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B-spline level set method for shape reconstruction in

Electrical Impedance Tomography
Dong Liu, Member, IEEE , Danping Gu, Danny Smyl, Jiansong Deng and Jiangfeng Du

Abstract— A B-spline level set (BLS) based method is proposed
for shape reconstruction in electrical impedance tomography (EIT).
We assume that the conductivity distribution to be reconstructed is
piecewise constant, transforming the image reconstruction prob-
lem into a shape reconstruction problem. The shape/interface of
inclusions is implicitly represented by a level set function (LSF),
which is modeled as a continuous parametric function expressed
using B-spline functions. Starting from modeling the conductivity
distribution with the B-spline based LSF, we show that the shape
modeling allows us to compute the solution by restricting the
minimization problem to the space spanned by the B-splines. As a
consequence, the solution to the minimization problem is obtained
in terms of the B-spline coefficients. We illustrate the behavior of
this method using simulated as well as water tank data. In addition,
robustness studies considering varying initial guesses, differing
numbers of control points, and modeling errors caused by inhomo-
geneity are performed. Both simulation and experimental results
show that the BLS-based approach offers clear improvements in
preserving the sharp features of the inclusions in comparison to
the recently published parametric level set method.

Index Terms— Electrical impedance tomography, B-

spline level set method, Inverse problems, Shape recon-

struction.

I. INTRODUCTION

E
LECTRICAL impedance tomography (EIT) is an imaging

modality which aims to reconstruct the electrical conductivity

of an object by using a set of current injections and voltage measure-

ments usually measured on the object’s boundary. Due to the nature of

EIT measurements – which are inherently non-invasive, non-intrusive

and non-radiative, thereby having no significant side effects – EIT has

been used in numerous medical applications, such as respiratory [1]

and brain function monitoring [2], and breast cancer detection [3].

Further, EIT has also been utilized for many non-medical industrial
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applications [4]. For a review of the history, methods and applications

of EIT, we refer the reader to [5]–[8].

From a mathematical standpoint, reconstructing a conductivity

distribution using EIT is a nonlinear and severely ill-posed inverse

problem. Practically speaking, this means that EIT is sensitive to

measurement noise and modeling errors [9], [10]. Therefore, regular-

ization techniques are usually essential in solving the inverse problem.

The basic idea of regularization is to introduce prior knowledge or

constraints to make problem conditionally well-posed. For example, a

few of the widely-used regularization methods are smoothness-based

techniques implemented using a Tikhonov-type methodology [11],

[12], Total Variation (resulting in blocky conductivity distributions)

[13], [14], and other sparsity-promoting methods implemented in, for

example, compressed sensing [15].

Presently, two major categories of EIT reconstruction methods

exist, pixel/voxel-based image reconstruction and shape-based image

reconstruction. The pixel/voxel-based image reconstructionb method

is an inverse medium problem from noisy observation data – essen-

tially the estimation of a distribution for the unknown conductivity.

Some commonly used inverse methods are linearization-based meth-

ods [16], [17], the back-projection method [18], direct methods [19]–

[22], least-squares methods [10], [12], subspace-based optimization

methods [23], statistical inversion methods [24], [25], and learning

based methods [26], [27], among other emerging frameworks.

In comparison to the pixel/voxel-based reconstruction methods, the

shape-based reconstruction methods focus on detecting the shape of

inclusion boundaries as opposed to other information (e.g. absolute

conductivity values, other electrical properties, medium composition).

Generally, shape-based reconstruction involves a formulation of the

inverse problem using a special geometrical representation of the

embedded inclusions. Among the methods used for solving the shape

reconstruction problem in EIT are 1© direct methods, such as the

Fourier coefficient based method [28], [29], the factorization method

[30], the anomaly detection method [31], the geometric constraint

method [32], the monotonicity-based regularization method [33],

[34], and the enclosure method [35], [36]; 2© indirect methods, such

as the moving morphable components based method described in

[37].

The level set method, proposed by Osher and Santosa [38], is

known to be a versatile tool to automatically tackle the shape and

interface evolution. It has been extensively studied for shape recon-

struction in EIT [39]–[42], electrical capacitance tomography [43],

[44], epitaxial growth [45], electroporation of cell membranes [46]

and inverse scattering problems [47]. However, there are numerical

concerns associated with this method. For example, in traditional level

set (TLS) based methods, re-initialization is usually required to ensure

the level set function (LSF) is well behaved and to avoid numerical

deterioration of the interface. This process usually adds computational

costs to the problem. In addition, the unknown LSF belongs to

an infinite dimensional function space. From the perspective of

implementation, this requires the discretization of the LSF onto a

dense mesh, which tends to be time consuming. In order to overcome

these aforementioned problems, parametric level set (PLS) based

methods have been proposed in absolute EIT [48], [49] and difference
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EIT [50]. However, similar to TLS methods, PLS reconstructions

often exhibit strong smoothing effects on sharp edges and/or have

locally high curvature in the reconstructed shapes, affecting the image

quality.

In an effort to preserve sharp properties of reconstructed inclusions,

the authors have proposed a direct parameterization method for EIT

called the B-spline curve based method [51]. However, this method

requires that the number of inclusions in the target domain are

known a priori. Pragmatically, one may face problems when such

prior information is unavailable. To circumvent this requirement, one

possible solution is to integrate a hybrid B-spline and level set regime

for automatically tracking the shape evolution. For example, the B-

spline based level set (BLS) method has been applied to various

applications, e.g., image segmentation [52], tracking left ventricle in

cardiac magnetic resonance images [53], micro-mechanical modeling

of trabecular bone [54], crack detection [55] and topology optimiza-

tion [56], [57]. These results demonstrated that the BLS method is

suitable for shape reconstruction and offers good approximations of

shape boundaries. To the best of our knowledge, the BLS method

has yet to be applied to EIT.

