Analysis of Magnetization effects for HTS conductors for HEP magnets

Mike Sumption, M. Majoros, C. Kovacs, and E.W. Collings

Center for Superconducting and Magnetic Materials, MSE, The Ohio State University

Nijhuis and K. Yagotyntsev, The University of Twente

LTSW 2017

LTSW 2017

February 27 - March 1, 2017

La Fonda on the Plaza Hotel
Santa Fe, New Mexico USA

Sponsored by the IEEE Council on Superconductivity

M. Takayasu, MIT, PSFC

W. Goldacker N. Long

CORC Samples:

D. Van Der Laan

Advanced

Conductor

Technologies and

University of

Colorado

Twisted Strand:

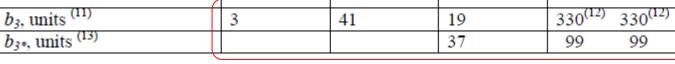
University of

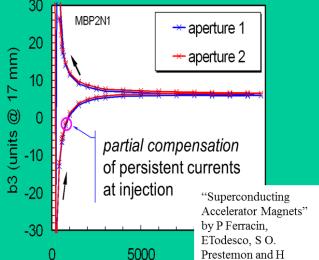
Houston

This work was supported by the U.S. Department of Energy, Office of Science, Division of High Energy Physics, under Grant DE-SC0011721.

Outline of talk

- Motivation accelerator quality
- Comparison of accelerator and b3
- Magnetization of Tape vs Cable
- Magnetization of various cable types
- Coupling -- Magnetization -- loss?
- Decay and its implications

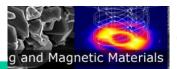




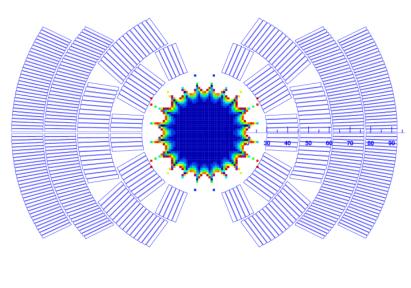
Why the focus on Magnetization? - its b3 and its change for accelerator magnets

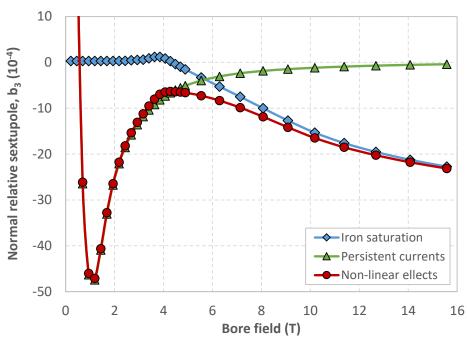
Strand type	NbTi ⁽¹⁾	Nb ₃ Sn ⁽²⁾	Bi:2212 ⁽³⁾	YBCO	YBCO
Cable type	Rutherford	Rutherford	Rutherford	TSTC	CORCTM
Cable packing factor, λ_c	0.88	0.855	0.87 ⁽⁴⁾	0.56	0.58
Strand filling factor, λ_s	0.385	0.455	0.26	$0.01^{(5)}$	$0.01^{(5)}$
Layer CCD, J _{c,inj} , kA/mm ²	20.4	-	1.75	88 ⁽⁶⁾	88 ⁽⁶⁾
Eng. CCD ^(/) , J _{e,inj} , kA/mm ²	7.85	-	0.455	0.88	0.88
Fil. (strand) size, d_{eff} , µm	7	61	278	4000 ⁽⁸⁾	4000 ⁽¹⁰⁾
J _{cable,inj} kA/mm ²	6.91	13.0	0.396	0.493	0.510
J _{cable,colb} kA/mm ²	0.704	0.855	0.348	0.244	0.232
$B_{b,coll}$, T	8	15	20	20	20
<i>b</i> ₃ , units ⁽¹¹⁾	3	41	19	330(12)	330 ⁽¹²⁾
b _{3*} , units (13)			37	99	99

This is based on an estimation from Tape



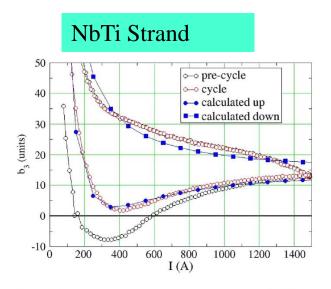
Current (A)


Felice, January 2012


Sample	<i>B</i> , T	orientation	- <i>M</i> ₀ , kA/m	-M _{20min} , kA/m	$\Delta M_{20min}/M_0$, %	Δb ₃ , %
Bi:2212						
	1 T	⊥ _{axis}	15	12	20	20
	12 T	⊥ _{axis}	2.7	1.5	42	42
YBCO						
	1 T	B//c	991	906	9	9
	1 T	45°	933	811	14	14
	12 T	B//c	280	187	33	33
	12 T	45°	229	200	13	13

