale), failures

to report an environmental violation (Volkswagen) or alleged ignorance of frauds by the Chairman

(Enron) are among many examples in which management may have received coarse information

from internal measurements.

Within this context, we ask two questions, which we believe to be steps to form a joint the-

ory of optimal measurements and strategic withholding. First, how do we design measurements

in the presence of strategic withholding incentives? According to one perspective, we may not

need to incorporate strategic considerations into the measurement process if we can rely on volun-

tary channels to supply information efficiently to the market. Second, how does the existence of

the measurement alter the voluntary disclosure environment? We expect very different disclosure

behaviors if measurements are precise than if they are imprecise with limited verifiable informa-

tion. Our purpose is thus to merge the two streams of literature into a theory which speaks about

financial reports as a choice of reporting mechanisms constrained by strategic reporting choices.

Before we discuss our main results, we lay out the channels for the interaction between the

measurement and voluntary disclosure. Precise measurements can counter-intuitivelyincrease

incentives to strategically withhold and reduce information. To understand why, suppose that

the measurement always obtains precise information about the asset when there exists verifiable

information. We know from a vast literature in voluntary disclosure theory that the disclosure

threshold will be obtained by comparing (i) the expected value of the asset as assessed by the

market when withholding to (ii) the value obtained by the marginal firms in possession of the asset

value that choose to disclose that value. By construction, the marginal discloser will be the lowest

asset value above the withholding threshold, and thus a precise measurement creates less incentive

to disclose.

Suppose that, by contrast, the measurement is imprecise above the disclosure threshold and

the information collected by the measurement does not allow the market to know the exact actual

4



asset value of the marginally disclosed report. Then, the marginal disclosers will compare the non-

disclosure price to an expectation over a subset of asset values located above the threshold: this

expectation is greater than the threshold signal and, subsequently raises the benefit of disclosure.

But there is a downside to this type of measurement: while the set of withheld measurements nar-

rows, the information revealed by marginal disclosers has become more imprecise. In summary,

more precision over withholding firms comes at the cost of increasing imprecision over the dis-

closing firms. This creates a trade-off in choosing the ideal precision of the measurement whose

resolution is non-trivial.

We formalize this trade-off theoretically and analyze whether the design of the measurement

can improve efficiency in a setting where the firm makes better decisions when public information

is more precise. We expect from the trade-off that, in general, the preferred measurement may

depend on the value of information, the distribution of the asset values, and the frictions relating

to the possible absence of information.

Interestingly, the preferred measurement may collapse to a straightforward measurement if un-

certainty about information endowment is the only friction. Within the models ofDye (1985) and

by Jung and Kwon(1988), extended to include a choice of measurement and a productive bene-

fit of information, no imprecise measurement would do better than a fully-precise measurement

even though imprecise measurements reduce strategic withholding. We delay a complete argu-

ment for this result in text and offer here a simple heuristic intuition. The solution to the voluntary

disclosure problem prescribes an indifference condition that equates the expectation conditional

on non-disclosure to the expectation of the marginal disclosers. When this equality holds, the

measurement cannot create dispersion in posterior expectations between withholding firms and

marginal disclosers. Without additional dispersion in posterior expectations, a measurement that

reclassifies some withholding firms into marginal disclosers creates no useful information.

We relax next a key restriction central to this result and develop a more nuanced answer to

the problem. We show, in a framework with both uncertainty about information endowment (Dye

1985; Jung and Kwon 1988) andprivatecosts of disclosure (Verrecchia 1983), that there is always
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some benefit to imprecision for any non-zero disclosure cost or benefit. This framework captures

common situations in which information revealed in detailed accounting reports may be used by a

different party (a regulatory agency, employees, competitors, consumers, etc.) transferring value

from the firm to the other parties. This creates a misalignment between private and social value

of information. As management privately bears the cost, the disclosure threshold still equates the

payoff from withholding to the payoff from the marginal discloser. In turn, the market expectation

conditional on non-disclosure must be lower than the market expectation for the marginal discloser.

Therefore, the measurement now generates useful information in the form of different posterior

expectations.

Next, we lift the assumption that it would be desirable for the measurement, absent any other

friction, to increase the amount of information available. Addressing this question requires addi-

tional institutional details about the use of information and we choose here a simple model that

captures a possible use of information in debt contracts. Specifically, we embed voluntary disclo-

sure into the collateral financing model ofGoex and Wagenhofer(2009), where the firm must meet

a minimum asset value in order to finance a project. In this environment, some imprecision for

the marginal discloser is desirable as long as the collateral requirement becomes sufficiently large

and the probability of receiving information is low. Intuitively, the measurement is designed so

that precise measurements are more likely to be voluntarily disclosed over favorable asset values.

However, some imprecision for intermediate asset values is used to raise the perceived value of the

asset as collateral. Imprecision increases in the probability that information is received.

Literature review. Our study is closely related to two streams of the literature: studies that

focus on the structure of the information environment as a determinant of disclosure behavior and

studies that focus on the optimal provision of information with real effects.

As to the first stream of literature, the informational environment faced by firms before they re-

lease information will affect the type and amount of information that is released. This is a key facet

of our analysis and is discussed in papers such asEinhorn(2005, 2017) andHeinle and Verrecchia

(2015). Einhorn(2005) considers an environment in which the value of the firm is updated using
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two pieces of information, one public and one private, showing that the presence of mandatory dis-

closures alters the incentives to report news voluntarily.Heinle and Verrecchia(2015) argue that

the aggregate expected number of firms making commitments to disclosure affects individual in-

centives to commit to disclose, implying that the aggregate environment and individual disclosures

are jointly determined. The study byEinhorn(2017) is another example in which the existence of

a source information competing with voluntary disclosure affects the amount of disclosure.

Within this literature, we are aware of few studies in which the regulatory environment is

itself considered as an optimal choice. In order to consider optimal regulatory choice, we thus

need to link our paper back to an extensive pre-existing literature on real effects, which (in its

most inclusive definition) refers to environments in which information interacts with real operating

decisions (Kanodia 1980; Kanodia and Sapra 2016) and which gives us a rigorous formulation of

how properties of a measurement map to a specified objective. This is an active area of literature

that is far too broad to make even an attempt toward a comprehensive discussion but some of the

recent literature is relevant to our problem.

The paper byKanodia, Singh and Spero(2005) is most similar to our setting, as it focuses

on the optimal choice of imprecision in a noisy signaling problem; a key difference between the

context of their paper and our setting is that they do not focus on ex-post incentives to withhold

information. In addition, imprecision in their setting takes the form of garbling information while,

in our model, it is localized pooling at the lowest disclosure. InGao and Zhang(2018), the firm

makes a commitment to internal control processes which is affected by economy-wide information

revealed by other firms. This, in turn, implies that, absent regulation, a firm will under-weigh the

value of information and under-invest in its internal controls. The studies byGoex and Wagenhofer

(2009), Lu and Sapra(2009), Beyer and Guttman(2012), Gao and Liang(2013) are other recent

examples that reveal how information has real effects, although by and large, they focus on either

voluntary disclosure or measurement rules but not their interactions.

Our work is part of persuasion theory, which considers the design of a measurement system as

a mechanism that prescribes which information is collected and reported. Within this literature, the
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studies byGoex and Wagenhofer(2009), Bertomeu and Cheynel(2015), Huang(2016), Michaeli

(2017) andJiang and Yang(2017) bring insights from this literature into the design of measure-

ments that increase efficiency. Within this literature, a few recent studies focus on interaction

between persuasion and reporting incentives, includingFriedman, Hughes and Michaeli(2015),

Bertomeu, Vaysman and Xue(2016) andQuigley and Walther(2018) which develop settings in

which public information can crowd out or increase the supply of inside information. A main

difference between these models and ours is that, in these models, public information and private

disclosures are about different pieces of information. In our model, the persuasion mechanism is

the input to the voluntary disclosure.

Two papers are most closely related to ours, in the sense that they focus on persuasion as in-

put to a disclosure decision.Hummel, Morgan and Stocken(2016) focus on a class of problems,

in which shareholders can directly set a disclosure policy. With risk-seeking preferences, which

closely map to our convex payoff function, they show that the sender prefers full-information. They

do not focus on incentives for strategic withholding if the manager may not receive information,

which is the main focus of our model. Another related study is byDeMarzo, Kremer and Skrzy-

pacz(2017), which likes us, focuses on a persuasion mechanism as input to what is disclosed.

They interpret the choice of measurement in terms of an ex-ante test design, but their question

is somewhat different. In their model, the agentprivately chooses a test before being informed

and the chosen test is not known conditional on non-disclosure. They show that even without the

social value of information, the resulting test is one that meets the minimum principle (Acharya,

DeMarzo and Kremer 2011; Guttman, Kremer and Skrzypacz 2014) that would minimize posterior

expectations conditional on non-disclosure.

Two recent papers, while they do not focus on the persuasion mechanism per se, speak to the

embedded forces in voluntary disclosure that make the mechanism approach potentially desirable.

Glode, Opp and Zhang(2018) examine a sender’s disclosure to a monopoly, trading off the gains

from trade versus the monopoly’s incentive to extract the surplus. As in our model, there are

potential benefits from imprecise disclosures.Rappoport(2017) shows that the changes in the
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distribution of the information that make the sender less certain about the information translate into

lower skepticism by the receiver, and would in many settings increase disclosure. In our model,

the mechanism partially controls this skepticism to affect the equilibrium level of disclosure.

2 The model

2.1 Players, Strategies and Payoffs

Our model involves three players: a sender, a receiver, and a designer. For expositional pur-

poses, we use the interpretation of a firm measuring an asset and the state of nature as the asset

value. We refer to the designer as the regulator (e.g., a standard-setter), the sender as the manager

and the receiver as a capital market forming posterior expectations about the asset value. There

is uncertainty about both the asset value and about whether verifiable information regarding the

asset exists. The regulator wants to increase communication to the receiver but the sender may

strategically withhold to increase the investors’ posterior expectation about the asset value.

The timeline is as follows. At timeτ = 0, the regulator chooses a measurement system. At

τ = 1, the measurement system produces a signal about the asset value whenever it can be mea-

sured. The choice of the measurement system is observable to all players. Atτ = 2, if verifiable

information exists, the manager privately observes the signal and chooses whether to disclose it

to investors. Atτ = 3, conditional on public information, the investors take an action that affects

both the sender and the regulator payoffs. We are interested in the design of a measurement system

that maximizes the ex ante payoff of the designer, taking into account the sequentially rational

voluntary disclosure decision and market price. Figure1 depicts the sequence of events.

Distributional assumptions. The firm owns an asset whose valueV is random with realizations

v in the supportV ≡ [0, v], wherev > 0.1 For instance, one can think about the asset as a

retail location, currently owned by the firm, that may serve a role in operations. LetF denote the

1Throughout, we use a capital letter,V , to denote a random variable and a small letter,v, to denote its realization.
Proofs and results apply to distributions with unbounded support.
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-
τ = 0 τ = 1 τ = 2 τ = 3
r r r r

Regulator chooses
measurementG.

With probabilityq, no
information exists; with prob.
1 − q, manager privately
receives a realization
of signalX, drawn fromG.

Manager chooses
whether to discloseX or
to withhold; uninformed
manager stays silent.

Manager forms posterior
expectationE(V |X = x);
Regulator obtains payoff
φ(E(V |X = x)).

Figure 1: Timeline

distribution function ofV . We assume that the distribution ofV admits a p.d.f.f that is strictly

positive on the support.

As in Dye (1985) andJung and Kwon(1988), there is uncertainty about whether verifiable

information aboutV exists.2 Lack of verifiable information occurs when no information exists or,

if it exists, when it cannot be collected and reported credibly (i.e., when information is soft). It

may be that, with some probability, there are no comparables to measure the value of a property or

a new retail location has not yet generated verifiable long-term sales. We denote byq ∈ (0, 1) the

probability that there doesnot exist verifiable information about the asset value.

The measurement system. As in the persuasion literature (Aumann and Maschler, 1995; Ka-

menica and Gentzkow, 2011), we assume that a measurement is a mechanism that controls which

information is received by the manager. This measurement could represent prescriptions from

accounting rules, internal procedures for collecting information from the field, or long-term ac-

counting choice made by the firm. Given a distribution over states of natureF , a measurement

system induces a distributionG over posterior means if and only ifF is a mean-preserving spread

of G (Gentzkow and Kamenica, 2016).3 The measurement system chosen thus generates a ran-

dom variableX, distributed according toG. Because, in our model, only posterior expectations

about the asset affect preferences, we can simplify notation by writing each signalX as a posterior

2Note that we expose the model somewhat more generally thanDye (1985), to the extent that our assumption
is about the objective presence of (verifiable) information that could be used by the persuasion mechanism. InDye
(1985), by contrast, when information exists about the asset value, it is always verifiable.

3F is a mean-preserving spread ofG if
∫ v

0
φ(x)dF (x) ≥

∫ v

0
φ(x)dG(x) for all convex functionsφ or, equivalently,

if these distributions have equal means and
∫ x

0
F (y)dy ≥

∫ x

0
G(y)dy for all x ∈ V .
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expectation aboutV and restrictG to distributions over the support ofX.4

WhenG = F , the signal yields the same distribution of posterior means as the asset value

itself, that is, the signalX is equal to the asset valueV almost surely. This measurement is

precise, because it reveals the asset value without noisewhenever verifiable information about it

exists. As to imprecise signals, we do not impose any restriction on the measurement noise. When

information does not exist (with probabilityq), the measurement cannot generate any information,

as formalized in the notations below.

Strategy and beliefs. Let Ω denote the random information endowment of the firm. When a

firm does not receive verifiable information (Ω = ∅), it must choose nondisclosure and cannot

convey credibly not to possess any such information. On the other hand, when a firm receives

verifiable informationX = x (Ω = x), it can reportX truthfully or stay silent to pretend that

no verifiable information exists, which we refer to as (strategic) withholding.5 It could be the

case, for example, that the measurement detects that the asset lost value but management passes

on a possible impairment arguing to external parties that no such adverse information has been

received.

For a given measurement systemG selected by the regulator, a strategy for the firm is thus a

function r(ω; G) that maps the firm’s private information into a report.6 Let r denote the firm’s

public report (i.e., its disclosure decision), withr = (d, x) standing for disclosure of the posterior

meanx andr = nd standing for non-disclosure. When information does not exist,r = nd.7 A

4Specifically, for any signalX, we can use a signal structure that yields the same actions and payoffsX ′ =
E(V |X). In our model, this signal structure equates the signal to the action taken by the receiver (Kamenica and
Gentzkow 2011).

5We have left aside here manipulation incentives to keep our arguments as transparent as possible but, as noted
by Einhorn and Ziv(2011), manipulation can be incorporated as an invertible bias into a more general model. An
interesting question is whether misreporting costs would create another channel for imprecise measurement to increase
value.Guttman, Kadan and Kandel(2006) demonstrate an idea close to this concept by showing that pooling equilibria
in misreporting problems can imply higher ex ante value.

6We adopt the tie-breaking convention that indifferences between disclosure and nondisclosure are resolved in
favor of disclosure. The tie-breaker is inconsequential when the set of marginal disclosers has mass zero. When the
marginal disclosers do not have mass zero, this tie-breaker is consistent with the notion that the regulator can slightly
perturb the measurement system in such a way as to induce disclosure.

7 It is critical for the model that the manager cannot, at no cost, gather information that does not exist - or else
a fully-precise measurement would be used. As many of our examples show, it is not just plausible, but practically
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given disclosure strategy generates a random variable,R, whose realization,R = r, is the public

report that the market observes.

A market belief is a functionμ(r; G) that maps a report into a posterior expectation about the

asset value.

Social value of information. To model the real effects of information, we assume that the firm

may make operational decisions as a function of the market’s assessment of the asset value, e.g.,

make investments, draw on external funds, and so forth. We assume that the market values the

entire firm atφ(μ(r; G)), where the functionφ is increasing, convex, and twice continuously dif-

ferentiable. This assumption can be rephrased as stating that the ex ante expected value of the

firm, E (φ(μ(R; G))) is greater when the market has more precise information in the sense of

mean-preserving spreads.

Below, we provide a simple micro foundation that yields conditions such that (i) the maximiza-

tion of value yields a convex function, and (ii) this function is a function of posteriorexpectations.

