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Do Connections with Buy-Side Analysts 

Inform Sell-Side Analyst Research? 

1. Introduction 

Buy-side analysts play an important role in the stock market by producing information 

that supports the trading decisions of their affiliated portfolio managers. Unlike their sell-side 

counterparts, buy-side analysts have strong incentives to protect their private information, and 

thus do not publicize their research output (Cheng, Liu, & Qian 2006). Prior research suggests 

that institutional investors disseminate this information beyond the confines of their own firms 

only through their trading decisions (e.g., Chan & Lakonishok 1995; Chiyachantana, Jain, Jaing, 

& Wood 2004; Bushee & Goodman 2007, Foster, Gallahger, & Looi 2011, Guo & Qiu 2016). 

We investigate an alternative mechanism through which this private information finds its way 

into the public domain. Specifically, we posit that connections with institutional investors’ buy-

side analysts provide sell-side analysts with private information generated by the buy-side that 

enhances the quality of sell-side research reports.  

Connections can arise from buy-side analyst demand for information independently 

developed by sell-side analysts or for concierge services, such as access to company 

management. Interactions between the two analyst types create opportunities for the exchange of 

information about firms of mutual interest. Discussions about a particular firm might include 

topics such as the firm’s strategy, growth and value drivers, risks, management quality, and of 

course, earnings prospects. This paper investigates the following empirical question: through 

their connections with sell-side analysts, do buy-side analysts, perhaps unknowingly, leak 

information that enhances the quality of sell-side analyst research reports?  

A vast literature describes characteristics of sell-side analyst research and its impact on 

stock prices, arguably through the impact on institutional investor decisions. The research 
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literature generally assumes that the flow of information between sell-side and buy-side analysts 

is one-directional; i.e., information flows from sell-side analysts through buy-side analysts to 

portfolio managers, whose trades move stock prices (e.g., Gu, Li, Li, & Yang 2016; Irvine, 

Lipson, & Puckett, 2007; Mikhail, Walther, & Willis, 2007). Our paper looks at the flow of 

information in the other direction; i.e., do insights from the research of buy-side analysts, in 

support of institutional investor decisions, flow to sell-side analysts and improve the quality of 

sell-side analyst research reports? 

Our primary measure of connections assumes that a sell-side analyst has opportunity to 

learn about a given firm’s prospects from an institution when the analyst also follows other 

stocks held in the institution’s portfolio. We expect the opportunity to increase in both the 

number of institutions the analyst is connected with and in the number of the overlapped other 

stocks. We further weight the number of other stocks by the value of each stock as a percentage 

of the institution’s total portfolio. The idea is that the larger this weighted number, the more 

important these other stocks are for the institution, the more discussions the sell-side analyst 

likely has with the institutional investor’s buy-side analysts, and thus, the more opportunities the 

sell-side analyst has to discern and process the private information possessed by this institutional 

investor. This weighted number of other stocks averaged across all institutional investors holding 

the given firm’s stock represents our primary unscaled CONNECTIONS variable.  

For three reasons, we use the sell-side analyst’s earnings forecast accuracy relative to 

other analysts covering the same firm as our primary proxy for the quality of that analyst’s 

research report. First, prior research shows that information in earnings forecasts affects analysts’ 

stock recommendations (e.g., Ertimur, Sunder, & Sunder 2007) and target price forecasts (e.g., 

Gleason, Johnson, & Li 2013), making earnings forecast accuracy a reasonable proxy for overall 
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sell-side analyst research quality. Second, earnings forecasts are more prevalent than stock 

recommendations and target price forecasts. Third, we can measure earnings forecast accuracy 

more precisely than the accuracy of stock recommendations and target price forecasts. For these 

reasons, our primary summary measure of the quality of a research report for a given analyst and 

a given firm is the absolute difference between the firm’s actual earnings and the analyst’s 

forecast of those earnings. We label this measure ACCURACY.  

For both ACCURACY and CONNECTIONS, as well as control variables, we hold 

constant the firm and year and measure the respective variable for a particular analyst relative to 

all other analysts following the same stock in the same year. This effectively avoids confounding 

effects of firm characteristics and time-variant macro effects likely to affect both ACCURACY 

and CONNECTIONS. For example, both ACCURACY and CONNECTIONS might be higher for 

firms of larger size or with higher institutional ownership (see e.g., Frankel, Kothari, & Weber 

2006; Ljungqvist et al. 2007). Using the extent of connections and accuracy relative to other 

analysts covering the same firm-year abstracts away the confounding effect of size or 

institutional ownership on forecast accuracy. We hypothesize and find that ACCURACY 

improves with CONNECTIONS until CONNECTIONS reaches a point of diminishing returns. 

This concave pattern is analogous to prior research that finds lower levels of earnings forecast 

accuracy among sell-side analysts who cover large numbers of firms. It is also consistent with 

Maber, Groysberg, & Healy 2015, who show that increasing high-touch services with 

institutional clients comes with opportunity costs limiting the time sell-side analysts spend on 

other accuracy-enhancing aspects of their research.  

From evidence consistent with the hypothesized non-linear relation between ACCURACY 

and CONNECTIONS, we infer that information from connections with buy-side analysts informs 
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sell-side analyst research. However, the relation between ACCURACY and CONNECTIONS 

could be endogenous in that buy-side analysts select sell-side analysts who can provide insights 

that inform the buy-side analysts’ research reports, and that selection probably favors sell-side 

analysts who have already proven themselves in ways that might include forecast accuracy. We 

implement a number of analyses to mitigate the endogeneity concerns. 

In the first and second analyses, we examine the variation in the relation between 

ACCURACY and CONNECTIONS with private information of buy-side analysts or demand for 

such information from sell-side analysts. We generally find a stronger (weaker) relation when 

buy-side analysts have relatively more (less) private information. In addition, we find no 

evidence of a relation between sell-side analyst characteristics valued by buy-side analysts and 

the association between ACCURACY and CONNECTIONS. This supports the inference that sell-

side analysts obtain forecast accuracy-enhancing information from buy-side analysts, as opposed 

to buy-side analysts seeking guidance from already-accurate sell-side analysts. Third, we find 

that our main finding is robust in a subsample of analysts with less than four years of firm-

specific experience. In those cases, the buy-side analyst has very little basis for judging the 

accuracy track record of the sell-side analyst with whom s/he chooses to work.  

Fourth, to further address endogeneoity and provide additional support for the caual 

interpretation of our results, we employ exogenous shocks to connections caused by acquisitions 

or bankruptcies of institutions with which the sell-side analysts are connected and examine 

changes in earnings forecast accuracy of these sell-side analysts. Using forecasts by analysts not 

connected with the affected institutions as a control group, we show that accuracy of forecasts by 

analysts with relatively low connections prior to the shocks, but not by those with high 
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connections, declines subsequent to the shocks. These results strengthen the casual interpretation 

of our results and support the inference of the curvilinear relation from the main results.  

Finally, we conduct a number of tests to check the robustness of our main results to 

alternative measures of connections and forecast accuracy, and the use of market reaction to 

recommendation revisions as an alternative proxy for analyst research report quality. Our results 

are robust to these alternative measures.  

This paper contributes to the literature in two important ways. First, we open the door to a 

new avenue of research that can investigate the role of the bilateral flow of information between 

sell- and buy-side analysts in increasing the quality of information impounded in capital asset 

prices. Second, by furthering our understanding of the role that buy-side analysts play in 

financial markets, our paper contributes to the nascent literature that studies buy-side analysts 

(e.g., Jung, Wong, and Zhang 2017, Brown, et al. 2016, Cici & Rosenfeld 2016, Rebello & Wei 

2014). We identify a channel through which buy-side analysts’ private information flows to the 

stock market.  

The rest of this paper is organized as follows. The next section describes the institutional 

setting. Section 3 reviews the literature and presents our hypotheses. Section 4 discusses our 

research design and sample selecton. Sections 5 and 6 present the results of our hypotheses tests 

and additional tests to address endogeneity, respectively. Section 7 presents robustness tests, and 

Section 8 concludes. 

2. Institutional Setting 

Buy-side analysts provide advice to portfolio managers working for entities that pool 

resources of individual investors and invest on their behalf. These entities house investment 

vehicles such as mutual funds, pension funds, insurance companies, and hedge funds; e.g., 
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Fidelity Investments, General Motors, Progressive Auto Insurance, and Bridgewater Associates. 

We refer to each of these entities as an institutional investor and each institutional investor 

employs buy-side analysts who interacts with one or more sell-side analysts. The majority of 

sell-side analysts work for full-service investment banks, such as Goldman Sachs, JP Morgan 

Chase, and Bank of America Merrill Lynch (Cowen, Groysberg, & Healy 2006).   

The literature has extensively documented that sell-side analysts provide information to 

the buy-side (Ramnath, Rock, & Shane 2008a, 2008b; Bradshaw et al. 2017).  For example, 

Brown, Call, Clement, & Sharp (2017) surveyed investment relations professionals and 

discovered “that some buy-side analysts privately send questions or comments to sell-side 

analysts during the Q&A portion of the public earnings conference call (p. 36).” Nonetheless, 

academic and anecdotal evidence suggests that buy-side analysts generate information 

incremental to the information developed by sell-side analysts. Direct academic evidence comes 

from Rebello & Wei (2014), who conclude that “…buy-side analysts produce research that is 

very different from sell-side research…(p. 777).” They find that the opinions of buy-side 

analysts, as measured by their stock ratings, differ from the opinions of typical sell-side analysts 

and that trading strategies utilizing information contained in those opinions can generate 

significant risk-adjusted returns over the next year. Bushee, Jung, & Miller (2017) document that 

trade sizes around investor-management meeting times increase and abnormal net buys around 

the meetings are profitable during thirty days subsequent to the private access day. They 

conclude that the private access to management provides information that changes institutional 

investors’ beliefs and trading. Such beliefs-changing information, which is unlikely to be in the 

information set of sell-side analysts could be “mosaic” but, nonetheless, valuable in combination 
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with institutional investors’ private information and does not violate “Reg FD” (Solomon & 

Soltes, 2015).  

Supporting anecdotal evidence suggests that buy-side analysts often get preferential 

access to the management of public companies and this provides an advantage in efforts to 

generate precise information. For example, during a June 22, 2016 conference call announcing 

the $2.8 billion acquisition of SolarCity, Tesla’s CEO, Elon Musk acknowledged that, over the 

years in private discussions with institutional shareholders, he “bandied about” the idea of 

combining Tesla Motors with SolarCity (Reuters 2016). The article also suggests that at least one 

institutional investor, a Fidelity portfolio manager, benefited from trading on foreknowledge of 

the merger. In another article, David Strasser, a former sell-side analyst at Janney Montgomery 

Scott LLC, stated that in the meetings he arranged between institutional investors and the 

companies he followed, he “was sometimes asked to sit outside the room so investors could ask 

questions without him” (Ng & Gryta 2017).1  

Although buy-side analysts keep their research private and restrict access to the private 

information developed from their research to only their firm’s portfolio managers (Cheng, et al. 