Cos theta coil MDP

Nb₃Sn RRP Conductor


A Zlobin, "15 T dipole design concept, magnetic design and quench protection", Presentation at the US MDP workshop Jan 2017

Canted cos theta Dipole

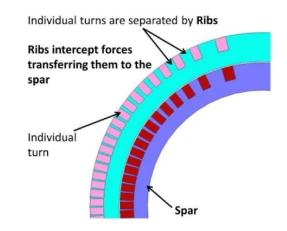
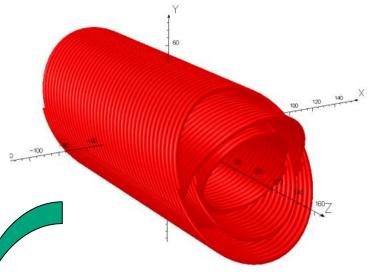
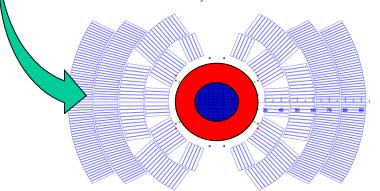

Symbol	Units	Value
Strand diameter (SSC outer)	mm	0.65
Strands per cable		8
Bare cable	mm	2.72x1.07
Insulated cable	mm	3.02x1.37
Cable keystone angle	Deg.	0
Channel size	mm	3.02x1.59
Clear bore dia.	mm	50.8
Number of layers		2
Layer1/2 radial spar thickness	mm	3.07
Between layers radial insulation	mm	0.25
Layer1/2 canted angle	Deg.	15
Layer 1/2 No. of turns	Z.	78/72
Layer 1/2 single turn length	mm	499/604
Mandrels length	mm	841.1
Axial pitch length	mm	7.60
Minimum rib thickness (mid-plane)	mm	0.38
Maximum rib thickness (pole)	mm	6.02

Fig. 11. Combined geometric and magnetization sextupole up to 1500 A.

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 25, NO. 3, JUNE 2015

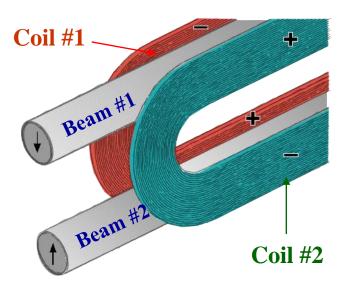
Test Results of CCT1—A 2.4 T Canted-Cosine-Theta Dipole Magnet


S. Caspi, L. N. Brouwer, T. Lipton, A. Hafalia Jr, S. Prestemon, D. R. Dietderich, H. Felice, X. Wang, E. Rochepault, A. Godeke, S. Gourlay, and M. Marchevsky



Canted Cos Theta dipole 2

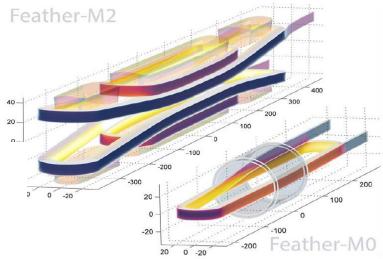
X. Wang, "REBCO accelerator magnet development: status and plans", Presented at the USMDP NAPA, Jan 2017



X Wang of LBNL proposes to make a 4 layer canted cos dipole using YBCO cable

- As part of LBNL-OSU collaboration,
 Nb3Sn magnetization measurements and
 Bi:2212 magnetization data have been
 provided for error field calculations in other
 magnet designs
- This collaboration is expanded to include YBCO conductor and cable magnetization for magnets, and collaboration on error field determination
- If we consider for a moment the simplest case of an HTS insert in a background Nb3Sn magnet, then at injection, it may be reasonable to approximate field on CCT as a "uniform 1 T"
 - Initial error estimates using biot savart (and a doublet approach) suggest significant b3 for CCT wound with YBCO cables, as expected extrapolating from CCT1 > 25 unit

A number of other designs and possibilities



Ramesh Gupta, "Hybrid Configuration and BNL Activities", USMDP, 2017

Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

G. A. Kirby, J. van Nugteren, A. Ballarino, L. Bottura, N. Chouika, S. Clement, V. Datskov, L. Fajardo, J. Fleiter, R. Gauthier, L. Gentini, L. Lambert, M. Lopes, J.C. Perez, G. de Rijk, A. Rijllart, L. Rossi, H. ten Kate, (CERN), M. Durante, P. Fazilleau, C. Lorin (CEA), E. Härö, A. Stenvall, (TUT), S. Caspi, M. Marchevsky, (LBNL), W. Goldacker, A. Kario, (KIT)

1. Aligned block development HTS magnets, (bottom right) Feather-M0 ich detection development coil, (top left) Feather-M2 the EuCARD-2 five a standalone approaching accelerator field quality insert magnet.

What does the magnetization of HTS, esp YBCO, look like?