Suppose that, after the realized reportr is observed, the firm makes an investment decisionk in

order to maximize the market priceE(V k − ψ(k)|r), whereV can be interpreted as productivity

andψ is an investment cost withψ(0) = ψ′(0) = 0 andψ′′ > 0 captures decreasing returns to

scale.89 Differentiating the objective function with respect to investmentk to obtain the optimal

investment,

k∗(E (V |r)) ≡ (ψ′)−1(E (V |r)). (1)

interpretable, that not all information could be gathered and it is a building block of the widely-usedDye (1985) and
Jung and Kwon(1988) approaches to model this in terms of a binary event - not for sake of descriptive realism but to
convey intuitions. There are cases in which an outside expert would not be able to assess a precise valuation, regardless
of how much documentation is provided (consider the problem of valuing an equity stake), or cases where there is
evidence (consider valuation with a trade of a comparable asset). Generalizing this model to any possible type of
costlyinformation acquisition or partial information endowment is not the point of our paper. Further, endogenizing
the probability of information endowment with some additional costly process would have little bearing on our main
trade-offs.

8The claim can be made slightly more general, as we can assume a value of the firmh(V )ν(k)−ψ(k) and change
variables to setk′ = ν(k) andV ′ = h(V ).

9Observe that the firm only cares about the market’s expectation of the cash flow, and not about the actual cash flow.
As a result, there is no mechanism for the firm to signal its private information through the choice of the investment
level, because the objective function does not depend directly on the realizedX (e.g., seeBrandenburger and Polak,
1996).
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Reinjecting this investment into the firm’s market price yields a market price that is a function of

the posterior expectation aboutV , that is, lettingx = E (V |r) denote the posterior expectation,

φ(x) ≡ xk∗(x) − ψ(k∗(x)).

Differentiating twice the equilibrium firm valueφ(x) yields thatφ′′(x) = 1/ψ′′(k∗(x)). Hence,

the convexity of the functionφ(∙) directly captures the returns to scale. In the special case of

quadratic diseconomies of scaleψ(k) = k2, firm value is quadratic as well,φ(x) = x2/4, and the

ex-ante expectation of firm value is

E (φ(X)) =
1

4

[
VG (X) + E (V )2] .

The ex ante expected firm value in the quadratic cost case thus increases as the informativeness of

disclosures increases, where informativeness is measured by the variance of the market’s posterior

expectation of the asset value.

2.2 Equilibrium

We are now in a position to state our equilibrium concept. The definition is split into two parts.

Definition 1 concerns the equilibrium of the voluntary disclosure subgame, after the regulator’s

choice of the measurement system. Definition2 describes what constitutes an optimal measure-

ment in this setting.

Definition 1 (Equilibrium of the disclosure subgame) For a given measurement systemG, an

equilibrium of the voluntary disclosure subgame is given by a reporting function,r(ω; G), and a

market’s assessment of the asset value,μ(r; G), such that:

(i) Given the firm’s reporting functionr(ω; G), the market’s assessmentμ(r; G) is the posterior
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expectation of the asset value given Bayes’ rule, that is,

μ(r; G) = E (V |R = r) ;

(ii) Given the market’s assessmentμ(r; G), the firm’s reporting function maximizes the firm’s

payoff, that is,

r(ω; G) =






nd if ω = ∅

(d, x) if ω = x andφ(x) ≥ φ(μnd)

nd if ω = x andφ(x) < φ(μnd)

,

whereμnd = E(V |R = nd).

This definition is standard: the market posterior expectation must follow Bayes rule (i) and the

manager discloses only when informed and when the price is lower conditional on non-disclosure.

Since the measurement system affects the disclosure strategy and the ex ante expected firm

value only through the distribution of posterior means that it induces,G, the regulator directly

maximizes over measurable signal distributions.

Definition 2 (Optimal measurement) An equilibrium measurementG∗ is optimal if it solves

max
G
E (φ(μ(r(Ω; G)))))

s.t.F is a mean-preserving spread ofG,

wherer(ω; G) andμ(r; G) are equilibrium strategies for the firm and the market, respectively, in

the voluntary disclosure subgame.

We say that a measurement is optimal if it maximizes the ex-ante value of the firm. Note that

because pricesφ(μ(r(Ω; G)) are convex in the posterior expectationμ(r(Ω; G), we know that the

regulator would always prefer a fully precise measurement if all information could be disclosed,

that is, ifq = 0. In this case, the conditions for unravelling hold (Viscusi 1978) and the manager’s
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report is fully informative about the outcome of the measurement. Ifq > 0, strategic withholding

will occur on the equilibrium path, implying a control over the measurement is not equivalent to

control over the voluntary signal that the market receives.

To keep the exposition simple, we will develop the analysis in-text in the special case of “inter-

val” measurements, which we define precisely in the Definition that follows (Definition3) but first

describe it intuitively. In AppendixB, we show that interval measurements are optimal within the

broad class of measurements in Definition2 but the proof is long and technical and adds limited

economic intuition.

An interval measurement is such that the information received by the manager is either in

the form of an interval with the form[ai, ai+1), or reveals full information about the true state

in the form of a full-disclosure regionVFI . We further economize notation by restricting the at-

tention to measurements in which the full-information region is either empty or a single interval,

VFI ≡ [aj , aj+1), and without loss of generality set the lowest interval[0, a1) equal to the with-

holding region.10 An interval measurement is fully described byM = (VFI , (ai)
I
i=0), with a

specification of the (possibly-empty) fully-revealing regionVFI and the set of interval information

sets[ai, ai+1) 6= VFI associated to the measurement.

Definition 3 (Convex-partitional measurement) A measurementG is convex-partitional if there

existsM = (VFI , (ai)
I
i=0), with {ai} an increasing sequence froma0 = 0 to aI = v, such that

either (i)X = E(v|v ∈ [ai, ai+1)) for all v ∈ [ai, ai+1) or (ii) X = v for all v ∈ VFI ≡ [aj , aj+1).

2.3 Discussion

Several assumptions, which we discuss at greater length below, are critical for our model.

Ex-ante measurement system design.As in most of the persuasion literature, a measurement in

our model describes which information is collected by an accounting system whose characteristics

are known to outsiders (e.g., long-term policies, accounting standards, etc.). The collection of

10This is without loss of generality as also shown in part of our main proof of optimality in AppendixB.
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information begins prior to economic uncertainty being realized, typically during the operating

cycle and, if management were to receive additional private information at the end of a reporting

period, this information would be soft and no longer be credibly reportable. The model may,

therefore, not be a fit for activities that occurexclusivelyat the end of a reporting period, especially

in environments where management chooses a measurement with private information about what

the measurement would deliver. In our model, it is the regulator who chooses a measurement and

does so without knowing the value of the asset and incentives to increase ex-post market values.

By contrast, with purely ex-post choice over the measurement system, the unravelling principle

would hold and management would face skeptical expectations when choosing anything but a

fully-informative measurement.11

Uncertainty about existence of verifiable information. The measurement in our model is con-

strained by the existence of verifiable information. In particular, even a fully-precise measurement

will fail to deliver a reportable signal if verifiable information does not exist. This assumption

broadly follows the framework ofIjiri (1975) which views the accounting process as making cer-

tain pieces of information hard but notes that not all information can be so incorporated into the

accounting process. We give various examples in the introduction of soft information that could

not easily be documented to yield verifiable measurements.

As such, a key assumption in our study is that information can take two forms: information

that cannot be measured (entirely soft or subjective) and information that can be measured, e.g.,

for which there is collectable or verifiable evidence. The occurrence of the friction in our model

and the chosen measurementjointly determine the information endowment of the manager. For

obvious reasons (both conceptual and practical), we assume that a measurement cannot collect

verifiable information when it does not exist. Of note, the subset of results pertaining to optimal

imprecision in Sections3.2 and4.1 (with privately-borne disclosure or withholding costs) apply

11Note that we are not the only study focusing on measurement system design and there is a very extensive prior
literature in which measurements are chosen prior to receipt of private information, seeArya, Glover and Sivaramakr-
ishnan(1997), Kanodia, Singh and Spero(2005) or Gigler, Kanodia, Sapra and Venugopalan(2014), among many
other examples.
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even if we assume that measurable evidence always exists (q = 0).

Social value of information. We assume that there is a social value of information, which we

model as a convex function of posterior expectationφ(∙). This formulation leaves aside benefits

from imprecision discussed in prior literature, such as inducing more efficient pre-disclosure ac-

tions (see, e.g.,Kanodia 2006), since the benefits of imprecision in these settings are the object of

an extensive ongoing literature - in this respect, our study is meant to be incremental to other ratio-

nales for imprecision covered in this literature (whose main point is not about incentives to disclose

ex-post). This is also a manner to take a simple conceptual perspective in which the regulator’s

problem can be thought as either a welfare problem or, more simply, as increasing an information

flow to the market. We discuss in Section4.2 an extension of our results in the context of the

collateral financing problem ofGoex and Wagenhofer(2009).

3 Analysis

3.1 Effect of imprecision on disclosure

As a benchmark, we state the equilibrium with perfect measurement. The equilibrium is standard

in the literature and such that informed managers disclose information if and only if they observe

a statex above a thresholdt0. We further know that this threshold must satisfy the indifference

condition for the marginal discloserφ(μt0
nd) = φ(t0), whereμt0

nd ≡ μ(nd; F ) is the non-disclosure

expectation with a perfect measurement. Simplifying, the above equation is simplyμt0
nd = t0 so

that this indifference condition is not a function ofφ(∙) and the disclosure threshold is given by

equation (7) inJung and Kwon(1988). Note that, while the social value of information does

not affect the localization of the disclosure threshold under perfect measurement, non-disclosure

decreases firm value more whenφ(∙) is highly convex.12 Put differently, there is no adjustment in

12In the equilibrium of the voluntary disclosure model, the firm value is(q + (1 − q)F (t0))φ(μt0
nd) + (1 −

q)
∫ v

t0
φ(x)f(x)dx, versusqφ(E(V )) + (1 − q)

∫
φ(x)f(x)dx if the manager did not withhold strategically. The loss

of expected surplus due to strategic withholding is a function ofφ(∙) (and is zero ifφ(∙) is linear). However, as noted
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the probability of disclosure because the manager only cares about the posterior expectation and

not the ex-ante surplus.

To obtain intuition for the benefit of imprecision, suppose that the marginal discloser does

not receive a perfectly precise signal, but instead observes thatV ∈ [t, a2). In other words, the

expectation at the marginal discloser isE(V |V ∈ [t, a2)). This marginal discloser has an incentive

to disclose as long as the posterior expectation is greater under disclosure than under withholding:

E(V |V ∈ [t, a2)) ≥ μt
nd, (2)

where the non-disclosure posteriorμt
nd ≡ μ(nd; G) is simply the expectation ofV conditional on

either the manager being uninformed or the manager being informed and withholding whenV < t.

Note a key difference with standard voluntary disclosure theory (Verrecchia 1983; Dye 1985;

Jung and Kwon 1988; Acharya, DeMarzo and Kremer 2011; Guttman, Kremer and Skrzypacz

2014). The expectation in equation (2) implies that the marginal discloser receivesE(V |V ∈

[t, a2)) instead oft under a perfect measurement. Consequently, the manager receives a higher

price when disclosing and a smaller withholding region can be sustained in equilibrium.

To illustrate this point further, consider a straightforward binary measurement: the firm knows

only whether the asset values is above or below a thresholdt (i.e., seta2 = v). The equilibrium is

always such that measurements withv ∈ [0, t) are withheld andv ∈ [t, v) are disclosed, because

these are the lowest and higher payoff, respectively, that can be achieved by the manager. Hence,

the regulator can implement any disclosure thresholdt, including thresholds belowt0. But the

reduction in withholding carries an informational loss: the increase in information available over

low asset valuesv ≤ t translates into a decrease in the information forv > t. As the threshold

t → 0, the probability of strategic withholding converges to zero and nondisclosure becomes a

perfect signal about the uninformed firm. But, then, the information about all other asset values

becomes completely imprecise. Even if the convexity of the payoff functionφ(∙) implies some

in text, the voluntary disclosure thresholdt0 and the probability of disclosure(1− q)(1−F (t0)) are not a function of
φ(∙).
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benefits from information, determining which of these two competing effects dominates requires

further analysis.

We move next to the characterization of the optimal measurement. We make first a basic

observation that greatly simplifies the problem. Recall that measurements withv ≥ a2 imply

posterior expectations that are strictly greater than the non-disclosure price, so that incentives to

withhold are not a binding constraint. Hence, we can focus on implementing the measurement

system that maximizes ex-ante value ignoring strategic reporting for asset values abovea2. From a

direct application of Jensen’s inequality, the preferred measurement is one that is fully-informative

for anyv ≥ a2.

Lemma 1 LetM characterize an optimal measurement withI ≥ 3, thenVFI = [a2, v).

Lemma1 does not apply to the region of the minimal disclosed measurement, i.e.,[t, a2) be-

cause, in this region, increasing precision further changes the posterior expectation of the marginal

disclosersE(V |V ∈ [t, a2)) and alters the withholding region.

To engage the next step of the proof, observe that we would ideally want to reducea2 as

much as possible if we were to ignore the voluntary disclosure problem. To see why, recall from

lemma1 that anyv abovea2 is perfectly reported so the informational loss decreases when the

information[t, a2) becomes more precise. Naturally, decreasinga2 makes the marginal disclosers

more willing to withhold so that it can only be continued until the voluntary disclosure problem

binds the indifference condition of the marginal discloserμt
nd = E(V |V ∈ [t, a2)).

Lemma 2 LetM characterize an optimal measurement withI ≥ 3, thenμt
nd = E(V |V ∈ [t, a2)).

Lemma2 implies a simple graphical representation of the measurement design problem. We

plot in Figure2 the non-disclosure market valueφ(μt
nd) for different thresholdst. We know from

Acharya, DeMarzo and Kremer(2011) that the particular disclosure thresholdt0 minimizes the

non-disclosure price. Now, consider implementingt < t0, which requires designing an imprecise

measurement[t, a2) that satisfiesμt
nd = E(V |V ∈ [t, a2)).

19



0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20

0.25

0.30

φ(   )nd

withholding threshold t

price

φ(t)

tt
0

a
2

t

Figure 2: Imprecision at the threshold

The required imprecision[t, a2) can be obtained graphically. Let us draw a horizontal line

intersecting at(t, φ(t)). This horizontal line intersects the non-disclosure price at another point:

if the disclosure threshold had been set at this point, the non-disclosure price would be equal to

the equilibrium non-disclosure price. It so happens that this point is the desireda2. To see why,

remark thatμa2
nd can be decomposed as a weighted average ofμt

nd andE(V |V ∈ [t, a2)). Having

constructeda2 so thatμt
nd = μa2

nd, it must be thatE(V |V ∈ [t, a2)) = μt
nd which is what defines

the optimal coarse region[t, a2). To summarize, sustaining a disclosure thresholdt < t0 requires

an imprecise measurement[t, a2) delimited by the horizontal line.

Whent is close tot0, this region converges to a point and no imprecision is required. When

t converges to zero, the solution converges toa2 = v and prescribes complete imprecision when

the firm is informed. In-between, the region of imprecision must includet0 so that shrinking

strategic withholding would always come with a loss of information over some asset values that

would have been disclosed under a fully precise measurement. In fact, while a lower thresholdt

implies a higher non-disclosure price, we can also observe that the horizontal line atφ(μt
nd) will
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intersectφ(t) somewhere in[t, a2): despite the potential gain from more information, some firms

must achieve a lower price in an equilibrium with imprecision relative to the equilibrium in which

t = t0.

While imprecision may hurt some firms and benefit others once the asset value realizes, can it

increase expected firm value? To answer this question, Figure2 has another critical implication.

Regardless of how we set the disclosure thresholdt, the posterior expectation implied by all asset

values less thana2 must be pinned down by the horizontal line. So, from the point of view of

posterior expectations, any measurement with imprecision is equivalent to a simpler measurement

in which we set the withholding threshold ata2.

Lemma 3 LetM characterize an optimal measurement, thenVFI = [t, v).

The lemma relies on the property of marginal disclosers in voluntary disclosure equilibria.

The strategic withholding condition in (2) rules out any dispersion in posterior expectations near

the disclosure threshold. So, while the measurement can elicit more information over unfavorable

events, nousefulinformation is given that would cause revisions in posterior expectations. Hence,

the optimal measurement takes the form of a withholding threshold above which the measure-

ment is fully-informative. This implies that no imprecision is effectively used to discipline more

voluntary disclosure than what would emerge inJung and Kwon(1988).