2006; Groysberg, Healy, and Chapman 2008), at least two factors make sell-side analysts privy 

to some part of this information. First, learning what other buy-side analysts think and sharing 

that with institutional clients is implicitly expected of sell-side analysts. Brown, et al. (2016) 

surveyed and interviewed buy-side analysts who indicated that their demand for sell-side analyst 

services depends, primarily, on: (i) the ability of sell-side analysts to facilitate meaningful one-

on-one interaction with CFOs and other knowledgeable executives working for the firms with 

                                                           
1 Holding constant the effects of their interaction with each other, further reason to believe buy-side analysts have 

information incremental to the information developed by sell-side analysts is provided in: Martin (2005); 

Abramowitz (2006); Retkwa (2009); Frey & Herbst (2014); Jung, et al. (2017); and Groysberg, Healy, Serafeim & 

Shanthikumar (2013). 
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significant representation in their institution’s portfolios;  (ii) the quality of sell-side analysts’ 

industry-related research; and (iii) insights sell-side analysts provide into the perspective of buy-

side analysts working for other institutional investors. Institutional investors could, and 

increasingly do, internalize the first two services, but they must outsource the third service, 

which incentivizes sell-side analysts to discover their buy-side analyst clients’ perspectives on 

the firms the sell-side analysts follow.2 

Second, sell-side analysts have many opportunities to learn from buy-side analysts. The 

lion share of a typical sell-side analyst’s compensation is driven by broker votes, which are in 

turn driven by personalized services that sell-side analysts provide for institutional clients 

including high-touch meetings, phone calls, whitepapers, and concierge services that put buy-

side analysts in touch with the management of firms of interest (Maber, et al. 2015). Thus, sell-

side analysts have a strong incentive to provide high-touch services, which necessitate regular 

communication with current or potential institutional investor clients.  

Based on a sample of sell-side analysts at a mid-size investment bank, Maber et al. 

(2015) document that the average sell-side analyst holds approximately 750 private calls and 45 

one-on-one meetings with client investors in the course of a typical semiannual period. From the 

perspective of the buy-side, when Brown et al. (2016) asked buy-side analysts how often they 

have private communication with sell-side analysts, 55% of their respondents said more than 23 

times per year and only 4% said “never.” These communications provide sell-side analysts with 

opportunities to uncover and put together various pieces of information produced by institutional 

                                                           
2 This differs from information spillovers documented in other studies. For example, Hameed, Morck, Shen, & 

Yeung (2015) find that sell-side analysts follow stocks whose fundamentals have the greatest correlation with those 

of other firms in the industry. The information developed about these “bellweather” firm stocks benefits investors in 

less closely followed stocks. In another study, Muslu, Rebello, & Xu (2014) find that analysts contribute to stock 

comovement by developing value-relevant information common to the firms in their portfolio of followed firms. 
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investors. For example, Stephen Byrd, a managing director of research at Morgan Stanley told us 

“when I speak to a variety of institutional clients, I get a strong sense for the investor debates that 

really matter for a stock. That helps me to understand what catalysts are likely to move a stock. 

We all have access to the same information, though sometimes our clients track certain catalysts 

more closely than we do (whereas sometimes we are closer to a particular catalyst).”3  

We argue that the regular communications with their institutional clients provide sell-side 

analysts with a window into the private information generated by their institutional clients about 

companies of common interest. Specifically, as both parties engage in conversations, the 

questions raised and the requests for clarifications made by the institutional clients tip off sell-

side analysts about the private information of their institutional clients. In this regard, Groysberg, 

Healy, & Chapman (2008) speculate that “sell-side analysts may develop an information 

advantage through feedback on their ideas from their own institutional clients (p. 33).” That sell-

side analysts discern the private information of their institutional clients in the course of such 

communications is supported by the fact that many buy-side analysts view the knowledge that 

sell-side analysts have of other buy-side analysts’ opinions as a valuable service provided by the 

sell-side (Brown et al. 2016). Furthermore, the results of the Brown et al. interviews suggest that 

buy-side analysts value their relationships with sell-side analysts, because “they are the only 

portal” into the thinking of buy-side analysts working for other institutions. Quoting one of their 

interviewees, “The buy side is this whole poker game of, ‘I don't want to show my cards, but I 

want to see your cards.’ The only people that can actually see everyone's cards is the sell side. 

When we ask them questions, they can figure out what we're thinking.” 

                                                           
3 Also, Greg Melich, a partner and senior analyst at MoffettNathanson told us that in the course of a typical 

interaction with an institutional client he might be alerted of a new piece of public information of which he was not 

aware. For example, the institutional client might have just learned that a certain company became a supplier of 

Target Corporation and pass that information along. 
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Given the information environment described above, the next section develops 

hypotheses concerning the relation between the quality of a sell-side analyst research report and 

the degree of connectedness between the sell-side analyst and the buy-side analysts she serves. 

3. Hypotheses and Literature Review 

Main hypothesis 

Section 2 suggests that sell-side analysts have strong incentives to interact with buy-side 

analysts and refers to previous research and anecdotal evidence that those interactions occur 

frequently. Presumably, more connections with institutional investors’ buy-side analysts provide 

more opportunities for sell-side analysts to discern the institutional investors’ private information 

which, in turn, informs sell-side analysts’ earnings forecasts and improves their forecast 

accuracy. Thus, we expect sell-side analyst forecast ACCURACY to be positively correlated with 

CONNECTIONS with institutional investors. 

On the other hand, it is costly for analysts to spread themselves too thinly. For example, 

there appears to be a cost associated with following too many firms (Clement 1999; Jacob, et al. 

1999; Myring & Wrege 2011; Pelletier 2015). We expect that for each sell-side analyst there is a 

cost associated with providing the services associated with too many connections. Too many 

connections with buy-side analysts are likely to come with an opportunity cost that outweighs the 

benefit of other sell-side analyst activities, such as independent research, nurturing relationships 

with the buy-side analysts who matter most, connecting with management of the firms they 

follow, and writing whitepapers and research reports. This is consistent with Maber, et al. (2015) 

who show that increases in analysts’ time-consuming services for their institutional clients result 

in less published research output. Thus, we expect the positive impact of CONNECTIONS on 
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ACCURACY to exhibit diminishing returns as the number of interactions with different buy-side 

analysts increases. In light of this reasoning, we hypothesize the following relation:  

H1: ACCURACY increases with CONNECTIONS up to some point where the increasing 

rate subsides.   

 

On the other hand, if buy-side analysts successfully maintain the confidentiality of their private 

information when communicating with sell-side analysts, then we expect to find no evidence of a 

relation between ACCURACY and CONNECTIONS. 

Additional hypotheses 

Given evidence of the relation hypothesized in H1, we test additional hypotheses that 

identify factors expected to strengthen the relation between ACCURACY and CONNECTIONS. 

We develop these additional hypotheses to provide more confidence in the validity of H1 and to 

address the endogeneity issue discussed in Section 1.4 That is, the tests are designed to sort out 

whether the relation observed in tests of H1 emerges from sell-side analysts obtaining accuracy-

enhancing information from buy-side analysts, or from buy-side analysts seeking connections 

with already-accurate sell-side analysts.   

We predict greater sensitivity of ACCURACY to CONNECTIONS in situations where 

sell-side analysts have more opportunities to learn from their buy-side analyst counterparts, 

which would arise when sell-side analysts are connected with certain buy-side analysts who 

produce relatively large amounts of private information. If, on the other hand, ACCURACY 

drives CONNECTIONS because buy-side analysts have more need for information from sell-side 

analysts, then we expect greater sensitivity of ACCURACY to CONNECTIONS in situations 

where sell-side analysts have less opportunities to learn from their buy-side analyst counterparts. 

                                                           
4 Note that endogenous selection of more accurate sell-side analysts cannot explain a weakened relation between 

ACCURACY and CONNECTIONS beyond a certain level of CONNECTIONS.  
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Such situations arise when sell-side analysts are connected with certain buy-side analysts who 

produce relatively small amounts of private information. This discussion leads to our second 

hypothesis: 

H2: The sensitivity of ACCURACY to CONNECTIONS increases with the opportunity 

for sell-side analysts to learn from buy-side analysts.   

 

We next examine the possibility that buy-side analysts’ demand for information from 

sell-side analysts drives the relation between ACCURACY and CONNECTIONS. In that respect, 

we hypothesize that:  

H3: The sensitivity of ACCURACY to CONNECTIONS increases with buy-side analyst 

demand for connections with sell-side analysts. 

 

We expect greater buy-side analyst demand for connections with sell-side analysts 

predicted to produce more informative research output, proxied by earnings forecast accuracy. 

Strong predictors of sell-side analyst forecast accuracy include past accuracy (Brown 2001) and 

firm-specific experience (Clement 1999; Brown, et. al. 2016).5 Thus, if buy-side demand drives 

the relation between ACCURACY and CONNECTIONS, then we expect to find evidence 

supporting H3; i.e., we expect the relation to strengthen with sell-side analyst firm-specific 

experience and past earnings forecast accuracy. 

4. Research design 

4.1 Measurement of CONNECTIONS 

Our primary connection variable assumes that analyst a learns more about firm f as the 

analyst is connected with more institutions and follows more other stocks held by an institution. 

We let each of these other stocks proxy for a connection around f between a and i during year t 

                                                           
5 In response to the Brown, et al. (2016) survey, buy-side analysts rate the sell-side analyst’s firm-specific 

experience as the most important attribute affecting the decision to use information provided by the sell-side analyst. 

In fact, this attribute is rated as more important than how often the sell-side analyst speaks with firm management, 

and whether the sell-side analyst is a member of the Institutional Investor All-American Research Team. 
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(𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆#𝑎𝑓𝑡
𝑖 ), and we weight each connection with the value of the stock as a 

percentage of i’s total portfolio to incorporate the importance of the stock to i and thus, likely 

more interactions between a and i. The average weighted number of connections, across all 

institutions holding f, is our primary proxy for how much a learns about f from interactions with 

buy-side analysts in period t,  

CONNECTIONSaft =  
∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆#𝑎𝑓𝑡

𝑖
𝑖

𝐼𝑁𝑆𝑇_𝑂𝑊𝑁𝐸𝑅#𝑓𝑡
 , 

where INST_OWNER#ft is the number of institutions holding f. Hence, our primary measure 

considers both the breadth (as reflected in the number of connected institutions) and depth (as 

reflected in the weighted number of other overlapping stocks) of connection. We expect that, the 

greater CONNECTIONSaft, the greater the breadth and depth of dialogue between a and 

institutional investors holding f, and the greater the opportunity for the sell-side analyst to 

discern and process the private information possessed by these institutional investors.  