For round strands – Nb₃Sn, Bi2212, the simple rules are

1. For *B* perpendicular, $B \gg B_p$

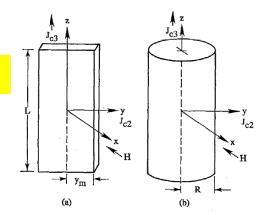
$$\Delta M = \frac{4}{3\pi} d_{eff} J_c$$

$$B_p = \mu_0 0.8 J_c d_{eff}$$

cylinders

2. For *B* Perpendicular, $B \ll B_p$

$$M = -2H$$


cylinders

Full field penetration

$$\Delta M = aJ_c$$

$$B_p = \mu_0 J_c a$$

slabs

No or nearly no penetration

$$M = -H$$

Only true if B // to thin edge

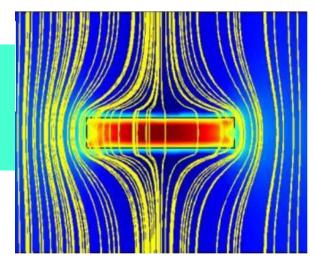
slabs

What does the magnetization of HTS, esp YBCO, look like?

For flat strands with B \perp tape

1. For *B* perpendicular, $B \gg B_p$

$$\Delta M = a J_c$$

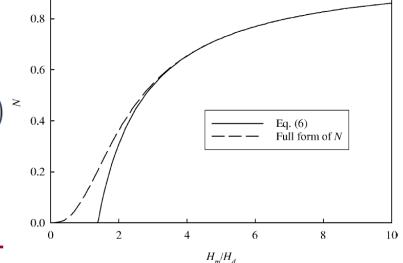

a is half width

slabs

2. For *B* perpendicular, $B \ll B_p$

But, B_p for B_{\perp} slab much much lower than B_p for cylinder or slab with B // slab

$$H_{\rm p} \approx J_{\rm c} \left(\frac{t}{\pi}\right) \left(\ln \frac{w}{t} + 1\right)$$


$$M = -\infty$$
 As the width becomes infinite

3. For *B* perpendicular, $B \approx B_p$

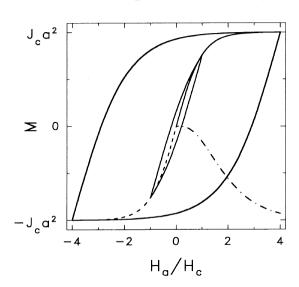
$$\Delta M = NaJ_c$$

$$N = 2\left(\frac{H_d}{H_m}\right) \operatorname{Ln}\left(\cosh\frac{H_m}{H_d}\right) - \tanh\left(\frac{H_m}{H_d}\right) \geq \left(1 - \frac{1.4}{(H_m/H_d)}\right).$$

 H_m is the applied field and $H_d = 0.4J_c t$

What does the magnetization of HTS, esp YBCO, look like?

4. For B perpendicular


$$M = \pi a^2 H_a (1 - H_a^2 / 3H_c^2)$$

$$M_{\downarrow\uparrow} = \pm J_c a^2 \left[anh rac{H_0}{H_c} + 2 anh rac{H_a \mp H_0}{2H_c}
ight]$$