Given the recent successes enjoyed by researchers using the BLS

method in other fields, we introduce a new BLS method for shape

reconstruction in EIT. In the proposed BLS method, the LSF is

expressed as a continuous parametric function using B-splines. More

precisely, we apply the uniform bi-cubic B-spline surface formula,

which is commonly used in geometric design [58], [59] to represent

the LSF. In this LSF representation, the BLS method provides

several interesting properties enumerated in the following. 1© The

presentation allows for overall control of the LSF, in contrast to

the narrow-band implementation usually applied in TLS [40]. 2©
The shape reconstruction problem is directly solved in terms of the

B-spline coefficients or control points, i.e., once the control points

are determined, the shape boundary interface is determined. 3© Re-

initialization may be avoided by adding constraints on the B-spline

coefficients of the linear expansion. 4© The number of unknowns in

the shape reconstruction problem is reduced to the number of B-spline

coefficients (control points), which can be significantly smaller than

the parametric degrees of freedom used in TLS and traditional pixel-

based methods. The dimension reduction therefore reduces the time

associated with shape reconstruction and also has significant potential

to improve the condition number of the reconstruction problem.

5© It provides an evolutionary perspective that not only retains

the topological benefits of the implicit representation of evolving

boundary (i.e., captures the topology of the inclusions’ shape), but

also allows for preservation of the inclusions’ sharp features. To more

succinctly highlight these points, Table I provides a comparison of

the geometric representations, sharp property preserving, requirement

of priori information, reinitialization, and dimension reduction prop-

erties associated with the B-spline curve based direct approach, level

set methods and the proposed approach.

In testing the proposed reconstruction regime, we use both sim-

ulated and experimental data. The purpose of the numerical and

experimental studies are to examine the regime’s performance in

the context of the most popular EIT biomedical application: lung

imaging. In addition, to test the robustness of the BLS method, a

set of test cases considering different initial guesses, modeling errors

caused by non-homogeneous background, and different numbers of

control points are conducted. The results are compared against the

PLS reconstructions.

The rest of this paper is structured as follows. In Section II, we

briefly review the EIT forward problem. The proposed BLS method

is introduced in Section III. Numerical simulations, experimental

setup, test cases, implementation details and robustness studies are

discussed in Section IV. In Section V, results are presented comparing

the performance of the BLS and the PLS methods. Finally, the

conclusions are drawn in Section VI.

II. MATHEMATICAL DESCRIPTION OF THE FORWARD

MODEL

The EIT forward problem refers to the computation of measured

voltages from the known injected current and conductivity distri-

butions. Consider a bounded domain Ω ∈ R
w(w = 2, 3) with a

boundary ∂Ω. For this geometry, a total number of L electrodes are

attached on the boundary from which voltages are measured and

currents are injected. For modeling the physics of this problem, we

adopt the complete electrode model (CEM) [60], where the electrical

potential u(x, y) is the solution of the modified Laplace equation

∇ · (σ(x, y)∇u(x, y)) = 0, (1)

with boundary conditions

u(x, y)+zlσ(x, y)
∂u(x, y)

∂n
= Ul, (x, y) ∈ el, l = 1, . . . , L, (2)

∫

el

σ(x, y)
∂u(x, y)

∂n
dS = Il, l = 1, . . . , L, (3)

σ(x, y)
∂u(x, y)

∂n
= 0, (x, y) ∈ ∂Ω\

L⋃

l=1

el. (4)

Here, zl are the contact impedances, n denotes an outward unit

normal, and Ul and Il denote the potential and current with respect

to the electrode el, respectively.

In addition, in order to ensure the solution’s existence and unique-

ness, the conservation of charge and potential ground level need to

be fixed, i.e.,
L∑

l=1

Il = 0, (5)

L∑

l=1

Ul = 0. (6)

The numerical solution to the forward model (1-6) is often ob-

tained by using the finite element (FE) approximation [61]. In the

FE approximation, the conductivity σ(x, y) inside Ω and potential

distribution u(x, y) are approximated as

σ(x, y) =

Nσ∑

k=1

σkφk(x, y), (7)

u(x, y) =

Nu∑

j=1

αjψj(x, y), (8)

where φk(x, y) and ψj(x, y) are the nodal basis functions that are

used for the conductivity and the potential, respectively. Nσ and Nu

are the numbers of nodes in the FE meshes that are used for the

representations of σ(x) and u(x), αj are the nodal potentials that

are to be determined.

In order to satisfy condition (6), the voltage U is usually repre-

sented as a linear combination of L− 1 basis functions nj ∈ R
L

U =

L−1∑

j=1

ηjnj . (9)

Here ηj are the boundary potentials to be determined, and nj ∈

R
L are chosen as n1 = (1,−1, 0 . . . , 0)T ∈ R

L, n2 =
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TABLE I

A COMPARISON OF DIFFERENT SHAPE-BASED RECONSTRUCTION APPROACHES USING B-SPLINE OR LEVEL SET METHOD.

Approaches
Geometry

representation

Waiving priori information

for number of inclusions

Sharp properties

preserving

Dimension
reduction

Waiving

reinitialization
B-spline curve based approach Explicit No Yes Yes Yes
Traditional level set approach Implicit Yes Yes No No
Parametric level set approach Implicit Yes No Yes Yes

Proposed B-spline-based level set approach Implicit Yes Yes Yes Yes

(1, 0,−1, 0 . . . , 0)T ∈ R
L, etc. Then, using a standard Galerkin

discretization, the solution

(α1, . . . , αNu
, η1, . . . , ηL−1)

T ∈ R
Nu+L−1

to model (1-6) requires solving a system linear equations and finally

the measurement U can be computed as MDη, where

D = [n1, n2, . . . , nL−1] ∈ R
L×L−1

and M is a difference matrix referred to as the selected measurement

pattern.

Next, we denote the discretized forward mapping σ 7→ U(σ) by

U(σ). Assuming the measurement noise is additive and Gaussian the

EIT observation model can be expressed as

V = U(σ) + e, (10)

where V is a vector of measured voltages. e is additive Gaussian

noise with mean e∗ and covariance matrix Γe, which are usually

experimentally estimated [62]. For more details of the FE approxi-

mation used in this paper, we refer the reader to [60], [61].

