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Abstract

We analyse the short-time work (STW) regulations that several OECD countries introduced

after the 2007 financial crisis. We view these measures as a collection of real options and

study the dynamic effect of STW on the endogenous liquidation decision of the firm. While

STW delays a firm’s liquidation, it is not necessarily welfare enhancing. Moreover, it turns

out that firms use STW too long. We show (numerically) that providers of capital benefit

more than employees from STW. Benefits for employees can even be negative. A typical

Nordic policy performs better than a typical Anglo-Saxon policy for all stakeholders.

Keywords Temporary unemployment · Real options · Dynamic cost-benefit analysis

JEL Classification G33 · G38 · H53

1 Introduction

Many commonly-used economic policies have welfare effects that depend crucially on eco-

nomic agents’ timing decisions. As an example take short-time work (STW) arrangements,

which are used to reduce the number of lay-offs in economically challenging times by tem-

porarily allowing employers to reduce the hours worked by their employees. Even though

there are many differences in the precise rules governing STW in different countries (such

as eligibility criteria, duration, etc.) the basic idea is similar: rather than laying off workers,
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firms are allowed to put employees on reduced hours. Affected workers are compensated for

the resulting loss in wage income, partly by employers and partly by the government.1

In order to make a full welfare analysis of an STW policy one needs to know by how

much both the costs to the government and the benefits to the workers should be discounted.

Both these discount factors depend on the timing decisions of the firm: when (if ever) it

enters STW, when (if ever) it exists, when (if ever) it liquidates. These decisions, in turn,

will depend on the underlying, uncertain, state of the economy as relevant to the firm. The

discounted costs and benefits of STW will, thus, depend on firms’ timing decisions under

future uncertainty. To facilitate the analysis of STW it helps to view it as providing the firm

with a collection of real options. First it has an option to enter STW. Once this option is

exercised it has an option to either liquidate or leave STW. If the firm exits STW it again has

an option to liquidate. This concatenation of options makes valuing STW measures in general

a difficult problem, especially in a general equilibrium framework. Therefore, in this paper

we focus on the value of STW to the firm and its constituents: its shareholders, employees,

and providers of capital.

This paper analyses three issues related to STW that have been addressed to some extent

in the literature, but will be studied here in a dynamic stochastic framework that focusses

on the incentives it creates for employers. First, it has been argued [2] that, while from

the employee’s point of view STW is preferable to lay-offs, they are close substitutes for

employers. However, since laying off staff is an (at least partly) irreversible decision, while

STW is not, the option of STW has economic value to the firm.

A second, related, issue is the concern that STW can lead to inefficient reductions in

working hours (cf. [19]) for which some empirical evidence has been found [7]. We find a

theoretical reason for this inefficiency, linked to the option value that STW presents. Most

countries have provisions that preclude firms from signing up to STW if and when they like.

This adds a degree of irreversibility to the decision to leave STW once a firm is using it. This

irreversibility, in turn, creates an option value of waiting, which gives the firm a disincentive

to return employees to full hours. This effect is driven purely by irreversibility and uncertainty

over the firm’s prospects and affects even risk-neutral firms.

A third question is related to who benefits most from STW. We analyse a typical situation

where the firm’s production technology is of the Cobb–Douglas type with two inputs: capital

and labour. In that set-up, labour is “rented” from labourers and capital goods are rented

from providers of capital goods, who we shall refer to here as “capitalists”. Shareholders

claim the firm’s profits. It is assumed that managers maximize shareholder value, that there

are no agency issues, and that the firm is 100% equity-financed. So, although we can think

of workers and capitalists as stakeholders in the firm, we view them as outsiders who have

no agency in the firm’s decision making. In particular, the capitalists are not the providers

of (financial) capital; rather, they are providers of the capital goods that the firm rents for its

production process.

STW is usually introduced by appealing to the advantages that it has for workers. Indeed,

STW delays or prevents workers from being laid-off and, hence, reduces the present value of

the sunk-costs of being made redundant, estimated to be some 11% of life-time earnings [8].

However, STW is also beneficial to the providers of the firm’s capital goods (“capitalists”)

and shareholders. Capitalists benefit, because they get fully paid for the capital stock through-

out the STW period. Shareholders benefit, because STW gives them additional options in

managing the firm, which have a positive value. So, from the firm’s perspective STW and

1 In 2011, STW measures were in place in 25 of 33 OECD countries with take-up rates being as high as
7.4% of employees in some countries in 2009 [7]. It has been estimated, for example, that STW has saved
5000–6000 jobs in the Netherlands alone [13].
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liquidation are not close substitutes. This is because liquidation is irreversible, while using

STW is not. So, STW gives the firm additional flexibility to deal with unfavourable economic

circumstances, which has economic value for the firm.

We perform a numerical analysis of our model to study its features in more detail. This

analysis is based on two examples of typical STW policies, that we call the “Anglo-Saxon”

and the “Nordic” policy. These proto-typical policies are averages of policies as have been

documented in the literature (see [7]) of some Anglo-Saxon and Nordic countries, respec-

tively. The main difference between these policies is that the Nordic countries, typically,

allow firms to cut into normal production levels more deeply, while permitting lower salary

reductions.

From this numerical analysis we find that, from a social welfare perspective, firms use STW

too long. This is related to the option value of STW: leaving STW is an irreversible decision.

This irreversibility gives the firm an option to use STW longer than it otherwise would. These

two effects may also give a different explanation to the observed lag between macro variables

and labour adjustment as analysed by van Wijnbergen and Willems [21]. Secondly, we find

that, on the whole, the providers of capital goods benefit more from STW than providers of

labour. In addition, all interested parties (providers of capital goods and labour services, as

well as shareholders) are better off in a typical Nordic programme than in a typical Anglo-

Saxon programme. Finally, in all cases, the benefit-to-cost ratio is significantly below unity,

indicating the importance of a stochastic dynamic approach to analysing measures like STW.

In general we find that the benefits and costs of STW measures are very sensitive to the

policy’s parameters and that no clear policy prescriptions emerge. This point is also made in

some recent empirical work on STW measures by Boeri and Bruecker [6].

The paper uses a real options approach to the analysis of unemployment insurance by

focussing on the effects of irreversibility and uncertainty on the value of STW measures to

the firm. The use of real options analysis is well-established in the analysis of economic

decision making. Since the seminal contributions of McDonald and Siegel [16] and Dixit

and Pindyck [10] there has been a burgeoning literature on applications of the real options

approach. For example, Abel and Eberly [1] and Dixit [9] use the framework to analyse

optimal investment in the production factors in a firm, Bar–Ilan and Strange [3] use it to

investigate the consequences of construction lags on optimal investment decision. In a recent

contribution, Kellogg [14] gives evidence that the decision rules that theoretic real options

models prescribe are consistent with actual firm behaviour.

Not much theoretical work has been conducted in the use of STW to dampen the effects

of the recent recession. Some contributions, like Bentolila et al. [4] focus on labour market

flexibility, in particular the use of temporary workers, as an explanation for the different

effects of the recession in different labour markets. To our knowledge, our paper is the first

that applies a real options framework to STW. In general, there are few contributions that

focus on the optionality that labour-market policies confers on employers. In fact, most

contributions abstract away from this and focus on issues such as moral hazard; see, e.g.

Blanchard and Tirole [5] who focus on the effect of unemployment insurance and protection

on optimal wage contracts between employer and worker, and Kolsrud et al. [15], who focus

on optimal timing of (un-) employment by workers.