Proposition 1 A fully precise measurement is optimal. In this measurement, the asset value is

reported if and only if the verifiable information exists andv is greater than theJung and Kwon

(1988) thresholdt0.

While frictions may prevent voluntary disclosures from unravelling to reveal all information, it

achieves the most useful amount of information for production purposes. Surprisingly, while the

measurement can interplay with voluntary disclosure and affect the provision of information about

good or bad news, it can never do so in a way that would increase the expected value of the firm.

Put differently,the cost of overcoming strategic withholding is always greater than its benefits on
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reducing withholding.

This may seem surprising given our earlier observations about withholding behavior around

the disclosure threshold. The result stands on a simple intuition which can be constructed starting

from the minimum principle in disclosure theory (Acharya, DeMarzo and Kremer 2011; Guttman,

Kremer and Skrzypacz 2014; Dye and Hughes 2018). The minimum principle implies that the

full-information threshold minimizes the withholding price among all other possible thresholds;

so, it serves to discipline as much disclosure as would be possible if we could set the threshold at

another location. But intuitively, this is the task that the measurement sets out to do, by changing

the nature of the information received.

3.2 Private costs of disclosure

We extend the model to a second friction affecting disclosure choices, by assuming as inEin-

horn and Ziv(2008) that disclosure may involve both uncertainty about information endowment

and private costs. Specifically, the firm internalizes a costc > 0 when making a disclosure. We

assume that, plausibly, this cost mainly reflects distributional effects to other parties affected by

the disclosure (competitors, consumers, other firms, etc.) and is not viewed by the regulator as a

social cost.

We plot in Figure3 the payoff to a withholding manager as a function of the lower boundt

in the imprecision interval, with and without disclosure costs. The solution toJung and Kwon

(1988) with disclosure costs is now located attc > t0. Note that imprecision creates dispersion in

posterior expectations (a pre-condition for the information to be useful in our model) because the

non-disclosure posterior expectation is strictly lower than the posterior expectation of the marginal

discloserE(V |V ∈ [t, a2)). We should try to sett as small as possible but large enough so that

marginal disclosers do not deviate to withhold and are compensated for incurring a disclosure cost.

The optimal withholding thresholdt∗ is located betweent0 andtc, the disclosure inJung and Kwon

(1988) without and with costs, respectively.

Our next result, Proposition2 below, states that the optimal measurement system always in-
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Figure 3: Imprecision with disclosure costs

volves imprecision when disclosure is privately costly but not a social cost.

Proposition 2 If disclosure is costly (i.e.,c > 0), the optimal measurementG∗ is such that there

exists a single non-empty imprecise region[t∗, a∗
2) such that: (i) any state belowt∗ is withheld, (ii)

states in[t∗, a∗
2) are reported coarsely and (iii) any state abovea∗

2 are reported precisely.

Let us explain the intuition for this finding in several steps, starting from an intuitive, but

incomplete, argument why imprecision becomes optimal with private costs. It is true that private

costs cause a misalignment between the firm and the regulator, as the firm internalizes disclosure

costs while the regulator does not. However, the disclosure strategy, even absent costs, is not a

function of the social value of informationφ(∙) and thus already exhibits misalignment between

the ex-ante problem solved by the regulator and the ex-post disclosure problem solved by the firm.

This translates into a voluntary disclosure equilibrium that yields less disclosure than would be

ex-ante desirable to the regulator and, yet, does not require imprecision in Proposition1. In short,

misalignment of objectives is not a sufficient condition for imprecision to be optimal.

The effect of costs here is slightly different. The key to our earlier result is that the regulator
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cannot create dispersion in posterior beliefs between a non-disclosing firm and a marginal dis-

closer. With private costs, however, there is additional dispersion in posterior beliefs because the

marginal discloser must achieve a strictly greater expectation about the asset valueV (gross of

cost). Exploiting this, imprecision increases the variation in posterior beliefs around the disclosure

threshold. Put differently, disclosure costs separate expectations about fundamentals between non-

disclosers and marginal disclosers: an imprecise measurement, by increasing the probability that a

firm is a marginal discloser, translates into more variation in posterior beliefs.13

We illustrate these results using an example that serves to reveal the expected loss suffered by

moving the withholding threshold belowt0. We start with the model without costs. Let us setV

to be uniform on[0, 1] and a market valueφ(x) = x2. If we set a fully-informative measurement

Mall, the manager will withhold information (after some cumbersome but otherwise uninteresting

algebra) whenv ≤ t0 is given byt0 = μt0
nd = 1 − 1

1+
√

q
. Reinjecting this threshold yields an

expected value

σall ≡ E(φ(E(V |R)) =
1 + 2

√
q

3(1 +
√

q)2
, (3)

which, as expected, decreases as the frictionq increases.14

Alternatively, consider measurements in which we elicit more precise disclosures forV below

13Another way to understand the result that imprecision is optimal with costly disclosure is as follows. As we
depart from perfect measurement and we decrease the thresholdt belowtc, two competing forces arise: adispersion
effect and aninformation losseffect. The dispersion effect captures the fact that, as we decrease the threshold, we
increase the dispersion between the expectation at the marginal discloser,E(V |t < V < a2), and the nondisclosure
expectation,μt

nd. Intuitively, the spread between the expectation at the marginal discloser and the nondisclosure price
is what compensates the marginal discloser for incurring the disclosure cost. When, by decreasing the threshold, we
make the market more skeptical towards nondisclosure, the marginal discloser has to be compensated more, as at
lower payoff levels the marginal benefit of a higher posterior expectation relative to the nondisclosure expectation is
smaller. Thus, the spread between these two expectations must increase. All else equal, the dispersion effect increases
the ex ante expected firm value, since firm value is convex in the posterior expectation. By contrast, the information
loss effect represents the fact that the information conveyed by the marginal discloser is now coarser, as the marginal
discloser is not a single pointtc anymore, but rather an interval of values,[t, a2). Hence, all else equal the information
loss effect decreases the ex ante expected firm value. In a neighborhood oft = tc, the information loss effect is
negligible, because it negatively affects firm value only conditional on the asset being equal to the thresholdtc, which
is a zero probability event. As a consequence, the positive dispersion effects dominates the negative information loss
effect, and some imprecision is optimal.

14To derive these expressions, note that the threshold equation fromJung and Kwon(1988) must satisfy

(1 − q)
t20
2
− q(

1
2
− t0),
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t0. Specifically, setVFI = [a2, v) and a coarse region[t, a2). We varyt and set the minimuma2

that satisfies (2). If t ≥ t0, we can simply seta2 = t.15 If t < t0, we need to set the expectation in

the disclosure region[t, a2) greater than the expectation when withholding, requiring16

a2 =
q(1 − t)

q(1 − t) + t
> t0. (4)

As observed earlier, the lower the thresholdt, the greater the thresholda2. Similarly, the greater

the disclosure frictionq, the more the measurement must increasea2. In Figure4, we plot the

resulting expected value for various levels of the frictionq. As shown earlier, for each of these

plots, the expected surplus peaks att0 and there is a loss of useful information for thresholds above

or belowt0.

Assume next that firms bear a private disclosure costc > 0. We plot in Figure5 several ex-

amples following the uniform specification and quadratic payoffφ(∙) used in the previous section,

a probability of being uninformedq = 0.1 and various choices forc from 0 to 0.3. At c = 0, the

expected firm value is maximized ata = t0 which means that there is no value in imprecision. As

c increases, the total value no longer peaks at the disclosure threshold under a costc denotedtc and

there is an interior imprecise interval. Note that the region of imprecision shifts to the right and

shrinks asc becomes small because then withholding becomes increasingly unlikely.

and we can then obtainσall from

σall = (q + (1 − q)t0)(μ
t
nd)

2 + (1 − q)(1 − t0)E(V 2|V ≥ t0)

=
1 + 2

√
q

3(1 +
√

q)2
.

15This is an innocuous abuse of language since we would have here thatVFI = [t, v) with no need to coarsen the
information above the threshold.

16This follows from
t + a2

2
=

q × 1
2 + (1 − q)t × t

2

q + (1 − q)t
.
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4 Extensions

4.1 Withholding Penalties

Although enforcement agencies may not know right away whether a manager chose to withhold

information, there may be situations where a regulator and/or court of law may act to enforce

againststrategicwithholding at a later date after the fact. For example, in the absence of an

impairment, it may come to light that the manager was informed because of an insider leak or some

later information emerges that reveals a fraud (e.g., shredded audit documents). These aspects echo

various formalizations of this problem where an outside party may reveal whether the manager was

informed; seeDye (2018) for a recent analysis.

Because our main focus here is on the choice of measurement, which on its own presents a

non-trivial optimal choice, we simplify this problem to capture the first-order effect of individual

legal risks in reduced-form. There is a cost borne by the firm management when strategically

withholding. We have in mind that the existence of material information is revealed at some date
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in the future, or randomly after the manager makes the reporting choice. More generally speaking,

the model speaks to a plausible setting in which a manager willingly withholding information

would not receive exactly the same payoff as a manager who was uninformed and did not withhold

intentionally.

We assume that the signal is about the existence of information and, for parsimony, does not

depend on the realized signal. This assumption is made primarily to focus our attention and is not

a critical part of our analysis. Formally, there is a withholding penaltyθ > 0 borne by a manager

strategically withholding. Note that it could be that the occurrence of the penalty is random and,

under this interpretation, we should defineθ as the expected penalty. For obvious practical reasons,

we assume that the ability to punish the manager is bounded (θ < v); for example, if the manager

may have consumed or transferred the misappropriated assets. We also assume thatφ(E(V ))−θ >

φ(0) because otherwise there would be no gain from the lowest asset value to withhold.

We need to make assumptions about the problem solved by the measurement. Keeping with

the definition used for the baseline model, we examine measurements that maximize the expected

priceE(φ(E(V |R))), setting aside the personal loss borne by the manager. It is plausible that a
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regulator such as the Securities and Exchange Commission (SEC) would care more about pro-

ductive efficiency than about minimizing the discomfort of managers caught misreporting or we

may assume that they focus on investors. But the reason for this criterion is conceptual; we have

seen earlier that a fully-informative measurement would be optimal without penalties. If we were

to maximize the expected firm value net of expected penalties for strategic withholding, then it

would follow by construction than some imprecision is optimal to reduce the probability of bear-

ing penalties. This channel, while it is true and reinforce our current analysis, could be construed

as a second-order effect on the objective of the regulator. So in summary, we solve for the optimal

imprecision on expected firm value to investors.17

We begin by observing that withholding penalties need not imply more imprecision because

they reduce strategic withholding even in a fully-informative measurements; in fact, asθ becomes

large, strategic withholding converges to zero and there remains no scope for imprecision.18

Lemma 4 With a fully-precise measurementMall, there exists a unique solutiontθ given by the

implicit solution to

φ(μt
nd) − θ = φ(tθ). (5)

We consider next the design of a measurement which may be different fromMall. The next

Lemma is entirely along the lines of Lemmas1 and2 so we give it without proof.

17Another possible assumption would be to assume that the penalty is a deadweight loss taken from firm value, and
thus, would reduce the baseline non-disclosure priceμt

nd by the expected penalty. This alternate assumption implies
forces very similar to the problem of maximizing manager surplus, except that the penalty is now borne even when
information is not received (since the market does not observe strategic withholding). In this setting, it is easily shown
that some imprecision is always desirable near the disclosure threshold in order to reduce the probability of the penalty.

18While entirely intuitive, it is worth noting that there is a difference with the recent resultDye (2018) which
develops the opposite intuition that verification over the withholding region would increase withholding. The reason
for this difference is that in this earlier study, a key force is that the penalty is paid back by the manager to shareholders,
and thus serves as manager-created insurance to investors buying shares in withholding firms. This is an interesting
force but in most cases the amount of funds paid directly from managers’ pockets is small relative to investor losses,
and a large part is of the penalty is in the form of losses that are partly deadweight to the parties involves, such
as reputations, fines, time spent in defense, lawyer fees or legal penalties. To this point,Laux and Stocken(2012)
provide a discussion of how having a deadweight component is essential to providing the right ex-ante incentives.
That said, an important joint insight within these papers and our research is that, for the additional forces here to hold,
it should be the case that the penalty is not redistributed to shareholders in a way that would affect price in a way that
is quantitatively non-trivial.
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Figure 6: Imprecision with withholding penalties

Lemma 5 Suppose thatM is optimal, then eitherM = Mall or VFI = (a2, v). Furthermore,

φ(μt
nd) − θ = φ(E(V |V ∈ [t, a2))). (6)

We next extend Figure2 to develop more graphical intuition as to how the withholding penalty

affects the choice of measurement. We first plot in Figure6 the payoff to a withholding manager as

a function of the thresholdt, with and without withholding costs. The solution toJung and Kwon

(1988) with withholding costs is now located attθ < t0. We then apply the previous logic to

implement a withholding thresholdt < tθ, with a region of imprecision[t, a2).19

Note that, just like for the case of disclosure costs, imprecision creates dispersion in posterior

expectations (a pre-condition for the information to be useful in our model) because the non-

19This is now slightly different from the baseline and the complete solution can no longer be obtained graphically
(although the intuition can). As in the baseline, we should try to seta2 as small possible but large enough so that
marginal disclosers do not deviate to withhold, that is,φ(μt

nd)−θ = φ(E(V |V ∈ [t, a2)). Using the same construction
as in Figure2, we can recover a thresholdt′ > t that yields the same posteriorμt

nd and implies (from the same
arguments as in Figure2) thatE(V |V ∈ [t, a2)) = μt

nd. But settinga2 = t′ makes the imprecision excessive since it
would imply thatφ(μt

nd) − θ < φ(E(V |V ∈ [t, a2)). So, as shown in the Figure, the optimala2 can be visualized by
drawing a line sloping down.
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disclosure posterior expectationμt
nd is strictly greater than the posterior expectationE(V |V ∈

[t, a2)). From this, it follows that there would be a strict informational loss when movingt to a2

into a single withholding region. Indeed, building on this intuition, we derive the following result.

Proposition 3 With non-zero withholding penaltiesθ > 0, the optimal measurement exhibits an

imprecise region for the marginal discloser[t∗, a∗
2) with t∗ < tθ < a∗

2.

We can rephrase the intuition for the greater variation in posterior expectations in economic

terms. The withholding penalty is now used as a complement to imprecision to discipline firms

with asset values higher thant∗ to disclose. Under full-information, the penalty would only bind

for the marginal discloser which, atx = tθ, is an event with probability zero. A larger region of

imprecision[t∗, a∗
2) implies that the penalty binds for a larger set of asset values.

We discuss below a few additional key implications of the proposition. First, we show that,

contrary to standard voluntary disclosure theory, the information becomes endogenously coarse

over the lowest reported events. So, we expect in this theory for the firm to be vaguer about

bad news that is voluntarily reported. On this point,Gigler, Kanodia, Sapra and Venugopalan

(2009) interpret measurement systems that are more precise over favorable information as more

conservative. Second, the posterior expectation is not increasing in asset values. In the model,

informed managers with sufficiently bad news choose to bear the individual penalty and with-

hold, but in exchange receive a higher price: formally, the voluntary disclosure problem requires

φ(μt∗

nd) − θ = φ(E(V |V ∈ [t∗, a∗
2)) in the manager’s problem which, in turn, implies from an

investor’s perspective thatφ(μt∗

nd) > φ(E(V |V ∈ [t∗, a∗
2)). A firm choosing to reveal a low asset

value would trigger a current market response that is more negative than if it had stayed silent.

We plot in Figure7 several examples following the uniform specification and quadratic payoff

φ(∙) used in the previous section, a probability of being uninformedq = 0.1 and various choices

for θ from 0 to 0.07. At θ = 0, the expected firm value is maximized ata2 = t0 which means that

there is no value in imprecision. Asθ increases, the total value no longer peaks att0 and there is

an interior imprecise interval on[a∗
2, tθ) wherea∗

2 is the choice that attains the peak of the curve.
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Figure 7: Firm value as a function of imprecision (q = .1)

Note that the region of imprecision shifts to the left and shrinks asθ becomes large because then

withholding becomes increasingly unlikely. In fact, for values ofθ greater than.25, there is no

longer any strategic withholding on the equilibrium path and the only firms that do not disclose are

those that did not receive information.

