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ABSTRACT

A different approach is proposed here to solve the problem of negative δ13C excursions during the Ediacaran, 
by viewing them in terms of a linked carbon-sulfur-oxygen system, whereby changes in oxidant dynamics caused 
an excess of organic carbon oxidation over burial, resulting in a smaller DOM reservoir. The amount of oxidant 
required to achieve a deep negative carbon isotope excursion through net organic carbon oxidation may reason-
ably result from basin-scale evaporite dissolution.
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RESUMEN

Se propone aquí un enfoque diferente para resolver el problema de las excursiones quimioestratigráficas neg-
ativas durante el Ediacárico, considerándolas en términos de un sistema vinculado de carbono-sulfuro-oxígeno, 
en el que los cambios en la dinámica de los oxidantes causarían un exceso de oxidación de carbono orgánico 
sobre el enterramiento, lo que resultaría en un depósito menor de DOM. La cantidad de oxidante requerida para 
lograr una excursión isotópica de carbono negativa a través de la oxidación de carbono orgánico neto puede 
resultar razonablemente de la disolución de evaporitaa a escala de cuenca.

Palabras clave: Isótopos de carbono; Isótopos de azufre; Balance biogeoquímico; Ediacárico.

Introduction

The Ediacaran Period (ca. 635-540 Ma) marks 
a turning point in Earth history when groups of 
morphologically complex multicellular eukaryotes, 
including algae and animals, attained ecological 

dominance, irrevocably changing Earth System 
dynamics (Lenton et al., 2014). These biologi-
cal radiations took place after two prolonged epi-
sodes of global glaciation during the Cryogenian 
Period (ca.715-660 and ca. 650-635 Ma), and were 
accompanied by further short-lived (ca.580 Ma 
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and ca.550 Ma) regional ice ages, interspersed with 
warmer intervals (Condon et al., 2005; Pu et al., 
2016; Le Heron et al., 2019). The world’s oceans 
also became episodically more oxygenated during 
the Ediacaran with the extent of oxygenated seafloor 
reaching near-modern levels at times by the early 
Cambrian (Chen et al., 2015). Both climate and oxy-
genation are regulated by Earth’s long-term carbon 
cycle, and so perhaps unsurprisingly this interval is 
characterised by extreme carbon isotope instability 
(Kaufman et al., 1997). Since its discovery over 30 
years ago (Burns & Matter, 1993; Calver, 2000), the 
uniquely high amplitude of the Shuram δ13C anomaly 
has led some to question conventional interpretations 
of carbonate carbon isotopes (Melezhik et al., 2005; 
Schrag et al., 2011). However, its pivotal position 
beneath fossil evidence for the first biomineralising, 
bioturbating and bilaterian animals encourages us to 
venture a more satisfying, parsimonious explanation 
for the Shuram anomaly, one that ties together car-
bon cycle perturbations with life’s evolution.

Conventional carbon isotope mass balance is 
based on the principle that the isotopic composition 
of carbon input via outgassing and weathering, and 
that of sedimentary carbon outputs are equal on time 
scales of >105 years (Garrels & Lerman, 1984). This 
δ13C value is considered to be unchanging at -5‰: 
the average composition of crustal carbon. Because 
organic matter is depleted in 13C, and carbonate 
rocks precipitate in isotopic equilibrium with ambi-
ent dissolved inorganic carbon (DIC), the mean δ13C 
value of carbonate rocks and fossils can be used to 
determine the proportion that sedimentary organic 
matter makes up of the total sedimentary carbon 
sink. This proportion is generally referred to as forg, 
which has varied over Earth history between 0.1 and 
0.3 (Krissansen-Totton et al., 2015). Using a con-
ventional mass balance approach, extreme negative 
anomalies can only be explained by negative rates 
of organic burial. This is particularly true of the late 
Ediacaran Shuram excursion when δ13C remained 
below -8‰ for at least ~10 Myr (Condon et al., 2005; 
Gong et al., 2017). In order to address this quandary, 
it was proposed that the pool of dissolved organic 
matter (DOM) in the Proterozoic ocean was much 
larger than today, and that negative excursions rep-
resent non-steady-state remineralisation of that pool 
(Rothman et al., 2003). However, later numerical 

treatments of this model pointed out that the Earth 
system cannot remain out of oxygen (and carbon) 
balance for such a long period of time (Bristow & 
Kennedy, 2008). In other words, there is insufficient 
oxidant even in the modern atmosphere and oceans 
to remineralize enough organic matter to drive a -8‰ 
δ13C excursion for several million years. As a result, 
many authors have interpreted extreme negative 
anomalies as diagenetic artefacts, biased sampling of 
authigenic cements or as purely regional phenomena 
(Bristow & Kennedy, 2008; Derry, 2010; Grotzinger 
& Fike, 2011; Schrag et al., 2013; Li et al., 2017; 
Shi et al., 2018). However, such arguments appeal 
to an inexplicable sampling bias, whereby globally 
correlative isotopic signatures are presumed to be 
unrepresentative of the global carbonate sink.