In this paper, we choose not to model the workers’ side of the labour market at all. There are

concerns that STW unduly advantages workers employed in firms that can use STW, although

there is no conclusive evidence that this really takes place [7]. In addition, it can be argued

that during times of economic hardship, which STW measures are designed to alleviate,

the labour market will not be very “liquid”, making it difficult for workers to switch jobs.
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Finally, a focus on the firm allows for analytical solutions and a clear understanding how

irreversibility and uncertainty drive the value of STW.

The paper is organized as follows. In Sect. 2 we set up the model and derive the firm’s

optimal policy by valuing three subsequent (real) options implied by a (stylized) model of

STW. The effects of STW on liquidation probabilities and welfare are analysed in Sects. 3

and 4, respectively. Some concluding remarks are given in Sect. 5.

2 Optimal use of short-time work by firms

As mentioned in Sect. 1, the details of STW measures vary substantially across countries,

although the main idea is the same: employers can put staff on reduced hours, while the

government partially compensates for lost wage earnings. In this section we will study the

effect of STW on the firm’s liquidation decision. The main idea of our model is that STW

provides the firm with an option to postpone an irreversible liquidation decision by lowering

its production level, which reduces its (stochastic) revenues as well as its (deterministic) costs.

This generates a trade-off for the firm where STW is attractive when its sales price is low, but

not when it is high; an assumption that we will formalize below (cf. Assumption 1). As far as

the details of the STW measure, we make the following additional simplifying assumptions.

First the firm can use STW only once, second the option to use STW is infinitely lived, third

the use of STW does not involve sunk costs and fourth the firm can decide itself when to stop

STW.

The second and third assumptions are, arguably, the most unrealistic ones. Both are made

for technical convenience and can be relaxed. However, when options are not infinitely lived

no analytical results can be obtained, although it has been shown that even for moderate finite

life times the (numerically obtained) solutions are very similar to those obtained analytically

under an infinite time horizon [11]. The assumption that the use of STW does not involve

sunk costs implies that a firm will use STW sooner than in the case that sunk costs are present.

The result that sunk costs delay investment is standard in the literature2 and the same intuition

applies here as well.

Our assumptions imply that the firm has three subsequent options. First the option to

enter STW. Second, once entered, the firm has the options to (i) exit STW and return to

normal production, or (ii) to liquidate. Third, if the firm decided to exit STW and return to

normal production, then it now has an option to liquidate. Since our stochastic process will

be strongly Markovian, we can value these three options successively, starting with the final

one.

2.1 The value of an active firm that has already used STW

In this section we analyse the value of a firm that is currently active in a market and has already

used STW. Such a firm no longer has an option to enter STW and we will assume that the

only option that is left to the firm is to liquidate at a time of its choosing. Liquidation implies

laying off all workers and retiring all capital stock. We make the following two simplifying

assumptions. First, upon liquidation the firm does not receive a scrap value for its capital

stock and, second, liquidation does not involve sunk costs.

The crucial ingredient in our model is that the evolution of the firm’s revenues is subject

to uncertainty. Uncertainty is modeled on a measurable space (�, F ). We consider a family

2 See, for example, [10, Chapter 6].
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of probability measures Py , y ∈ R+, on (�, F ). A particular firm is assumed to have a

cash inflow that is given by QN Y , where QN is the production level of the firm and Y is

the stochastically evolving price level, which under Py , evolves according to the geometric

Brownian motion (GBM),

dYt = μYt dt + σYt dzt , Y0 = y, Py -a.s.,

where (zt )t≥0 is a Wiener process. Information is modeled by the filtration generated by this

GBM, augmented with the Py-null sets, and is denoted by (Ft )t≥0.

It is assumed that under normal conditions the firm produces a quantity QN at a cost cN ,

and that it discounts profits at a constant rate r > μ.3

The present value (under Py) of an operational firm without the liquidation option is

FN (y) = Ey

[∫ ∞

0
e−r t (QN Yt − cN ) dt

]

= QN y

r − μ
− cN

r
.

The firm’s value with the liquidation option is the solution to the optimal stopping problem

F∗
N (y) = sup

τ∈M

Ey

[∫ τ

0
e−r t (QN Yt − cN ) dt

]

= FN (y) + sup
τ∈M

Ey

[

e−rτ (−FN (Yτ ))
]

, (1)

where M is the set of stopping times relative to the filtration (Ft )t≥0.

The optimal stopping problem (1) is standard and can easily be solved; see, for example

[17, Exercise 10.12]. It turns out that the optimal liquidation time is the first hitting time

(from above) of an endogenously determined threshold of the stochastic process Y , which

we shall denote by Y ∗
N . As this result is standard, it will be summarized in a proposition

without proof. The interested reader is referred to Dixit and Pindyck [10], Stokey [20], or

Øksendal [17] for proofs. In the remainder, let τ̌ (Y ∗
N ) := inf{t ≥ 0|Yt ≤ Y ∗

N } denote the first

hitting time (from above) of the trigger Y ∗
N .

Proposition 1 The stopping time τ̌ (Y ∗
N ), with

Y ∗
N = β2

β2 − 1

r − μ

QN

cN

r
,

where β2 < 0 is the negative root of the quadratic equation

1

2
σ 2β(β − 1) + μβ − r = 0, (2)

solves the optimal stopping problem (1). Moreover, the corresponding value function is

F∗
N (y) =

⎧

⎨

⎩

QN y
r−μ

− cN

r
+
(

y

Y ∗
N

)β2
[

cN

r
− QN Y ∗

N

r−μ

]

if y > Y ∗
N ,

0 if y ≤ Y ∗
N .

(3)

Note that the value function F∗
N is C1 onR+ and C2 onR+\{Y ∗

N }.
The value function in (3) has a straightforward interpretation. For y ≤ Y ∗

N , the firm

liquidates immediately and its value is, thus, zero. For y > Y ∗
N the firm’s value consists of

the expected present value of always producing QN at cost cN , corrected for the fact that at

some point in the future the threshold Y ∗
N may be reached. The expected discount factor of

this event is (y/Y ∗
N )β2 .

3 This assumption ensures that the present value of profits is finite in our infinite horizon model.
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2.2 The value of a firm currently using STW

Once the firm has decided to enter STW it has two, inter-related options:

1. leave STW and return to normal production;

2. leave STW and liquidate.

This problem has two aspects: (i) the optimal decision time has to be determined and (ii) the

optimal decision at that time has to be determined. Of course, STW only makes sense if it

allows firms to reduce costs by lowering the wage bill through reduced hours for its workers.

Therefore, the per-period costs during STW are assumed to be constant and equal to cP ∈
(0, cN ). The quid pro quo is that the firm will produce less than before, say Q P ∈ (0, QN ).

We will assume that, on average, normal production is more profitable than production in

STW.

Assumption 1 The production and cost levels in STW, Q P and cP , are such that QN /cN >

Q P/cP .

Essentially this assumption says that QN is a more efficient production level than Q P . If it

is violated then the firm may never wish to leave STW once it has entered.

The value of an active firm using STW with the two exit options described above, can

now be written as the optimal stopping problem

F∗
P (y) = sup

τ∈M

Ey

[

∫ τ

0
e−r t (Q P Yt − cP )dt + e−rτ max

{

F∗
N (Yτ ), 0

}

]

= sup
τ∈M

Ey

[

∫ τ

0
e−r t (Q P Yt − cP )dt + e−rτ F∗

N (Yτ )

]

. (4)

Note that the gain function is C1 everywhere, so that problem (4) is fairly standard. We

hypothesize that the state space can be split up in a continuation region (0, Y ∗
L ) ∪ (Y ∗

H ,∞)

and a stopping region [Y ∗
L , Y ∗

H ]. So, the optimal stopping time, τ ∗
L,H would be

τ ∗
L,H = τ̂ (Y ∗

H ) ∧ τ̌ (Y ∗
L ), (5)

where τ̂ (Y ∗
H ) := inf{t ≥ 0|Yt ≥ Y ∗

H }. This intuition will be verified in Proposition 2 below.