$$H_a \ll H_c$$

$$M = J_c a^2 [1 - 2 \exp(-2H_a/H_c)]$$
 $H_a \gg H_c$

$$M \uparrow \downarrow = M/L = J_c t a^2 = J_{cs} a^2$$

a is half width of tape

 H_a is applied field

 $H_c = J_c/\pi$, where *J* is sheet current A/m

M=m/Lta

 J_{cs} = usual $J_{c}*t$

 $H_0 = H_{max}$

 $M_{\uparrow\downarrow}$ is moment per unit length

PHYSICAL REVIEW B

VOLUME 48, NUMBER 17

1 NOVEMBER 1993-I

Type-II-superconductor strip with current in a perpendicular magnetic field

So, let's try some numbers for Tape

Conductor spec

t	2 microns	0.000002	m
w	4 mm	0.004	m
Jc		2.5E+11	A/m2
Ic		2000	Α

4 K, 200 A 77 K

If the sample was very thick --

$$B_p = \mu_0 J_c a \approx 1000 \ T (4 \ K) \ or \ 100 \ T \ 77 \ K$$

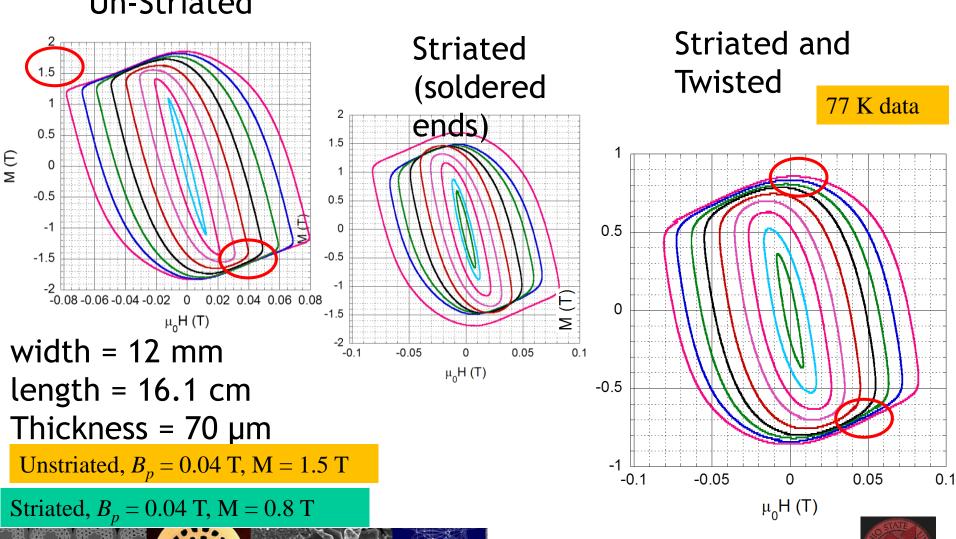
But for real YBCO which is quite thin ...

$$H_p \approx 0.4 J_c t \left[\operatorname{Ln} \left(\frac{d}{t} \right) + 1 \right]$$

Bp YBCO	1.520280467 T	4 K
	0.152028047 T	77 K

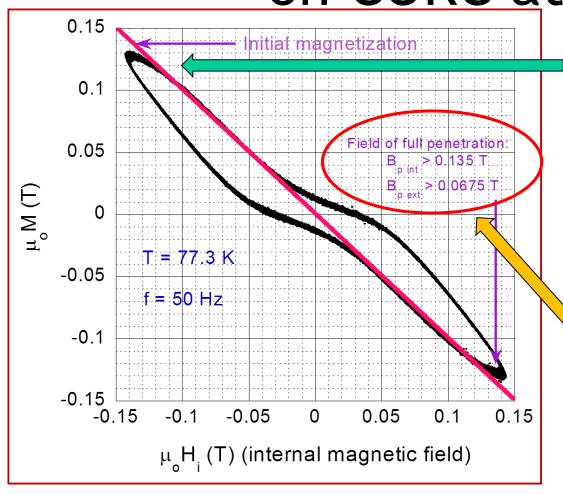
For flat strands with B \perp tape, $B >> B_p$ $M = (\alpha/2)J_c =$

	Film norm	Film norm	tape norm
	A/m	kA/m	kA/m
del M=	500000000	500000	10000


12.56	Tesla	4 K
1.256	Tesla	77 K

4 K, 1000 kA/m 77 K

Measured Loss in Striated and Twisted YBCC University of Houston tape samples Un-Striated


Center for Superconducting and Magnetic Materials

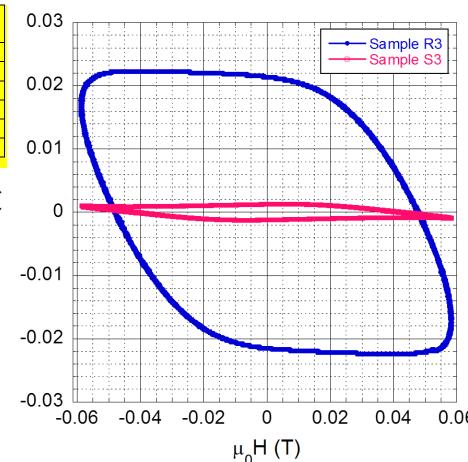
CSMM

Department of Materials

Science and Engineering

Magnetization Measurements on CORC at 77 K

- Saturation magnetization reduced as compared to tape
- This is due to normalizing to volume of cable rather than tape (factor of 3.3), (factor 3) = 10
- But note the error field in dipoles is due to moment, not magnetization
- Apparent Bp the same as tape
- But local Bp doubled
- local fields complicated