III. SHAPE RECONSTRUCTION BASED ON B-SPLINE

BASED LEVEL SET METHOD

In this section, we introduce the BLS method in which the LSF is

expressed as a continuous parametric function using B-splines. For

the sake of simplicity, we only consider two-dimensional (2D) cases,

and defer three-dimensional cases (3D) in a future work.

A. Shape representation using B-spline based LSF

We begin by defining the LSF f(x, y) as an implicit B-spline

function, which is expressed as the linear combination of B-spline

basis functions [63].

For the general 2D model, given (m+1)× (n+1) control points

{Pi,j ∈ R
3; i = 0, . . . ,m; j = 0, . . . , n} in a bi-directional net

and noting that qi,j is the z-coordinate of Pi,j , the tensor-product

B-spline function, of degree k in the x-direction and degree l in

the y-direction, is a bivariate piecewise polynomial function with the

form:

f(x, y) =

m∑

i=0

n∑

j=0

Ni,k(x)Nj,l(y)qi,j , (11)

where Ni,k(x) and Nj,l(y) are the i-th and j-th B-spline basis

function of degree k and l, respectively. Further, qi,j forms a net

of (m + 1) × (n + 1) B-spline coefficients to f(x, y), which can

be viewed as control parameters for f(x, y) at the so-called Greville

abscissae control points. Fig. 1 provides a schematic illustration of a

bi-cubic (k = l = 3) B-spline based LSF, the corresponding control

points, as well as the boundary obtained by assigning f(x, y) = 0.

The basis function Ni,k(x) is defined by the recurrence relations

Ni,0(x) =

{
1, xi ≤ x < xi + 1,

0, otherwise,
(12)

Fig. 1. Illustration of the bi-cubic B-spline based LSF and its control
points, as well as the region boundary represented as the zero level set.
Left: the red points with z-coordinate qi,j = −1 and cyan points with
z-coordinate qi,j = 1 are control points of the bi-cubic B-spline LSF.
Right: the boundary Γ obtained from zero level set of bi-cubic B-spline
based LSF, i.e., f(x, y) = 0.

and

Ni,k(x) =
x− xi

xi+k − xi
Ni,k−1(x) +

xi+k+1 − x

xi+k+1 − xi+1
Ni+1,k−1(x),

(13)

where i = 0, 1, . . . ,m and {xi}
b
i=0 is a uniform knot vector with

b = m+ k + 1, defined by

xi = 0, i = 0, 1, . . . , k, (14)

xi =
i− k

m− k + 1
, i = k + 1, k + 2, . . . ,m, (15)

xi = 1, i = m+ 1,m+ 2, . . . ,m+ k + 1. (16)

Equations (14) & (16) indicate that the curve in the x direction

interpolates at the endpoints. Similarly, Nj,l(y) follows the same

definition of Ni,k(x).

Next, the shape and topology of the inclusions in the object can

be described implicitly in the following way






f(x, y) > 0 ∀(x, y) ∈ D\∂D,

f(x, y) = 0 ∀(x, y) ∈ ∂D,

f(x, y) < 0 ∀(x, y) ∈ Ω\D.

(17)

Here, D denotes a region in Ω bounded by Γ = ∂D.

B. Modeling the conductivity distribution

Following the common assumption in shape-based reconstruction

methods, the conductivity to be estimated is assumed to be piecewise

constant. For simplicity, we assume that the domain Ω is divided

into two parts: disjoint subregions D and background Ω\D with

piecewise constant conductivity profiles σ(x, y) = σ1 for (x, y) ∈ D
and σ(x, y) = σ0 for (x, y) ∈ Ω\D. In other words, the domain D
does not need to be connected and can therefore represent separate

inclusions.
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In association with the two different regions represented by the

B-spline based LSF in (11) & (17), we have the variable (B-spline

coefficient) vector

q = {q0,0, · · · , qi,j , · · · , qm,n}, i = 0, . . . ,m; j = 0, . . . , n.

Moreover, the conductivity distribution σ(x, y) in Ω can be written

in the form

σ(x, y, q) = σ0(1−Hε(f(x, y))) + σ1(Hε(f(x, y))), (18)

where Hε is a smooth version of the Heaviside function, defined as

Hε(s) =






1 s > ε,
1
2 [1 +

s
ε + 1

π sin(πsε )] |s| ≤ ε,
0 s < −ε,

(19)

and ε is a small positive number that smooths the function.

Now the observation model in (10) can be re-expressed as

V = U(σ(x, y, q)) + e. (20)

Following, the problem of shape reconstruction and estimation of

piecewise constant conductivities σ0 and σ1 is equivalent to solving

the following minimization problem

[q̂, σ̂0, σ̂1] = argmin
{
‖Le(V − U(σ))‖2 + λ1

∥∥q − q
∗
∥∥2

+λ2

1∑

j=0

∥∥σj − σ∗j
∥∥2

}
,

(21)

where Le is the Cholesky factor of the inverted noise covariance

matrix Γ−1
e (i.e., LT

e Le = Γ−1
e ), q

∗ is a vector of expected

values of q and σ∗j are predetermined constant values. λ1 and λ2
are the weighting parameters. The last two terms are regularization

functionals, which are used to stabilize the inversion. Note that in the

minimization problem (21), unknown σ0 and σ1 are appended to the

unknown BLS coefficient vector q, and are estimated together with

q simultaneously.

C. B-spline based level set sensitivity analysis

Due to the nonlinearity and ill-posedness of the minimization

problem in (21), the solution is often obtained iteratively. For the op-

timization regime used herein, the Jacobian matrix JU (q, σ0, σ1) =
∂U

∂(q,σ0,σ1)
is required. From the chain rule, we can derive the

Jacobian of U with respect to the B-spline coefficient vector q as

JU (q) =
∂U

∂σ
·
∂σ

∂f
·
∂f

∂q
= JU (σ)(σ1 − σ0)δ(f)

∂f

∂q
. (22)

Here, δ(f) denotes the Dirac function, which is defined as

δ(f) =
∂Hε(f)

∂f
=

{
0 |f | > ε,

1
2ε (1 + cos(πfε )) |f | ≤ ε.