The resulting value function turns out to be C1 everywhere and C2 onR+\{Y ∗
L , Y ∗

H }.
An STW policy only makes sense if a firm that uses STW liquidates later than a firm that

does not. It will be seen later that the following assumption ensures that Y ∗
L < Y ∗

N .

Assumption 2 For the unique solution ŶH > Y ∗
N to the equation

β1β2

β1 − β2

(

Q P Y ∗
N

r − μ
− cP

r

)

⎡

⎣

(

ŶH

Y ∗
N

)β1

−
(

ŶH

Y ∗
N

)β2
⎤

⎦

−
Q P Y ∗

N /(r − μ)

β1 − β2

⎡

⎣β1

(

ŶH

Y ∗
N

)β1

− β2

(

ŶH

Y ∗
N

)β2
⎤

⎦

= QN − Q P

r − μ
ŶH + β2

(

ŶH

Y ∗
N

)β2 [
cN

r
−

QN Y ∗
N

r − μ

]

, (6)

it holds that

(β2 − 1)Q pY ∗
N

/(r − μ) − β2cP/r

β1 − β2

(

ŶH

Y ∗
N

)β1

+
(1 − β1)Q pY ∗

N
/(r − μ) + β1cP/r

β1 − β2

(

ŶH

Y ∗
N

)β2
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<
QN − Q P

r − μ
ŶH +

(

ŶH

Y ∗
N

)β2 [
cN

r
−

QN Y ∗
N

r − μ

]

. (7)

Denote the expected value (under Py) of operating in STW forever by FP (y), i.e.,

FP (y) = Ey

[∫ ∞

0
e−r t (Yt Q P − cP)dt

]

= Q P y

r − μ
− cP

r
.

Proposition 2 If Assumptions 1 and 2 are satisfied, then there is a unique pair (Y ∗
L , Y ∗

H ),

with Y ∗
L < Y ∗

N < Y ∗
H , such that the stopping time τ ∗

L,H in (5) solves the optimal stopping

problem (4). The triggers Y ∗
L and Y ∗

H are uniquely determined by the equations

(β2 − 1)Q P Y ∗
L/(r − μ) − β2cP/r

(β1 − β2)(Y
∗
L )β1

(Y ∗
H )β1 +

(1 − β1)Q P Y ∗
L/(r − μ) + β1cP/r

(β1 − β2)(Y
∗
L )β2

(Y ∗
H )β2

= F∗
N (Y ∗

H ) − FP (Y ∗
H )

β1
(β2 − 1)Q P Y ∗

L/(r − μ) − β2cP/r

(β1 − β2)(Y
∗
L )β1

(Y ∗
H )β1−1

+ β2
(1 − β1)Q P Y ∗

L/(r − μ) + β1cP/r

(β1 − β2)(Y
∗
L )β2

(Y ∗
H )β2−1

=
∂ F∗

N (Y ∗
H )

∂ y
−

∂ FP (Y ∗
H )

∂ y
(8)

Furthermore, the value function is

F∗
P (y) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if y ≤ Y ∗
L

FP (y) + (Y ∗
H )β1 yβ2 − yβ1(Y ∗

H )β2

(Y ∗
H )β1(Y ∗

L )β2 − (Y ∗
L )β1(Y ∗

H )β2

[

− FP (Y ∗
L )

]

+ yβ1(Y ∗
L )β2 − (Y ∗

L )β1 yβ2

(Y ∗
H )β1(Y ∗

L )β2 − (Y ∗
L )β1(Y ∗

H )β2

[

F∗
N (Y ∗

H ) − FP (Y ∗
H )

]

if Y ∗
L < y < Y ∗

H

F∗
N (y) if y ≥ Y ∗

H .

(9)

The proof of this proposition can be found in “Appendix A”. Note that it is always beneficial

to liquidate later under STW than without STW, because Y ∗
L < Y ∗

N

This value function again has an appealing intuitive interpretation. The payoffs for y ≤ Y ∗
L

and y ≥ Y ∗
H are the payoffs of immediate liquidation and producing at the normal level

(including the option value of liquidation), respectively. The value of the firm in the region

(Y ∗
L , Y ∗

H ) consists of three parts. The first part is the expected present value of never leaving

STW. The second part is the correction for liquidation at Y ∗
L , multiplied by the expected

discount factor conditional on reaching Y ∗
L before Y ∗

H . The final part is the correction for

returning to normal production at Y ∗
H , multiplied by the expected discount factor conditional

on reaching Y ∗
H before Y ∗

L .

2.3 The value of an active firm that has not yet used STW

An active firm that has not used STW yet is confronted with the problem of finding the

optimal time at which to exchange the expected present value of current production for

123



Mathematics and Financial Economics

the value of a firm that is using STW, F∗
P . That is, the firm solves the optimal stopping

problem

F∗(y) = sup
τ∈M

Ey

[∫ τ

0
e−r t (QN Yt − cN )dt + e−rτ F∗

P (Yτ )

]

. (10)

Note that the gain function is C1 and monotonically increasing, so that we should expect

the value function F∗ to be well-behaved. Intuitively, this problem should, again, have a

solution that takes the form of a trigger: enter STW as soon as the process (Yt )t≥0 reaches

some threshold Y ∗ from above.

In order to prove the existence of such a trigger we need to make an additional assumption

that ensures that the expected revenue of STW is sufficiently large. In particular, there must

exist states of the economy (i.e. prices y) for which the expected present value of STW

relative to normal operation fall sufficiently short of the expected present value of the cost

benefits.

Assumption 3 The expected revenue of STW is sufficiently large, in the sense that

Y̌
QN − Q P

r − μ
>

β1β2

(β1 − 1)(β2 − 1)

cN − cP

r
,

where

Y̌ =
[

1 − β2

β1(β1 − β2) Â

QN − Q P

r − μ

]
1

β1−1

,

and Â is as determined by (8) in Proposition 2.

Proposition 3 Suppose that Assumptions 1–3 hold. Then, in addition to the unique triggers

Y ∗
L and Y ∗

H , there exists a unique trigger Y ∗ < Y ∗
H such that the stopping time τ̌ (Y ∗) solves

the optimal stopping problem (10). Moreover, the corresponding value function is

F∗(y) =
{

F∗
P (y) if y ≤ Y ∗

QN y
r−μ

− cN

r
+
( y

Y ∗
)β2

[

F∗
P (Y ∗) + cN

r
− QN Y ∗

r−μ

]

if y > Y ∗.
(11)

The proof of this proposition can be found in “Appendix B”.

Proposition 3 only makes economic sense if it is optimal to adopt STW before it is optimal

to liquidate. This is – indeed – the case:

Corollary 1 Under the assumptions of Proposition 3 it holds that Y ∗ > Y ∗
N .

The proof of this corollary is in “Appendix C”.

In Fig. 1, the triggers Y ∗
L , Y ∗

H , and Y ∗ are plotted for various values of cost reduction. It

looks like the liquidation threshold is only marginally influenced by STW. We will see later,

however, that the quantitative effect in terms of benefits of STW can be quite large.

3 The effect of short-time work on liquidation probabilities

In this section we compute the probabilities of liquidation of a representative firm over a

certain period of time, based on data for several typical STW policies. In order to do so, we

need more detail on the firm and how its production technology uses the production factors.