To further illustrate the construction of our CONNECTIONS measure, consider the 

example in figure 1. There we see that the stock of interest, f1, is held by three institutional 

investors. Analyst a1 is strongly connected, having connections (beyond f1) with each of the 

three institutional investors holding f1 through stocks other than f1 that account for 95%, 80%, 

and 90%, respectively, of the corresponding institution’s portfolio. Hence a1’s CONNECTIONS 

measure is 0.883 [(0.95+0.80+0.90)/3]. On the other hand, analyst a2 has no connections 

(beyond f1) with the institutional investors holding f1. Hence a2’s CONNECTIONS measure is 0 

[(0+0+0)/3].   

Our approach to measuring CONNECTIONS avoids the confounding effect of 

institutional ownership on forecast accuracy (Frankel, et al. 2006; Ljungqvist, et al. 2007). Our 

measure does not relate to institutional ownership of a firm. Specifically, for analysts following 
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the same company f, differences in our CONNECTIONS measure depends on differences across 

analysts in their following of stocks other than f (and not on the number of f’s shares owned by 

institutions). As we describe in detail in Section 4.2, we further scale CONNECTIONS within the 

same firm-year to control for both time-variant and firm-invariant characteristics.  

4.2 Models for testing H1 

To examine the hypothesized diminishing impact of CONNECTIONS on ACCURACY, we 

use the quadratic form below (see Wooldridge 2016, p636; and Aghion et al. 2005). If analysts 

produce more accurate forecasts due to the private information they collect from their 

connections with institutional investors, we expect 𝛽1 > 0 in model (1) below. In addition, if 

analysts face diminished returns beyond some level of connections with institutional investors, 

we expect 𝛽2 < 0.  

ACCURACYaft = β0 + β1CONNECTIONSaft +β2𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
2 + ∑ 𝛽𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑚𝑚 +εaft  (1), 

 

where, ACCURACYaft is measured as 
max(|𝐹𝐸𝑓𝑡|)−|𝐹𝐸𝑎𝑓𝑡|

max(|𝐹𝐸𝑓𝑡|)−min(|𝐹𝐸𝑓𝑡|)
, i.e., absolute error of analyst a’s forecast 

for firm f and year t (Faft) scaled to fall between 0 (least accurate) and 1 (most accurate), relative 

to all other analysts following firm f in year t.  

 We include the following variables to control for factors that could affect forecast 

accuracy: analyst a’s forecast accuracy for the lagged year (ACCURACYaf,t-1), the number of 

firms a follows (FIRM#at), the number of industries a follows (INDUSTRY#at), the number of 

years a has been forecasting firm f’s earnings (FIRM_EXPaft), brokerage size (BSIZEat), the 

number of days between a’s forecast and the most recent one-year ahead forecast for the same 

firm-year by any analyst (DAYSaft), a’s earnings forecast frequency (EPS_FREQaft), the number 

of days between the date of a’s forecast and the end of fiscal year t (HORIZONaft). INDUSTRY#, 
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FIRM#, BSIZE, and EPS_FREQ are measured for the year ending with the date of Faft. We 

define all these variables in detail in the Appendix.  

CONNECTIONSaft and all control variables except ACCURACYaf,t-1 are scaled to fall 

between 0 and 1 based on the equation below: 

 𝑆𝑐𝑎𝑙𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑎𝑓𝑡 =
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑎𝑓𝑡−min (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑓𝑡)

max(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑓𝑡)−min(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑓𝑡)
   

By scaling all dependent and independent variables among analysts following the same 

firm and year, we control for all firm-invariant characteristics and time-variant macro factors that 

affect forecast accuracy (e.g., forecast difficulty as described in Hong and Kubik 2003). Scaling all 

variables in this manner maintains the relative values of each variable, while allowing 

comparison across regression coefficients (Clement & Tse, 2005). 

We also employ a piecewise regression (2) below, which allows us to calculate the 

sensitivity of ACCURACY to CONNECTIONS in each CONNECTIONS tercile. 

 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌𝑎𝑓𝑡 = 𝛽0 + ∑ 𝛽𝑘
𝑇𝑒𝑟𝑐𝑖𝑙𝑒𝐷𝑘

𝑇𝑒𝑟𝑐𝑖𝑙𝑒𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
3
𝑘=1  +  ∑ 𝛽𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑚𝑚 + 𝜀𝑎𝑓𝑡      (2) 

where 𝐷𝑘
𝑇𝑒𝑟𝑐𝑖𝑙𝑒 is an indicator variable equaling one for the kth 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆 tercile 

(1=lowest, 2=middle, and 3=highest), where tercile cut-off points are derived from the 

distribution of scaled CONNECTIONS. Under H1, we expect 𝛽1
𝑇𝑒𝑟𝑐𝑖𝑙𝑒 >  𝛽3

𝑇𝑒𝑟𝑐𝑖𝑙𝑒. 

4.3 Model for testing H2 

If the sensitivity of ACCURACY to CONNECTIONS increases when buy-side analysts 

produce greater amounts of private information creating greater opportunity for sell-side analysts 

to learn from connections with buy-side analysts, then, in support of H2, we expect β1 > β5 in 

model (3) below. Alternatively, if the sensitivity of ACCURACY to CONNECTIONS increases 
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because buy-side analysts with less private information seek connection with already-accurate 

sell-side analysts, then we expect β1 < β5. 

ACCURACYaft = β0 + β1𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

+ β2(𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

)2 

+β3𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝑀𝑒𝑑 𝑂𝑝𝑝

+β4(𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝑀𝑒𝑑 𝑂𝑝𝑝

)2+β5𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐿𝑜𝑤 𝑂𝑝𝑝

+ 

β6(𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐿𝑜𝑤 𝑂𝑝𝑝

)2+ ∑ 𝛽𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑚𝑚 + 𝜀𝑎𝑓𝑡    (3) 

 

where 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

 is constructed by: 

𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

=
∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆#𝑎𝑓𝑡

𝑖
𝑖 ×𝐷𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

𝑖

𝐼𝑁𝑆𝑇_𝑂𝑊𝑁𝐸𝑅#𝑓𝑡
 , and    

 

𝐷𝐻𝑖𝑔ℎ 𝑂𝑃𝑃
𝑖

 denotes an institutional investor from which sell-side analysts have high (=1) or lower 

(=0) opportunities to acquire useful information. 𝐼𝑁𝑆𝑇_𝑂𝑊𝑁𝐸𝑅#𝑓𝑡 denotes the number of 

institutional investors holding stock f at time t. Similar to CONNECTIONS, we scale 

CONNECTIONSHigh Opp to fall between 0 and 1 among analysts following the same firm and 

year. 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝑀𝑒𝑑 𝑂𝑝𝑝

 and 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐿𝑜𝑤 𝑂𝑝𝑝

are constructed similarly. Note that 

normalizing the high/lower opportunity connections variables by 𝐼𝑁𝑆𝑇_𝑂𝑊𝑁𝐸𝑅#𝑓𝑡 ensures that 

they add up to 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡. 

We apply three approaches to identifying institutional investors that provide high versus 

low accuracy-enhancing learning opportunities for sell-side analysts. The first approach follows 

Bushee (1998, 2001) and classifies institutions into transient, dedicated, and quasi-index 

institutions.6 The transient institutions are active traders with high portfolio turnover and 

diversified portfolios, which are presumably active collectors of information (Ke and Petroni 

2004). We thus view them as higher-opportunity institutions relative to the dedicated and quasi-

index types, which we classify, respectively, as medium and low opportunity institutions.  

                                                           
6 We thank Brian Bushee for sharing the classification of institutional investors. We group the institutions 

unclassified by Bushee into one group and include analyst connections with them and its squared term in the 

regressions. The coefficicents on connections with these institutions are generally insignificant.     
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The second approach relies on an institution’s portfolio turnover. The idea is that 

institutions that are able to generate more private information will likely trade more in order to 

exploit that information. Along these lines, Chen, Jegadeesh, and Wermers (2000) argue that 

managers who generate superior information “... trade frequently, while managers with more 

limited skills may be much more cautious in their trades.” Consistent with this, Chen et al. 

(2000) and Massa, Qian, and Zhang (2015) find that institutions with higher portfolio turnover 

exhibit superior investment performance. Building on these findings, we view institutions with 

higher (lower) turnover as providing higher (lower) learning opportunities for sell-side analysts.     

The third approach builds on Petajisto (2013) by classifying institutions from his five 

investment categories − stock pickers, concentrated stock pickers, moderately active stock 

pickers, closet indexers, and factor bettors − into active stock selectors and passive stock 

selectors. Specifically, we classify the first three categories of institutions as active stock 

selectors, and classify the last two categories as passive stock selectors, and view the former 

group as higher-opportunity institutions relative to the latter group. The rationale is that active 

stock selectors focus on analyzing individual stocks and potentially have more private 

information about individual stocks while passive stock selectors focus on replicating an index or 

placing factor bets without as much attention to individual stock analysis. Petajisto (2013, p82) 

uses a two-way stratification approach by first ranking all institutions by Active Share and then 

by Tracking Error to create a five by five grid and assign institutions in each cell to one of the 

five investment categories.  

Similar to Cremers and Petajisto (2009), we compute Active Share as the sum of the 

absolute differences between the weight of an institution’s portfolio and the weight of each stock 

in the market portfolio, i.e., the CRSP stock universe. Tracking Error is computed as the standard 
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deviation of residuals from regressing monthly excess portfolio returns on the excess returns on 

the CRSP market index over the last three years. Monthly excess portfolio returns are computed 

by subtracting the monthly risk-free return from the portfolio return.7 In essence, Tracking Error 

captures the variation in the returns of the portfolio not explained by the market portfolio 

benchmark. 

4.4 Model for testing H3  

To test whether the sensitivity of forecast accuracy to connections increases with sell-side 

analyst demand for information from the buy side or with buy-side analyst demand for 

information from the sell-side, we employ the following regression model. 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌𝑎𝑓𝑡         

= 𝛽0 + 𝛽1𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡 + 𝛽2𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
2    

+ 𝛽3𝐷𝐸𝑀𝐴𝑁𝐷+ 𝛽4𝐷𝐸𝑀𝐴𝑁𝐷 × 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡                             

+ 𝛽5𝐷𝐸𝑀𝐴𝑁𝐷 × 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
2 + ∑ 𝛽𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑚

𝑚

+ 𝜀𝑎𝑓𝑡      (4), 

where DEMAND represents firm-specific experience (FIRM_EXP) or forecast accuracy measure 

for the prior year (lagged ACCURACY), both of which are as defined in model (1). If buy-side 

demand drives the relation between ACCURACY and CONNECTIONS, we expect β4 > 0. 