4.2 Collateral Financing and Non-convexities

For our baseline analyses, we assumed so far that the firm would, a-priori, prefer to implement

measurements with more information after the disclosure choice. Here, we revisit an application

of the theory to the financing problem described inGoex and Wagenhofer(2009) andBertomeu

and Cheynel(2015), in which the firm uses the measured asset as collateral to raise external funds.

Goex and Wagenhofer show that, absent voluntary disclosure, the measurement would prescribe

imprecision over favorable events to maximize the likelihood of meeting a collateral constraint.20

We extend this problem along the two dimensions specific to our study: first incorporating vol-

untary disclosure with a friction to receiving information, and second, considering the potential

20We also derived (on request) a theoretical solution for an abstract class of S-shaped payoff functionφ′′′ < 0 which
imply a very similar measurement system as in this section.
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value of information after the firm receives financing affected by both measurement and voluntary

disclosures.21

As in Goex and Wagenhofer(2009), the firm must finance an investment to operate but in order

to do so, pledges a minimum value of assets as collateral in the form of a constraintE(V |r) ≥ v̂,

wherev̂ is a collateral requirement; seeHolmstr̈om and Tirole(1997) or Goex and Wagenhofer

(2009) for various micro-foundations in terms of a principal-agent problem.22 If the firm does

not operate, it obtains a payoff normalized to zero, implying a payoffφ(x) = 1x≥v̂ψ(x) where

ψ(x) ≥ ψ(0) = 0 is a convex payoff once the investment is made.

Note that, ifv̂ > 0, the payoff is neither convex nor concave and, asv̂ → 0, the model reduces

to the baseline problem. For later use in this section, it is convenient to denotet0 as the voluntary

disclosure threshold defined earlier absent any collateral constraint, that is withφ(x) = ψ(x).

We shall derive a solution by decomposing the design problem in terms of two possible choices

of measurement. The first family of measurements is one in which some firms do not meet their

collateral constraint. This can only occur if disclosure is a pre-condition to receiving financing,

that is, μt
nd < v̂, since otherwise no informed firm would willingly disclose information that

would cause its value to fall below the collateral requirement. In the next lemma, we solve for the

preferred measurement in this family.

Lemma 6 Let M1 be an optimal measurement in which some firms do not meet their collateral

constraint. Then it takes the form of a withholding thresholdt and a collateral thresholda2 > t,

such that:

(i) asset values belowt are withheld withμt
nd < v̂;

21This formulation is a slightly modified version ofGoex and Wagenhofer(2009) - part of this is to nest our baseline
model with convex payoffs in this analysis but there is also a fundamental reason as to why additional generality is
important here. In their original model, Goex and Wagenhofer assume a fixed project payoffψ(x) = π0 when it is
financed so that the optimal decision that is implemented by the measurement is binary. The binary decision makes the
voluntary disclosure problem moot because financed firms would always disclose voluntarily.Bertomeu and Cheynel
(2015) develop this model when the proceeds from selling the collateral can be reinvested, so thatφ(∙) is linear in parts
and do not model the interaction between measurement and voluntary disclosure.

22These studies show thatv̂ can be recovered as a function, for example, of the cost of effort of the agent and the
properties of cash flows and accounting reports.
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(ii) asset values are reported in the form of an imprecise measurement[t, a2) that exactly meets

the collateral constraintE(V |V ∈ [t, a2)) = v̂; and

(iii) asset valuesv ≥ a2 are perfectly measured and disclosed.

A point of note is that the optimal choice of[t, a2) is a function of the benefit of meeting the

collateral constraintψ(v̂) and the convexity of the functionψ(∙). To be specific, the choice of the

imprecise region[t, a2) maximizes the expected value of the firm

σ = (1 − q)(F (a2) − F (t))ψ(E(V |V ∈ [t, a2))) (7)

+(1 − q)

∫ v

a2

f(x)ψ(x)dx,

subject to the collateral constraintE(V |V ∈ [t, a2)) = v̂.

If ψ(∙) is approximately linear to the right̂v, we return to the type of measurements in the

spirit of Goex and Wagenhofer(2009) in whicha2 = v is the preferred measurement to use when

not all firms can meet their collateral constraints. At the other extreme, ifv̂ is small, we return to

the convex problem in proposition1, and the optimal measurement featuresa2 nearly equal tot.

Even in this case, however, the optimal choicea2 is never exactly equal tot, which rules out fully

informative measurements of the form derived earlier.

We next consider a second family of measurements in which all firms meet their collateral

constraints within the chosen measurement. Note that, for this to occur, withholding firms must

achieve a posterior expectationμt
nd ≥ v̂. We know thatμt

nd ∈ (μt0
nd,E(V )], so this equation can be

met for somet if and only if the unconditional expected value of the assetE(V ) is greater than̂v.

We solve for the optimal measurement within this family in the next lemma.

Lemma 7 LetM2 be an optimal measurement in which all firms are financed:

(i) if v̂ ≤ t0, the full-information measurementMFI is optimal;

(ii) if v̂ ∈ (μt0
nd,E(V )], there existst > t0 given byμt

nd = v̂ such thatM2 has two regions: all

asset values belowt are withheld, and all asset values abovet are disclosed;
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(iii) If v̂ ≥ E(V ), there is no measurement in which all firms are financed.

The setting in (i) is a special case of the model where the unconditional value of the collateral is

sufficiently large so that strategic withholding would on its own imply a non-disclosure posterior

expectation that would meet the collateral constraint. Note that the higher the probability that

the measurement does not yield information, the greater the non-disclosure price and therefore

the lower the collateral constraint can be. When this case occurs, the imprecision created by

the voluntary disclosure problem entirely subsumes any additional amount of imprecision in the

measurement. Hence, the firm can simply use a full-information measurement and let the manager

strategically withhold information on an ex-post basis.

Part (ii) extends this argument to the richer setting in which a full-information measurement

would have caused non-disclosing firms to shut down. To address the financing problem, the mea-

surement pools uninformed firms and informed firms withv < t until the collateral requirement

μt
nd = v̂ is met. This requires, in turn, to sett > t0 and raises imprecision above the level that

would have been implemented absent collateral requirements.

Extending the comparative static in (i), an increase in the probability to receive information will

reduceμt
nd as investors become skeptical. To compensate for this decrease, the reporting threshold

t must increase. Put differently, precision in the measurement and in voluntary disclosure act

as substitutes, with greater imprecision being implemented in response to a lower friction in the

voluntary disclosure channel. Finally, in part (iii), if the unexpected value of the collateralE(V )

falls belowv̂, not all firms can be financed and a measurement in this family cannot be used.

When is it desirable to use each of the two types measurement? The next proposition develops a

direct comparison of the two families of measurements as a function of the severity of the collateral

problem and the probability of information endowment.

Proposition 4 The optimal measurement is as follows:

(i) If v̂ < μt0
nd, a fully-informative measurementMall is an optimal measurement.
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(ii) Otherwise, there existsq0 ∈ [0, 1] such that ifq < q0, the optimal measurement has the form

M1 in which non-disclosing firm cannot be financed and, ifq ≥ q0, the optimal measurement

has the formM2 in which all firms are financed.

A few comments are helpful to interpret the proposition in practical terms. If the collateral

constraint is sufficiently severe, the optimal measurement must focus on increasing the collateral

above the minimum required collateralv̂. In turn, this requires taking away financing from certain

firms withv < v̂. But the voluntary disclosure problem implies that such firms could have claimed

to be uninformed, so that this type of solution to the financing problem involves denying financing

to all uninformed firms, which can be particularly costly when assets are hard to measure and it is

likely that the firm does not receive information.

If the collateral constraint is moderate or mild, it is possible to finance all firms by creating

enough imprecision in the measurement but doing so comes with a trade-off because it removes

useful information when firms are financed. There are, therefore, two possible options to design

the measurement. One is to finance all firms and tolerate a relatively coarse measurements that

includes uninformed firms and firms withv ≤ v̂. The other is to use a measurement in which

non-disclosure firms do not receive financing but, conditional on being financed, firms report a

precise measurement.

The main consideration required to select between the two types of measurements is the prob-

ability of receiving information. To explain this, note first that for all firms to be financed inM2, it

must be thatE(v) ≥ v̂ so that there is enough asset value in expectation. In turn, this implies that,

in any setting in which we may electM2, it will be the case that firms that do not receive verifiable

information, whose expected asset value isE(V ) contribute to meeting the collateral constraint.

The higherq, the higher the proportion of such firms in forming the non-disclosure expectation

μt
nd and thus the easier it will be to meet the collateral constraint inM2. By contrast, the higherq,

the greater the fraction of non-disclosing firms that cannot invest in a measurementM1. So, con-

sidering both forces, environments with less information are conducive to measurements which

favor coarse measurements for low asset values and more financing.
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5 Conclusion

By and large, prior literature emphasizes either accounting measurements as ex-ante choices or

the problem of strategic reporting over an otherwise external arrival of information. Yet, both

problems are closely tied to each other, with the ex-ante design affecting incentives to withhold

information. What can we say of the nature of measurements and voluntary disclosures when both

are endogenously determined?

In our baseline model, there is uncertainty about whether objective information exists about a

particular outcome and the firm designs a measurement system that may publicly provide infor-

mation when objective information exists. As a broad example, an event may or may not have

occurred or may be measurable, and the firm may design a measurement system that collects in-

formation about the event provided measurable information exists. In this environment, we find

that the firm should perfectly measure its assets. There is a loss of information due to strategic

withholding at the disclosure stage and suitably-designed measurements could certainly reduce the

probability of withholding. But the price to pay to do so is too large in that the required imprecision

required would destroy any possible use of this information.

We have shown this insight within a fairly generic version of theDye (1985) andJung and

Kwon (1988) and an intuitive class of decision problems in which, after the report is observed,

management makes the decision that maximizes post-report market prices. Yet we view it as a

first benchmark to uncovering elements that would lead to imprecision becoming valuable in this

setting. We study two empirically plausible extensions of the baseline model. First, as a function

of private penalties imposed on management, some imprecision around the voluntary disclosure

threshold always increases firm value. Second, if the firm bears collateral constraints, there is value

in imprecision as a function of disclosure frictions. We can take these results as broad implications

as to the nature of designing accounting rules, with attention to the voluntary nature of the process

through which information flows to the market.

Applied questions may provide paths for continuing the research agenda discussed in this study,

with the focus on non-convexities due to collateral measurements being one of many potential av-
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enues. How do measurements and voluntary disclosures interact when the firm wishes to persuade

an auditor to issue a favorable opinion? How does the firm select measurements to control infor-

mation flows to the product market? We hope that these classic questions can be revisited from the

perspective of a theory in which measurement and voluntary disclosures endogenously coexist.

Appendix

A Proofs

Proof of Lemma 1. Let M be a measurement system. Recall that we restrict the attention toVFI being

an interval and, without loss of generality, set the withholding region[a0, t] not to overlap withVFI . We

already know that asset values in[a0, t] are withheld, so thatVFI must be either empty, must be the interval

[t, a2) or must be some interval[ai, ai+1) with i ≥ 2.

Suppose by contradiction thatM does not have the form prescribed in Lemma1. We construct an

alternative measurement systemM′ = (V ′
FI , (a

′
i)

I
i=0), with associated reportR′ . Let us setM′ to coincide

with M except forV ′
FI = VFI ∪ [a2, v), which implies (i) the requirement of (2) remains satisfied byM′

andR′ is more precise in the sense of Blackwell thanr. By Jensen’s inequality, this implies that

E(φ(E(V |R))) < E(φ(E(V |R′))),

and violates the optimality ofM. It follows that anyM with I ≥ 3 must be such thatVFI = [a2, v).

Proof of Lemma 2. Let M be an optimal measurement. We know that if the claim does not hold, we

know from lemma1 that [t, a2) 6= VFI is a coarse interval and, from (2), is such thatμt
nd ≤ E(V |V ∈

[t, a2)).

Suppose by contradiction thatμt
nd > E(V |V ∈ [t, a2)). By continuity, there existsy < a2 such that

μt
nd > E(V |V ∈ [t, y]). Consider a measurementM′ which coincides withM except that the element

of the partition[t, a2) is replaced by two elements[t, y) and [y, a2). Note that the withholding region is

unchanged, implying thatμt
nd remains unchanged and, by construction ofy, (2) is satisfied. However,
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M′ implies more precise information in the sense of Blackwell and, therefore, from Jensen’s inequality,

E(φ(E(V |R′))) > E(φ(E(V |R))), contradicting the optimality ofM.

Proof of Lemma 3. Let M be an optimal measurement. By contradiction, if the claim does not hold,

we know from lemma1 that [t, a2) 6= VFI is a coarse interval and, from (2), is such thatμt
nd ≤ E(V |V ∈

[t, a2)).

Suppose by contradiction thatμt
nd > E(V |V ∈ [t, a2)). By continuity, there existsy < a2 such that

μt
nd > E(V |V ∈ [t, y]). Consider a measurementM′ which coincides withM except that the element

of the partition[t, a2) is replaced by two elements[t, y) and [y, a2). Note that the withholding region is

unchanged, implying thatμt
nd remains unchanged and, by construction ofy, (2) is satisfied. However,

M′ implies more precise information in the sense of Blackwell and, therefore, from Jensen’s inequality,

E(φ(E(V |R′))) > E(φ(E(V |R))), contradicting the optimality ofM.

It thus follows from the previous paragraph thatμt
nd = E(V |V ∈ [t, a2)). But, then, we can create a

measurementM′ by settingt′ = a′1 = a2, leaving all the other elements of the partition inM unchanged.

We then know that

μt′

nd =
qE(V ) + (1 − q)F (a2)E(V |V ≤ a2)

q + (1 − q)F (a2)

=
q + (1 − q)F (t)
q + (1 − q)F (a2)

×
qE(V ) + (1 − q)F (t)E(V |V ≤ t)

q + (1 − q)F (t)

+
(1 − q)(F (a2) − F (t))

q + (1 − q)F (a2)
× E(V |V ∈ [t, a2))

=
q + (1 − q)F (t)
q + (1 − q)F (a2)

μt
nd +

(1 − q)(F (a2) − F (t))
q + (1 − q)F (a2)

μt
nd = μt

nd.

To satisfy (2) in M′, we are left to compareμt
nd anda2; however, sinceμt

nd = E(V |V ∈ [t, a2)), we know

thata2 ≥ μt
nd. To conclude the proof, note that, by construction,E(V |R) andE(V |R′) are always equal,

hence,M′ yields the same payoffs asM.

Proof of Proposition 1. We have shown in lemma3 that we can restrict the analysis to measurements

whereVFI = [t, v). From (2), it must hold that

μt
nd =

qE(V ) + (1 − q)F (t)E(V |V ≤ t)
q + (1 − q)F (t)

≤ t.
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Integrating by parts as inJung and Kwon(1988) and rearranging terms, this inequality is rewritten as

ψ(t) = (1 − p)
∫ t

0
F (v)dv − p(E(V ) − t) ≥ 0. (A.1)

Recall from earlier that this takes the form of an inequality because while a firm withv ≥ t could withhold,

the firm withv < t receives a message[0, t) from the measurement and would never do better than withhold.

Differentiating this expression,

ψ′(t) = (1 − p)F (t) + p > 0,

and we also know fromJung and Kwon(1988) thatψ(t0) = 0. So, (A.1) is satisfied if and only ift ≥ t0.

Having shown this, comparing a thresholdt > t0 to t0, we know that the latter is more precise in the

sense of Blackwell, hence, it yields higher expected surplus. To conclude the argument, note that a fully

informative measurementMall implies that equation (2) must be satisfied at equality and implementst0.

This concludes the proof and establishes thatMall, that is, full-information isoptimal.