Let’s assume that the firm uses a fixed amount of capital, K , and a fixed amount of labour, L .
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Fig. 1 Triggers for programme entry, programme exit, and default as a function of average production costs
in STW. The base case parameters are QN = 10, cN = 8, r = 0.04, μ = 0.03, and σ = 0.15. Note that in
the base case the average costs of normal production are 0.8

The production function of the firm is assumed to be of the Cobb–Douglas type with constant

returns to scale, i.e.

QN = K 1−γ Lγ .

For simplicity, we assume that the rental rate of capital is constant and equal to ρ, and

that the wage rate is constant at w. So, the flow paid to providers of capital (labour) is ρK

(wL). Therefore, cN = ρK + wL . For a given production level QN , the firm’s (static) profit

maximizing capital and labour inputs depend on the parameter γ . In particular,

L =
(

γ

1 − γ

ρ

w

)1−γ

QN , and K =
(

1 − γ

γ

w

ρ

)γ

QN .

Throughout this section we assume that K and L are chosen to maximize profits at production

level QN .

A STW programme is characterized by a number of parameters. First, there is the fraction

of worked hours that can be entered into STW, which we denote by α. This implies that

Q P = K 1−γ [(1 − α)L]γ = (1 − α)γ QN .

Secondly, the programme typically specifies the drop in the wage rate, which we denote by

1−ζ . So, for each non-worked hour the worker gets paid a fraction ζ . Thirdly, the government

usually only takes on a fraction η of the wage rate (after the reduction has been implemented),

leaving the firm to pay a fraction 1 − η. So, the cost flow of the firm drops to

cP = ρK + (1 − α)wL + α(1 − ζ )(1 − η)wL = cN − α(ζ + η − ζη)wL.
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Table 1 Two typical STW
policies

Policy α ζ η

Nordic 0.63 0.78 0.17

Anglo-Saxon 0.38 0.62 0.32

Table 2 Base case parameter
values

Parameter r μ σ ρ w QN

Value 0.04 0.02 0.25 0.06 0.06 10

Table 3 Values related to the
firm’s production process

Variable γ Nordic Anglo-Saxon

K 0.25 13.1607 13.1607

0.50 10 10

0.75 4.3869 4.3869

L 0.25 4.3869 4.3869

0.50 10 10

0.75 13.1607 13.1607

Q P 0.25 7.7992 8.8736

0.50 6.0828 7.8740

0.75 4.7441 6.8970

cN 0.25 1.0529 1.0529

0.50 1.2 1.2

0.75 1.0529 1.0529

cP 0.25 0.9173 0.9787

0.50 0.8910 1.0309

0.75 0.6462 0.8303

Cahuc and Carcillo [7] catalogue the wide variety of STW practices in OECD countries.

These policies differ in virtually all relevant dimensions such as duration, maximum reduction

in the number of hours worked (α), maximum reduction in salary paid (1−ζ ) for non-worked

hours, and maximum fraction of salaries paid by the government (η). In order to analyse

different real-world policies we group together the Nordic countries and the Anglo-Saxon

countries and study the average policies in these groups. These data are all obtained from

Cahuc and Carcillo [7]. See Table 1 for details. Note that the main difference between these

policies is that the Nordic countries, typically, allow firms to cut into normal production

levels more deeply, while permitting lower salary reductions.

We consider three types of firms where we differentiate between the labour intensity of

the production process. In particular, we study the cases where γ = 0.25 (relatively capital

intensive), γ = 0.5, and γ = 0.75 (relatively labour intensive). The other parameters values

are given in Table 2. Note that all the STW policies in Table 1 satisfy Assumptions 1–3 with

these parameters.

For each firm we assume that QN = 10. In Table 3 we record the normal costs of production

(cN ), the profit maximizing capital and labour input levels (K and L), and production level

and costs in STW (Q P and cP ) under the different policies.
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Table 4 Triggers for various
STW policies

Variable γ Nordic Anglo-Saxon

Y ∗
N

0.25 0.0259 0.0259

0.50 0.0295 0.0295

0.75 0.0259 0.0259

Y ∗ 0.25 0.0455 0.0480

0.50 0.0566 0.0572

0.75 0.0541 0.0524

Y ∗
L

0.25 0.0250 0.0254

0.50 0.0270 0.0282

0.75 0.0218 0.0240

Y ∗
H

0.25 0.0887 0.0966

0.50 0.0840 0.1190

0.75 0.1206 0.1127

These typical policies lead to different thresholds and, thus, different probabilities of

eventual liquidation. The thresholds are reported in Table 4.

Figure 2 shows a sample path for the process (Yt )t≥0, which illustrates the goal of STW

policies. Here the current state of the economy is fairly low to start with and if no STW

were available the firm would liquidate in about 1.8 years’ time. With a Nordic style STW

programme, the firm, along this particular sample path, would enter STW after approximately

0.2 years, where it remains for approximately 4.7 years. After that period it returns to normal

production levels and, crucially, it is still productive after 5 years. Note that after about 2

years the firm almost liquidates, but the economy recovers in time to prevent liquidation from

being the optimal choice.

In order to judge the efficacy of different STW policies, we compute the following prob-

abilities:

1. that the firm liquidates within, say, T years, and

2. that the firm uses the STW measure within T years.

As long as Y0 ≡ y > Y ∗, it can easily be derived from results for arithmetic Brownian motion

as reported in, for example [12, Section 3.7], that these two probabilities are given by

Py

(

inf
0≤t≤T

Yt ≤ Y ∗
N

)

= �

(

− log(y/Y ∗
N ) + (.5σ 2 − μ)T )

σ
√

T

)

+ exp

{

σ 2 − 2μ

σ 2
log

(

y

Y ∗
N

)}

�

(

− log(y/Y ∗
N ) − (.5σ 2 − μ)T )

σ
√

T

)

,

and

Py

(

inf
0≤t≤T

Yt ≤ Y ∗
)

= �

(− log(y/Y ∗) + (.5σ 2 − μ)T )

σ
√

T

)

+ exp

{

σ 2 − 2μ

σ 2
log

( y

Y ∗

)

}

�

(− log(y/Y ∗) − (.5σ 2 − μ)T )

σ
√

T

)

,

respectively. Here � denotes the distribution function of the standard normal distribution.
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Fig. 2 A sample path for the process (Yt )t≥0 with triggers based on the base case firm scenario and a Nordic-
style STW policy

The probability of liquidation within T years when the firm can use STW is very cumber-

some to compute analytically, because of the multiple conditionalities involved. Recall that

there are two possible liquidation scenarios:

1. the firm enters STW at Y ∗ after which Y ∗
L is reached before Y ∗

H , and

2. the firm enters STW at Y ∗ after which Y ∗
H is reached before Y ∗

L , and liquidation then

takes place as soon as Y ∗
N is reached.

So, rather than pursuing analytical expressions for the liquidation probability in the presence

of STW, we obtain estimates of this liquidation probability by simulating 50,000 sample

paths.

For different values of y and T = 5 these liquidation probabilities are reported in Table 5.

The probabilities of entering STW are given in Table 6. As starting points we consider the

initial states 1.5Y ∗
N (relatively weak economy), 2Y ∗

N , and 3Y ∗
N (relatively benign economy),

based on the threshold Y ∗
N for the case γ = 1/2.

Note that under the Anglo-Saxon policy it is more likely that a firm enters the STW policy.

However, under the Nordic policy the probability of firm liquidation is lower than under the

Anglo-Saxon policy.