(23)

The term JU (σ) can be computed by using the standard method

[12] and
∂f
∂q can be analytically calculated.

In addition, the Jacobian matrices of the voltage U with respect to

the conductivity σ0 and σ1 are computed as

JU (σ0) =
∂U

∂σ
·
∂σ

∂σ0
= JU (σ)(1−H(f)), (24)

and

JU (σ1) =
∂U

∂σ
·
∂σ

∂σ1
= JU (σ)H(f). (25)

Finally, the minimization problem in (21) is solved by using the

Gauss-Newton method with a line search algorithm to determine the

step size.

TABLE II

DISCRETIZATION DETAILS OF THE COMPUTATIONAL DOMAINS. Nu IS

THE NUMBER OF NODES IN THE 2ND ORDER MESH FOR

APPROXIMATION OF u(x, y), AND Nσ IS THE NUMBER OF NODES FOR

APPROXIMATION OF σ(x, y) IN THE 1ST ORDER MESH.

Simulated data Reconstruction

Nu Nσ Nu Nσ

Cases 1-6&14&15 13301 3382 9656 2436
Experimental data Reconstruction

Cases 7-13 9656 2436

IV. METHODS

In this section, we detail the test cases, finite element discretization,

details of implementation, the selection of parameters used in the

reconstructions and the studies of robustness. The target conductivity

and simulation parameters as well as the experimental configuration

are thoroughly detailed in [48], [64]. For the results and discussion,

see Section V.

A. Test cases & finite element discretization

To explore the performance of the BLS-based approach, a variety

of conductivity distributions exhibiting sharp or smoothed boundaries

of two-phase systems were designed. These, in their corresponding

test cases, are summarized in the following. The first six test Cases (1-

6) consist of studies using simulated data, where we test the regime’s

ability to reconstruct sharp geometries. Following, in Cases 7-11 and

Cases 12 & 13, we study the performance of the BLS approach

with low- and high-contrast inclusions using experimental data. The

high contrast experimental data in Cases 7-11 was collected with the

KIT-4 measurement system [65] developed in University of Eastern

Finland and the low contrast experiments (Cases 12 & 13) were

carried out with an in-house system (details can be found in [64])

from University of Science and Technology of China. Moreover, the

experimental data was taken from a circular tank with a 14cm radius

having 16 electrodes of width 2.5cm. The high contrast experiments

use saline water with a measured conductivity of 0.543 mS/cm for

the background, and resistive (plastic) targets for the inclusions. The

low contrast experiments use agar based targets to simulate two lungs

and saline with conductivity 1.948 mS/cm for the background.

Further, we conduct a robustness study using geometries from

Case 6 considering different initial piecewise constant conductivities.

Subsequently, to investigate the regime’s robustness to modeling

errors generated by inhomogeneity in the background conductivity,

additional studies are carried out using inclusion geometries also from

Case 6. Finally, we investigate the sensitivity of reconstructions to

the number of control points using geometries from Case 4. In all

cases, and in order to avoid an ‘inverse crime’, two different finite

element meshes are used for forward and inverse problems. The finite

element discretization of the computational domains is given in Table

II.

B. Implementation notes

In this subsection, we provide practical information used in

implementing the proposed BLS reconstruction approach. For the

implementation details related to the PLS method, we refer to our

previous works [48], [50].

We begin by setting the degree k and l in (11) as 3, i.e., bi-cubic

B-splines are used for expressing the LSF in the BLS method. Next,

we address the practicality of selecting control points in BLS. In

practice, it is extremely difficult to specify an initial bi-cubic B-spline

surface a priori with a suitable number of control points (distributed
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appropriately) that would yield a satisfactory shape approximation

of the inclusions. For this reason, the number of control points

Np in both x- and y- directions were set to 10, using trial-and-

error. As a result, the total number of control points (NT
p ) totaled

NT
p = Np × Np = 10× 10. The exception to this is the low contrast

experiment studies (Cases 12&13) and robustness study of the BLS

method (cf. Section IV-C.3). For these, the dimension of unknown

parameter vector (B-spline coefficients) is q ∈ R
Np×Np = R

10×10.

During the reconstructions, the initial values to the vector element

qi,j in q were randomly assigned. As shown in Fig 2, in the simulated

Cases 1-4 and experimental Cases 7-11, z-coordinates, qi,j , of 12

control points near the domain center were assigned with positive

values, and the other 88 control points were assigned with negative

values. The corresponding initial shape interface was determined by

the zero level set of f(x, y). Further, the regularization parameters

λ1 and λ2, in this work were empirically selected as 0.01 and

0.0001, respectively, which are based on trial-and-error method. As an

alternative strategy, one could apply the L-curve method to adaptively

determine a suitable value to those parameters.

We remark that in the application of lung imaging, we apply prior

information related to the approximate location of lung for selecting

the initial guesses of qi,j . For example, by setting parameters qi,j
of the control points located on the left and right sides of the

measurement domain to be greater than zero, we initialize two simple

shapes as the initial shapes, as shown in Fig. 2 (middle & right).

It is important to remark that in the simulations, we did not use

variable vector q to determine the boundary of regions for assigning

conductivity profiles. Rather, the regions simulated in the domain

were identified with simple mathematical formulas. Therefore, the

true variable vector q is unavailable. In the reconstruction, the

expected value q
∗ was set as the randomly selected initial guesses,

as noted above. For the shape representation, the smoothed Heaviside

function (19) with ε = A/2 was used. the parameter A, defined as

A = Area of domain Ω
Number of elements , denotes the mean value of the element area

of the FEM mesh.

Fig. 2. Illustration of initial setting. Top row: B-spline based LSF and
its control points (red points with z-coordinate qi,j < 0 and black
points with z-coordinate qi,j > 0); Bottom row: the region boundary
represented as the zero level set, i.e., f(x, y) = 0.