Here we take a different approach to the problem 
of negative δ13C excursions by viewing them in terms 
of a linked carbon-sulfur-oxygen system, whereby 
changes in oxidant dynamics caused an excess of 
organic carbon oxidation over burial, resulting in a 
smaller DOM reservoir. For steady state to be main-
tained throughout a negative δ13C excursion, shrink-
age of the DOM pool would need to match surplus 
oxidant production for the duration of the anomaly. 
If we consider plausible δ13C values of -10‰ and 
-35‰ for deposited carbonates and kerogen (glob-
ally averaged carbon sinks), respectively, and -30‰ 
and -5‰ for the DOM reservoir and crustal carbon 
(globally averaged carbon sources), respectively 
(Lu et al., 2013; Krissansen-Totton et al., 2015; Lee 
et al., 2015), then organic carbon oxidation would 
need to increase over the background rate by approx-
imately a factor of three. In other words, and follow-
ing conventional C-isotope mass balance [δ13Ccarb = 
(δ13Ccarb-org) . forg + δ13Cinput at steady state], when forg = 
0.1 , δ13Cinput = -12.5‰ and fDOM = 0.3, whereby fDOM 
is the proportion that marine organic matter oxida-
tion contributes to the overall carbon flux. The oxi-
dant imbalance (fDOM = 0.3) would have needed three 
times as much oxygen as could have been supplied 
by organic burial (forg = 0.1) alone, and so requires a 
contribution from other sources, most likely pyrite 
burial. 

Although bacterial sulfate reduction coupled 
with pyrite burial releases on a mole-for-mole basis 
almost twice as much oxygen as organic burial , it 
is generally assumed that the oxygen released by 
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pyrite burial is approximately matched by the oxy-
gen consumed during pyrite weathering. However, 
most riverine sulfate derives from the weathering of 
evaporites (Burke et al., 2018), rates of which due to 
the sporadic and regional nature of evaporite depos-
its, will vary considerably over time (Wortmann & 
Paytan, 2012). During parts of the Proterozoic, when 
oceans were both iron-rich and anoxic, and so prone 
to sulfate reducing conditions (euxinia) at produc-
tive margins, one might realistically suppose that 
the amount of oxidising power transferred from rock 
sulfate to the surface environment would also have 
varied considerably, particularly during times when 
no basin-scale evaporite deposits were forming. We 
refer to this as ‘sulfur cycle imbalance’, meaning 
that the oxidant required to oxidise pyrite S was not 
balanced by the oxidant released by pyrite S burial 
and/or that the SO4 flux to the ocean from evaporite 

weathering was not balanced by evaporite deposi-
tion (on timescales over which the long-term carbon 
and oxygen cycles must be in balance). 

By writing a simple steady state mass-balance for 
the surface carbon cycle we can map the broad rela-
tionship between the evaporite sulfate input rate, net 
DOM oxidation and δ13C composition of the ocean-
atmosphere system. These calculations show that an 
evaporite weathering flux of around 1.1 x 103 mol S yr-1 
(around 10 times the modern flux, as proposed for 
the dissolution event during the early Cenozoic could 
sustain a carbon isotope excursion of between -10‰ 
and -15‰, depending on the proportion of the riv-
erine sulfate flux that is eventually buried as pyrite. 
Thus, the amount of oxidant required to achieve a 
deep negative carbon isotope excursion through net 
organic carbon oxidation may reasonably result from 
basin-scale evaporite dissolution.

Sulfur cycle imbalance during the 
Ediacaran

The second half of the Tonian Period (ca. 830-
770 Ma) witnessed the largest evaporite depositional 
event of pre-Ediacaran time during the break-up of 
the supercontinent Rodinia (Evans, 2006; Turner & 
Bekker, 2016; Schmid, 2017). Estimates for the cur-
rent preserved volume of Tonian evaporites range 
from 375,000 km3 to 912,400 km3, which places 
Tonian deposits among the largest basin-scale evap-
orite deposits ever (Evans, 2006; Prince et al., 2019). 
They include: the Centralian Superbasin, Australia 
(683,000 km3); Amundsen and Mackenzie-Ogilvie 
basins, Canada (193,000 km2); Adelaide fold belt, 
South Australia (100,000 km2); Duruchaus basin, 
Namibia (30,000 km2); and the Central African cop-
perbelt (50,000 km2). Despite diverse geodynamic 
settings, these Tonian evaporite basins underwent 
inversion during middle to late Ediacaran time, 
mostly after ca. 570 Ma, and broadly coincident 
with the ‘Pan-African orogeny’ or ‘Transgondwanan 
supermountain’ events (Campbell & Squire, 2010). 
Specifically, Centralian evaporites were exhumed 
by deformation associated with the Kuunga Orogen; 
Amundsen-Mackenzie-Ogilvie evaporites were 
exhumed on a passive margin; South Australian 
evaporites were exhumed during development of a 
raised volcanic rift margin; Duruchaus was exhumed 