4 Welfare effects of short-time work

In this section we compare the total value of the firm and the total discounted stream of wages

for workers under different STW scenarios. In order to do so, we need more detail on the

firm and how its revenues are split between workers, capitalists and shareholders, for which

we use the basic set-up used in Sect. 3. The surplus created by the firm (profit) is paid in full
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Table 5 Liquidation probabilities
(exact without STW, simulated
with STW) for various STW
policies

γ y No STW Nordic Anglo-Saxon

0.25 0.0442 0.3706 0.3374 0.3489

0.0589 0.1624 0.1528 0.1520

0.0884 0.0346 0.0288 0.0494

0.50 0.0442 0.5026 0.4109 0.4481

0.0589 0.2428 0.1866 0.2108

0.0884 0.0600 0.0406 0.0494

0.75 0.0442 0.3706 0.2288 0.2982

0.0589 0.1624 0.0880 0.1245

0.0884 0.0346 0.0152 0.0239

Table 6 Probabilities (exact) of
entering STW for various STW
policies

γ y Nordic Anglo-Saxon

0.25 0.0442 1 1

0.0589 0.6718 0.7392

0.0884 0.2630 0.3055

0.50 0.0442 1 1

0.0589 0.9488 0.9620

0.0884 0.4594 0.4703

0.75 0.0442 1 1

0.0589 0.8922 0.8513

0.0884 0.4144 0.3835

to the firm’s shareholders. The rental rate of capital, ρ, is, like the wage rate w, assumed to

be exogenously given.

The welfare effects of STW depend crucially on the way payoffs related to possible

future events (like entering STW, exiting STW and returning to normal production, etc.) are

discounted. For a firm operating in STW, denote

ν̂y(Y
∗
L , Y ∗

H ) := Ey

[

e−r τ̂ (Y ∗
H )
∣

∣

∣
τ̂ (Y ∗

H ) < τ̌ (Y ∗
L )

]

Py(τ̂ (Y ∗
H ) < τ̌ (Y ∗

L )), and

ν̌y(Y
∗
L , Y ∗

H ) := Ey

[

e−r τ̌ (Y ∗
L )
∣

∣

∣
τ̂ (Y ∗

H ) > τ̌ (Y ∗
L )

]

Py(τ̂ (Y ∗
H ) > τ̌ (Y ∗

L )).

In Proposition 2 we have already used the fact that (see, for example, [20, Section 5.9.1]):

ν̂y(Y
∗
L , Y ∗

H ) =
yβ1(Y ∗

L )β2 − (Y ∗
L )β1 yβ2

(Y ∗
H )β1(Y ∗

L )β2 − (Y ∗
L )β1(Y ∗

H )β2
, and

ν̌y(Y
∗
L , Y ∗

H ) =
(Y ∗

H )β1 yβ2 − yβ1(Y ∗
H )β2

(Y ∗
H )β1(Y ∗

L )β2 − (Y ∗
L )β1(Y ∗

H )β2
,

where β1 > 1 and β2 < 0 are the solutions to the quadratic equation (2).

We assume that unemployment incurs a sunk cost equal to a fraction χ of discounted

life-time earnings. It has been estimated [8] that χ = 0.11, increasing to χ = 0.19 in times

of recession. Denoting the present value of expected payouts to capitalists, workers, and

shareholders (all discounted at the same rate r ) by Vk , Vℓ, and Vs , respectively, we find the

following.
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Lemma 1 If the current value of the state-variable is y, then

Vk(y) =
[

1 −
(

y

Y ∗
N

)β2
]

ρ

r
K ,

Vℓ(y) =
[

1 − (1 + χ)

(

y

Y ∗
N

)β2
]

w

r
L, and

Vs(y) =
[

1 −
(

y

Y ∗
N

)β2
]

[

QN y

r − μ
− cN

r

]

.

We can now compute the value for each stakeholder (capitalist, worker, shareholder) under

an STW programme.

Lemma 2 If the current value of the state-variable is y, then

V ST W
k (y) =

⎡

⎣1 −
(

y

Y ∗
N

)β2
⎛

⎝ν̂Y ∗(Y ∗
L , Y ∗

H )

(

Y ∗
H

Y ∗
N

)β2

+ ν̌Y ∗(Y ∗
L , Y ∗

H )

⎞

⎠

⎤

⎦

ρ

r
K ,

V ST W
ℓ (y) =

{

1 +
( y

Y ∗
)β2

[

− 1 +
(

1 − ν̌Y ∗(Y ∗
L , Y ∗

H ) − ν̂Y ∗(Y ∗
L , Y ∗

H )
)

(1 − α(1 − ζ ))

+ ν̂Y ∗(Y ∗
L , Y ∗

H )

(

1 −
(YH

Y ∗
N

)β2
)

− χ

(

ν̌Y ∗(Y ∗
L , Y ∗

H ) + ν̂Y ∗(Y ∗
L , Y ∗

H )

(Y ∗
H

Y ∗
N

)β2
)]}wL

r

V ST W
s (y) =

(

1 −
( y

Y ∗
)β2

)( QN y

r − μ
− cN

r

)

+
( y

Y ∗
)β2 (

1 − ν̂Y ∗(Y ∗
L , Y ∗

H ) − ν̌Y ∗(Y ∗
L , Y ∗

H )
)

( Q P y

r − μ
− cP

r

)

+
( y

Y ∗
)β2

ν̂Y ∗(Y ∗
L , Y ∗

H )

⎛

⎝1 −
(

Y ∗
H

Y ∗
N

)β2
⎞

⎠

( QN y

r − μ
− cN

r

)

.

The proof can be found in “Appendix E”.

Typically, nordic STW programmes look more generous to workers in that they allow

for a higher reduction in wage costs, lower reductions in salaries paid, and higher fractions

of salaries paid for by the government. This would suggest that workers are better off in

Nordic countries whereas shareholders are better off in Anglo-Saxon countries. The numerical

analysis below shows that this intuition is incorrect.

The values to different stakeholders depend on the current price level in the market. Again

we consider the initial states 1.5Y ∗
N , 2Y ∗

N , and 3Y ∗
N , based on the threshold Y ∗

N for the case

γ = 1/2. The values to each stakeholder of the different policies are reported in Tables 7, 8,

9 and 10.

This numerical analysis indicates, firstly, that the biggest beneficiaries of STW are the

capitalists. The benefit to workers is actually often negative. The intuition for this seeming

paradox is simple: labour is the only production factor that is reduced in STW. By saving on

wage costs the firm increases its life-span and, thus, the period of time during which the full

rental costs of capital can be paid.