Next, in order to set the expected values σ∗0 for the background

conductivity and σ∗1 for the inclusion conductivity, we first calculate

the best homogeneous estimate σhom ∈ R by solving

[σhom] = argmin
{
‖Le(V − U(σ))‖2

}
. (26)

Then, we set σ∗0 = σhom and σ∗1 = σhom for simulated test cases and

low-contrast experimental studies (Cases 12 & 13). In high contrast

experimental studies (Cases 7-11), based on the prior information that

the plastic objects have almost zero conductivity, we set the expected

value σ∗1 = 1
10σhom for inclusion conductivity.

To quantitatively assess the recovery of the shape using both the

proposed BLS and the reference PLS based methods we calculated

the relative size coverage ratio (RCR)

RCR =
CR

CRTrue
. (27)

Here, CR refers to the coverage ratio, which is defined as the ratio

of the area of the reconstructed inclusions to the target area; in other

words, the measurement domain Ω. CRTrue denotes the CR of real

inclusion. For example, an RCR value of one means that the area of

the reconstructed inclusion is equal to the area of the real inclusion,

while a value is less than or greater than one, implies underestimation

or overestimation, respectively. The RCR values for the simulations

and experiments are shown in Tables III-VI.

For quantifying the estimates of the binary conductivity values of

both BLS and PLS based methods, a relative contrast (RCo) was

computed, as shown in Tables III-VI, using

RCoσj =
σ̂j

σTrue
j

. (28)

For practical reasons, we did not compute RCoσ1
in the experimental

studies, since the exact conductivity values σ1 of the inclusions are

not accurately known.

In addition, for the simulated test cases, we also use the structural

similarity (SSIM) index [66] to evaluate the similarity between true

images and reconstructed images. Recall that the maximum SSIM

index value of one is achieved if and only if these two images are

identical. The SSIM values of simulated cases are shown in Tables

III & IV.

C. Robustness studies

To demonstrate the stability of the BLS method, we conducted a

set of robustness studies in cases where (i) different initial guesses

was assigned to the piecewise constant conductivities, (ii) modeling

errors were caused by inhomogeneity in the background and (iii)

there were differing numbers of control points.

1) Different initial piecewise constant conductivities: To study

the effect of the initial conductivity values on the solution of the

BLS method, we performed a set of reconstructions of Case 6 by

applying different values to initial conductivity σ∗1 for the inclusions

to be detected. For this, we define

σ∗1 = ησhom, (29)

where the parameter η is the initial conductivity coefficient. Here,

we set the value of η to change from 0.1 to 1 in a step of 0.1, and

a total of 10 images were reconstructed.

2) Non-homogeneous background: In practical medical appli-

cations, the conductivity of the background is never purely homo-

geneous. For example, in lung imaging, inhomogeneities within the

human thorax such as heart, aorta, bones, fat, and muscle contrast

an otherwise smooth background. For this reason, more realistic

conductivities 3.0 mS/cm and 3.1 mS/cm were respectively assigned

for the heart and aorta in Cases 14 & 15. Since the conductivity in

(18) is modeled as a binary distribution, i.e., the BLS reconstruction

approach is restricted to a binary conductivity estimation problem,

the presence of the heart and/or aorta in Cases 14 & 15 leads to a

situation with non-homogeneous background.

Meanwhile, given the fact that the size/conductivity of lung is much

greater/lower than heart and aorta (respectively), the presence of the

heart and aorta will be herein considered as modeling error sources

in the inversion. Based on these realizations, the robustness study

offers an appropriate means to evaluate the performance of BLS with

modeling errors due to a non-homogeneous background.
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3) Varying number of control points: In general, the B-spline’s

appearance and complexity are mostly determined by the number of

control points, which is chosen using trial-and-error. Theoretically,

increasing the number of control points will increase the ability of

the B-spline LSF to emulate sharply varying features of the inclu-

sion(s) to be reconstructed. However, it also increases the number

of unknowns and adds extra computational cost in the inversion and

possibly increases the problem’s ill-conditioning.

To investigate the robustness of the BLS approach considering the

variability of the number of control points, we carried out a set of

reconstructions of Case 4 with the total number of control points

NT
p = Np × Np = 5× 5, 6× 6, · · · , 15× 15, and 20× 20.

V. RESULTS

In this section, we first report and compare BLS and PLS re-

constructions, using numerical and experimental water tank data.

Then, robustness studies of the proposed approach considering non-

homogeneous backgrounds, differing initial guesses, and varying

number of control points are studied.

A. Reconstruction from simulated data

The results for Cases 1-6 are shown in Fig. 3. The images in the

first row depict the ground truth; the BLS and PLS reconstructions

are shown in the second and last rows, respectively. For reference,

the initial settings of BLS are illustrated in Fig. 2.

Fig. 3. Reconstructions of Cases 1-6 based on BLS and PLS methods
using simulated data.

We observe that both the BLS and PLS methods perform similarly

in reconstructing the general inclusion shapes. However, they differ

significantly in preserving the sharp boundaries of the inclusions.

Indeed, sharp corners (e.g., triangles in Cases 1 & 4 and rectangles

in Cases 2 & 4) are (visually) more accurately preserved in BLS

reconstructions. This is reflected in Tables III & IV, where the RCRs

and RCos corresponding to the BLS method are generally better than

those achieved by the PLS method. This is an expected result, since

B-spline surfaces are capable of preserving sharp properties – in this

situation, this is manifested in the preservation of sharpness at the

corners of the inclusions. In contrast, the LSF in the PLS method has

a smoothing effect on the sharp corners and high curvature details of

shapes in the image, which affects the image quality to some extent.