Proof of Proposition 2. For a given thresholdt, the upper bound of the imprecise interval,a2, satisfies

the indifference condition for the marginal discloser, that is,

Γ(t, a2) ≡ φ(E(V |V ∈ [t, a2))) − c − φ(μt
nd) = 0. (A.2)

The expected firm value, denotedΣ, is given by

Σ = (q + (1 − q)F (t))φ(μt
nd) + (1 − q)(F (a2) − F (t))φ(E(V |V ∈ [t, a2)))

+(1 − q)
∫ v

a2

φ(v)f(v)dv. (A.3)

Taking the derivative of the expected firm value in (A.3) with respect tot yields

∂Σ
∂t

= (1 − q)f(t)φ(μt
nd) + (q + (1 − q)F (t))

∂μt
nd

∂t
φ′(μt

nd)

+(1 − q)(F (a2) − F (t))φ′
(

E(V |V ∈ [t, a2))

)
∂E(V |V ∈ [t, a2))

∂t

+(1 − q)

(
∂a2

∂t
f(a2) − f(t)

)

φ(E(V |V ∈ [t, a2))) − (1 − q)
∂a2

∂t
φ(a2)f(a2). (A.4)
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We obtain separately the following derivatives in (A.4),

∂E(V |V ∈ [t, a2))
∂t

=

(
∂a2

∂t
a2f(a2) − tf(t)

)

/(F (a2) − F (t))

−

(
∂a2

∂t
f(a2) − f(t)

)∫ a2

t
xf(x)dx/

(

F (a2) − F (t)

)2

=

(
∂a2

∂t
f(a2)(a2 − E(V |V ∈ [t, a2)))

)

/(F (a2) − F (t))

−f(t)(t − E(V |V ∈ [t, a2)))/(F (a2) − F (t)),

∂μt
nd

∂t
=

(1 − q)f(t)(t − μt
nd)

q + (1 − q)F (t)
.

Reinjecting the expressions above into (A.4) yields

∂Σ
∂t

= (1 − q)f(t)

(

φ′(μt
nd)(t − μt

nd) − (φ(t) − φ(μt
nd))

)

+(1 − q)f(a2)
∂a2

∂t

(

φ′(E(V |V ∈ [t, a2)))(a2 − E(V |V ∈ [t, a2))) −

(

φ(a2) − φ(E(V |V ∈ [t, a2)))

))

+(1 − q)f(t)

(

φ′(E(V |V ∈ [t, a2)))(E(V |V ∈ [t, a2)) − t) − (φ(E(V |V ∈ [t, a2))) − φ(t))

)

, (A.5)

where we have subtracted(1 − q)f(t)φ(t) in the first term and added it back in the third.

Using the implicit function theorem onΓ(t, a2) = 0 from (A.2), we find that the expression for∂a2
∂t is

∂a2

∂t
= −

∂Γ(t, a2)
∂t

/
∂Γ(t, a2)

∂a2

=

φ′(μt
nd)

φ′(E(V |V ∈[t,a2)))

∂μt
nd

∂t [F (a2) − F (t)] − f(t)[E(V |V ∈ [t, a2)) − t]

f(a2)[a2 − E(V |V ∈ [t, a2))]
.

(A.6)

We first show that (A.5) evaluated att = tc is negative. Ast → tc, the imprecise interval shrinks, that

is, a2 → t because the lower and upper bounds of the imprecise interval both converge totc. Therefore, in

this limit the third term of (A.5) converges to zero. Also the second term converges to zero, since∂a2
∂t |t=tc
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is finite.23 Only the first term is nonzero in the limit, hence

∂Σ
∂t

|t=tc = (1 − q)f(tc)

(

φ′(μtc
nd)(tc − μtc

nd) − (φ(tc) − φ(μtc
nd))

)

.

The indifference condition under perfect measurement,φ(tc) − c = φ(μtc
nd), implies thattc > μtc

nd, so by

convexity ofφ(∙) we haveφ(tc) > φ(μtc
nd) + φ′(μtc

nd)(tc − μtc
nd). We conclude that

∂Σ
∂t

|t=tc < 0.

As a result, settingt = tc is not optimal and reducingt < tc will increase the expected firm value.

After we have shown that precise measurement is suboptimal, there remains to argue that an optimal

measurement exists. Settingt > tc is suboptimal, as it both increases strategic withholding and reduces

the set of perfectly measured asset values that are disclosed. Inspection of (A.5) shows that∂Σ
∂t > 0 for all

t ≤ t0, so settingt ≤ t0 is also suboptimal. Taken together, these considerations imply that there exists a

maximizert∗ in the interval(t0, tc).

Proof of Lemma 4. The non-disclosure priceμt
nd remains given by equation (2) and, after applying the

integration by parts fromJung and Kwon(1988), can be written as

μt
nd =

q(E(V ) − tF (t)) + tF (t) −
∫ t
0 F (v)dv

q + (1 − q)F (t)
.

23The expression for∂a2
∂t |t=tc can be derived as follows. First, note that

F (a2) − F (t)
f(a2)[a2 − E(V |t ≤ V ≤ a2)]

=
[F (a2) − F (t)]2

f(a2)
{
a2[F (a2) − F (t)] −

∫ a2

t
xf(x)dx

}

and
f(t)[E(V |t ≤ V ≤ a2) − t]

f(a2)[a2 − E(V |t ≤ V ≤ a2)]
=

f(t)
{∫ a2

t
xf(x)dx − t[F (a2) − F (t)]

}

f(a2)
{
a2[F (a2) − F (t)] −

∫ a2

t
xf(x)dx

} .

Second, by L’Ĥopital’s rule,

lim
a2→t

[F (a2) − F (t)]2

f(a2)
{
a2[F (a2) − F (t)] −

∫ a2

t
xf(x)dx

} = lim
a2→t

1
f(a2)

lim
a2→t

2[F (a2) − F (t)]f(a2)
F (a2) − F (t)

= 2

and

lim
a2→t

f(t)
{∫ a2

t
xf(x)dx − t[F (a2) − F (t)]

}

f(a2)
{
a2[F (a2) − F (t)] −

∫ a2

t
xf(x)dx

} = lim
a2→t

f(t)
f(a2)

lim
a2→t

f(a2)(a2 − t)
F (a2) − F (t)

= lim
a2→t

f(a2) lim
a2→t

a2 − t

F (a2) − F (t)
= 1.
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The equilibrium must then be a solution to the indifference condition

φ(μt
nd) − θ = φ(t),

where the left-hand side is the payoff from withholding net of penalty and the right-hand side is the payoff

to the marginal discloser. We show next the existence and uniqueness of the solution.

To show existence, evaluate first att = t0 which implies thatμt
nd = t0 and, therefore,φ(μt

nd)−θ < φ(t)

when t = t0. Evaluate next att = 0, in which caseμt
nd = E(V ), which implies (by assumption) that

φ(t) − θ > φ(t) whent = 0. So, at least one solution exists withtθ ∈ (0, t0).

To show uniqueness, we first need to demonstrate thatμt
nd is concave int, with minimum att0. This is

a small elaboration on the claim in Proposition 1 ofAcharya, DeMarzo and Kremer(2011) who show only

the second part of this claim. To show this, rewrite (2) after applying the standard integration by parts, to

obtain

μt
nd =

q(E(V ) − tF (t)) + tF (t) −
∫ t
0 F (v)dv

q + (1 − q)F (t)
,

and differentiate int,

∂μt
nd

∂t
=

(1 − q)f(t)[(1 − q)
∫ t
0 F (v)dv − q(E(V ) − t)]

(q + (1 − q)F (t))2
.

The term in brackets defines the thresholdt0 when set to zero and changes sign ast crossest0. In turn, this

implies thatμt
nd is U-shaped int, as claimed.

We conclude thatφ(μt
nd) decreases fort on [0, t0], implying at most one solution fortθ on the interval

(0, t0). We also know thatμt
nd > t for t ∈ (t0, v) from the uniqueness of a solution to the standardJung

and Kwon(1988) model. Hence, the solution is unique and must be located somewhere in(0, t0).

Proof of Proposition 3. The claim follows from the proof of Proposition2 by symmetric arguments.

Proof of Lemma 6. We first show by contradiction that there must be an imprecise region[t, a2) such

thatE(V |V ∈ [t, a2)) ≥ v̂. There are two cases to dismiss.

Case 1.There is an imprecise region[t, a2) but it is such thatE(V |V ∈ [t, a2)) < v̂ so that firms in this

region do not meet the collateral constraint. But, then, we can define a payoff equivalent measurement with
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a voluntary disclosure threshold set att = a2. We can repeat this argument if[a2, a3) has the same property.

Case 2.Note thatt > v̂ cannot be optimal since it yields lower expected firm value than settingt = v̂ (all

firms achieve the same payoff, except those withx ∈ [v̂, t) which now meet the collateral constraint). We

are left to improve over a measurement such thatt = v̂ andVFI = [v̂, v).24

We take the derivative on the objective function (7) with respect tot. It yields

(1 − q)

(

f(a2)
∂a2

∂t
− f(t)

)

ψ(v̂) − (1 − q)f(a2)ψ(a2)
∂a2

∂t
. (A.7)

As t ↑ v̂, a2 ↓ v̂, the derivative simplifies to:

− (1 − q)f(v̂)ψ(v̂) < 0 (A.8)

which confirms that fort set sufficiently close tôv, the imprecise region[t, a2) will increase the expected

value of the firm.

We then know from Case 1 and 2 that there exists an imprecise region[t, a2); further, becauseE(V |V ∈

[t, a2)) > v̂, it must be thata2 > v̂ and thereforeφ(∙) is convex for anyv ≥ a2. A direct application of

Jensen’s inequality implies that settingVFI = [a2, v) is preferred to any other choice in the measurement.

We are left to show thatE(V |V ∈ [t, a2)) = v̂. Suppose not, and for expositional purposes, let us

denoteM = E(V |V ∈ [t, a2)). Differentiating the total surplusΣ in (7) with respect toa2,

∂Σ
a2

= f(a2)[Ψ(M) − Ψ(a2) + (a2 − M)Ψ′(M)].

We know from the convexity ofφ(∙) ony ≥ M that

Ψ′(M) <
Ψ(a2) − Ψ(M)

a2 − M
.

which implies that this derivative is negative and the expected value would be increased by decreasinga2, a

contradiction.

24To be rigorous, we do not claim that this measurement would be feasible (it could be thatμt
nd > v̂) but, ignoring

this constraint, it is an upper bound on any measurement with the form given in case 2. Hence, by showing that some
imprecision does better than this measurement, we know that case 2 cannot be optimal either.

43



Proof of Lemma 7. For part (i), we can solve a relaxed problem withφ(x) = ψ(x), ignoring the

collateral constraint. This relaxed problem yields an upper bound on the expected firm value achievable in

the problem witĥv > 0. We know from Proposition1 that the solution to this problem is the full-information

Mall and implies a posterior expectation conditional on withholding given byt0. Hence, this measurement

would meet the collateral constraint conditional on withholding in the original problem.

To show part (ii), note that we needμt
nd ≥ v̂. We have shown in the proof of lemma4 that μt

nd is

U-shaped with minimum att0 and equalsE(V ) at t = 0 or, in the limit whent → v. Hence, the condition

can be rewritten as eithert ≤ b0 or t ≥ b1, whereb0 ≤ t0 ≤ b1. We also know from the proof of lemma

3 that two measurements with thresholdt, t′ such thatt < t0 < t′ andμt
nd = μt′

nd yield the same expected

firm value, so we can, without loss of generality, restrict the analysis tot ≥ b1. An optimal measurement

should then prescribe full-information for any asset valuesv ≥ t. If t > b1, that isμt
nd > v̂ is not binding,

reducingt would be feasible and increase the full-information region. In turn, from the convexity ofφ(∙)

and applying Jensen’s inequality, this will increase expected firm value. It follows thatμt
nd = v̂ is binding.

The proof for part (iii) follows from the law of iterated expectation: for all firms to be financed, it must

hold thatE(V |R) ≥ v̂ for any equilibrium reportR, which impliesE(E(V |R)) = E(V ) ≥ v̂.

Proof of Proposition 4. The proof of (i) follows directly from the proof of Lemma7 (i) given thatMall

solves the relaxed problem in which the collateral constraint is ignored.

For (ii), we know from Lemma7 (iii) that only a measurement of the formM1 is feasible when̂v >

E(V ), so let us focus on the casev̂ ≤ E(V ). We denoteΣ1 as the expected firm value with a measurement

of the formM1 with disclosure thresholdt1, andΣ2 as the expected firm value with a measurement of the

formM2 with disclosure thresholdt2. LettingΔ = Σ1 − Σ2.

Rewriting:

Δ = (1 − q)

(

F (a2) − F (t1)

)

ψ(v̂) + (1 − q)
∫ v

a2

ψ(v)f(v)dv

−(q + (1 − q)F (t2))ψ(v̂) − (1 − q)
∫ v

t2

ψ(v)f(v)dv.
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Differentiating with respect toq,

∂Δ
∂q

= −

(

F (a2) − F (t1)

)

ψ(v̂) −
∫ v

a2

ψ(v)f(v)dv −

(

1 − F (t2)

)

ψ(v̂)

+
∫ v

t2

ψ(v)f(v)dv + (1 − q)
∂t2
∂q

ψ(t2)f(t2). (A.9)

Applying the implicit function theorem,

∂t2
∂q

= −
∂H(t2)/∂q

∂H(t2)/∂t2
, (A.10)

whereH(t2) = μt2
nd − v̂. Further,

∂H(t2)
∂q

=
F (t2)E(V ) −

∫ t2
0 vf(v)dv

(

q + (1 − q)F (t2)

)2 > 0

and

∂H(t2)
∂t2

=
(1 − q)f(t2)(t2 − μt2

nd)
q + (1 − q)F (t2)

> 0.

Hence,∂t2
∂q < 0. Moreover, whenΔ = 0,

∫ v

a2

ψ(v)f(v)dv =
1

1 − q
(q + (1 − q)F (t2))ψ(v̂)

+
∫ v

t2

ψ(v)f(v)dv −

(

F (a2) − F (t1)

)

ψ(v̂).
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Substituting the above expression in (A.9) yields:

−

(

F (a2) − F (t1)

)

ψ(v̂) −
1

1 − q
(q + (1 − q)F (t2))ψ(v̂)

−
∫ v

t2

ψ(v)f(v)dv +

(

F (a2) − F (t1)

)

ψ(v̂)

−

(

1 − F (t2)

)

ψ(v̂) +
∫ v

t2

ψ(x)f(x)dx + (1 − q)
∂t2
∂q

ψ(t2)f(t2)

= −
1

1 − q
(q + (1 − q)F (t2))ψ(v̂) −

(

1 − F (t2)

)

ψ(v̂) + (1 − q)
∂t2
∂q

ψ(t2)f(t2) < 0.

It then follows that increasingq makesM2 more desirable relative toM1.

B Optimality of partitional measurements

B.1 Formal definition of the optimization problem

In this Appendix, we show how an optimal measurement in the models ofVerrecchia(1983), Dye

(1985) andJung and Kwon(1988) simplify to a convex-partitional measurement with coarseness only at

the marginal discloser. The proof involves many steps. For this reason, we first highlight the proof method.

Technically speaking, the problem under consideration is one of Bayesian persuasion, but with a con-

straint determined by the voluntary disclosure decision occurring after the design of the measurement sys-

tem. Absent the issue of incentive compatibility for the firm’s disclosure, the regulator problem boils down

to the choice of a distribution of posterior meansG such that the distribution of the asset value,F , is a

mean-preserving spread ofG. Due to convexity of the payoff function, the regulator would optimally select

G∗ = F , to maximize the ex ante expectation of firm value.

A complication arises when the firm has control over whether to disclose information, as the regulator

must anticipate the consequences of the choice ofG on the voluntary disclosure subgame. Namely, even

though the firm (probabilistically) observes information generated byG, the market only sees the informa-

tion that the firm elects to disclose. Therefore, the regulator’s ex ante expectation of firm value shouldnot

be taken with respect to the measurement systemG, but instead with respect to another distribution, denoted

HG, which is distribution of posterior means in the disclosure subgame (the subscript “G” in HG represents
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the fact that the subgame distribution of posteriors is a function of what measurement system the regulator

imposes).

Specifically, we can computeHG as follows. First, let

DG ≡ {x ∈ supp G : φ(x) − c ≥ φ(μ(nd; G))}

denote the disclosure region, that is, the realizations ofX (in the support ofG) such that the manager

prefers disclosure over nondisclosure for a given nondisclosure expectationμ(nd; G). Further, letNDG ≡

supp G \ DG denote the strategic nondisclosure region, that is, the complement of the disclosure region in

the support ofG. Given the disclosure and nondisclosure regions, the market’s rational posterior expectation

of the asset value conditional on nondisclosure is

μ(nd; G) =
qE(V ) + (1 − q)P(NDG)E (X|X ∈ NDG)

q + (1 − q)P(NDG)
.25 (B.11)

The expectationμ(nd; G) is a convex combination of the prior mean,E(V ), and the expectation conditional

on nondisclosure,E (X|X ∈ NDG). The weight on the conditional on the prior mean is the posterior

probability that no verifiable information exists, given by the prior probability of no verifiable information,

q, divided by the total probability of nonstrategic and strategic withholding,q + (1 − q)P(NDG).