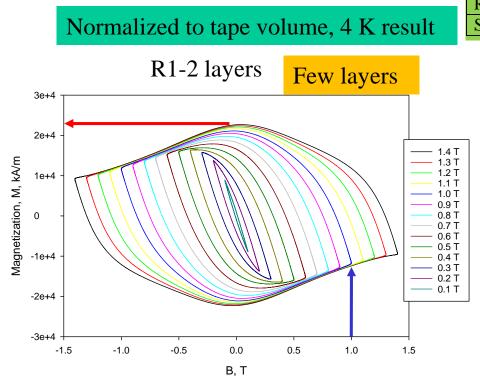


Striated measurement results of CORC at 77 K

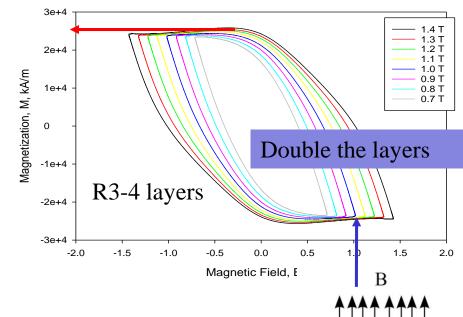
Sample	# of tapes	$I_{c}(A)$	ID	OD	Length	Striation
			(mm)	(mm)	(cm)	
R1	$2 \times 3 = 6$	607.9	4.96	6.17	11.7	None
S1	$2 \times 3 = 6$	348.5	4.95	6.07	12.2	5
R2	$3 \times 3 = 9$	904.2	4.93	6.37	11.7	none
S2	$3 \times 3 = 9$	534.9	4.94	6.38	11.8	5
R3	$4 \times 3 = 12$	1227.5	5.02	6.85	11.7	none
S3	$4 \times 3 = 12$	749.4	4.97	6.78	11.9	5

Striations do significantly reduce loss

Some factor from I_c loss


New UoT Studies

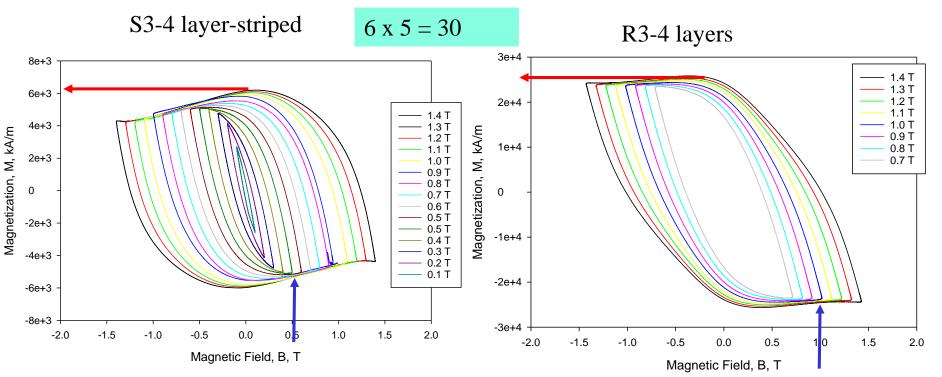
- While new OSU machine is being installed, made measurements at UoT
- Measured TWST, CORC, and Roebel cables at 4 K
- AC loss (10-60 mHz, 0.4 T), M-H (0-1.4 T, 10 mHz)
- Extracting: hysteretic, coupling,
 Magnetization at injection, and field penetration



CORC M-H Effect of layer number

	Film norm	Film norm	tape norm
	A/m	kA/m	kA/m
del M=	500000000	500000	10000

Sample	Tapes	$I_{c}(A)$	ID	OD	Length	Striations
			(mm)	(mm)	(cm)	
R1	$2 \times 3 = 6$	608	4.96	6.17	11.7	none
S1	$2 \times 3 = 6$	349	4.95	6.07	12.2	5
R2	$3 \times 3 = 9$	904	4.93	6.37	11.7	none
S2	$3 \times 3 = 9$	535	4.94	6.38	11.8	5
R3	$4 \times 3 = 12$	1228	5.02	6.85	11.7	none
S3	$4 \times 3 = 12$	750	4.97	6.78	11.9	5


This is close to what we might expect for simple tape, but that is maybe fortuitous, as field lines are complicated

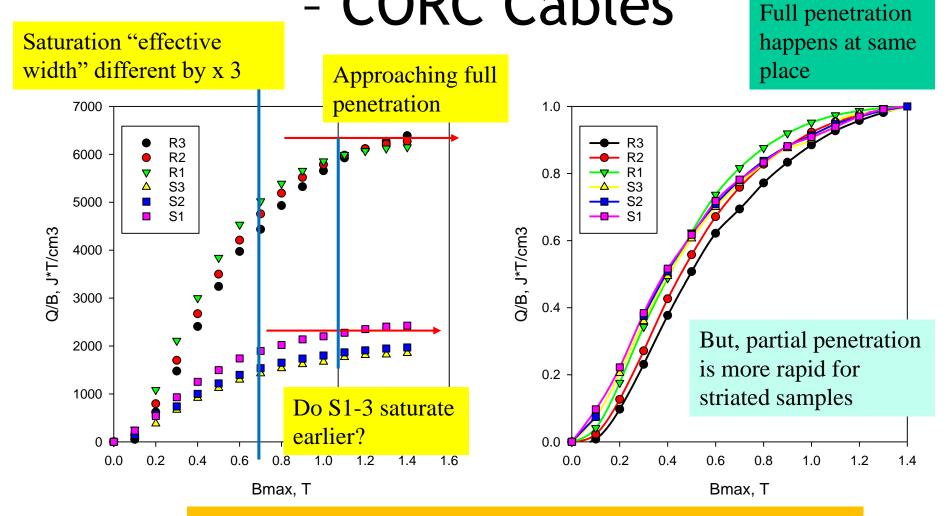
 $M_{max} \approx 2M_{tape}$ when tape volume normalized, not influenced by layer # B_n similar to tape and not influenced by tape #