4.5 Sample selection 

We employ the following sample construction steps. For fiscal years from 1995 to 2016, 

the latest full year with available data at the time of our analysis, from I/B/E/S we collect one-

year ahead EPS forecasts issued during the first 90 days following the prior year’s earnings 

announcement, and consensus analyst recommendations issued during the year. If an analyst 

issues more than one forecast for the same firm-year during the 90-day window, we keep only 

the earliest one. In the latest calendar quarter prior to the 90-day window for each firm-year 

                                                           
7 Risk-free returns are from Ken French’s website http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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described above, we collect the number of institutional investors and their holdings for the 

construction of CONNECTIONS and other measures using institutional holdings from the 

Thomson Reuters 13F database. We collect institution classifications that label institutions as 

transient, dedicated, and quasi-index types from Bushee’s website, and stock returns used for 

computing institution portfolio returns from CRSP. We exclude analyst-firm-years missing any 

of the analyst characteristic control variables, such as the lagged forecast error. Finally, we 

require each firm-year to be covered by more than one analyst during the 90-day window. These 

steps result in 189,452 analyst-firm-year observations, including 4,564 unique firms and 8,790 

unique analysts. 

5. Hypotheses Test Results 

5.1 Descriptive statistics 

 Table 1 Panel A presents descriptive statistics for variables in our models, along with 

some variable components. With the exception of ACCURACY, no variable is scaled among 

analysts for the same firm-year. Panel A shows that the distribution of absolute analyst-firm-year 

forecast error divided by the absolute value of actual earnings, |FE|, has a mean (median) of 

0.768 (0.132). The ACCURACY variable used in our hypotheses tests scales |FE| to fall in a 

range from 0 to 1. The mean (median) of ACCURACY is 0.535 (0.561). The CONNECTIONS 

variable indicates that, on average, analysts have connections through stocks that account for 

1.3% of an institution’s portfolio. On average, 6.8 other stocks (CONNECTIONSstock#) overlap 

between stocks an analyst follows and stocks an institution holds (untabulated).  

Panel A also shows that, in an average analyst-firm-year, a given analyst follows stocks 

in 3.9 different industries, has about 5 years of experience forecasting earnings of the followed 

firm, works for a brokerage house or research firm employing 66 analysts, issues forecasts 4.3 
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days after the most recent forecast by any analyst following the same firm, has issued 6 one-year 

ahead earnings forecasts in the year prior to the current forecast for the same firm, and has a 309-

day forecast horizon until the end of the fiscal year.  

Table 1 Panel B presents the univariate correlations among the variables used to test our 

hypotheses, where all variables are scaled among analysts following the same firm-year. Mostly 

consistent with prior literature, our measure of relative within firm-year ACCURACY has a 

statistically significantly positive correlation with the prior year’s ACCURACY, the analyst’s 

firm-specific experience, and number of firms followed; and ACCURACY is negatively 

correlated with the number of days since the most recent preceding analyst forecast, forecast 

frequency, number of industries followed, and the horizon between the forecast and the 

upcoming annual earnings announcement date. ACCURACY is negatively correlated with 

CONNECTIONS, before considering the impact and importance of modeling the hypothesized 

non-linear (concave) relation between these variables. 

Table 1 Panel C offers an explanation for the negative univariate correlation between 

ACCURACY and CONNECTIONS observed in Panel B. Consistent with the hypothesized 

concave relation between ACCURACY and CONNECTIONS, Panel C shows that for the above-

median (at or below-median) ranges of CONNECTIONS, the correlation is significantly negative 

(positive) at -0.020 (0.017). The higher absolute value of the correlation in the higher range of 

CONNECTIONS arguably provides a reason for a negative overall relation in Panel B. Visually 

corroborating this pattern, Figure 2 depicts ACCURACY across the quintiles of CONNECTIONS 

and shows an overall increasing (decreasing) pattern in both the mean and median of 

ACCURACY when CONNECTIONS is in the lower (higher) range. The concave pattern holds 

both when we use the scaled measure, ACCURACY, and when we use an unscaled measure, 
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−1*mean deflated |FE|. These results support the hypothesized non-linear concave relation 

between ACCURACY and CONNECTIONS and confirm our design choices in models (1) and (2) 

that explicitly account for the nonlinearity. 

5.2 Test of H1 

 Table 2 displays the results of testing H1, which predicts that the accuracy of an analyst’s 

forecast of a firm’s earnings improves, to a point of diminishing returns, with the degree of 

connectedness between the analyst and institutional investors who hold the firm’s stock in their 

portfolios. For ease of presentation, we multiply the dependent variable in all regressions by 100. 

This has the effect of multiplying each coefficient by 100, as well. Results estimated from both 

the quadratic forms in columns (1) and (2) and the piecewise regressions in columns (3) and (4) 

with or without control variables support H1. 

In columns (1) and (2), the coefficient on CONNECTIONS is significantly positive and 

the coefficient on the square of CONNECTIONS is significantly negative (with p-values less than 

0.01). These results support the curvilinear concave relation predicted by H1. The results suggest 

that ACCURACY reaches its highest level when CONNECTIONS is at 0.419 

[=4.818/(5.751×2)], or the 61st percentile of the its distribution. Consistent with the evidence 

portrayed in Figure 2, the significant coefficient on CONNECTIONS2 provides justification for 

including the squared term in the regression specification. Not doing so would result in a biased 

coefficient on CONNECTIONS since the omitted variable, CONNECTIONS2, is 

correlated with both CONNECTIONS and ACCURACY (Greene 2008, p134).8  

                                                           
8 As shown in Table 1, CONNECTIONS and CONNECTIONS2 are highly correlated. However, as Aiken and West 

(1991, p.35) and Jaccard, Turrisi, and Wan (1990, p31) point out, a high correlation between the independent 

variable and its quadratic term does not result in biased estimation of the coefficients, although it does increase the 

standard error for the coefficient estimate of the independent variable. See Greene (2008, p136) for a technical proof 

of this in the context of including an irrelevant variable. We document statistical significance for the coefficient of 

CONNECTIONS despite its standard error being inflated. We also use two ways suggested by the above 

econometricians to address the high correlation. The first way uses the centered measure that subtracts from 
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The economic significance, perhaps becomes more apparent in column (4) where we 

perform a piecewise estimation of CONNECTIONS by terciles. The coefficient on 

CONNECTIONS in the lowest tercile of the variable is 13.740, which means that a one-standard 

deviation change in CONNECTIONS for the lowest tercile (0.356, untabulated) is associated with 

a 4.891% (0.356×13.740) change in ACCURACY, which is 9.1% of the variable’s mean 

(0.0489/0.535). The lower coefficient on CONNECTIONS in the second tercile and the 

insignificant coefficient in the highest tercile further support the nonlinear relation documented 

in Panel C of Table 1 and predicted by H1; i.e., once the analyst’s average amount of 

connections per institution becomes too large, diminishing returns to additional connections 

become apparent. The coefficient on CONNECTIONS in the lowest tercile is significantly larger 

than that in the higher terciles, with a p-value (untabulated) less than 0.01. Relations between 

ACCURACY and control variables are consistent with the correlations in Panel B of Table 1 and 

prior literature. 

5.3 Tests of H2 

Results in Table 2 (discussed above) confirm H1 in that the strongest relation between 

CONNECTIONS and ACCURACY occurs among low-connections analysts and, as 

CONNECTIONS increases, the relation reaches a point of diminishing returns. We examine H2 

to sort out whether the curvilinear relation between CONNECTIONS and ACCURACY derives 

from opportunities for lower-accuracy sell-side analysts to learn from CONNECTIONS with 

private information-laden buy-side analysts (i.e., the high-opportunity ones), or from 

                                                           
CONNECTIONS its mean. The centered measure and its square have a correlation at 0.608. The other way replaces 

CONNECTIONS and CONNECTIONS2 with a single term (CONNECTIONS - CONNECTIONS2) to remove the 

multicollinearity in the estimation. The second way builds on the assumption that there is a curvilinear relation 

between CONNECTIONS and ACCURACY and the turning point is when CONNECTIONS takes the value of 0.5. 

Both sets of results support a curvilinear relation between CONNECTIONS and ACCURACY. These results again 

indicate that the high correlation between CONNECTIONS and CONNECTIONS2 does not drive our results.    
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opportunities for private information-lacking buy-side analysts (i.e., the low-opportunity ones) to 

learn from CONNECTIONS with already-accurate sell-side analysts. 

As discussed in Section 4.3, we rely on three variables − used in prior literature to 

characterize institutional investor trading strategies − to proxy for the degree to which buy-side 

analysts produce private information. Results in Table 3 for both the quadratic and piecewise 

regressions shows that the relation between CONNECTIONS and ACCURACY is generally only 

significant for connections with institutions having transient, high-turnover, or active trading 

strategies. We assume that institutions with these trading strategies tend to produce  more private 

information, along with high levels of sell-side analyst learning opportunities. These results 

support H2, which predicts that the sensitivity of ACCURACY to CONNECTIONS increases with 

sell-side analyst learning opportunities.9 The results also help alleviate the endogeneity concern 

that institutions choose to connect with already-accurate analysts. Such a preference suggests a 

stronger relation between sell-side analyst ACCURACY and CONNECTIONS with low 

opportunity institutions, which is opposite to what we find.  

5.4 Test of H3 

Table 4 displays results from tests of H3, which predicts that more demand for 

information by buy-side analysts strengthens the relation between CONNECTIONS and 

ACCURACY. We find that neither the firm-specific experience proxy in column (1) nor the past-

accuracy proxy in column (2) has a statistically significant interactive effect with the connections 

variable. Untabulated results based on piecewise regressions are consistent with Table 4.  

                                                           
9 In terms of economic significance, untabulated results (available upon request) indicate that when sell-side analysts 

connect with buy-side analysts working for institutions with, respectively, transient, high-turnover, or active trading 

strategies, we find that a one-standard deviation increase in CONNECTIONS with these high-opportunity institutions 

corresponds to an 8.8%, 7.6%, or 10.0% increase, respectively, in ACCURACY.  
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Overall, we believe that our tests of H2 and H3 provide supporting evidence that sell-side 

interest in connecting with buy-side analysts in order to glean information that improves the 

quality of sell-side research reports drives the relation we find between ACCURACY and 

CONNECTIONS. The next section describes the results of additional robustness tests. 

6. Additional Tests to Address Endogeneity   

6.1 Another Look at Reverse Causality 

Results described in Sections 5.3 and 5.4 mitigate the concern that rather than 

connections with information-laden buy-side analysts improving sell-side analyst forecast 

accuracy, less information-laden buy-side analysts may choose to work with sell-side analysts 

with the best earnings forecast accuracy track records. To further address this concern, we 

constrain the sample to sell-side analysts with less than four years of firm-specific experience. 