The occasional negative benefit to labour occurs because the decrease in the present value

of sunk costs of unemployment is more than off-set by the decrease in the present value of

the reduction in wages over the STW period. Note that the latter are discounted less than the

former.
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Table 7 Value to capitalists (%
change relative to no STW in
brackets)

γ y No STW Nordic Anglo-Saxon

0.25 0.0442 7.9791 8.2935 (3.94) 8.1727 (2.43)

0.0589 10.8319 11.0660 (2.16) 10.9724 (1.30)

0.0884 13.7182 13.8765 (1.15) 13.8132 (0.69)

0.50 0.0442 4.8595 5.6241 (15.73) 5.2603 (8.25)

0.0589 7.3190 7.8465 (7.21) 7.5944 (3.76)

0.0884 9.8074 10.1640 (3.63) 9.9936 (1.90)

0.75 0.0442 2.6597 3.2068 (20.57) 2.9136 (9.55)

0.0589 3.6106 3.9978 (10.72) 3.7907 (4.99)

0.0884 4.5727 4.8344 (5.72) 4.6945 (2.66)

Table 8 Value to workers,
including sunk costs of
unemployment (% change
relative to no STW in brackets)

γ y No STW Nordic Anglo-Saxon

0.25 0.0442 2.2284 2.1561 (−3.25) 2.0901 (−6.21)

0.0589 3.2840 3.2224 (−1.88) 3.1577 (−3.84)

0.0884 4.3519 4.3103 (−0.96) 4.2666 (−1.96)

0.50 0.0442 3.7441 4.1049 (9.64) 3.7177 (−0.70)

0.0589 6.4741 6.5215 (0.73) 6.2366 (−3.67)

0.0884 9.2362 9.2683 (0.35) 9.0757 (−1.74)

0.75 0.0442 6.6853 7.6319 (14.16) 6.7548 (1.04)

0.0589 9.8519 10.2969 (4.52) 9.5610 (−1.38)

0.0884 13.0557 13.3565 (2.30) 12.9637 (−0.70)

Table 9 Value to workers,
excluding sunk costs of
unemployment (% change
relative to no STW in brackets)

γ y No STW Nordic Anglo-Saxon

0.25 0.0442 2.6597 2.5759 (−3.15) 2.5143 (−5.47)

0.0589 3.6106 3.5405 (−1.94) 3.4793 (−3.69)

0.0884 4.5727 4.5253 (−1.04) 4.4839 (−1.94)

0.50 0.0442 4.8595 5.1363 (5.69) 4.7891 (−1.45)

0.0589 7.3190 7.3084 (−0.15) 7.0512 (−3.66)

0.0884 9.8074 9.8002 (−0.07) 9.6264 (−1.85)

0.75 0.0442 7.9791 8.7452 (9.60) 7.9649 (−0.18)

0.0589 10.8319 11.1492 (2.93) 10.6364 (−1.80)

0.0884 13.7182 13.9327 (1.56) 13.5861 (−0.96)

Secondly, the firm chooses its policy to maximize the value to shareholders, so it is no

surprise that this value is positively affected by STW.

Next, all stakeholders are better off in the typical Nordic scenario than the typical Anglo-

Saxon scenario. This suggest that more generous STW programmes do not necessarily hurt

capitalists and shareholders. The reason for this might be that, even though firms under a

Nordic policy pay more for non-worked hours, they are also allowed to reduce the number

of hours worked more.
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Table 10 Value to shareholders
(% change relative to no STW in
brackets)

γ y No STW Nordic Anglo-Saxon

0.25 0.0442 3.7633 3.9231 (4.25) 3.8687 (2.80)

0.0589 9.1969 9.3183 (1.32) 9.2785 (0.89)

0.0884 21.9765 22.0586 (0.37) 22.0317 (0.25)

0.50 0.0442 2.4242 2.9588 (22.05) 2.7068 (11.66)

0.0589 7.2904 7.7709 (6.59) 7.5495 (3.55)

0.0884 19.4959 19.8208 (1.67) 19.6711 (0.90)

0.75 0.0442 3.7633 4.7392 (25.93) 4.2104 (11.88)

0.0589 9.1967 10.0047 (8.78) 9.5610 (3.96)

0.0884 21.9765 22.5226 (2.48) 22.2226 (1.12)

As a final note, observe that since in the Cobb–Douglas technology capital and labour

are interchangeable, an alternative to STW could be to negotiate a “pay holiday” between

the firm and the capitalists. In such a scenario the roles between capital and labour would

be reversed and it would be the workers who are more protected against a drop in the firm’s

value. Of course, a combination of the two approaches would share the losses more equally.

5 Concluding remarks

In this paper we studied a firm that can make use of a short-time work programme. Using a

real options approach we derived the optimal thresholds for the firm to adopt STW and, once

entered, when to exit and revert to normal production levels, or to liquidate. The liquidation

threshold is computed both when the firm is using STW and when it is not. We show that a

firm that is using STW will liquidate later than a firm that is not using it.

In practice, details of STW are highly variable between (OECD) countries. Our numerical

computations are based on three different scenarios. One takes the STW details as they are

common in Northern European countries. The second scenario looks at the way STW has been

implemented typically in Anglo-Saxon countries. We take the point of view of a government

and calculate the benefits to society of STW by a dynamic benefit-to-cost ratio and find that

the dBCR is typically very small and far below unity. This happens because the benefits of

STW accrue later in time than when the costs are incurred and are, thus, discounted more.

This shows the importance of a stochastic dynamic approach to analysing such measures.

We also study the value of STW to different stakeholders in the firm. It turns out that

workers are actually the worst off. STW is better for capitalists and shareholders. This happens

because STW extends the life of the firm, so that capitalists get fully paid throughout that

time while workers receive lower wages. Shareholders benefit through the option value that

is generated by the presence of STW. We suggest that a “pay holiday” on capital goods

payments could lead to similar results as STW but would protect the worker more. This

suggests that a balanced approach may provide a better balance between costs and benefits

of STW.

We list three possible extensions of this research. First, it would be interesting to make

the duration that the firms can use STW time dependent. With such a model one could

calculate the optimal duration of the programme both from a firm’s and society perspective.

Second, one could investigate what the effect would be from the possibility to make use of

the programme more than once. Would firms adopt STW earlier? Would they exit earlier?
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Would this be beneficial for society? Third, it could be interesting to study the effect of STW

in a competitive setting. How is the entry threshold of one firm affected by actions of other

firms? What if a firm is in competition with another firm that is based in a country where

STW measures do not exist? Finally, this paper has not addressed the effect of STW on

the labour market. An important question to be asked is whether STW unfairly advantages

workers employed in firms that have access to STW over workers who are not.
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Appendix A: Proof of Proposition 2

1. The optimal stopping problem (4) can be written as

F∗
P (y) = Q P y

r − μ
− c

r
+ sup

τ
Ey

[

e−rτ max {GL(Yτ ), G H (Yτ )}
]

, (12)

where

GL(y) = −FP (y) = cP

r
− Q P y

r − μ
, and

G H (y) = F∗
N (y) − FP (y) = QN − Q P

r − μ
y − cN − cP

r
+
(

y

Y ∗
N

)β2
[

cN

r
−

QN Y ∗
N

r − μ

]

.

Note that G H (y) > GL(y) if, and only if, y > Y ∗
N , and that G H (Y ∗

N ) = GL(Y ∗
N ) and

G ′
H (Y ∗

N ) = G ′
L(Y ∗

N ). Hence, the gain function y �→ max{GL(y), G H (y)} is C1 everywhere.

Define the function G : R+ → R by

G(y) = 1y≤Y ∗
N

GL(y) + 1y>Y ∗
N

G H (y),

so that G = GL ∨ G H . Note that G is C2 onR+\{Y ∗
N }.

2. From Peskir and Shiryaev [18] it follows that we need to find a set C ⊂ R+ and a function

F∗
P ∈ C2(R+\∂C ), which dominates G onR+, that solve the free-boundary problem

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

L F∗
P − r F∗

P = 0 on C

F∗
P > G on C , and F∗

P = G onR+\C

∂ F∗
P

∂ y |∂C

= ∂G

∂ y |∂C

.

(13)

Here L denotes the characteristic operator of (Yt )t≥0, i.e., for any ϕ ∈ C2,

L ϕ(y) = 1

2
σ 2 y2ϕ′′(y) + μϕ′(y).