CORC M-H Effect of striation

Normalized to tape volume, 4 K result

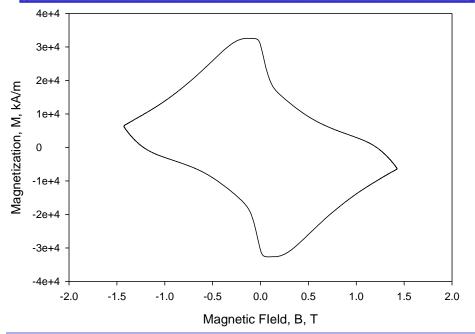
Sample	Tapes	$I_{c}(A)$	ID	OD	Length	Striations
			(mm)	(mm)	(cm)	
R1	$2 \times 3 = 6$	608	4.96	6.17	11.7	none
S 1	$2 \times 3 = 6$	349	4.95	6.07	12.2	5
R2	$3 \times 3 = 9$	904	4.93	6.37	11.7	none
S 2	$3 \times 3 = 9$	535	4.94	6.38	11.8	5
R3	$4 \times 3 = 12$	1228	5.02	6.85	11.7	none
S3	$4 \times 3 = 12$	750	4.97	6.78	11.9	5

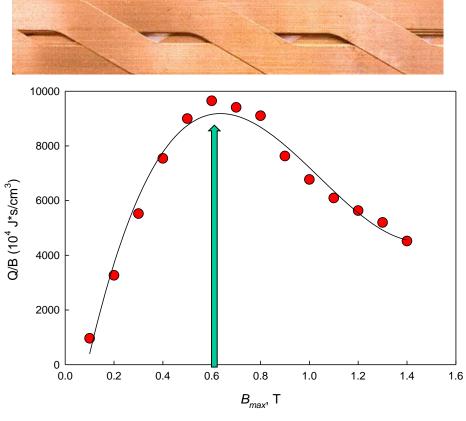
- Striping by 5 reduces M_{max} by 4
- B_p appears to be reduced by 1/2


Let's further explore this:

Loss (Q) below B_p goes as B^3 , above as B

Field Penetration into cables - CORC Cables

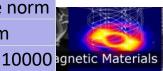

So, true B_p not really changed by striation, but apparent value is



Roebel M-H

Normalized to tape volume, 4 K result

width = 13 mmthickness = 0.5 mm twist pitch = 12.5 cm Made of 9 tapes, each 5 mm wide Cable lc(77.3K, self field) = 922.5 A


Loss peaks at field penetration

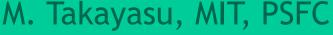
M similar to other cables, shape mod

Film norm A/m 500000000

kA/m 500000

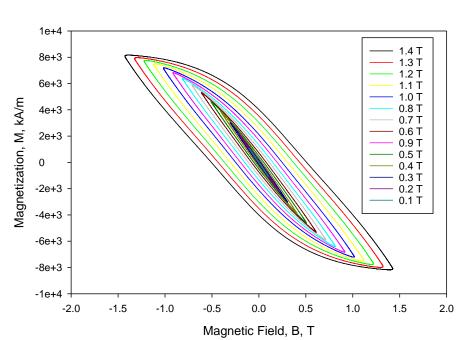
Film norm tape norm kA/m

M-H, TSTC

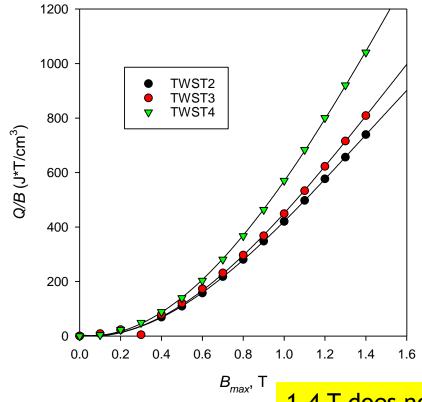

4 mm wide SuNAM Tape 150 μm SS $I_c = 200 \text{ A}, 77 \text{ K}, \text{SF}$ Conductor Length = 200 mm, Twist Pitch = 200 mm

 TSTC-1:stacked tapes twisted between Cu strips, with retaining Cu and in plexiglass Tube

- TSTC-2: Tapes stacked Horizontally in a single helical groove in an OFHC Cu rod with sheath (05 " OD)
- TSTC-3: Tapes stacked vertically in a single helical groove in OFHC Cu with sheath
- TSTC-4: Tapes stacked in two vertical grooves in an OFHC Cu rod with a Cu sheath



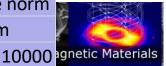
Center for Superconducting and Magnetic Mate