We argue that these analysts do not have enough of an accuracy track record to attract the 

interest of buy-side analysts in the companies they cover. In this subsample, we expect that our 

firm-specific experience variable is not significant, while all of the other results still hold. 

Untabulated results mirror the results testing H1 in Table 2, except that, as expected, the firm-

specific experience variable is no longer significantly related to forecast accuracy. Thus, our 

inferences remain unchanged in that connections with buy-side analysts enhance sell-side analyst 

forecast accuracy (not the other way around). 

6.2 Exogenous shocks to connections 

In this section, we identify events that likely exogenously diminish the connections 

between analysts and institutional investors and examine subsequent changes in analyst forecast 

accuracy. In particular, we collect institutions being acquired or liquidated from the following 

three sources. From Thomson Reuters we identify all institutions that stopped filing 13F reports 
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between 1995 and 2016 and held more than 100 stocks on average. We then retain those that 

were either acquired (per Thomson One Banker) or liquidated (per bankruptcy announcements 

from Capital IQ). This procedure results in a subsample that includes 146 institutions.  

We retain all firms held by the aforementioned institutions in the portfolios they reported 

on their last 13F filing (hereafter, the event). For each stock f held by affected institution i and 

followed by analyst a during the event quarter, we consider a and i to be unconnected if a has 

followed only f and no other stock held by i in the four quarters ending with the event quarter. In 

these cases, the indicator variable, CONNECTED, equals 0. CONNECTED equals 1 if a followed 

stocks held by i other than f in the event quarter and in at least one of the previous three quarters.  

We employ a difference-in-differences design and compare changes in accuracy of 

forecast issued by connected versus unconnected analysts from pre- to post-event periods. We 

define whether a forecast is pre- or post-event (POST_EVENT = 0 or 1, respectively) based on 

whether the forecast is issued before or more than three months after the event. We use three 

months to allow for the possibility that connection and information flow do not abruptly stop. 

For this analysis, we retain only forecasts issued within two years of the events and only analysts 

that issue one or more annual forecasts for the same firm in both periods. If a forecast is in the 

pre- or post-event period for multiple events, we use the forecast only once. This process results 

in 52,369 forecasts, with a mean (median) of 3.8 (3.0) forecasts for each firm-year and event.  

Based on evidence of the non-linear relation between accuracy and connections we 

document in the prior tests, for analysts with lower pre-event connections we expect higher 

decline in accuracy due to the exogenous termination of connections with certain institutions. 

Another reason for this empirical prediction is that, for such analysts, previous connections with 

the affected institutions represented a higher fraction of total connections with institutions. 
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Therefore, subsequent to the acquisitions of liquidation of the affected institution, the flow of 

information from institutions to sell-side analysts is more severely reduced. We classify an 

analyst as being in the lower (higher) connections group, if her scaled connection among all 

analysts covering the same firm-year is at or below (above) the median of the total sample at 

0.2775 (untabualted).10, 11 

We regress ACCURACY on CONNECTED and POST_EVENT dummies and their 

interaction. The key variable is the interaction variable, which helps determine whether the 

decline in accuracy was larger for the connected relative to the unconnected analysts after the 

event. Columns (1) to (3) of Table 5 report results for the total sample, lower connections 

subsample, and higher connections subsample, respectively, for the analysis that relies on use the 

scaled measure of forecast accuracy (ACCURACY). The interaction term is insignificant for the 

total sample, but more importantly, it is significantly negative for the lower connections 

subsample, which suggests that the analysts with lower connections experienced a drop in 

accuracy following the negative shock to their connections. For the higher connections 

subsample, the coefficient on the interaction term is positive, although insignificant. 

Columns (4) to (6) of Table 5 use the unscaled measure of forecast accuracy (-mean 

deflated |FE|). The results show that our inference is insensitive to whether forecast accuracy is 

scaled. Overall, this analysis provides further support for a causal interpretation of our finding 

that additional connections for analysts benefit them in the form of higher accuracy up to a 

certain level of connections, beyond which the rate of increase subsides. 

                                                           
10 Results are similar when we use an analyst-firm’s standing within the main sample to classify lower or higher 

connections group.  
11 The small number of forecasts for each firm-year-event renders the ranking infeasible for about 52% observations. 

The analyses in Table 5 omit the control variables to preserve the sample. Results are qualitatively similar after 

including unscaled control variables or scaled control variables for a subset of observations, with albeit weaker 

statistical significance for the subsample. 
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7. Robustness Tests 

7.1 Alternative Measures of CONNECTIONS 

We replicate our test of H1 using three alternative proxies for connections between sell-

side and buy-side analysts by varying the emphasis and measures of breadth and depth of the 

connectedness. The first alternative, CONNECTIONStime, is the same as our primary measure 

except that, instead of summing up position size of all other stocks in the portfolio of each 

connected institution, we sum the number of months each connected institution has held the 

stock. Here the holding period captures a stock’s importance to an institution’s portfolio. The 

second alternative, CONNECTIONSstock#, modifies our primary CONNECTIONS measure by 

taking the straight average number of connections without weighting them. The third alternative, 

CONNECTIONSinst#, measures the number of institutions that invest in both the stock of interest 

and at least one other stock followed by the same analyst. This alternative treats all institutions 

with whom an analyst is connected equally, thus emphasizing breadth over depth of connections. 

Like our primary measure, all alternative measures are divided by the number of institutions 

holding the firm of interest and scaled among analysts following the same firm-year. 

The results in Table 6 using all three alternative proxies for CONNECTIONS are 

consistent with the results of tests of H1 reported in Table 2. These results increase our 

confidence in the construct validity of our primary CONNECTIONS variable as a measure of 

both breadth and depth of connections between sell-side analysts and institutions holding stocks 

that the analyst follows. Moreover, statistical and economic significance of the results using the 

alternative proxies suggest that all of these dimensions of connectivity benefit the accuracy of the 

corresponding connected analysts.            

7.2 Sensitivity of results to alternative measures of forecast accuracy and additional controls 



28 
 

As described in Section 4.2, our main analyses scale the dependent and independent variables 

among observations of the same firm-year to abstract away from across-firm and across-year 

differences. In Table 7, we estimate regression models (1) and (2) (used to test H1) after 

replacing the scaled forecast accuracy with the raw measure of absolute forecast error multiplied 

by (−1). For comparability across firms, following Clement (1999), Jacob, Lys, and Neale 

(1999), and Bae, Stulz, and Tan (2008), we divide the raw measure by the mean absolute forecast 

error for the same firm-year. The results support the validity of inferences based on tests of H1 

by showing a similarly significant non-linear relation between CONNECTIONS and this 

alternative measure of forecast accuracy.  

7.3 Market reaction to recommendation revisions and connections with institutions 

To proxy for the quality of sell-side analyst research output, as an alternative to earnings 

forecast accuracy, we use the market reaction to recommendation revisions, which reflects the 

informativenss of sell-side recommendations. For each analyst-firm-year observation in our main 

sample, we further collect the earliest recommendation issued in 90 days subsequent to prior 

annual earnings announcement. We require each firm-year to have two or more 

recommendations. For this subsample of 11,550 observations, we calculate recommendation 

changes relative to the most recent prior recommendation by the same analyst for the same firm, 

with a positive value indicating an upgrade. We regress cumulative abnormal stock returns, 

measured during three days around the recommendation revision date, on recommendation 

revisions (∆REC), the connection variables, and their interactions. 

As presented in the first column of Table 8, we document a stronger market reaction to 

recommendation revisions by analysts with higher institutional investor connections, as 

suggested by the positive coefficient on ∆REC ∙ CONNECTIONS, but up to a certain level of 



29 
 

connections, as suggested by the negative coefficient on ∆REC ∙ CONNECTIONS2. The last 

column of Table 8 presents results from interacting ∆REC with the terciles of connections. 

Market reaction becomes stronger with connections only in the bottom tercile. These results are 

consistent with our findings regarding earnings forecast accuracy and enhance our inference that 

sell-side analysts’ connections with institutional investors influence the quality of their research 

output.12    

8. Conclusion 

A plethora of research papers examine the impact of sell-side financial analyst research 

on the investment community (Ramnath et al. 2008b; Bradshaw et al. 2017), while relatively few 

papers examine the role of buy-side analysts, working for institutional investors, the most 

important clients of the investment and boutique research firms that employ sell-side analysts 

(Brown et al. 2016). Most prior academic research regarding the interactions between these two 

sophisticated groups of market participants adopts the view that information flows from sell-side 

to buy-side analysts. We add to this research by considering the bilateral information flow and by 

specifically examining the impact of private buy-side analyst information on the quality of 

publicly available sell-side analyst research. Our evidence of a non-linear relation between 

connections with institutional investors and sell-side analyst earnings forecast accuracy is 

consistent with these connections enhancing the quality of sell-side analyst research output and, 

hence, the quality of information impounded in capital asset prices, although up to a point of 

diminishing returns.  

                                                           
12 In measuring abnormal returns, we use the value-weighted market return as a proxy for expected returns. Results 

(untabulated) are similar when we use four alternative proxies for expected returns: the equal-weighted market 

returns, the average stock returns during prior 100 days, expected returns from the market model estimated for the 

prior 100 days, and expected returns estimated from the Fama-French (1993) three-factor model. 
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We recognize that buy-side analysts may invest effort in choosing the sell-side analysts 

whom they wish to engage, and this choice may depend on the accuracy of sell-side analyst 

earnings forecasts. At the same time, we hypothesize that the accuracy of sell-side analyst 

earnings forecasts depends on the intensity of their connections with buy-side analysts. Our tests 

effectively untangle this endogeneity and reinforce our inference that information flow from the 

buy-side to the sell-side enhances the quality of sell-side analyst research reports. To the best of 

our knowledge, ours is the first study to show that sell-side analysts learn about the stocks they 

follow from connections with their buy-side counterparts. 

The idea of a well-connected sell-side analyst goes beyond connections with the buy-

side. For example, the analyst has connections with industry contacts that enable interactions 

with suppliers and customers; with management of public and private companies to develop a 

pipeline of future coverage; with venture capitalists and private equity firms to help her build a 

pipeline of investment banking deals and future research coverage; and with the business press 

for general visibility. Our paper only examines connections with buy-side clients, thus leaving 

room for future research. 
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Appendix  

Variables in main analyses (when scaled among the same firm-year to fall between 0 and 1, unless 

pointed out otherwise, the scaling follows 
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑎𝑓𝑡−min (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑓𝑡)

max(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑓𝑡)−min(𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑓𝑡
) 

|FEaft|= absolute error in analyst a’s earliest forecast, Faft, for firm f’s year t earnings issued during the 90 

days post the announcement of firm f’s year t-1 annual earnings, divided by the absolute value of 

actual earnings.   