Second, note that if there exists a typex in the support ofG that prefers disclosure over nondisclosure

(i.e., such thatφ(x) − c ≥ φ(μ(nd; G))), then all typesx′ > x also prefer disclosure over nondisclosure.

Thus, an equilibrium is characterized by a marginal discloser, denotedx̂(G), such that all typesx ≥ x̂(G)

disclose and allx < x̂(G) withhold. If the disclosure regionDG is empty, we set̂x(G) = v.

With this notation, the distribution of posterior means as is observed by the market is

HG(x) =






0 if x ∈ [0, μ(nd; G))

q + (1 − q)P(NDG) if x ∈ [μ(nd; G), x̂(G))

q + (1 − q)P(X ≤ x) if x ∈ [x̂(G), v]

. (B.12)

25By the law of iterated expectations, we can writeE (X|X ∈ NDG) in placeE (V |X ∈ NDG), asX is the
posterior expectation of the asset value (i.e.,E(V |X) = X). Also, we write

∫
NDG

xdG(x) = P(NDG)E(X|X ∈
NDG) because at an optimum the set of strategic withholders is nonempty as per LemmaB.4 in the Appendix.
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The expression in (B.12) necessitates a few comments. Recall thatHG is a distribution function, and so

it measures the probability that the posterior meanX ≤ x. As such,HG equals zero for all values less

than the nondisclosure expectation, because none of these values (even if they are on the support ofG) are

disclosed in equilibrium. Atx = μ(nd; G), the distribution has a discrete jump, because the nondisclosure

expectation realizes when the firm has no verifiable information (with probabilityq) and when the firm is

strategically withholding (with probability(1 − q)P(NDG)). The distribution then stays constant untilx

reaches the lowest value in the support ofG such that disclosure is preferred over nondisclosure. From that

point on,HG (weakly) increases withx until the upper bound of the support, whereHG equals one because

all informed lower types either withhold or disclose.

The following Lemma combines the previous discussion with Definitions1 and2 to provide a mathe-

matical formulation of optimal measurements.

Lemma B.1 A measurementG∗ is optimal if it solves

max
G

∫ v

0
φ′′(x)S(x; HG)dx

s.t.

[MPS] S(x; G) ≤ S(x; F ) for all x ∈ [0, v], with equality forx = v

[BP ] μ(nd; G) is given by (B.11) andHG is given by (B.12),

whereS(x; G) ≡
∫ x
0 G(y)dy.

The objective function is obtained by integrating by parts twice the unconditional expectation of firm

value taken with respect to the distributionHG.26 The label[MPS] for the first constraint stands for “mean-

preserving spread”, as is states a necessary and sufficient condition forF to be a mean-preserving spread of

G.27 The second constraint is labeled[BP ] as a mnemonics for “Bayesian plausibility”, and summarizes

26The steps are as follows,

∫ x

0

φ(x)dHG(x) = v −
∫ v

0

φ′(x)HG(x)dx = v − φ′(v)S(v; HG) +
∫ v

0

φ′′(x)S(x; HG)dx.

Then, we observe that the first twoterms,v−φ′(v)S(v; HG), are independent ofG, becauseHG is a mean-preserving
spread ofF and soS(v; HG) = S(v; F ). Hence, only the last term is relevant for optimization purposes.

27Equality of the means is implied by the conditionS(v; G) = S(v; F ). This fact can be seen by integrating by
parts the unconditional expectation,

∫ v

0
xdG(x) = v − S(v; G).
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the equilibrium of the disclosure subgame. We name this constraint as such because the unconditional

expectation with respect toHG equals the unconditional expectation of the asset value,E(V ).

B.2 Characterization of the equilibrium in the disclosure subgame

Given our relatively unusual setting for the voluntary disclosure subgame, we say a few words on the equi-

librium derivation when the posterior mean follows a generic distributionG.

Since the distributionG of posterior means might feature discrete jumps in correspondence with values

that have positive probability mass, integrals in the analysis are to be intepreted as Lebesgue-Stieltjes inte-

grals.28 We specify whether the limits of integration are included or excluded, unless it makes no difference.

We useG(x−) to denote the left limit ofG at a pointx. The right limit ofG at a pointx is simplyG(x),

because distribution functions are right-continuous.

Let x̂ be the marginal discloser. The equilibrium nondisclosure price must equal

μ(nd; G) =
qE(V ) + (1 − q)

∫
[0,x̂) xdG(x)

q + (1 − q)G(x̂−)

=
qE(V ) + (1 − q) [x̂G(x̂−) − S(x̂; G)]

q + (1 − q)G(x̂−)
≡ Υ(x̂; G),

(B.13)

where the second line uses integration by parts for distribution functions. The functionΥ(x̂; G) in (B.13) is

the expectation of asset value conditional on nondisclosure and is obtained as follows: with probabilityq the

firm has no verifiable information, so the expected asset value in this event is the unconditional meanE(V );

with probabiltiy(1−q)G(x̂−) the firm is withholding information, so the expected asset value is conditional

on the eventX < x̂ (with strict inequality because the marginal discloser discloses). A marginal discloser

x̂ is part of an equilibrium ifφ(x̂) − c ≥ φ(Υ(x̂; G)) (implying that all types greater than̂x disclose) and

φ(x) − c < φ(Υ(x̂; G)) for all x < x̂ in the support ofG (implying that all types smaller than̂x withhold).

If there are multiple equilibria in the voluntary disclosure subgame, we select the equilibrium with

the highest ex ante expectation of firm value. Analogous equilibrium selection criteria are common in the

disclosure literature (e.g.,Kamenica and Gentzkow, 2011; Hart, Kremer and Perry, 2017; Rappoport, 2017).

LemmaB.2 below identifies the subgame equilibrium that maximizes the ex ante firm value as the one with

28We cannot restrict the attention to only distribution of posterior means that admit a density because partitional
signal structures imply a distribution that is not absolutely continuous, since it features non-zero mass at certain points
(e.g., all states within an interval yield the same posterior).
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the lowest marginal discloser.

Lemma B.2 Fix the distribution of posterior meansG and the disclosure costc. Let

X+ ≡ {x ∈ supp G : φ(x) − c ≥ φ(Υ(x; G))} .

(i) If X+ is empty, then nondisclosure by all types is the only equilibrium of the voluntary disclosure

subgame.

(ii) If X+ is nonempty, then an equilibrium exists where the treshold type isx̂c = minX+. Moreover,

among all equilibria, ex ante firm value is maximal in this equilibrium.

Proof of Lemma B.2. In part (i), the disclosure cost is so high that no type has an incentive to separate

from the nondisclosing types (namely, the setX+ is empty). Hence, the unique equilibrium outcome is

nondisclosure by all types.

In part (ii), some types have an incentive to separate. We prove part (ii) in a series of steps. Step 1

below argues thatminX+ exists. Step 2 shows that the threshold identified in this way is part of a subgame

equilibrium for the casec = 0. Step 3 generalizes Step 2 to the casec > 0. Step 4 argues that in all other

equilibria (which may or may not exist), ex ante firm value is lower than in the equilibrium with marginal

discloser̂xc = minX+.

Step 1.minX+ exists.

Proof of Step 1.Suppose not. Then, for anyx ∈ X+ there exists anx′ ∈ X+ such thatx′ < x.

Therefore, it is possible to construct a decreasing sequence{xn} in X+. Such a sequence must converge

to a limit becausex ≥ 0 implies thatX+ is bounded from below. Call̂x the limit of this sequence. For

a minimum not to exist, we must havêx /∈ X+. However,x̂ ∈ supp G because the support of a random

variable is a closed set. Also, we now argue thatφ(x̂) − c ≥ φ(Υ(x̂; G)), which together witĥx ∈ supp G

implies the contradiction that the limit̂x ∈ X+. To show that the inequality holds in the limit, first observe

that the left-hand side,φ(xn) − c, converges toφ(x̂) − c. Second, observe thatΥ(xn; G) converges to

Υ̃(x̂; G) ≡
qE(V ) + (1 − q) [x̂G(x̂) − S(x̂; G)]

q + (1 − q)G(x̂)
=

qE(V ) + (1 − q)
∫
[0,x̂] xdG(x)

q + (1 − q)G(x̂)
,
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which is the expectation conditional on the firm being uninformed or informed withX ≤ x̂.29 The inclusion

of X = x̂ in the conditional expectation is what differentiatesΥ̃(x̂; G) from Υ(x̂; G). Since inequalities are

preserved in the limit, we haveφ(x̂) − c ≥ φ(Υ̃(x̂; G)). From the latter inequality, we havêx ≥ Υ̃(x̂; G),

which in turn impliesΥ̃(x̂; G) ≥ Υ(x̂; G), as we are removing from the conditional expectationΥ̃(x̂; G) a

realization,̂x, which is greater that the expectation itself.30 Overall,φ(x̂)− c ≥ φ(Υ̃(x̂; G)) ≥ φ(Υ(x̂; G))

and so we reach the contradiction thatx̂ ∈ X+.

Step 2.The threshold̂x0 = minX+ is part of an equilibrium whenc = 0.

Proof of Step 2.Sincex̂0 (weakly) prefers disclosure over nondisclosure, allx > x̂0 strictly prefer

disclosure. There remains to check that all typesx < x̂0 prefer nondisclosure over disclosure. Whenc = 0,

the conditionφ(x) − c < φ(Υ(x̂0; G)) is equivalent tox < Υ(x̂0; G) (becauseφ is strictly increasing).

By contradiction, suppose that there existed a typex < x̂0 such thatx ≥ Υ(x̂0; G). Then, we would have

Υ(x; G) ≤ Υ(x̂0; G), because we are removing from the conditional expectationΥ(x̂0; G) the types[x, x̂0),

which are greater than the expectation itself.31 As a consequence,x ≥ Υ(x̂0; G) ≥ Υ(x; G), contradicting

the fact thatx /∈ X+. We conclude thatx < Υ(x̂0; G) for all typesx < x̂0.

Step 3.1.x < Υ(x; G) for all x < x̂0 (if there are any such types).

Proof of Step 3.1.We know from the proof of Step 2 thatx < Υ(x̂0; G) for all typesx < x̂0. Hence,

Υ(x; G) ≥ Υ(x̂0; G), because we are removing from the conditional expectationΥ(x̂0; G) the types in

[x, x̂0), which are lower than the expectation itself. So,x < Υ(x̂0; G) ≤ Υ(x; G).

Step 3.2.Whenc > 0, all typesx < x̂0 (if there are any) prefer nondisclosure over disclosure. Further,

x̂c ≥ x̂0.

29Convergence ofΥ(x; G) to Υ̃(x̂; G) asx ↓ x̂ follows from G(x̂) ≤ G(x−) ≤ G(x) (becausex > x̂ andG is
nondecreasing) andG(x) ↓ G(x̂) (becauseG is right-continuous). Hence,limx↓x̂ G(x−) = G(x̂).

30Formally, if the pointx̂ has no probability mass (i.e.,G(x̂) − G(x̂−) = 0), then adding the typex = x̂ to the
conditional expectationΥ(x̂; G) is immaterial, and sõΥ(x̂; G) = Υ(x̂; G). Conversely, if there is probability mass on
the pointx̂ (i.e.,G(x̂) − G(x̂−) > 0), then

Υ̃(x̂; G) =
[q + (1 − q)G(x̂−)]Υ(x̂; G) + (1 − q) [G(x̂) − G(x̂−)] x̂

q + (1 − q)G(x̂)
≥ Υ(x̂; G)

if and only if x̂ ≥ Υ(x̂; G), as is the case.
31The latter claim follows from the fact that the inequality

Υ(x; G) =
[q + (1 − q)G(x̂0−)]Υ(x̂0; G) − (1 − q)

∫
[x,x̂0)

ydG(y)

q + (1 − q)G(x−)
≤ Υ(x̂0; G)

boils down to
∫
[x,x̂0)

[Υ(x̂0; G) − y]dy ≤ 0, which holds becausey ≥ Υ(x̂0; G) for all y ∈ [x, x̂0).
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Proof of Step 3.2.From Step 3.1, we know thatx < Υ(x; G) and soφ(x) − c < φ(Υ(x; G)). Thus,

x /∈ X+ for all x < x̂0 and we must havêxc ≥ x̂0.

Step 3.3.x > Υ(x; G) for all x > x̂0 (if there are any such types).

Proof of Step 3.3.Υ(x; G) is obtained by adding to the conditional expectationΥ(x̂0; G), which is

smaller thanx, the types in[x̂0, x), which are also smaller thanx. In particular, we have

Υ(x; G) =
[q + (1 − q)G(x̂0−)]Υ(x̂0; G) + (1 − q)

∫
[x̂0,x) ydG(y)

q + (1 − q)G(x−)
< x

if and only if

[q + (1 − q)G(x̂0−)] [x − Υ(x̂0)] + (1 − q)
∫

[x̂0,x)
(x − y)dG(y) > 0.

The inequality above holds becausex > x̂0 ≥ Υ(x̂0; G).

Step 3.4.The threshold̂xc = minX+ is part of an equilibrium whenc > 0.

Proof of Step 3.4.By Steps 3.1 and 3.2, it suffices to check that all typesx ∈ [x̂0, x̂c) (if there are any)

prefer nondisclosure over disclosure. These types withhold becauseφ(x)−c < φ(Υ(x; G)) ≤ φ(Υ(x̂c; G)).

The first inequality follows fromx /∈ X+. The second inequality from Step 3.3, becauseΥ(x̂c; G) is

obtained by adding to the conditional expectationΥ(x; G) the types[x, x̂c), which are greater than the

expectation itself. Therefore,Υ(x̂c; G) ≥ Υ(x; G).

Step 4.Across all equilibria, the greatest ex ante firm value is achieved in the equilibrium with marginal

discloser̂xc.

Proof of Step 4.Suppose that there is another equilibrium with thresholdx̂ > x̂c. Consider the event

X ≥ x̂. The probability of this event,
∫
[x̂,v] dH(x) = (1− q)[1−G(x̂−)], and the distribution ofX|X ≥ x̂

are the same in both equilibria. These facts have two consequences. First, the expected firm value condi-

tional on this event,
∫
[x̂,v] φ(x)d H(x)

(1−q)[1−G(x̂−)] , is the same in both equilibria. Second, the expected asset

value conditional on the complement event,
∫
[0,x̂) xd H(x)

q+(1−q)G(x̂−) , is the same in both equilibria.32 The

distribution ofX|X < x̂ in the equilibrium with threshold̂xc is a mean-preserving spread of the distribu-

tion of X|X < x̂ in the equilibrium with threshold̂x, because the latter distribution is degenerate at the

nondisclosure expectation (all typesx < x̂ withhold in that equilibrium). Since firm value is convex in the

32The claim exploits the law of iterated expectations, by whichE(X|X < x̂) = [E(V ) − P(X ≥ x̂)E(X|X ≥
x̂)]/[1 − P(X ≥ x̂)].
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posterior mean, the ex ante expected firm value is greater in the equilibrium with thresholdx̂c than in the

one with threshold̂x.

B.3 A partitional representation

Next, we reduce the complexity of the choice by showing the optimality of a single imprecise interval[t, a2].

That is, ifV /∈ [t, a2], then the manager can credibly convey the exact realization of the asset value (i.e., the

verifiable signal isX = V ). By constrast, ifV ∈ [t, a2], then the manager can credibly convey only the fact

that the realized asset value belongs to that interval (i.e., the verifiable signal isX = E[V |t ≤ V ≤ a2]).