Figure 1.—Feedback diagram illustrating the effects of evaporite 
weathering on ocean oxygenation and δ13C. Boxes show 
quantities, ovals show processes, whilst yellow indicates sulfur 
cycle and red indicates carbon cycle. An evaporite dissolution 
event results in a large flux of sulfate to the ocean, permitting 
high rates of pyrite burial, which increases atmospheric and 
ocean O2. As the deep ocean becomes oxygenated, depletion 
of the dissolved organic carbon (DOC) reservoir represents 
a negative feedback on ocean oxygenation and drives ocean 
δ13C to negative values. Red arrows show potential for positive 
feedback: DOC oxidation increases atmospheric CO2, leading 
to higher surface temperature and greater rates of precipitation 
and runoff, which fuels further evaporite dissolution and nutrient 
delivery. Solid arrows show positive effects and dashed arrows 
show negative effects.
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by early Damaride accretion of terranes onto an 
active margin; and the Copperbelt was exhumed by 
intrusion of an anorogenic large igneous province. 
Subsequent erosion means that initial volumes must 
have been substantially higher. The high sulfate min-
eral content of these evaporite deposits (Fakhraee 
et al., 2019) and relatively unchanging seawater δ34S 
values (Strauss, 1993) are consistent with the build-
up of a large marine sulfate reservoir during the early 
Neoproterozoic . Sulfur cycle imbalance (excess 
sulfate weathering over deposition, coupled with 
excess pyrite deposition over weathering) is likely 
to have continued until massive evaporite deposition 
began in the ‘Palaeotethyan’ realm after c.550 Ma 
(Schroder et al., 2004), at which point the imbalance 
seems likely to have been reversed. 

Environmental effects of sulfur cycle 
imbalance

This evaporite dissolution / DOM oxidation sce-
nario appears to be the most parsimonious solution 
to the Shuram C-isotope conundrum in that it pre-
dicts the extent of oxic seafloor to increase towards 
the end of the excursion (Chen et al., 2015; Kendall 
et al., 2015), while maintaining high sulfate concen-
trations, which is in line with geochemical studies 
(Shi et al., 2018). Net oxidation of organic carbon 
(via pyrite burial) should cause a substantial rise in 
atmospheric CO2 concentration, leading to global 
warming and enhanced continental weathering, with 
the potential to drive further evaporite dissolution 
and therefore sustain oxidant delivery.

Although our model fits best the late Ediacaran 
Shuram anomaly, sulfur cycle imbalance may have 
also played a role in other carbon isotope excur-
sions. The interval of major carbon cycle disruption 
from ca.770 Ma until ca.550 Ma was a time of little 
or no basin-scale evaporite deposition (Guilbaud 
et al., 2015), suggesting that, as in the Cenozoic, 
the sulfate weathering-deposition cycle was not in 
steady-state. However, unlike the Cenozoic, the low 
atmospheric oxygen and anoxic deep ocean of the 
Neoproterozoic allowed evaporite-derived oxidiz-
ing power to be effectively transmitted into a nega-
tive δ13C signal. Such imbalance, potentially driven 
by weathering events and related positive feed-
backs, may be particularly relevant to the ending 

and immediate aftermath of ‘Snowball Earth’ gla-
ciations, which are marked by euxinia and anoma-
lously high levels of pyrite deposition (Sahoo et al., 
2012; Lang et al., 2018).

The existence of a series of negative carbon iso-
tope excursions during much of the Neoproterozoic 
Era indicates that the DOM pool underwent dynamic 
size changes throughout this time and served as 
a buffer against oxygenation and climate change, 
but only when the pool was sufficiently large. The 
absence of a large DOM buffer in the ocean, cli-
mate and oxygen levels would have been rendered 
more vulnerable to change. There are tantalising 
hints that this may have been the case after c.550 
Ma (Tostevin et al., 2019), and that the ocean redox 
balance remained sensitively balanced through-
out the Ediacaran-Cambrian transition interval 
(He et al., 2019). If exhaustion of the DOM pool 
occurred during the Shuram anomaly, it is plausible 
to suppose that the subsequent expansion of aerobic 
Ediacaran fauna was an opportunistic radiation in 
response to a transient oxidant surplus.
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