ACCURACYaft = the difference between the maximum absolute forecast error among all forecasts of firm 

f’s year t earnings during the 90 days  post the announcement of firm f’s year t-1 annual earnings and 

analyst a’s absolute forecast error |FEaft|, scaled by the range between the maximum and minimum, 

i.e., 
max(|𝐹𝐸𝑓𝑡|)−|𝐹𝐸𝑎𝑓𝑡|

max(|𝐹𝐸𝑓𝑡|)−min(|𝐹𝐸𝑓𝑡|)
. ACCURACY falls on a scale between zero (least accurate) and one (most 

accurate).  

−Mean deflated |FEaft| = absolute forecasts error for analyst a, firm f, and year t, divided by the mean 

absolute forecast error among analysts forecasting annual earnings for the same firm-year, and 

multiplied by −1. 

CONNECTIONSaft = analyst a’s weighted average number of connections with institutional investors 

holding f as of the date of Faft. It is computed as the weighted number of stocks, other than f, covered 

by analyst a and held by institutions that invest in firm f, divided by the number of all institutions 

holding firm f, where the weight equals the value of the corresponding stock as a percentage of the 

value of the corresponding institution’s total portfolio. Institutional holdings are from the calendar 

quarter preceding the date of Faft, and analyst coverage of other companies is from the one year period 

that precedes the calendar quarter end used for institutional holding measurement.  

Lagged ACCURACYaft =one year lagged value of the ACCURACY variable. 

𝐹𝐼𝑅𝑀#𝑡
𝑎 = number of firms analyst a followed in the year ending with the date of Faft. 

𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌#𝑎𝑡 = number of industries analyst a followed in the year ending with the date of Faft. 

𝐹𝐼𝑅𝑀_𝐸𝑋𝑃𝑎𝑓𝑡 = number of years since the first year analyst a issued one-year ahead earnings forecasts 

for firm f up to the date of Faft.  

𝐵𝑆𝐼𝑍𝐸𝑎𝑡 = number of analysts employed by analyst a’s brokerage house or research firm in the year 

ending with the date of Faft. 

𝐷𝐴𝑌𝑆𝑎𝑓𝑡 = number of days between the date of Faft and the most recent one-year ahead forecast of firm 

f’s year t earnings preceding Faft by any analyst. 

𝐸𝑃𝑆_𝐹𝑅𝐸𝑄𝑎𝑓𝑡 = frequency of analyst a's one-year ahead earnings forecasts for firm f in the one-year 

period prior to the date of Faft. 

𝐻𝑂𝑅𝐼𝑍𝑂𝑁𝑎𝑓𝑡 = number of days between the date of Faft and the end of fiscal year t. 

𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

, 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝑀𝑒𝑑 𝑂𝑝𝑝

, and 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐿𝑜𝑤 𝑂𝑝𝑝

 are measured the same 

way as the original CONNECTIONS variable except that they are constructed based on connections 

with subsets of institutions, i.e., high-, medium-, and low-opportunity institutions.   

Opportunity based on Bushee’s (1998, 2001) classification: transient, dedicated, and quasi-index 

institutions are classified as having high, medium, and low private information and thus opportunities, 

respectively.  
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Opportunity based on portfolio turnover (Chen, Jegadeesh, and Wermers 2000): institutions with high 

(medium or low) turnover are classified as having high- (medium- or low-) opportunities.  

Opportunity based on Petajisto’s (2013): We start from Petajisto’s five investment categories − stock 

pickers, concentrated stock pickers, moderately active stock pickers, closet indexers, and factor bettors 

− and classify the first three types of institutions as active stock selectors, and the rest as passive stock 

selectors. To create the five investment categories, we follow Petajisto’s (2013, p82) two-way 

stratification approach whereby we rank all institutions first by Active Share and then by Tracking 

Error to create his five by five grid and follow his cell assignment to come with the five investment 

categories. Active Share measure is computed as in Cremers and Petajisto (2009). We use the CRSP 

stock universe as the benchmark market portfolio and measure active share for the portfolio of an 

institution as the sum of the absolute differences between the institution’s portfolio weight and market 

portfolio weight in each stock. Tracking error is computed for each institution and each year as the 

standard deviation of residuals from a regression of monthly excess portfolio returns over the last 3 

years on the excess returns on the CRSP market index. The monthly excess return is computed by 

subtracting the monthly risk-free return from the monthly portfolio return. 

Variables in additional analyses 

CONNECTIONStime = the first alternative measure of connections is defined the same way as our main 

CONNECTIONS variable except that, for each a,i connection around f, the weight is determined by the 

number of months i has held the corresponding stock of mutual interest (other than f) between a and i.  

CONNECTIONSstock# = the second alternative measure of connections modifies our primary 

CONNECTIONS measure by taking the straight average number of connections across institutional 

investors based on the number of other stocks held by each institutional investor.   

CONNECTIONSinst# = the third alternative measure, computed as the number of institutions that invest in 

both the firm of interest and at least one other firm followed by the same analyst, divided by the 

number of all institutions holding the firm of interest.  

Mean deflated |FE| = absolute forecasts error for each analyst-firm-year divided by the mean absolute 

forecast error among analysts forecasting annual earnings for the same firm-year. 

CONNECTIONS_resid = residual from regressing scaled CONNECTIONS on scaled FIRM#.  

CONNECTIONS2_resid = residual from regressing scaled CONNECTIONS2 on scaled FIRM#.  

Bottom CONNECTIONS Tercile residual = residual from regressing scaled CONNECTIONS in the 

bottom tercile on scaled FIRM#. Middle and Top CONNECTIONS Tercile residuals are defined 

analogously.. 

CONNECTED = 1 if an analyst has connections with an acquired or liquidated institution over the four 

quarters prior to the last form 13F filing date, and 0 otherwise. For each stock held by the 

aforementioned institution and followed by the analyst, we view an analyst as connected with this 

institution if she followed other stocks the institution held in the quarter the institution filed the last 

form 13F and in at least one of the previous three quarters. We consider an analyst as unconnected 

with the institution if she has not followed any other stock held by the institution over the last four 

quarters. 

POST_EVENT = 1 if a forecast is issued more than three months after the event described below, and 0 

otherwise. The event refers to the last date when form 13F was filed by an acquired or bankrupt 

institution. Forecasts are those issued within two years of the events. Only forecasts by analysts that 

issue one or more annual forecasts for the same firm both pre and post the events are retained.  

∆REC = prior recommendation level minus current recommendation level, with a positive value 

indicating an upgrade and a negative value a downgrade. 
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CAR = cumulative abnormal return during the three days around the recommendation changes, where 

abnormal return equals the difference between stock return (RET) and value-weighted market return 

(VWRETD) per CRSP.  
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Figure 1 − Connections Variable for Analysts a1 and a2 regarding Firm-Year f1,t, where only  

Institutions i1, i2, and i3 Hold f1 

 
 

 

 

 

 

 

 

 

 

a2 follows f1, f12, f13, f14, f15, f16, f17, f18, f19, f20 

 

i1 holds f1(5%), f2(20%), f7(40%), f8(35%) 

i2 holds f1(20%), f3(45%), f5(15%), f6(20%) 

i3 holds f1(10%), f4(30%), f9(25%), f10(35%)  

Connections through firms beyond f1: 

 Analyst a1 is strongly connected with the three institutions holding f1 during year t. a1 is connected 

with i1 through f2, f7, and f8, which constitute 95% of i1’s portfolio; with i2 through f3, f5, and f6, 

which constitute 80% of i2’s portfolio; with i3 through f4, f9, and f10, which constitute 90% of i3’s 

portfolio. The unscaled CONNECTIONSf1,t variable takes on a value of (0.95+0.80+0.90)/3 = 

0.8833 for analyst a1.  

 Analyst a2 is not connected with the three institutions holding f1 during year t. The 

CONNECTIONSf1,t variable takes on a value of (0+0+0)/3 = 0 for analyst a2, the minimum among 

both analysts. 

 

Scaled CONNECTIONSf1,t variable = (unscaled CONNECTIONS – minimum Connections) / (maximum 

CONNECTIONS – minimum Connections): 

 For analyst a1: (0.8833 – 0) / (0.8833 – 0) = 1 

 For analyst a2: (0 – 0) / (0.8833 – 0) = 0  

Portfolios of all institutions that invest in f1 with 

portfolio weights for each security in parentheses 
Analysts following f1  

a1 follows f1, f2, f3, f4, f5, f6, f7, f8, f9, f10 
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Figure 2 − Earnings Forecast Accuracy by Quintiles of Connections  

Panel A: Scaled forecast accuracy 

   

Panel B: Unscaled forecast accuracy 

  

Note:  

Panel A depicts the average and median values of accuracy measured as ACCURACY by quintiles of connections 

measured as CONNECTIONS, both measrues are scaled to fall between 0 and 1 for the same firm-year.  

Panel B depicts the average and median values of accuracy measured as −Mean deflated |FEaft| (unscaled) by 

quintiles of connections measured as CONNECTIONS (scaled to fall between 0 and 1 for the same firm-year).   