Proposition 5 Fix the disclosure costc ≥ 0. If G∗ is an optimal measurement, then there existt∗ ≤ x̂∗ ≤ a∗2

such that:

(i) x̂∗ = E[V |t∗ ≤ V ≤ a∗2];

(ii) μ(nd; G∗) =
qE(V ) + (1 − q)F (t∗)E[V |V < t∗]

q + (1 − q)F (t∗)
;

(iii) φ(x̂∗) − c = φ(μ(nd; G∗)); and

(iv) the equilibrium distribution of posterior means in the disclosure subgame is

HG∗(x) =






0 if x ∈ [0, μ(nd; G∗))

q + (1 − q)F (t∗) if x ∈ [μ(nd; G∗), x̂∗)

q + (1 − q)F (a∗2) if x ∈ [x̂∗, a∗2]

q + (1 − q)F (x) if x ∈ (a∗2, v]

.33 (B.14)

The distribution of posterior means in (B.14) is determined as follows. Starting from (B.12), plug in the

specific values forP(NDG∗) andP(X ≤ x) that apply in the case with an imprecise interval. First, we

have thatP(NDG∗) = F (t∗), because the probability of strategic withholding is the probability of the

33As for the costless disclosure case of Proposition1, note how Proposition5 does not specify what the measurement
system should be for realizationsx < t∗. The reason is that these values are withheld in equilibrium and, consequently,
they do not belong to the support of the distribution of posterior means as are observed by the market,HG∗ . Hence,
there are multiple optimal measurements that agree onx ≥ t∗ but differ on x < t∗. For example, an optimal
measurement can feature either perfect measurement ofx < t∗ or a mass point atE(V |V < t∗).
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realized value being less than the lower bound of the imprecise interval. Second,P(X ≤ x) = F (a∗2) for

all x ∈ [x̂∗, a∗2], because all realized values in[t∗, a∗2] are pooled together. Last,P(X ≤ x) = F (x) for

x ∈ (a∗2, v], because above the upper bound of the imprecise interval the measurement is precise and the

sender discloses his signal.

B.3.1 Preliminary observations

We prove this Proposition relying on several lemmas. LetG∗ be an optimal measurement. An initial

observation is thatG∗ must induce disclosure by a positive mass of types. This statement is formalized in

the following LemmaB.3.

Lemma B.3 At the optimum, the disclosure region,DG∗ , is nonempty. Therefore, part (ii) of LemmaB.2

applies and the marginal discloser iŝx∗ = minX+.

Proof of Lemma B.3. If G∗ were such that (almost) all informed types chose nondisclosure, the distribu-

tion of posterior meansHG∗ would be degenerate atx = E(V ). By constrast, if the regulator chose perfect

measurement (i.e.,G = F ), types close to the upperboundv would disclose, becauseφ(v) − c > φ(E(V ))

(our working assumption throughout) andφ(E(V )) ≥ φ(μ(nd; F )) (asμ(nd; F ) is a convex combination

between the prior mean,E(V ), and an expectation truncated from above). Therefore, the equilibrium distri-

bution of posterior means under perfect measurement,HF , would be nondegenerate and, as such, would be

a mean-preserving spread ofHG∗ . Since the objective function is convex, the ex ante expected firm value is

strictly greater underHF than underHG∗ , soG∗ cannot be an optimalmeasurement.

A second observation is thatG∗ must induce strategic withholding by a positive mass of types, as stated

by LemmaB.4 below.

Lemma B.4 At the optimum, the strategic withholding region,NDG∗ , has positive mass. Therefore,
∫
NDG∗

xdG∗(x) = P(NDG∗)E(X|X ∈ NDG∗).

Proof of Lemma B.4. By contradiction, suppose thatP(NDG∗) = 0. Then,μ(nd; G∗) = E(V ). Since

almost all types disclose,φ(x) − c ≥ φ(E(V )), and thus alsox ≥ E(V ), for almost allx. By the law of

iterated expectations,G∗, and so alsoHG∗ , are degenerate atx = E(V ). As we have seen in the proof of

LemmaB.3, the regulator would strictly prefer perfect measurementG = F to G∗, soG∗ is notoptimal.
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A third observation is that there must exist at = max{x ∈ V : x ≤ x̂∗ andS(x; G∗) = S(x; F )},

because this set is compact (asS(x; G) is continuous inx) and nonempty (asS(0; G∗) = S(0; F )). Also,

there must exist ana2 = min{x ∈ V : x ≥ x̂∗ andS(x; G∗) = S(x; F )}, because this set is compact and

nonempty (asS(v; G∗) = S(v; F ) by the [MPS] constraint). The following LemmaB.5 describes some

useful properties oft anda2 that are implied by the equalityS(x; G∗) = S(x; F ). We know from Lemma

3 in Dworczak and Martini(2018) that suchx satisfiesG(x) = F (x). On top of that, we show thatG must

be continuous atx (i.e.,G(x−) = G(x)).

Lemma B.5 Suppose that the distributionF is a mean-preserving spread ofG. If x ∈ V is such that

S(x; G) = S(x; F ), thenG(x−) = G(x) = F (x).

Proof of Lemma B.5. If x = v, then because bothF andG are distributions we must haveG(v) = F (v) =

1. So, suppose for the remainder of the proof thatx ∈ [0, v). We make two observations:

- First, we argue that ifx ∈ [0, v), thenG(x) ≤ F (x). By contradiction, suppose thatG(x) > F (x). For

z > x, S(z; G) = S(x; G)+
∫ z
x G(y)dy andS(z; F ) = S(x; F )+

∫ z
x F (y)dy. SinceS(x; G) = S(x; F ),

S(z; F ) − S(z; G) =
∫ z
x [F (y) − G(y)]dy. BecauseF andG are right-continuous andG(x) > F (x),

there exists az > x such thatS(z; F ) − S(z; G) < 0, contradicting the fact thatF is a mean-preserving

spread ofG. Thus, it must beG(x) ≤ F (x).

- Second, we argue that ifx ∈ (0, v), thenG(x−) ≥ F (x). Forz < x, S(z; G) = S(x; G)−
∫ x
z G(y)dy and

S(z; F ) = S(x; F )−
∫ x
z F (y)dy. SinceS(x; G) = S(x; F ), S(z; F )−S(z; G) =

∫ x
z [G(y) − F (y)]dy.

Suppose, by contradiction, thatG(x−) < F (x). Then, by continuity ofF there would exist az < x such

thatS(z; F )−S(z; G) < 0, contradicting the fact thatF is a mean-preserving spread ofG. Thus, it must

beG(x−) ≥ F (x).

If x = 0, F (0) = 0, by the first observation0 ≤ G(0) ≤ F (0) = 0, henceG(0) = 0 = F (0) and the proof

is concluded. Ifx > 0, by the first observation we haveG(x) ≤ F (x), while by the second observation we

haveG(x) ≥ G(x−) ≥ F (x). Hence,G(x) = G(x−) = F (x).
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For future reference, note that using the notationP(NDG∗) = G∗(x̂∗
−) andP(X ≤ x) = G(x), the

equilibrium distribution of posterior means in (B.12) can be rewritten as

HG∗(x) =






0 if x ∈ [0, μ(nd; G))

q + (1 − q)G∗(x̂∗
−) if x ∈ [μ(nd; G), x̂∗)

q + (1 − q)G∗(x) if x ∈ [x̂∗, v]

. (B.15)

B.3.2 Overview of the proof of Proposition5

The objective is to show thatG∗ is a partitional measurement with imprecise interval[t, a2], where the end

points of this interval are defined as above. We summarize below the steps involved in the proof:

Step 1.LemmaB.6 shows that the optimal measurement must involve perfect measurement of allV > a2.

Equivalently, the distributions of the signalX|X > a2 and of the asset valueV |V > a2 must

coincide.

Step 2.We argue that, of all the values in the interval[t, a2], only x = E(V |t ≤ V ≤ a2) is in the support

of the optimal measurement. Namely:

Step 2.1.LemmaB.7 shows thatG∗(x̂∗) = G∗(a2) = F (a2), so the c.d.f.G∗ is flat on[x̂∗, a2];

Step 2.2.LemmaB.8 shows thatG∗(x̂∗
−) = G∗(t) = F (t),34 soG∗ is flat on[t, x̂∗);

Step 2.3.LemmaB.9 shows that the marginal discloser isx̂∗ = E(V |t ≤ V ≤ a2).

Step 3.LemmaB.10shows that the marginal discloser must be exactly indifferent between disclosure and

nondisclosure.

B.3.3 The lemmas that imply Proposition5

At this point, we proceed to state and prove the lemmas mentioned above.

Lemma B.6 G∗(x) = F (x) for all x ∈ [a2, v].

34We useG(x−) to denote the left limit ofG at pointx.

56



Proof of Lemma B.6. If a2 = v, thenG∗(a2) = F (a2) = 1 and the proof is concluded. So, suppose

instead thata2 < v. By LemmaB.5, if F is a mean-preserving spread ofG andS(x; G) = S(x; F ) for

somex, thenG(x) = F (x). Thus, we haveG∗(a2) = F (a2) and there remains to verify the claim on the

lemma forx ∈ (a2, v].

Recall that we denote byHG the c.d.f. of the posterior mean when the measurement system isG. The

[BP] constraint and (B.15) imply that[q +(1− q)G(x̂−)]μ(nd; G) = qE(V )+(1− q)[x̂G(x̂−)−S(x̂; G)].

Hence, the integral of the c.d.f.HG takes the form

S(x; HG) =






0 if x ∈ [0, μ(nd; G))

q(x − E(V )) + (1 − q) [(x − x̂)G(x̂−) + S(x̂; G)] if x ∈ [μ(nd; G), x̂)

q(x − E(V )) + (1 − q)S(x; G) if x ∈ [x̂, v]

. (B.16)

Further, by Lemma5 and (B.16), the value of the objective function in equilibrium is

∫ v

0
φ′′(x)S(x; HG∗)dx =

∫ a2

0
φ′′(x)S(x; HG∗)dx +

∫ v

a2

φ′′(x) [q(x − E(V )) + (1 − q)S(x; G)] dx.

(B.17)

The [MPS] constraint imposes the inequalityS(x; G∗) ≤ S(x; F ). To maximize the second term in the

right-hand side of (B.17), the distributions ofX|X > a2 andV |V > a2 must be the same, so thatS(x; G) =

S(x; F ) for all x ∈ (a2, v].

Lemma B.7 G∗(x̂∗) = F (a2).

Proof of Lemma B.7. If a2 = x̂∗, thenG∗(x̂∗) = G∗(a2) = F (a2) (the second equality by LemmaB.6),

which concludes the proof. If insteada2 > x̂∗, suppose by contradiction thatF (a2) > G∗(x̂∗). Then, let

a2 ≡ max{x̂∗, F−1(G∗(x̂∗))}. We argue that the following measurement system strictly improves the ex

ante firm value,

G∗∗(x) =






G∗(x) if x ∈ [0, x̂∗)

F (a′2) if x ∈ [x̂∗, a′2]

F (x) if x ∈ (a′2, v]

,

57



wherea′2 ∈ (a2, a2) solves

S(a′2; G
∗∗) = S(a′2; F ). (B.18)

The conditiona′2 > a2 guarantees that botha′2 > x̂∗ andF (a′2) > G∗(x̂∗), so that the c.d.f.G∗∗ is

nondecreasing. Also, note thatS(a′2; G
∗∗) = S(x̂∗; G∗) +

∫ a′
2

x̂∗ F (a′2)dx. Existence of a solutiona′2 to

(B.18) is established as follows:

- If a2 = x̂∗, then (B.18) evaluated ata′2 = a2 becomesS(x̂∗; G∗) < S(x̂∗; F ) by the definition ofa2

being the smallestx ≥ x̂∗ such thatS(x; G∗) = S(x; F ). If a2 = F−1(G∗(x̂∗)), then (B.18) evaluated

at a′2 = a2 becomesS(x̂∗; G∗) +
∫ a2

x̂∗ G∗(x̂∗)dx < S(a2; F ), becauseS(x̂∗; G∗) +
∫ a2

x̂∗ G∗(x̂∗)dx ≤

S(x̂∗; G∗) +
∫ a2

x̂∗ G∗(x)dx = S(a2; G∗) (asG∗ is nondecreasing) andS(a2; G∗) < S(a2; F ) (by the

definition ofa2). In either case, when evaluated ata′2 = a2, the left-hand side of (B.18) is strictly smaller

than the right-hand side.

- By contrast, when evaluated ata′2 = a2, equation (B.18) becomesS(x̂∗; G∗)+
∫ a2

x̂∗ F (a2)dx > S(a2; F ),

becauseS(x̂∗; G∗) +
∫ a2

x̂∗ F (a2)dx = S(a2; G∗) +
∫ a2

x̂∗ [F (a2) − G∗(x)]dx > S(a2; G∗) (asG∗(x) ≤

F (a2) for x ≤ a2, with strict inequality in a neighborhood to the right ofx̂∗ due toG∗(x̂∗) < F (a2)

andG∗ being right-continuous) andS(a2; G∗) = S(a2; F ) (by the definition ofa2). Therefore, when

evaluated ata′2 = a2, the left-hand side of (B.18) is strictly larger than the right-hand side.

- Continuity implies existence of aa′2 ∈ (a2, a2) satisfying (B.18).

We need to verify thatG∗∗ satisfies the [MPS] condition, so that it is a feasible measurement system:

- Forx ∈ [0, x̂∗], G∗ andG∗∗ coincide, soS(x; G∗∗) = S(x; G∗) ≤ S(x; F ), becauseG∗ satisfies [MPS].

- Forx ∈ (x̂∗, a′2), we haveS(x; G∗∗) = S(a′2; G
∗∗)−

∫ a′
2

x F (a′2)dy ≤ S(a′2; F )−
∫ a′

2
x F (y)dy = S(x; F )

if and only if
∫ a′

2
x [F (y) − F (a′2)]dy ≤ 0 (becauseS(a′2; G

∗∗) = S(a′2; F ) by definition ofa′2). The

inequality holds becauseF is increasing.

- For x ∈ [a′2, v], S(x; G∗∗) = S(a′2; G
∗∗) +

∫ x
a′
2
F (y)dy = S(a′2; F ) +

∫ x
a′
2
F (y)dy = S(x; F ). In

particular,S(v; G∗∗) = S(v; F ), which implies equality of means.

Finally, we show that the objective function in Lemma5 is strictly greater when evaluated atG∗∗ than at

G∗. For this purpose, it suffices to show thatS(x; HG∗) ≤ S(x; HG∗∗) for all x ∈ V , with strict inequality
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on a subset of positive Lebesgue measure.

- For x ∈ [0, x̂∗], G∗ andG∗∗ coincide. Hence, by equation (B.13) we haveμ(nd; G∗) = μ(nd; G∗∗) and

by equation (B.16) we haveS(x; HG∗) = S(x; HG∗∗).

- For all x > x̂∗ we haveS(x; HG) = q(x − E(V )) + (1 − q)S(x; G) by equation (B.13). Therefore, the

inequality to check isS(x; G∗∗) ≥ S(x; G∗).

- For x ∈ (x̂∗, a′2), S(x; G∗∗) − S(x; G∗) =
∫ x
x̂∗ [F (a′2) − G∗(y)]dy. This difference is nonnegative if

G∗(x) ≤ F (a′2). If insteadG∗(x) > F (a′2), thenG∗(y) > F (a′2) for all y > x and soS(x; G∗∗) −

S(x; G∗) ≥ S(a′2; G
∗∗) − S(a′2; G

∗). By the definition ofa′2, S(a′2; G
∗∗) − S(a′2; G

∗) = S(a′2; F ) −

S(a′2; G
∗). By the definition ofa2, S(a′2; F ) − S(a′2; G

∗) > 0. Hence,S(x; G∗∗) ≥ S(x; G∗) for all

x ∈ (x̂∗, a′2).

- Forx ∈ [a′2, a2), S(x; G∗∗) = S(x; F ) > S(x; G∗).

- Forx ∈ [a2, v], by LemmaB.6 we haveS(x; G∗∗) = S(x; G∗) = S(x; F ).

Overall, we have shown that ifF (a2) > G∗(x̂∗), then there is another measurement system,G∗∗, that

satisfies [MPS] and strictly increases ex ante firm value relative toG∗. Therefore, such aG∗ cannot be

optimal.

Lemma B.8 G∗(x̂∗
−) = G∗(t) = F (t).