Based on the former results, it is intuitively interesting to speculate

on how the B-spline inclusions evolve during the reconstruction

process and how the (possibly) sharp edges of the inclusions form. To

illustrate these queries, we show the evolution of the B-spline shapes

and topology using odd iteration steps for Case 4 in Fig. 4. From

this figure, the evolution of multiple inclusions from a simple initial

guess can be clearly observed. Taking a step back, it is intriguing

that the entire evolution process in Fig. 4 is largely governed by

simply optimizing B-spline coefficients. Moreover, and in comparison

to the original B-spline based shape reconstitution approach [51],

the proposed BLS method has the advantage that prior knowledge

regarding the number of inclusions is not required.

Fig. 4. True image and the evolution of shape and topology, i.e.,
f(x, y) = 0, during the BLS reconstruction of Case 4.

B. Reconstruction from phantom data

Figs. 5 & 6 show reconstructions using both BLS and PLS based

methods considering high contrast and low contrast data, respectively.

The corresponding evaluation criteria are tabulated in Tables V & VI.

1) High contrast experiments: As the results in Fig. 5 show,

the inclusions are clearly distinguishable and the estimated locations

correspond to the true shapes in the respective BLS and PLS based

reconstructions. Similar to the simulated test cases, both of the BLS

and PLS based methods perform well in reconstructing the overall

shapes of the inclusions – leading to evaluation criteria approaching

the true values, see Table V. Again, BLS reconstructions visually pre-

serve the sharp features of the inclusions, while PLS reconstructions

exhibit some distorted inclusions with smoothed properties, e.g., the

triangular inclusion in Cases 9 & 11. As a whole, the BLS method

generally provides better reconstructions than the PLS method –

especially when the target is geometrically complex.

It is worth remarking that, compared to that reconstruction using

the PLS method, the circular inclusions in Cases 9-11 were unfavor-

ably tracked by BLS method, which is an expected result. The main

reason is that, principally, uniform bi-cubic B-spline surface formula

is unable to exactly represent a circle shape [67]. In contrast, the PLS

function is able to capture such a shape.

Note that, for the sake of comparison to other shape-based esti-

mates, e.g., traditional level set (TLS) method, we recall our previous

results for the same test cases using TLS method in Fig. 4 from [48].

We observe that the BLS-based estimate is clearly better than the

TLS-based estimate, even when a coarser mesh is used for the BLS-

based estimate wherein more discretization error may arise in the

reconstruction.

2) Low contrast experiments: Fig. 6 shows the results of both

methods considering two experimental low contrast test Cases (12 &

13). Once again, the lung-type inclusions are successfully detected

by both methods, although the contrast of the inclusions made of

agar with respect to the background filled with saline is much lower

than that in Cases 7-11 (plastic objects vs. saline). Based on visual

assessment, the BLS method provides slightly better reconstructions

of the lobe part of the lung-type inclusions, where the sharp properties

are smoothed away by the PLS based reconstructions. This finding

is consistent with the results obtained in simulated and experimental

high contrast cases.

Owing to the fact that the lung-type shapes are relatively complex,

the dimension of the control points net was increased to NT
P = 15×

15 in these reconstructions to improve the ability of the B-spline

LSF to emulate sharply varying features of the lung-type inclusions.
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TABLE III

EVALUATION CRITERION: RCRS,SSIM INDICES AND RCO OF CASES 1-4.
Case 1 Case 2 Case 3 Case 4

SSIM RCR RCoσ0 RCoσ1 SSIM RCR RCoσ0 RCoσ1 SSIM RCR RCoσ0 RCoσ1 SSIM RCRT RCRB RCoσ0 RCoσ1

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BLS 0.98 0.97 1.00 0.99 0.98 0.96 1.00 1.01 0.98 1.01 1.00 1.09 0.97 0.95 0.95 1.00 0.98
PLS 0.98 0.92 1.00 0.93 0.98 0.91 1.00 0.95 0.97 0.95 1.00 0.97 0.96 0.94 0.94 1.00 0.94

The subscript letters ’T’ and ’B’ under the parameter RCR denote the top and bottom objects in the domain, respectively.

TABLE IV

EVALUATION CRITERION: RCRS,SSIM INDICES AND RCO OF SIMULATED LUNG IMAGING TEST CASES 5,6,14&15.
Case 5 Case 6 Case 14 Case 15

SSIM RCRL RCRR RCoσ0 RCoσ1 SSIM RCRL RCRR RCoσ0 RCoσ1 SSIM RCRL RCRR RCoσ0 RCoσ1 SSIM RCRL RCRR RCoσ0 RCoσ1

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BLS 0.95 0.95 1.00 1.00 1.00 0.96 0.96 0.99 1.00 1.00 0.98 0.91 0.96 1.00 0.97 0.97 0.90 0.95 1.00 0.97
PLS 0.95 0.99 0.96 1.00 1.00 0.92 0.96 1.03 1.00 0.99 0.95 0.94 0.92 1.00 0.97 0.95 0.92 0.91 1.00 0.96

The subscript letters ’L’ and ’R’ under the parameter RCR denote the left and right side objects in the domain, respectively.
To avoid the influence arising from the inhomogeneity, the true image of Case 5 was used as the reference image for computing the SSIM in Cases 14&15.

As a result of the refined control-point net, BLS reconstructions in

Fig. 6 contain some edge artifacts or serration. Moreover, by refining

the control points, the dimension of unknown vector q increases to

R
225. This results in an increasingly ill-posed problem compared to

situations using fewer control points. The effect of the control point

net refinement is further investigated in Section V-C.3.

It is worth remarking that, in this paper, the selection of control

point net was done by trial-and-error procedure and is therefore

not optimal. Better selection may be conducted by interpreting the

optimal number of control points as a model selection problem [68],

[69]. However, the main purpose of this paper is to focus on shape

reconstruction using BLS, thus optimizing the number of control

points of the B-spline surface is excluded herein.

C. Results of robustness studies

1) Effect of initial piecewise constant conductivity: Fig.7 shows

two representative reconstructions from a sequence of ten images

obtained with the BLS approach. The corresponding SSIM, RCR

and RCo of these ten images are shown in Fig. 9 (left). We observe

that the lung shapes are relatively well estimated and the evaluation

criteria show that the BLS method is quite robust to different initial

piecewise constant conductivity values.