All variables are defined in the Appendix.  
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Table 1 – Descriptive Statistics and Correlations 

Panel A. Descriptive Statistics (189,452 analyst-firm-year observations) 

 

Variables Mean p25 p50 p75 
Standard 

Deviation 

|FE| 0.768 0.048 0.132 0.378 6.708 

FE 0.421 -0.098 0.000 0.201 6.739 

ACCURACY 0.535 0.226 0.561 0.862 0.353 

CONNECTIONS (Unscaled) 0.013 0.004 0.008 0.016 0.015 

CONNECTIONStock# (Unscaled) 6.780 3.989 5997 8.466 4.540 

CONNECTIONS 0.390 0.070 0.278 0.688 0.356 

INST_OWNER# 326.461 139.000 231.000 406.000 296.714 

Lagged ACCURACY 0.532 0.222 0.556 0.858 0.353 

FIRM# 17.057 12.000 16.000 20.000 9.406 

INDUSTRY# 3.855 2.000 3.000 5.000 2.626 

FIRM_EXP 5.232 2.000 4.000 7.000 4.385 

BSIZE 65.812 22.000 51.000 99.000 55.868 

DAYS 4.327 0.000 0.000 3.000 12.208 

EPS_FREQ 6.189 4.000 6.000 7.000 2.845 

HORIZON 309.463 295.000 319.000 333.000 31.310 
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Panel B. Correlations and p-values 

 
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

CONNECTIONS (1) 1.000 
          

CONNECTIONS2  (2) 0.966 1.000 
         

 
0.000 

          

ACCURACY (3) -0.005 -0.010 1.000 
        

 
0.040 0.000 

         

Lagged 
ACCURACY 

(4) -0.010 -0.015 0.056 1.000 
       

 
0.000 0.000 0.000 

        

FIRM# (5) 0.510 0.487 0.006 -0.011 1.000 
      

 
0.000 0.000 0.011 0.000 

       

INDUSTRY# (6) 0.281 0.283 -0.009 -0.013 0.465 1.000 
     

 
0.000 0.000 0.000 0.000 0.000 

      

FIRM_EXP (7) 0.117 0.109 0.006 -0.002 0.134 0.066 1.000 
    

 
0.000 0.000 0.012 0.296 0.000 0.000 

     

BSIZE (8) 0.132 0.119 0.003 0.005 0.082 -0.040 0.029 1.000 
   

 
0.000 0.000 0.256 0.034 0.000 0.000 0.000 

    

DAYS (9) 0.089 0.105 -0.014 -0.009 0.054 0.053 0.088 0.031 1.000 
  

 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

   

EPS_FREQ (10) -0.021 -0.023 -0.020 -0.065 -0.035 -0.050 -0.015 0.087 -0.013 1.000 
 

 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  

HORIZON (11) -0.049 -0.056 -0.114 -0.008 -0.063 -0.054 -0.035 -0.031 -0.244 0.130 1.000 
 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Panel C. Correlation between connections and forecast accuracy by the range of 

connections and p-values 

Range of connections Correlation with ACCURACY 

CONNECTIONS <= 

median 
0.017 

0.000 

CONNECTIONS > 

median 
-0.020 

0.000 
 

Panel A reports summary statistics for our sample of 189,452 analyst-firm-year forecasts issued from 1995 to 2016, for 

4,564 unique firms by 8,790 analysts. The forecasts are the earliest annual earnings forecasts issued by an analyst for a 

firm-year during the 90 days post the announcement of the firm’s prior year annual earnings. For ease of interpretation, 

with the exception of ACCURACY and CONNECTIONS, no variable in Panel A is scaled among analysts for the same 

firm-year. 

Panel B presents correlation coefficients (with the associated p-values below in italics) among the main variables used in 

the analysis, where all variables are scaled among analysts making forecasts for the same firm-year. Subscripts a, f, and t 

are suppressed for brevity. 

Panel C reports correlation coefficients between CONNECTIONS and ACCURACY for the two ranges of CONNECTIONS 

(those below or at the median and those above the median). Both CONNECTIONS and ACCURACY are scaled among 

analysts making forecasts for the same firm-year 

All variables are defined in the Appendix. 
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Table 2 – Earnings Forecast Accuracy and Connections 
 

  (1) (2) (3) (4) 

Variables Coeff (std. err.) Coeff (std. err.) Coeff (std. err.) Coeff (std. err.) 

CONNECTIONS 5.516*** 4.818***   

 (0.962) (0.960)   

CONNECTIONS2 -6.127*** -5.751***   

 (0.988) (0.961)   
Break down of CONNECTIONS     
Bottom CONNECTIONS Tercile   13.908*** 13.740*** 

   (3.338) (3.283) 

Middle CONNECTIONS Tercile   3.113*** 2.557*** 

   (0.701) (0.708) 

Top CONNECTIONS Tercile   0.032 -0.246 

   (0.329) (0.337) 

Lagged ACCURACY  5.210***  5.217*** 

  (0.263)  (0.264) 

FIRM#  0.945***  0.851** 

  (0.350)  (0.350) 

INDUSTRY#  -1.409***  -1.461*** 

  (0.293)  (0.294) 

FIRM_EXP  0.595**  0.604** 

  (0.248)  (0.248) 

BSIZE  -0.177  -0.138 

  (0.291)  (0.292) 

DAYS  -3.901***  -3.942*** 

  (0.257)  (0.257) 

EPS_FREQ  0.033  0.044 

  (0.259)  (0.259) 

HORIZON  -11.000***  -11.000*** 

  (0.236)  (0.236) 

Constant 53.249*** 57.895*** 53.151*** 57.810*** 

 (1.005) (1.017) (1.005) (1.017) 

Year Fixed Effects YES YES YES YES 

N 189,452 189,452 189,452 189,452 

Adjusted R2 0.25% 2.07% 0.25% 2.06% 
 

This table examines the relation between sell-side analysts’ forecast accuracy and their connections with 

institutional investors based on the following regressions:  

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌𝑎𝑓𝑡 = 𝛽0 + 𝛽1𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡 + 𝛽2𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
2 + ∑ 𝛽𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑚𝑚 + 𝜀𝑎𝑓𝑡  (1) 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌𝑎𝑓𝑡 = 𝛽0 + ∑ 𝛽𝑘
𝑇𝑒𝑟𝑐𝑖𝑙𝑒𝐷𝑘

𝑇𝑒𝑟𝑐𝑖𝑙𝑒𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
3
𝑘=1  +  ∑ 𝛽𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑚𝑚 + 𝜀𝑎𝑓𝑡       (2) 

𝐷𝑘
𝑇𝑒𝑟𝑐𝑖𝑙𝑒 is an indicator variable equaling one for the kth 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆 tercile (1=lowest and 3=highest) 

and zero otherwise.  

All other variables are defined in the Appendix and scaled to fall between 0 and 1 for the same firm-year. The 

dependent variable (and, thus, each coefficient) is multiplied by 100. 

Standard errors are clustered by analyst and are presented in parentheses.   

***, **, * denote statistical significance at the 1%, 5%, and 10% significance level, respectively. 
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Table 3 – Earnings Forecast Accuracy and Connections Stratified by Opportunities for 

Analysts to Learn 
 
 

 (1) (2) (3) (4) (5) (6) 

Variables 

Based on transient, 

quasi-indexers, and 

dedicated investors 

Coeff (std. err.) 

Based on turnover 

Coeff (std. err.) 

Based on 

active/passive 

investors 

Coeff (std. err.) 

CONNECTIONS High Opp  5.151***  4.041***  5.003***  

 (1.706)  (1.396)  (1.533)  

(CONNECTIONS High Opp)2 -4.414***  -4.776***  -4.687***  

 (1.605)  (1.306)  (1.431)  

CONNECTIONS Med Opp 2.124*  0.553    

 (1.151)  (1.846)    

(CONNECTIONS Med Opp)2 -2.855**  -1.113    

 (1.143)  (1.680)    

CONNECTIONS Low Opp -2.036  1.436  0.396  

 (1.766)  (1.694)  (1.542)  

(CONNECTIONS Low Opp)2 1.536  -1.333  -1.601  

 (1.657)  (1.584)  (1.469)  

Break down of CONNECTIONS       

Bottom CONNECTIONS High Opp tercile  6.423**  7.113***  9.574*** 

  (3.210)  (2.760)  (2.946) 

Middle CONNECTIONS High Opp tercile  2.596**  1.766**  1.914** 

  (1.029)  (0.866)  (0.918) 

Top CONNECTIONS High Opp tercile  1.081  -0.277  0.776 

  (0.681)  (0.536)  (0.595) 

Bottom CONNECTIONS Med Opp tercile  3.334  3.813   

  (10.292)  (3.891)   

Middle CONNECTIONS Med Opp tercile  0.339  0.247   

  (0.883)  (1.128)   

Top CONNECTIONS Med Opp tercile  -0.575  -0.363   

  (0.366)  (0.726)   

Bottom CONNECTIONS Low Opp tercile  7.338  6.839  7.499* 

  (4.503)  (4.870)  (4.455) 

Middle CONNECTIONS Low Opp tercile  -0.518  0.837  0.606 

  (1.151)  (1.109)  (1.007) 

Top CONNECTIONS Low Opp tercile  -0.336  0.291  -0.908 

  (0.679)  (0.653)  (0.575) 

Controls from Table 2 YES YES YES YES YES YES 

N 149,796 149,796 189,452 189,452 189,452 189,452 

Year Fixed Effects YES YES YES YES YES YES 

Adjusted R2 2.20% 2.18% 2.08% 2.06% 2.07% 2.06% 
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This table examines whether the sensitivity of forecast accuracy to connections increases when sell-side analysts 

have greater opportunities to learn private information from their connections with institutional investors.  

Results are from estimating the following regression model:  

ACCURACYaft = β0 + β1𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

 + β2(𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

)2+ β3𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝑀𝑒𝑑 𝑂𝑝𝑝

+ 

β4(𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝑀𝑒𝑑 𝑂𝑝𝑝

)2+ β5𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐿𝑜𝑤 𝑂𝑝𝑝

+ β6(𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐿𝑜𝑤 𝑂𝑝𝑝

)2 +∑ 𝛽𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑚𝑚  + 

𝜀𝑎𝑓𝑡 and a piecewise regressions where the terciles of 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

, 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝑀𝑒𝑑 𝑂𝑝𝑝

 and 

𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐿𝑜𝑤 𝑂𝑝𝑝

are the main variables of interest.  

𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐻𝑖𝑔ℎ 𝑂𝑝𝑝

, 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝑀𝑒𝑑 𝑂𝑝𝑝

 and 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
𝐿𝑜𝑤 𝑂𝑝𝑝

are measured the same way as the 

original CONNECTIONS variable except that they are constructed based on connections with only high-

opportunity, medium-opportunity, and low-opportunity institutions, respectively.  

In columns (1) and (2), we utilize Bushee’s (2001) categorization of institutions into transient, dedicated, and 

quasi-indexers (unclassified ones as other type) to classify institutions into high-, medium-, and low-

opportunity institutions.  

In columns (3) and (4), we classify institutions with high (medium or low) turnover as high- (medium- or low-) 

opportunity ones.  

In columns (5) and (6), we combine Petajisto’s (2013) five investment categories to classify institutions as active 

stock selectors and passive stock selectors.  

All variables are defined in the Appendix and scaled to fall between 0 and 1 for the same firm-year. The dependent 

variable (and, thus, each coefficient) is multiplied by 100.  

Standard errors are clustered by analyst and are presented in parentheses.   

***, **, * denote statistical significance at the 1%, 5%, and 10% significance level, respectively.     
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Table 4 – The Relation between Earnings Forecast Accuracy and Connections by Buy-side 

Analyst Demand   
 

                                  

 (1) 

Coeff (std. err.) 

(2) 

Coeff (std. err.) 