TWST-4 M-H and B_n

Normalized to tape volume, 4 K result

 M_{max} should be *3.14/2 = $1.2 \times 10^4 \text{ kA/m}$

Above penetration, Q/Bshould be fixed, with yintercept w*l_c


Below penetration, Q goes as B^3 , above, as B

1.4 T does not penetrate the sample

Film norm A/m 500000000

Film norm tape norm kA/m 500000

kA/m

Results

- $M \approx x \ 2M_{tape}$ for CORC
- M similar to tape but shape mod Roebel
- $M \approx M_{tape}$ (maybe 2/3.14 M_{tape}) for TWST
- $M_{max} \approx 10000$ -20000 kA/m for B_{\perp} tape, Roebel cable, and any orientation CORC and TWST
- B_p similar to individual tape for CORC, Roebel, and TWST
- Striping tapes in CORC reduces M and B_{p-app}

Discussion

- CORC cables initial slope suggest flux exclusion from whole cable at low fields → an initial magnetization slope which is 3 x higher (this may be injection region)
- Striation of the CORC cables removes this effect, and flux exclusion volume drops below full cable volume between B_{p-app} and B_{p-true}
- Flux exclusion for TWST and Roebel are like cable volume rather than tape, but here tape and cable volume similar

Cable	1 T Minj, kA/m
CORC	-12,000
CORC striated	-5000
Roebel	-20000
TWST	-8000

Strand type	NbTi ⁽¹⁾	Nb ₃ Sn ⁽²⁾	Bi:2212 ⁽³⁾	YBCO	YBCO
Cable type	Rutherford	Rutherford	Rutherford	TSTC	CORCTM
Cable packing factor, λ_c	0.88	0.855	0.87 ⁽⁴⁾	0.56	0.58
Strand filling factor, λ_s	0.385	0.455	0.26	0.01 ⁽⁵⁾	$0.01^{(5)}$
Layer CCD, J _{c,inj} , kA/mm ²	20.4	-	1.75	88 ⁽⁶⁾	88 ⁽⁶⁾
Eng. CCD ^(/) , J _{e,inj} , kA/mm ²	7.85	-	0.455	0.88	0.88
Fil. (strand) size, d_{eff} ; µm	7	61	278	4000(8)	4000 ⁽¹⁰⁾
J _{cable,inj} kA/mm ²	6.91	13.0	0.396	0.493	0.510
J _{cable,coll} , kA/mm ²	0.704	0.855	0.348	0.244	0.232
$B_{b,coll}$, T	8	15	20	20	20
<i>b</i> ₃ , units ⁽¹¹⁾	3	41	19	330(12)	330(12)
b _{3*} , units (13)			37	99	99

77 K Ic	4 K Ic		Jc (A/m2)	M	
	200	2000	2.5 x 10^11		10000
	80	800	10^11		4000
	70	700	0.88 x 10^11		3250

- So, for the tape, while the M goes up, it goes up as I_c , so less cables, and field errors are same
- But, cable vs tape differences matter all within factor of two

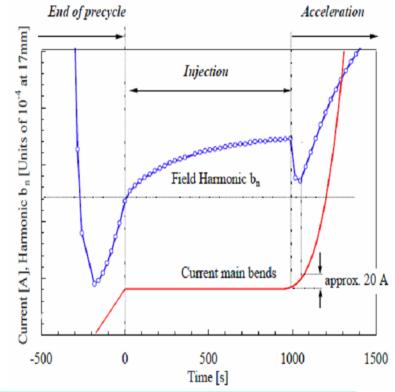
Next Steps

- Further Measurements of the most recent cables, expanded up to +- 3 T at 4 K
- LBNL-OSU collaboration (X. Wang) with YBCO data detailed field error estimations canted cos and other magnets
- Explore M modification with current injection
- Consider more closely effects of creep on error fields
- Loss is of interest?

Magnetization - but loss?

- For the LHC NbTi dipoles ramping at about 7 mT/s AC loss is only a small contributor to cryogenic load
- Could be larger for YBCO cables.
- For a YBCO cable carrying a current of 10 kA at 20 T the loss at 7 mT/s is estimated to be 200 mW/m
- For an HTS insert of, say, 70 turns the winding dissipation would be 14 W/m -- more than double the LHC ring's 4.5 K/1.8 K refrigeration capacity
- This is a handle-able problem, but not of no interest

10 kA cable		Measured CORC cable		
T/s	t, sec		f	
0.007	2285.7143	9142.857	0.000109	
Q, J/m3	A m2	Q/m	mW/m	
10000000	0.0000785	785	0.085859	