2) Effect of non-homogeneous background: Fig. 8 shows the

BLS and PLS based reconstructions for Cases 14 & 15, where

the inhomogeneities are presented in the measurement domain. We

observe that the performance of both methods compared to each other

remains similar to the more ideal case (Case 5); Compared to PLS,

BLS gives a slightly better estimate to the inner lung shape, especially

for the right upper lobe. This observation is supported by the metrics

parameters SSIM and RCRR listed in Table IV.

There are two additional, yet subtle, realizations that can be made

from Fig. 8, namely (i) it seems that the presence of heart and

aorta does not largely affect the reconstructions and (ii) in BLS

reconstructions, there are few edge artifacts presented along the right

outer boundary. Regarding comment (i), the primary explanation is

that EIT measurements are much more sensitive to large inclusions

with low conductivity and less sensitive to small inclusions with high

conductivity. As such, even though the heart and aorta have relative

high conductivity values, the shape reconstruction also tends have

higher sensitivity to the main component of the measurement – the

lungs. This finding and features are in agreement with the results from

previous works using PLS [48], B-spline [51] and moving morphable

components based reconstructions [37]. Regarding comment (ii),

some possible explanations include: non-optimized selection of con-

trol points, modeling errors due to the non-homogeneous background

and the ill-posedness of the EIT reconstruction problem.

Fig. 5. Reconstructions of Cases 7-11 based on BLS and PLS methods
using high contrast phantom data, in which the inclusions were made of
plastic material.

3) Effect of the number of control points: BLS-based recon-

structions for Case 4 with differing numbers of control points NT
p are

shown in Fig. 10. Images shown in Fig. 10 clearly illustrate the effects

of using differing numbers of control points on BLS reconstructions.

An expected result here is that the sharpness of the reconstructions

is generally better preserved in reconstructions using more control

points. Although, there is certainly a correlation between using a large

number of control points to improve sharpness and the presence of

edge artifacts; these points are discussed in the following.

Based on the visual observations, we preliminarily conclude that

the preservation of sharpness in reconstructions using a larger number

of control points results from one primary factor – increasing NT
p will
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TABLE V

THE RELATIVE SIZE COVERAGE RATIOS (RCRS) AND RCO OF THE RECONSTRUCTED σ0 IN STUDIES WITH PHANTOM DATA.
Case 7 Case 8 Case 9 Case 10 Case 11

RCRc RCRt RCoσ0 RCRr RCRt RCoσ0 RCRt RCRr RCRc RCoσ0 RCRt RCRr RCRc RCoσ0 RCRt RCRr RCRc RCoσ0

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BLS 0.97 0.97 1.01 1.04 0.93 1.01 1.02 0.96 0.92 1.02 0.98 1.09 0.96 1.02 0.93 0.95 0.93 1.00
PLS 1.00 1.04 1.01 0.98 1.08 1.01 0.98 1.07 0.91 1.02 1.03 1.03 1.01 1.02 0.96 1.01 0.95 1.00

The subscript letters ’c’, ’t’ and ’r’ under the parameter RCR denote circle, triangle and rectangle, respectively.

Fig. 6. Reconstructions of Cases 12 & 13 based on BLS and PLS
methods using low contrast phantom data, in which lung-type inclusions
were made of agar.

TABLE VI

THE RELATIVE SIZE COVERAGE RATIOS (RCRS) AND RCO OF THE

RECONSTRUCTED σ0 IN LUNG PHANTOM STUDIES.

Case 12 Case 13

RCRL RCRR RCoσ0 RCRL RCRR RCoσ0

True 1.00 1.00 1.00 1.00 1.00 1.00
BLS 0.98 1.03 1.05 1.02 1.01 1.04
PLS 1.02 1.03 1.05 1.02 1.02 1.05

Fig. 7. BLS reconstructions for Case 6 with different initial piecewise
conductivity values.

Fig. 8. BLS and PLS based reconstructions for lung imaging with and
without non-homogeneous background. The first row is a repetition of
the fifth row in Fig.3.

increase the ability of the B-spline LSF to emulate sharply varying

features of the inclusions. This is also compatible with a fundamental

concept of B-spline surfaces – the use of more control points results in

more local control and capacity to express topological discontinuities

and complicated shapes. However, similar to the reconstructions of

low-contrast experimental cases shown in Fig. 6, some edge artifacts

or serration are observed in the images corresponding to the relatively

large number of NT
p (increasing the ill-conditioning/ill-posedness of

the problem). On the other hand, using too few control points (i.e.

NT
p = 5× 5) results in blurred image since the BLS method cannot

adequately depict a complex geometry.

To more comprehensively and quantitatively show the effect of the

number of control points in BLS method, we compute the evaluation

criteria (RCR/RCo/SSIM), which are plotted in Fig. 9 (middle). The

criteria shown in Fig. 9 (middle) indicate expected trends, (a) the

selection of differing NT
p results in relative in-variance of the RCos

using the BLS method, (b) the SSIM approaches the true value

(1.0) with increasing number of control points, and (c) the RCRs

predominately increase proportional to NT
p . Consistent with visual

observations from the reconstructed images shown earlier, the BLS

reconstruction approach is quite robust to the selection of different

number of control points.

D. Discussion: limitations, multiphase and further

developments

The proposed BLS-based shape reconstruction method is presently

limited by its nonlinearity and non-optimized selections of the

parameters. As such, a number of issues need to be considered in

the future works. These key issues are enumerated in the following.

1) Due to the reality that BLS method is rooted in the context

of absolute imaging, the reconstruction problem is solved

iteratively. This requires repetitive calculation of the forward

problem, mostly in the line-search. Consequently, this process

can be fairly time consuming, which is one of the present

drawbacks. As an example, reconstructions of Case 5 were

obtained from a Matlab implementation of the proposed BLS

and reference PLS methods on a desktop computer with an

Intel Xeon E3-1231 processor and 16GB memory within 20

iterations at average speed of 45 seconds per iteration, and 18

iterations at average speed of 41 seconds per iteration, respec-

tively. As a whole, the computational cost in each iteration of

BLS is comparable to PLS.