Variables                                   DEMAND = FIRM_EXP Lagged_ACCURACY 

CONNECTIONS  6.108*** 5.970*** 

  (1.369) (1.792) 

CONNECTIONS2  -6.888*** -6.997*** 

  (1.385) (1.871) 

CONNECTIONS× DEMAND  -3.200 -2.170 

 
 (2.456) (2.711) 

CONNECTIONS2× DEMAND  2.798 2.352 

 
 (2.388) (2.791) 

Lagged_ACCURACY  5.211*** 5.382*** 

  (0.263) (0.459) 

FIRM#  0.941*** 0.946*** 

  (0.350) (0.349) 

INDUSTRY#  -1.412*** -1.408*** 

  (0.293) (0.293) 

FIRM_EXP  1.057** 0.595** 

  (0.449) (0.248) 

BSIZE  -0.174 -0.177 

  (0.291) (0.291) 

DAYS  -3.902*** -3.901*** 

  (0.257) (0.257) 

EPS_FREQ  0.033 0.033 

  (0.259) (0.259) 

HORIZON  -10.999*** -11.001*** 

  (0.236) (0.236) 

Constant  57.722*** 57.803*** 

  (1.026) (1.039) 

N  189,452 189,452 

Year Fixed Effects  YES YES 

Adjusted R2  2.07% 2.07% 
 

This table examines whether the sensitivity of forecast accuracy to connections increases with buy-side analyst 

demand for information. This table reports coefficient estimates from the following regressions. 

ACCURACYaft =β0+ β1CONNECTIONSaft + β2𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
2  + β3DEMAND+ β4DEMAND × CONNECTIONSaft 

β5DEMAND ×𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
2 +∑ 𝛽𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑚𝑚 + εaft     

We employ FIRM_EXP and Lagged_ACCURACY as proxies for buy-side analyst DEMAND. 

All variables are defined in the Appendix and scaled to fall between 0 and 1 for the same firm-year. The dependent 

variable (and, thus, each coefficient) is multiplied by 100.  

Standard errors are clustered by analyst and are presented in parentheses.   

***, **, * denote statistical significance at the 1%, 5%, and 10% significance level, respectively.  
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  Table 5 – Analysis of Exogenous Shocks to Connections 
 

 (1) (2) (3) (4) (5) (6) 

 Dependent variable = ACCURACY Dependent variable = −mean deflated |FE| 

Variables 
Total 

sample 

Lower connections 

subsample 

Higher connections 

subsample 
Total sample 

Lower connections 

subsample 

Higher connections 

subsample 

  

coeff  

(std. err.) 

coeff  

(std. err.) 

coeff  

(std. err.) 

coeff  

(std. err.) 

coeff  

(std. err.) 

coeff  

(std. err.) 

POST_EVENT  1.195 2.329** -1.240 0.879 1.937** -1.496 

 (0.836) (0.989) (1.548) (0.681) (0.786) (1.289) 

CONNECTED 1.116 1.901** -0.115 1.314** 1.766** 0.408 

 (0.684) (0.891) (1.205) (0.560) (0.720) (0.997) 

CONNECTED×POST_EVENT -1.310 -3.502*** 1.922 -1.303 -2.747*** 1.295 

 (0.952) (1.245) (1.647) (0.799) (1.043) (1.377) 

Constant 50.327*** 50.413*** 50.165*** -101.277*** -102.007*** -99.915*** 

 (2.278) (2.757) (3.834) (1.503) (2.182) (1.860) 

N 40,372 20,773 19,599 52,369 26,954 25,415 

Year Fixed Effects YES YES YES YES YES YES 

Adjusted R2 0.00% 0.00% 0.02% -0.03% -0.04% -0.05% 

 
This table presents analyses of changes in analyst forecast accuracy for the connected analysts relative to the unconnected analysts from pre to post the events. Events 

refer to the last dates when form 13Fs were filed by acquired or bankrupt institutions. Forecasts are those issued within two years of the events. The lower (higher) 

connection subsample includes forecasts by analysts whose scaled CONNECTIONS among all analysts following the same firm-year is at or below (above) the sample 

median of 0.2775.  

Columns (1) to (3) estimate the regression below with scaled ACCURACY that falls between 0 and 1:  

ACCURACY = CONNECTED + POST_EVENT + CONNECTED × POST_EVENT + εaft   

Columns (4) to (6) estimate the regression below with unscaled −mean deflated |FE|:  

−mean deflated |FE| = CONNECTED + POST_EVENT + CONNECTED × POST_EVENT + εaft 

Mean deflated |FE| is measured the same as in the Appendix except the mean is for the same firm-year in the pre-event or post-event period. 

All other variables are defined in the Appendix and scaled values are scaled among the same firm-year. The dependent variable (and, thus, each coefficient) is multiplied 

by 100.  

Standard errors are clustered by analyst and are presented in parentheses.   

***, **, * denote statistical significance at the 1%, 5%, and 10% significance level, respectively.   
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Table 6 – Alternative Measures of Connections 

 
  (1) (2) (3) (4) (5) (6) 

Variables 

Measure 1 

CONNECTIONStime 

Measure 2 

CONNECTIONSstock# 

Measure 3 

CONNECTIONSinst# 

Coeff (std. err.) Coeff (std. err.) Coeff (std. err.) 

CONNECTIONS 6.547***  6.423***  5.932***  

 (0.949)  (1.047)  (0.984)  

CONNECTIONS2 -6.585***  -6.797***  -4.429***  

 (0.931)  -0.969  -0.947  
Break down of CONNECTIONS       

Bottom CONNECTIONS Tercile  4.367***  11.774***  2.611*** 

  (1.379)  (1.993)  (0.786) 

Middle CONNECTIONS Tercile  1.737***  3.184***  2.299*** 

  (0.467)  (0.729)  (0.356) 

Top CONNECTIONS Tercile  0.219  0.409  1.367*** 

  (0.301)  (0.485)  (0.304) 

Control variables in Table 2 YES YES YES YES YES YES 

Year Fixed Effects YES YES YES YES YES YES 

N 189,452 189,452 189,452 189,452 189,452 189,452 

Adjusted R2 2.07% 2.05% 2.08% 2.07% 2.07% 2.07% 

 
This table replicates the analyses from specifications (2) and (4) of Table 2 with three alternative measures of the CONNECTIONS  

variable: CONNECTIONStime,  CONNECTIONSstock#, and CONNECTIONSINST#. All variables are defined as in the Appendix.  

All variables are scaled to fall between 0 and 1 for the same firm-year and the dependent variable (and, thus, each coefficient) is  

multiplied by 100. Standard errors are clustered by analyst and are presented in parentheses.  ***, **, * denote statistical significance  

at the 1%, 5%, and 10% significance level, respectively.  
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Table 7 – Alternative Measures of Accuracy  
 

 (1) (2) 

Variables 
−Mean deflated |FE| as dependent variable 

Coeff (std. err.) 

CONNECTIONS 3.428**  

 (1.659)  

CONNECTIONS2 -4.916***  

 (1.714)  

Break down of CONNECTIONS  

Bottom CONNECTIONS Tercile  9.503* 

  (4.936) 

Middle CONNECTIONS Tercile  1.284 

  (1.099) 

Top CONNECTIONS Tercile  -0.958* 

  (0.547) 

Lagged ACCURACY 7.000*** 7.007*** 

 (0.503) (0.505) 

FIRM# 1.360** 1.293** 

 (0.554) (0.552) 

INDUSTRY# -1.060** -1.107** 

 (0.466) (0.472) 

FIRM_EXP 1.623*** 1.632*** 

 (0.369) (0.369) 

BSIZE -0.176 -0.143 

 (0.502) (0.502) 

DAYS -4.189*** -4.228*** 

 (0.380) (0.376) 

EPS_FREQ 0.317 0.326 

 (0.394) (0.394) 

HORIZON -11.279*** -11.278*** 

 (0.338) (0.339) 

Constant -94.806*** -94.829*** 

 (1.280) (1.288) 

Year Fixed Effects YES YES 

N 189,452 189,452 

Adjusted R2 0.92% 0.92% 

Dependent variable −Mean deflated |FE| 
 

This table presents results when forecast accuracy is measured as (−1)×mean deflated |FE|.  

All variables are defined in the Appendix. All independent variables are scaled to fall between 0 and 1 for the same 

firm-year and the dependent variable (and, thus, each coefficient) is multiplied by 100.  

Standard errors are clustered by analyst and are presented in parentheses.   

***, **, * denote statistical significance at the 1%, 5%, and 10% significance level, respectively.   
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Table 8 – Cumulative Abnormal Returns around Recommendation Changes by 

Connections  
 

Variable Quadratic form Piecewise version 

∆REC 0.955*** 0.948*** 

 (0.044) (0.044) 

∆REC ∙ CONNECTIONS  0.984***   

 (0.374)   

∆REC ∙ CONNECTIONS2  -1.038***   

 (0.362)   

∆REC ∙ Bottom CONNECTIONS Tercile   1.463** 

   (0.607) 

∆REC ∙ Middle CONNECTIONS Tercile   0.220 

   (0.143) 

∆REC ∙ Top CONNECTIONS Tercile   -0.054 

   (0.061) 

CONNECTIONS  -0.693   

 (0.458)   

CONNECTIONS2  0.749*   

 (0.448)   

Bottom CONNECTIONS Tercile   -0.984 

   (0.712) 

Middle CONNECTIONS Tercile    -0.234 

   (0.168) 

Top CONNECTIONS Tercile   0.061 

   (0.071) 

Constant 0.180 0.179 

 (0.212) (0.210) 

N 11,550 11,550 

Year Fixed Effects YES YES 

Adjusted R2 13.2% 13.2% 

 

This table examines the impact that CONNECTIONS has on the relation between recommendation changes and the 

three-day cumulative abnormal returns around recommendation changes. The results are from estimating the 

regressions below:  

CAR[-1,+1] = β0 + β1∆REC + β2∆REC ∙ CONNECTIONS + β3∆REC ∙ CONNECTIONS2 + β4CONNECTIONS + 

β5CONNECTIONS2 + ε, and  

CAR[-1,+1] = β0 + β1∆REC + ∆REC ∙ ∑ 𝛽𝑘
𝑇𝑒𝑟𝑐𝑖𝑙𝑒𝐷𝑘

𝑇𝑒𝑟𝑐𝑖𝑙𝑒𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
3
𝑘=1  +    

∑ 𝛾𝑘
𝑇𝑒𝑟𝑐𝑖𝑙𝑒𝐷𝑘

𝑇𝑒𝑟𝑐𝑖𝑙𝑒𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆𝑎𝑓𝑡
3
𝑘=1  + ε   

𝐷𝑘
𝑇𝑒𝑟𝑐𝑖𝑙𝑒 is an indicator variable equaling one for the kth 𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐼𝑂𝑁𝑆 tercile (1=bottom, 2=middle, and 

3=top) and zero otherwise.  

All other variables are defined in the Appendix. 
CONNECTIONS is scaled to fall between 0 and 1 for the same firm-year and the dependent variable (and, thus, each 

coefficient) is multiplied by 100. Standard errors are clustered by analyst and are presented in parentheses.   

***, **, * denote statistical significance at the 1%, 5%, and 10% significance level, respectively. 

 