So, 1/3 of simple estimate, but still substantial

Drift in accelerator Magnets

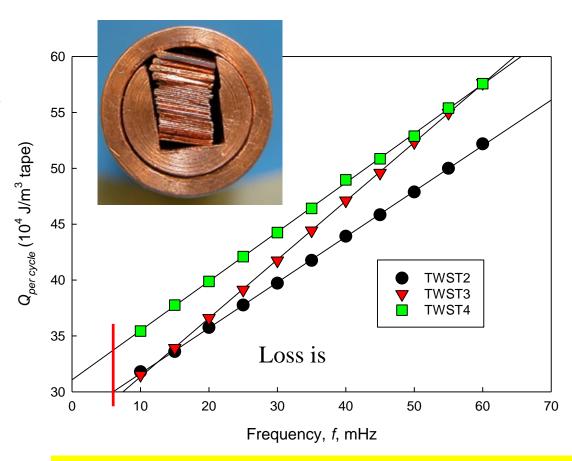
- Just as important as the absolute value of b₃ is any change with time during the injection porch
- It is possible to compensate for error fields with corrector coils, but the presence of drift makes this much more difficult
- At right is shown the drift of the error fields as a function of time from zero to 1000 seconds for LHC magnets, followed by a snap-back once the energy ramp begins

Sample	<i>B</i> , T	orientation	-M ₀ , kA/m	- <i>M</i> _{20min} , kA/m	M_{20min}/M_0	ΔM , kA/m	%b ₃
Bi:2212	1 T	_	15	12	0.80	3.0	20
	12 T		2.7	1.5	0.58	1.1	42
YBCO							
	1 T		991	906	0.91	90	10
	1 T	45°	933	811	0.86	120	14
	12 T		280	187	0.67	93	33
	12 T	45°	229	200	0.87	29	13

ep both b₃ and its 1 unit Id Nb₃Sn based his is possible

^f Materials ____ ngineering

Loss Appendix



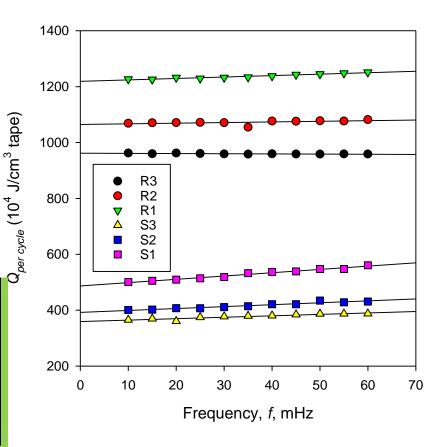
TSTC-Hysteretic and Coupling Loss

- 30 tapes, 200 A/77 K SF -> 6 kA at 4 K, 20 T
- At accelerator-relevant frequencies, non-negligible coupling loss.
- Ballpark of coupling currents for Nb₃Sn magnets (3 x)
- Hyst loss about 3 x, but not fully penetrated
- (not current normalized)

	Hyst	Slope	rho	
	10^4 J/cm3	J*s/cm3	n-ohm-cm	
cable				
TWST2	27.6	408	95	
TWST3	26.1	524	74	
TWST4	31.1	441	87	

Resistivity about 1 order above Cu at Lhe temp

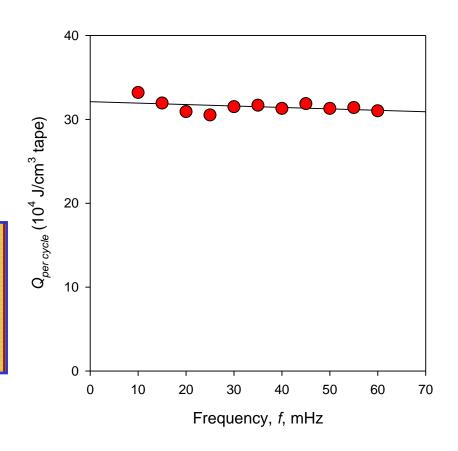
Pressure of abrasion related to the twist of the tapes making for low contact resistance



CORC Hysteretic and Coupling Loss

- Early Experimental cables for striped/not striped
- More flux penetration here
- Coupling loss values show high interstrand resistance - not infinite, but in milli-100s milliohms
- Note 1: Loss per tape volume greater for fewer layers- relevant for injection
- Note 2: Striped Tape CORC loss suppressed by about x 3 (not quite 5)

Sample	Tapes	$I_{c}(A)$	ID	OD	Length	Striations
			(mm)	(mm)	(cm)	
R1	$2 \times 3 = 6$	608	4.96	6.17	11.7	none
S 1	$2 \times 3 = 6$	349	4.95	6.07	12.2	5
R2	$3 \times 3 = 9$	904	4.93	6.37	11.7	none
S2	$3 \times 3 = 9$	535	4.94	6.38	11.8	5
R3	$4 \times 3 = 12$	1228	5.02	6.85	11.7	none
S3	$4 \times 3 = 12$	750	4.97	6.78	11.9	5



Roebel Hysteretic and Coupling Loss

- More flux penetration here given geomtry
- Coupling loss values show high interstrand resistance - not infinite, but in milli-100s milliohms

```
width = 13 mm
thickness = 0.5 mm
twist pitch = 12.5 cm
Made of 9 tapes, each 5 mm wide
Cable Ic(77.3K, self field) = 922.5 A
```