It is also important to study the convergence behavior of both

methods, as shown in Fig. 9 where we plot the root mean

square error (RMSE) of the estimated conductivity against

the iteration steps for both methods in Case 5. Overall, the

computing time required for each test case varies depending

on a number of factors, including the number of control

points and the level of FEM discretization, etc. To speed up

the reconstruction, one possible option is to formulate the

nonlinear shape reconstruction approach using a linearization

approximation, since the inclusion information (e.g., support

of shape) in EIT is in some sense invariant under linearization

[70]. However, this reduction in computing cost is likely at the

expense of reducing image resolution.

2) It is well known that absolute imaging is sensitive to model-

ing errors arising from electrode displacement and inaccurate
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Fig. 9. Performance evaluation of BLS based reconstruction. Left: evaluation criteria of the robustness study against different initial conductivity
value reported in subsection IV-C.1. Middle: evaluation criteria of the robustness study against different control points reported in subsection IV-C.3.
Right: root mean square error through the iterative process of Case 5 shown in Fig.3.

Fig. 10. Robustness study of the proposed BLS method w.r.t different number of control points NT
p .

knowledge of the measurement domain boundary, etc. Hence,

much additional work needs to be done to explore the BLS

method’s robustness to modeling errors. Possible solutions for

improving the method’s tolerance to modeling errors are 1©
to apply the approximation error approach to compensate for

these modeling errors [24], 2© to frame the shape reconstruction

approach in a linear difference imaging context, which is known

to be quite robust to these sources of modeling errors, and 3©
to consider the shape reconstruction problem in the framework

of multi-frequency EIT [71]. Clearly, this matter is beyond the

scope of this paper and is planned to be studied in a future

work.

3) The selection of control points net was done by trial-and-error

procedure and is therefore not optimal. Except the potential

solution mentioned in Section V-C.3, one may also consider

through the addition of adding new control points to gain more

refined shape control or the removal of redundant control points

to generate a B-spline surface with as few control points as

possible that approximates a given shape.

4) The current work focused on the shape reconstruction with

binary conductivities, an interesting question arising in the

multiphase system (e.g., thorax imaging) is: Is the proposed

BLS-based approach able to reconstruct the heart and/or aorta

together with lung? To deal with this question, one potential

solution is to apply multiple LSFs to model the boundary

shapes of lungs and heart/aorta. A similar strategy used for

PLS-based multiphase conductivity estimation problem was

suggested in [49]. In addition, all the subregions of the test

cases presented in the measurement domain are assumed to

be simply disconnected. However, in real applications of lung

monitoring, some cancers that may appear as a mass in the

lungs include lymphomas and sarcomas. While this is certainly

true, the proposed method is not presently designed for this

σ(x, y, q) =

σ0(1−Hε(f1(x, y)))(1−Hε(f2(x, y)))

+ σ1Hε(f (x, y))(1−Hε(f2(x, y)))

+ σ2Hε(f (x, y))Hε(f2(x, y)).

Fig. 11. Modeling conductivity distribution of nested cases using
multiple LSFs.

type of lung monitoring. Nonetheless, one may extend the

proposed method by treating the reconstruction problem as a

nested case and use multiple B-spline-based LSFs for modeling

conductivity distribution for nested inclusions, as illustrated in

Fig. 11. However, studying the implementation of B-spline-

based multiphase reconstruction framework is out of the scope

of this paper, hence it is left for future research.

5) Until this point, only low-conductivity inclusions are used

throughout the paper. Another interesting question arising here

is: does the method still work well in the case of a binary con-

ductivity distribution wherein the conductivity of the inclusions

is greater than that of the background? To gain insight into

this question, we computed the simulated test cases shown in

Fig. 12. Obviously, the proposed BLS method still works well,

producing good shape reconstructions, which is also confirmed

by the criteria SSIM=0.96, RCRtop = 0.87, RCRbottom = 0.98,

RCRσ0
= 0.99 and RCRσ1

= 1.02.

6) Lastly, the proposed BLS method is only tested with 2D

examples. However, its capacity for 3D reconstructions is more

pronounced when the difference between the number of voxels
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Fig. 12. BLS reconstructions for Case 16 with conductivity of the
inclusions is greater than that of the background.

and the number of B-spline coefficients is more significant.

Heuristically, to represent and to reconstruct the 3D geometry,

one may consider formulating the LSF as a trivariate B-

spline function and then follow the same strategies used in

the proposed method to formulate the minimization problem in

(21). For 3D modeling using B-spline based LSF, we refer the

readers to the recent work in the field of shape and topology

optimization [57]. In addition, the current work is focused on

EIT. One may also consider to extend the proposed method

to other imaging modalities, e.g., microwave imaging [72]. It

should be mentioned that, the study of 3D situations through the

proposed methodology framework and the extension to other

imaging modalities are an important future direction.

VI. CONCLUSIONS

In this paper, we considered shape reconstruction in electrical

impedance tomography. In the proposed BLS method, the inclusions’

shapes to be reconstructed are implicitly represented by a level

set function, which is modeled as a continuous parametric function

expressed using B-spline functions.

We tested the performance of the proposed method with both

simulated examples as well as real tank measurement cases, both

corresponding to lung imaging (absolute) shape reconstruction prob-

lems. The results illuminate the ability of the BLS method to preserve

sharp features of the inclusions, as well as to automatically track the

(unknown) number of inclusions present in the domain. Meanwhile,

it was demonstrated that the BLS method is quite robust to the initial

piecewise constant conductivity distribution and differing numbers of

control points. The BLS method is also tolerant to the modeling errors

caused by the presence of inhomogeneities in the background to some

extent. The findings demonstrate that BLS has important potential to

be a generalized technique for integrating the priori shape information

into EIT image reconstruction.
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