Proof of Lemma B.8. LemmaB.5 impliesG∗(t) = F (t). If t = x̂∗, LemmaB.5 also directly implies

the claimG∗(t) = G∗(x̂∗
−). Suppose instead thatt < x̂∗. By way of contradiction, further suppose that

F (t) < G∗(x̂∗
−). Then,let t ≡ min{x̂∗, F−1(G∗(x̂∗

−))}. We now show that the following measurement

system strictly increases the ex ante firm value,

G∗∗(x) =






F (x) if x ∈ [0, t′)

F (t′) if x ∈ [t′, x̂∗)

G∗(x) if x ∈ [x̂∗, v]

,

wheret′ ∈ (t, t) solves

S(x̂∗; G∗∗) = S(x̂∗; G∗). (B.19)
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The conditiont′ < t guarantees that botht′ < x̂∗ andF (t′) < G∗(x̂∗
−), so that the c.d.f.G∗∗ is nondecreas-

ing. Also, note thatS(x̂∗; G∗∗) = S(t′; F )+
∫ x̂∗

t′ F (t′)dx. Existence of a solutiont′ to (B.19) is established

as follows:

- When evaluated att′ = t, equation (B.19) becomesS(t; F )+
∫ x̂∗

t F (t)dx < S(x̂∗; G∗), becauseS(t; F )+
∫ x̂∗

t F (t)dx = S(t; G∗) +
∫ x̂∗

t F (t)dx (by the definition oft being such thatS(t; F ) = S(t; G∗)) and

S(t; G∗) +
∫ x̂∗

t F (t)dx < S(x̂∗; G∗) = S(t; G∗) +
∫ x̂∗

t G∗(x)dx. The latter inequality holds if and only

if
∫ x̂∗

t [G∗(x) − F (t)]dx > 0, which is satisfied becauseG∗(x) ≥ G∗(t) = F (t) for x > t (by Lemma

B.5), with strict equality in a neighborhood to the left ofx̂∗ (because we are assuming, by contradiction,

thatF (t) < G∗(x̂∗
−)).

- If t = x̂∗, then (B.19) evaluated att′ = t becomesS(x̂∗; F ) > S(x̂∗; G∗) by the definition oft being

the greatestx ≤ x̂∗ such thatS(x; F ) = S(x; G∗). If t = F−1(G∗(x̂∗
−)), then (B.19) evaluated at

t′ = t becomesS(t; F ) +
∫ x̂∗

t G∗(x̂∗
−)dx > S(x̂∗; G∗), becauseS(t; F ) +

∫ x̂∗

t G∗(x̂∗
−)dx ≥ S(t; F ) +

∫ x̂∗

t G∗(x)dx (becauseG∗ is nondecreasing) andS(t; F ) > S(x̂∗; G∗) −
∫ x̂∗

t G∗(x)dx = S(t; G∗) (by

the definition oft). In either case, when evaluated att′ = t, the left-hand side of (B.19) is strictly greater

than the right-hand side.

- Continuity implies existence of at′ ∈ (t, t) satisfying (B.19).

We need to verify thatG∗∗ satisfies the [MPS] condition, so that it is a feasible measurement system:

- Forx ∈ [0, t′], G∗∗ andF coincide, soS(x; G∗∗) = S(x; F ).

- For x ∈ (t′, x̂∗), we haveS(x; G∗∗) = S(t′; G∗∗) +
∫ x
t′ F (t′)dy ≤ S(t; F ) +

∫ x
t′ F (y)dy = S(x; F ) if

and only if
∫ x
t′ [F (t′) − F (y)]dy ≤ 0 (becauseS(t′; G∗∗) = S(t′; F )). The inequality holds becauseF is

increasing.

- For x ∈ [x̂∗, v], S(x; G∗∗) = S(x̂∗; G∗∗) +
∫ x
x̂∗ G∗(y)dy = S(x̂∗; G∗) +

∫ x
x̂∗ G∗(y)dy = S(x; G∗),

becauseS(x̂∗; G∗) = S(x̂∗; G∗∗) by (B.19). We haveS(x; G∗∗) = S(x; G∗) ≤ S(x; F ) becauseG∗

satisfies [MPS].

- Equality of the means is satisfied becauseS(v; G∗∗) = S(v; G∗), andG∗ has the same mean asF .
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Last, we show that the objective function in Lemma5 is strictly greater when evaluated atG∗∗ than at

G∗. We consider separately two cases: whenφ(t′) − c < φ(Υ(t′; F )) and whenφ(t′) − c ≥ φ(Υ(t′; F )).

Proof for Caseφ(t′) − c < φ(Υ(t′; F )). In this case, under the measurementG∗∗ there exists an

equilibrium with threshold̂x∗ and nondisclosure expectation

μ(nd; G∗∗) =
qE(V ) + (1 − q)[x̂∗G∗∗(x̂∗

−) − S(x̂∗; G∗∗)]
q + (1 − q)G∗∗(x̂∗

−)

=
qE(V ) + (1 − q)[x̂∗F (t′) − S(t′; F ) − (x̂∗ − t′)F (t′)]

q + (1 − q)F (t′)
= Υ(t′; F ),

where the second equality uses the definition ofG∗∗. This combination of marginal discloser and nondis-

closure expectation constitutes an equilibrium of the disclosure subgame for the following reasons:

- Notice thatΥ(t′; F ) ≤ μ(nd; G∗), because

Υ(t′; F ) =
qE(V ) + (1 − q)[x̂∗F (t′) − S(x̂∗; G∗)]

q + (1 − q)F (t′)

≤
qE(V ) + (1 − q)[x̂∗G∗(x̂∗

−) − S(x̂∗; G∗)]
q + (1 − q)G∗(x̂∗

−)
= μ(nd; G∗),

where the equality follows from (B.19) and the inequality fromF (t′) < G∗(x̂∗
−).35

- Typesx ≥ x̂∗ strictly prefers disclosure, becauseφ(x̂∗) − c ≥ φ(μ(nd; G∗)) (asx̂∗ weakly preferred

disclosure under measurementG∗) andμ(nd; G∗) ≥ Υ(t′; F ) (from the previous observation).

- Valuesx ∈ (t′, x̂∗) are not in the support ofG∗∗.

- Typesx ≤ t′ strictly prefer nondisclosure by the assumption for this case.

For future reference, note that in this equilibrium the distribution of posterior means from the market’s

perspective is

ĤG∗∗(x) ≡






0 if x ∈ [0, Υ(t′; F ))

q + (1 − q)F (t′) if x ∈ [Υ(t′; F ), x̂∗)

q + (1 − q)G∗(x) if x ∈ [x̂∗, v]

. (B.20)

Using (B.16), we compare the ex ante firm value between the regulator preferred equilibrium underG∗

35Namely, whenF (t′) < G∗(x̂∗
−), Υ(t′; F ) ≤ μ(nd; G) if and only if q(E(V ) − x̂∗) − (1 − q)S(x̂∗; G∗) ≤ 0,

which holds ifx̂∗ ≥ μ(nd; G∗). The last inequality is implied byφ(x̂∗) − c ≥ φ(μ(nd; G∗)).
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and the equilibrium above underG∗∗,

∫ v

0
φ′′(x)S(x; ĤG∗∗)dx =

∫ x̂∗

Υ(t′;F )
φ′′(x){q(x − E(V )) + (1 − q)[(x − x̂∗)F (t′) + S(x̂∗; G∗)]}dx

+
∫ v

x̂∗
φ′′(x){q(x − E(V )) + (1 − q)S(x; G∗)}dx

≥
∫ x̂∗

μ(nd;G∗)
φ′′(x){q(x − E(V )) + (1 − q)[(x − x̂∗)G∗(x̂∗

−) + S(x̂∗; G∗)]}dx

+
∫ v

x̂∗
φ′′(x){q(x − E(V )) + (1 − q)S(x; G∗)}dx =

∫ v

0
φ′′(x)S(x; HG∗)dx,

where the inequality follows fromΥ(t′; F ) ≤ μ(nd; G∗) andF (t′) < G∗(x̂∗
−). Ex ante firm value is thus

greater underG∗∗ than underG∗.

The equilibrium here identified under measurementG∗∗ is not necessarily the one where ex ante firm

value is maximal. However, we have shown that underG∗∗ there exists an equilibrium with greater ex

ante firm value than the regulator preferred equilibrium underG∗. Therefore, in the regulator preferred

equilibrium underG∗∗ ex ante firm value is at least as large.

Proof for Caseφ(t′) − c ≥ φ(Υ(t′; F )). In this case, we havet′ ≥ x̂(F ). Therefore, underG∗∗ the

regulator preferred subgame equilibrium has thresholdx̂∗∗ = x̂(F ). In this equilibrium, the distribution of

posterior means from the market’s perspective is

HG∗∗(x) =






0 if x ∈ [0, Υ(x̂∗∗; F ))

q + (1 − q)F (x̂∗∗) if x ∈ [Υ(x̂∗∗; F ), x̂∗∗)

q + (1 − q)F (x) if x ∈ [x̂∗∗, t′)

q + (1 − q)F (t′) if x ∈ [t′, x̂∗)

q + (1 − q)G∗(x) if x ∈ [x̂∗, v]

. (B.21)

In the previous case, we have shown that
∫ v
0 φ′′(x)S(x; ĤG∗∗)dx ≥

∫ v
0 φ′′(x)S(x; HG∗)dx. To complete

the proof for this case, we now argue that
∫ v
0 φ′′(x)S(x; HG∗∗)dx ≥

∫ v
0 φ′′(x)S(x; ĤG∗∗)dx. From (B.20)

and (B.21), we see that the probabilityP(X ≥ x̂∗) = (1 − q)F (t′), and the distribution ofX|X ≥ x̂∗ are

the same under botĥHG∗∗ andHG∗∗ . Therefore,E(φ(X)|X ≥ x̂∗) andE(X|X < x̂∗) are the same in

both equilibria. The distribution ofX|X < x̂∗ in the equilibrium withHG∗∗ is a mean-preserving spread of
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the distribution ofX|X < x̂∗ in the equilibrium withĤG∗∗ , because the latter distribution is degenerate at

Υ(t′; F ). Since firm value is convex in the posterior mean, the ex ante expected firm value is greater under

HG∗∗ than underĤG∗∗ .

Lemma B.9 x̂∗ = E(V |t ≤ V ≤ a2).

Proof of Lemma B.9. If t = a2, thent ≤ x̂∗ ≤ a2 implies x̂∗ = t = a2 and the claim holds. So, for the

remainder of the proof, suppose thatt < a2.

We can decompose the expectation
∫
[0,v] xdG∗(x) =

∫
[0,x̂∗) xdG∗(x)+

∫
[x̂∗,a2] xdG∗(x)+

∫
(a2,v] xdG∗(x).

Let us study separately each of these three terms:

-
∫
(a2,v] xdG∗(x) = v − a2G

∗(a2) − [S(v; G∗) − S(a2; G∗)] = v − a2F (a2) − [S(v; F ) − S(a2; F )] =
∫ v
a2

xdF (x), where the first and third equalities follow from integration by parts, while the second equal-

ity from LemmaB.7 (G∗(a2) = F (a2)), from condition [MPS] (S(v; G∗) = S(v; F )), and from the

definition ofa2 (S(a2; G∗) = S(a2; F )).

-
∫
[0,x̂∗) xdG∗(x) = x̂∗G∗(x̂∗

−) − [S(t; G∗) +
∫ x̂∗

t G∗(x)dx] = x̂∗F (t) − S(t; F ) − (x̂∗ − t)F (t) =
∫ t
0 xdF (x), where the first and third equalities follow from integration by parts, while the second equality

from LemmaB.8 (G∗(x) = F (t) for all x ∈ [t, x̂∗)) and the definition oft (S(t; G∗) = S(t; F )).

-
∫
[x̂∗,a2] xdG∗(x) = a2G

∗(a2) − x̂∗G∗(x̂∗
−) −

∫ a2

x̂∗ G∗(x)dx = a2F (a2) − x̂∗F (t) − (a2 − x̂∗)F (a2) =

x̂∗[F (a2) − F (t)], where the first equality follows from integration by parts, while the second equality

from LemmaB.8 (G∗(x̂∗
−) = F (t)) and LemmaB.7 (G∗(x) = F (a2) for all x ∈ [x̂∗, a2]).

SinceG∗ satisfies [MPS],
∫
[0,v] xdG∗(x) =

∫ v
0 xdF (x) = E(V ). Combining the three previous observa-

tions,
∫ t

0
xdF (x) + x̂∗[F (a2) − F (t)] +

∫ v

a2

xdF (x) =
∫ v

0
xdF (x),

which yields the desired resultx̂∗ =
∫ a2

t xdF (x)/[F (a2) − F (t)] = E(V |t ≤ V ≤ a2).

Lemma B.10 φ(x̂∗) − c = φ(μ(nd; G∗)).

Proof of Lemma B.10. In the proof of LemmaB.9, we have seen that
∫
[0,x̂∗) xdG∗(x) =

∫ x̂∗

0 xdF (x).

By LemmaB.8, we know thatG∗(x̂∗
−) = F (t). Combining these two facts, we conclude thatμ(nd; G∗) =
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Υ(t; F ). As explained at the beginning of this section, LemmasB.6, B.7, andB.8 imply that the distribution

of posterior expectationsHG∗ is given by (B.14). Then, the integral of the c.d.f. is

S(x; HG∗) =






0 if x ∈ [0, Υ(t; F ))

q(x − E(V )) + (1 − q) [S(t; F ) + (x − t)F (t)] if x ∈ [Υ(t; F ), x̂∗)

q(x − E(V )) + (1 − q) [S(t) + (x̂∗ − t)F (t) + (x − x̂∗)F (a2)] if x ∈ [x̂∗, a2]

q(x − E(V )) + (1 − q)S(x; F ) if x ∈ (a2, v]

.

(B.22)

By way of contradiction, suppose that at the optimum the marginal discloser strictly prefers disclosure,

φ(x̂∗) − c > φ(Υ(t; F )). We argue that if the inequality is strict, then ex ante firm value can be increased

strictly by changing the measurement system. We consider separately the casest < a2 andt = a2.

Caset < a2. In this case, LemmaB.9 implies t < x̂∗ < a2, becausêx∗ = E(V |t ≤ V ≤ a2) andF

admits a density that is strictly positive over the entire support ofV . Therefore, we can keept fixed while

slightly decreasinga2 (and decreasinĝx∗ = E(V |t ≤ V ≤ a2) accordingly), in a way that preserves the

inequalityφ(x̂∗) − c > φ(Υ(t; F )). The expected ex ante firm value is

∫ x̂∗

Υ(t;F )
φ′′(x){q(x − E(V )) + (1 − q)[S(t; F ) + (x − t)F (t)]}dx

+
∫ a2

x̂∗
φ′′(x){q(x − E(V )) + (1 − q)[S(a2; F ) − (a2 − x)F (a2)]}dx

+
∫ v

a2

φ′′(x){q(x − E(V )) + (1 − q)S(x; F )}dx,

(B.23)

where in the interval[x̂∗, a2] we have substitutedS(t)+(x̂∗− t)F (t)+(x− x̂∗)F (a2) = S(a2; F )− (a2−

x)F (a2), which follows fromx̂∗ = E(V |t ≤ V ≤ a2). The derivative of (B.23) with respect toa2 is

−(1 − q)
∫ a2

x̂∗
φ′′(x)(a2 − x)f(a2)dx < 0.

Since the derivative is negative, a decrease at the margin ina2 would increase the ex ante firm value. There-

fore, the originalG∗ is not optimal.

Caset = a2. By LemmaB.9, in this caset = x̂∗ = a2. By LemmaB.4, t > 0. So, we can keep

t = a2 = x̂∗ and slightly decreasêx∗ while preserving the inequalityφ(x̂∗) − c > φ(Υ(x̂∗; F )) (by

64



continuity). The expected ex ante firm value is

∫ x̂∗

Υ(x̂∗;F )
φ′′(x){q(x − E(V )) + (1 − q)[(x − x̂∗)F (x̂∗) + S(x̂∗; F )]}dx

+
∫ v

x̂∗
φ′′(x){q(x − E(V )) + (1 − q)S(x; F )}dx.

(B.24)

The derivative of (B.24) with respect tôx∗ is

(1 − q)
∫ x̂∗

Υ(x̂∗;F )
φ′′(x)(x − x̂∗)f(x̂∗)dx < 0,

where we have used the fact thatq(Υ(x̂∗; F ) − x̂∗) + (1 − q)[(Υ(x̂∗; F ) − x̂∗)F (x̂∗) + S(x̂∗)] = 0 by the

definition ofΥ(x̂∗; F ). Since the derivative is negative, a decrease ofx̂∗ at the margin increases ex ante firm

value, so the original measurementG∗ is notoptimal.
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