3. OnR+, define the functions ϕ̂ : R+ → R+ and ϕ̌ : R+ → R+, by

ϕ̂(y) = yβ1 , and ϕ̌(y) = yβ2 . (14)
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Note that ϕ̂ and ϕ̌ are the increasing and decreasing solutions, respectively, to the differential

equation L ϕ − rϕ = 0. So, any solution to L ϕ − rϕ = 0 is of the form

ϕ(y) = Âϕ̂(y) + Ǎϕ̌(y),

where Â and Ǎ are arbitrary constants. Furthermore, it is easily obtained that

ϕ̂′(y) = β1

y
ϕ̂(y) > 0, ϕ̌′(y) = β2

y
ϕ̌(y) < 0, and

ϕ̂′′(y) = β1(β1 − 1)

y2
ϕ̂(y) > 0, ϕ̌′′(y) = β2(β2 − 1)

y2
ϕ̌(y) > 0.

4. Fix YL ≤ Y ∗
N and define the mapping y �→ V (y; YL ), by

V (y; YL ) = Â(YL)ϕ̂(y) + Ǎ(YL)ϕ̌(y), (15)

where the constants Â(YL) and Ǎ(YL) are given by

Â(YL) =
ϕ̌(YL)G ′

L(YL) − ϕ̌′(YL)GL(YL)

ϕ̌(YL)ϕ̂′(YL) − ϕ̌′(YL)ϕ̂(YL)
= (β2 − 1)Q P YL/(r − μ) − β2cP/r

(β1 − β2)Y
β1

L

, (16)

and

Ǎ(YL) =
ϕ̂′(YL)GL(YL) − ϕ̂(YL)G ′

I (YL)

ϕ̌(YL)ϕ̂′(YL) − ϕ̌′(YL)ϕ̂(YL)
= (1 − β1)Q P YL/(r − μ) + β1cP/r

(β1 − β2)Y
β2

L

. (17)

Note that L V (y; YL) − r V (y; YL) = 0 for all y ∈ R+. In addition, the function V satisfies

V (YL ; YL) = GL(YL) and V ′(YL ; YL ) = G ′
L(YL).

It is easily seen that

Ǎ(YL) > 0, and Ǎ′(YL) > 0.

In addition, Assumption 1 ensures that for all YL ≤ Y ∗
N , it holds that

Â(YL) > 0, and Â′(YL) < 0.

5. So, the mapping y �→ V (y; Y ∗
N ) is a (strictly) convex function, which satisfies V (·; Y ∗

N ) →
∞ as y → ∞ or y ↓ 0. Hence, there is a unique point ŶH > Y ∗

N , such that V ′(YH ; Y ∗
N ) =

G ′
H (YH ). This is exactly the value ŶH determined by (7) in Assumption 2. This assumption

then ensures that V (YH ; Y ∗
N ) < G H (YH ). Also, since V is more convex than G H for large

y, it holds that V (y; Y ∗
N ) > G H (y) for y large enough.

6. Since Â(YL) decreases and Ǎ(YL) increases in YL , the mapping y �→ V (y; YL ) has the

property that for every y > YL it holds that ∂V (y; YL)/∂YL < 0. So, the point YH ∈ (Y ∗
N ,∞)

where V ′(YH ; YL) = G ′
H (YH ) is decreasing in YL , as is the value V (YH ; YL ). Now decrease

YL from Y ∗
N to 0. There will be a unique Y ∗

L , with corresponding Y ∗
H at which V (Y ∗

H ; Y ∗
L ) =

G H (Y ∗
H ) and V ′(Y ∗

H ; Y ∗
L ) = G ′

H (Y ∗
H ).

7. The interval C = (Y ∗
L , Y ∗

H ) and the proposed function F∗
P = V (·; Y ∗

L ) together solve the

free-boundary problem (13). The fact that Y ∗
L and Y ∗

H are the unique triggers that make F∗
P

a C1 function on (Y ∗
L , Y ∗

H ) follows by construction. ⊓⊔

Appendix B: Proof of Proposition 3

First note that for y ∈ [Y ∗
L , Y ∗

H ] we can write

F∗
P (y) = FP (y) + Ayβ1 + Byβ2 .
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This implies that the first-order condition for maximizing F∗(·) can be written as g(y) = 0,

where

g(y) = −β2[FP (y)−FN (y)+ Ayβ1 +Byβ2 ] + y[F ′
P (y) − F ′

N (y) + β1 Ayβ1−1 + β2 Byβ2−1]
= −β2[FP (y) − FN (y)] + y[F ′

P (y) − F ′
N (y)] + (β1 − β2)Ayβ1 .

Since

g′(y) = (1 − β2)
Q P − QN

r − μ
+ β1(β1 − β2)Ayβ1−1,

and

g′′(y) = β1(β1 − 1)(β1 − β2)Ayβ1−2 > 0,

g(·) is a strictly convex function, which can, therefore, have at most two zeros.

The minimum location of g(·) on [Y ∗
L , Y ∗

H ] can be found analytically:

g′(y) = 0 ⇐⇒ yβ1−1 = 1 − β2

β1(β1 − β2)A

QN − Q P

r − μ
= 0

⇐⇒ y =
[

1 − β2

β1(β1 − β2)A

QN − Q P

r − μ

]
1

β1−1

≡ Y̌ .

We then find that

g(Y̌ ) = (1 − β2)
Q P − QN

r − μ
Y̌ + (β1 − β2)AY̌ β1 + β2

cP − cN

r

= Y̌

[

(1 − β2)
Q P − QN

r − μ
+ (β1 − β2)AY̌ β1−1

]

+ β2
cP − cN

r

= Y̌

[

(1 − β2)
Q P − QN

r − μ
+ (β1 − β2)A

1 − β2

β1(β1 − β2)A

QN − Q P

r − μ

]

+ β2
cP − cN

r

= Y̌
QN − Q P

r − μ

(

−(1 − β2) + 1 − β2

β1

)

+ β2
cP − cN

r

= Y̌
QN − Q P

r − μ

(1 − β1)(1 − β2)

β1
+ β2

cP − cN

r
< 0,

where the last inequality follows from Assumption 3.

Define

f (y) = FP (y) − FN (y) + Ayβ1 + Byβ2 .

Since A(Y ∗
H )β1 + B(Y ∗

H )β2 = F∗
N (Y ∗

H ) − FP (Y ∗
H ), it holds that

f (Y ∗
H ) = FP (Y ∗

H ) − FN (Y ∗
H ) + A(Y ∗

H )β1 + B(Y ∗
H )β2

= F∗
N (Y ∗

H ) − FN (Y ∗
H ) =

(

Y ∗
H

Y ∗
N

)β2

[−FN (Y ∗
N )],

and

f ′(Y ∗
H ) = β2

(

Y ∗
H

Y ∗
N

)β2 1

Y ∗
H

[−FN (Y ∗
N )].

We, therefore, find that
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g(Y ∗
H ) = −β2 f (Y ∗

H ) + Y ∗
H f ′(Y ∗

H )

= (1 − β2)

(

Y ∗
H

Y ∗
N

)β2

[−FN (Y ∗
N )] > 0.

So, g(·) has a zero at Y∗ ∈ (Y̌ , Y ∗
H ), which represents a minimum of F∗(·).

The function F∗(·) has a (unique) maximum at some Y ∗ ∈ (Y ∗
L , Y̌ ) if and only if g(Y ∗

L ) >

0. Note that

f (Y ∗
L ) = FP (Y ∗

L ) − FN (Y ∗
L ) + A(Y ∗

L )β1 + B(Y ∗
L )β2

= FP (Y ∗
L ) − FN (Y ∗

L ) + [−FP (Y ∗
L )] = −FN (Y ∗

L ),

and

f ′(Y ∗
L ) = −F ′

N (Y ∗
L ),

which implies that

g(Y ∗
L ) = −β2[−FN (Y ∗

L )] + Y ∗
L [−F ′

N (Y ∗
L )].

At Y ∗
N it holds that

−β2[−FN (Y ∗
N )] + Y ∗

N [−F ′
N (Y ∗

N )] = 0,

since Y ∗
N is a maximum location of F∗

N (·). It, therefore holds that g(Y ∗
L ) > 0 ⇐⇒ Y ∗

L < Y ∗
N .

⊓⊔

Appendix C: Proof of Corollary 1

Let

Y ∗
P = β2

β2 − 1

r − μ

Q P

cP

r
.

That is, τ̌ (Y ∗
P ) solves the optimal stopping problem

G∗(y) = sup
τ∈M

Ey

[∫ τ

0
e−r t (Yt Q P − cP )dt

]

.

Recall the function g from the proof of Proposition 3. At Y ∗ it holds that g(Y ∗) = 0, i.e.

that

β2[FP (Y ∗) − FN (Y ∗)] = Y ∗[F ′
P (Y ∗) − F ′

N (Y ∗)] + (β1 − β2)A(Y ∗)β1

⇐⇒ β2[−FN (Y ∗)] − Y ∗[−F ′
N (Y ∗)]

= −
[

−β2(−FP (Y ∗)) + Y ∗(−F ′
P (Y ∗))

]

+ (β1 − β2)A(Y ∗)β1 . (18)

Since at Y ∗
P it holds that

−β2[−FP (Y ∗
P )] + Y ∗

P [−F ′
P (Y ∗

P )] = 0,

Y ∗
P is a maximum location, and Y ∗ > Y ∗

P , we have that the term between square brackets on

the right-hand side of (18) is negative. Therefore, the right-hand side of (18) is positive.

This implies that

−β2[FP (Y ∗) + FN (Y ∗)] < 0.

Since Y ∗
N solves

−β2[FP (Y ∗) + FN (Y ∗)] = 0,

and Y ∗
N is a maximum location it, therefore, holds that Y ∗ > Y ∗

N . ⊓⊔
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Appendix D: Proof of Lemma 1

For any Y and y < Y , let τ̂y(Y ) denote the first hitting time from below of Y under Py .

Similarly, for any Y and y > Y , let τ̌y(Y ) denote the first hitting time from above of Y under

Py . For any y > Y ∗
N , we then find that

Vk(y) =Ey

[

∫ τ̌y(Y
∗
N )

0
e−r tρK dt

]

=
(

1 − Ey

[

e−r τ̌y(Y
∗
N )
])

Ey

[∫ ∞

0
e−r tρK dt

]

=
(

1 −
(

y

Y ∗
N

)β2
)

ρ

r
K .

The other values are computed in the same way, taking into account that the labour factor

incurs a sunk cost equal to a fraction χ of life-time discounted expected labour income. That

is, the sunk costs equal

χEy

[

∫ ∞

τ̌y(Y
∗
N )

e−r twLdt

]

= χEy

[

e−r τ̌y(Y
∗
N )
]

Ey

[∫ ∞

0
wLdt

]

= χ

(

y

Y ∗
N

)β2 w

r
L.

⊓⊔

Appendix E: Proof of Lemma 2

The proof follows along similar lines as the proof of the previous lemma, i.e. by carefully

discounting expected infinite streams of payoffs. Denote

DK (y) = Ey

[∫ ∞

0
e−r tρK dt

]

= ρ

r
K ,

DL N (y) = Ey

[∫ ∞

0
e−r twLdt

]

= w

r
L,

DL P (y) = Ey

[∫ ∞

0
e−r t [(1 − α)wL + α(1 − ζ )wL]dt

]

= 1 − αζ

r
wL,

DSN (y) = Ey

[∫ ∞

0
e−r t (QN Yt − cN )dt

]

= QN y

r − μ
− cN

r
, and

DSP (y) = Ey

[∫ ∞

0
e−r t (Q P Yt − cP )dt

]

= Q P y

r − μ
− cP

r
.

The providers of capital get paid a stream ρK until the firm liquidates. This happens either

if the firms enters the STW programme and then hits the threshold YL , or if the firm enters

the programme, then hits the threshold YH and then hits the threshold Y ∗
N . That is,

V ST W
k (y) = Ey

[

∫ τ̌y(Y
∗)+τ̌Y∗ (YL )

0
e−r tρK dt

∣

∣

∣
τ̌Y ∗(YL) < τ̂Y ∗(YH )

]

PY ∗(τ̌Y ∗(YL) < τ̂Y ∗(YH ))

+ Ey

[

∫ τ̌y(Y
∗)+τ̂Y∗ (YH )+τ̌Y∗ (Y ∗

N )

0
e−r tρK dt

∣

∣

∣
τ̌Y ∗(YL) > τ̂Y ∗(YH )

]
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PY ∗(τ̌Y ∗(YL) > τ̂Y ∗(YH ))

= ρ

r
K
{

1 −
( y

Y ∗

)β2
[

ν̌Y ∗(YL , YH ) + ν̂Y ∗(YL , YH )

(YH

Y ∗
N

)β2
]}

.

The providers of labour receive a flow wL while the firm operates normally and a flow

(1 − α + αζ)wL = (1 − αζ)wL while the firm operates in STW. Therefore, assuming that

y > Y ∗, it holds that

V ST W
ℓ (y) = Ey

[

∫ τ̂y (Y ∗)

0
e−r t wLdt

]

+ Ey

[

∫ τ̂y (Y ∗)+τ̌Y∗ (YL )∧τ̂Y∗ (YH )

τ̂y (Y ∗)
(1 − α(1 − ζ ))wLdt

]

+ Ey

[

∫ τ̂y (Y ∗)+τ̂Y∗ (YH )+τ̌YH
(Y ∗

N
)

τ̂y (Y ∗)+τ̂Y∗ (YH )
e−rdt wLdt

∣

∣

∣
τ̂Y ∗ (YH ) < τ̌Y ∗ (YL )

]

PY ∗ (τ̂Y ∗ (YH ) < τ̌Y ∗ (YL ))

−
{

Ey

[

e−r(τ̂y (Y ∗)+τ̂Y∗ (YH ))
∣

∣

∣
τ̂Y ∗ (YH ) < τ̌Y ∗ (YL )

]

PY ∗ (τ̂Y ∗ (YH ) < τ̌Y ∗ (YL ))

+ Ey

[

e−r(τ̂y (Y ∗)+τ̌Y∗ (YL ))
∣

∣

∣
τ̂Y ∗ (YH ) > τ̌Y ∗ (YL )

]

PY ∗ (τ̂Y ∗ (YH ) > τ̌Y ∗ (YL ))

}

χ
wL

r

=
(

1 −
( y

Y ∗
)β2

)

wL

r
+
( y

Y ∗
)β2 (

1 − ν̌Y ∗ (YL , YH ) − ν̂Y ∗ (YL , YH )
)

(1 − α(1 − ζ ))
wL

r

+
( y

Y ∗
)β2

ν̂Y ∗ (YL , YH )

⎛

⎝1 −
(

YH

Y ∗
N

)β2
⎞

⎠

wL

r

− χ

⎛

⎝ν̌Y ∗ (YL , YH ) + ν̂Y ∗ (YL , YH )

(

YH

Y ∗
N

)β2
⎞

⎠

wL

r
,

from which the result follows immediately.

Finally, the value accruing to shareholders follows in a similar way and is already discussed

in detail in Sect. 2. ⊓⊔
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