Development of APC (ZrO₂) Nb₃Sn Multifilamentary and Ternary Conductor Mike Sumption, J. Rochester,, and E.W. Collings Hyper Tech

Center for Superconducting and Magnetic Materials, MSE, The Ohio State University Hyper Tech Research, Inc. Xuan Peng Mike Tomsic

FCC Week 2017

X. Xu, Fermilab

This work was supported by the U.S. Department of Energy, Office of Science, Division of High Energy Physics, under SBIR phase I DE-SC0013849 and University Grant DE-SC0011721.

Need of FCC for improved Nb₃Sn

	Internal Sn, RRP	Tube	ITER	PIT	Bronze	At 15 T J_c is 2700 A/mm ² , J_c (RRP) =
12 T Jc, A/mm2	2500-3000	2000-2500	1000-1200	2000-2500	600-800	1600 A (mm ² and
Stability	Low	medium	high	medium	high	
Loss	High	medium	low	medium	low	lube/PIT 1350 A/mm ²

Needed conductor amount for FCC

- FCC with 16 T magnets: 4,500 tons of Nb₃Sn and 10,000 tons on NbTi
- FCC with 20 T: 1,400 tons HTS, 6,300 tons Nb₃Sn, 11,000 tons NbTi
- Conductor Specifications?
 - Non Cu J_c of 1500 A/mm² at 16 T?
- Present conductors do not meet requirements when production limits and margins are taken into account
- HTS options very expensive

Importance of refining Nb₃Sn grain size

always at $0.2B_{c2}$. At low grain size F_p is increased both by reduced grain size and shifting

How to obtain such small grain size in practical strands?

- Reducing reaction temperature? Cannot go to < 80 nm, also strain irreversibility cliff limits
 - **Adding second phase particles** to prevent grain coarsening?

partment of Materials

3

Internal oxidation of Nb₃Sn to reduce grain sizeproof of principle - external oxygen source

Cu

"Internal oxidation": O diffuses in an A-B solid solution, and selectively oxidizes the solute B, forming BO_n particles in matrix Α.

Prerequisites:

- B is much less noble than A.
- O diffuses fast in matrix A.
- O partial pressure is only high enough to oxidize B.

Experiment worked – grain sizes less than 50 nm achieved!

Strand with internal oxidation source --mono

F_p-**B** curves of Internal oxidation strands⁶

250		A naive look at the limits of J_c in Nb ₃ Sn					
200 - 200 -	Case V	(Rosy scenario)					
Case		Engineering J_c and I_c for the five different cases:					
프 프 50 -	Case II	I. Present state-of-the-	II. The wire with	III. Only improve <i>B</i> _{im}	IV. Only refine the	V. Both improve the <i>B</i> _{im} to 25 T and	
0	5 10 ⁻¹² 15 20 25	art RRP	SnO ₂ - 625	to 25 T by	grain size	refine the grain size	
	Magnetic field, <i>B</i> , T	strands	C / 800h	Ti doping, etc.	to 25 nm	down to 25 nm	
	Grain size, nm	100 - 120	36	36	25	25	
	F _p -B peak	0.2 <i>B</i> _{<i>irr</i>}	0.34 <i>B</i> _{irr}	0.34 <i>B</i> _{<i>irr</i>}	$0.5B_{irr}$	0.5 <i>B</i> _{<i>irr</i>}	
	$F_{p,max}$, GN/m ³	~90	180	180	~250	~250	
	рт	25	20	25	20	25	
	D _{irr} , 1	25	20	23	20		
	Layer J_c , A/mm ²	25 5,000	9,600	16,400	20,000	20,800	
12	D _{irr} , 1 Layer J _c , A/mm ² Non-Cu J _c , A/mm ²	25 5,000 3,000	9,600 5,760	16,400 9,840	20,000 12,000	20,800 12,480	
12 T	D _{irr} , 1 Layer J _c , A/mm ² Non-Cu J _c , A/mm ² Engineering J _c , A/mm ²	25 5,000 3,000 1,600	9,600 5,760 3,050	16,400 9,840 5,200	20,000 12,000 6,360	20,800 12,480 6,600	
12 T	$ D_{irr}, \mathbf{I} $ Layer J_c , A/mm ² Non-Cu J_c , A/mm ² Engineering J_c , A/mm ² I_c , A	25 5,000 3,000 1,600 800	9,600 5,760 3,050 1,530	16,400 9,840 5,200 2,620	20,000 12,000 6,360 3,200	20,800 12,480 6,600 3,320	
12 T	$ D_{irr}, 1 $ Layer J_c , A/mm ² Non-Cu J_c , A/mm ² Engineering J_c , A/mm ² I_c , A Layer J_c , A/mm ²	25 5,000 3,000 1,600 800 2,700	9,600 5,760 3,050 1,530 3,800	16,400 9,840 5,200 2,620 7,800	20,000 12,000 6,360 3,200 12,500	20,800 12,480 6,600 3,320 16,000	
12 T 15	$ D_{irr}, 1 $ Layer J_c , A/mm ² Non-Cu J_c , A/mm ² Engineering J_c , A/mm ² I_c , A Layer J_c , A/mm ² Non-Cu J_c , A/mm ²	25 5,000 3,000 1,600 800 2,700 1,600	9,600 5,760 3,050 1,530 3,800 2,280	16,400 9,840 5,200 2,620 7,800 4,680	20,000 12,000 6,360 3,200 12,500 7,500	20,800 12,480 6,600 3,320 16,000 9,600	
12 T 15 T	$ D_{irr}, 1 $ Layer J_c , A/mm ² Non-Cu J_c , A/mm ² Engineering J_c , A/mm ² I_c , A Layer J_c , A/mm ² Non-Cu J_c , A/mm ² Engineering J_c , A/mm ²	25 5,000 3,000 1,600 800 2,700 1,600 850	9,600 5,760 3,050 1,530 3,800 2,280 1,210	16,400 9,840 5,200 2,620 7,800 4,680 2,480	20,000 12,000 6,360 3,200 12,500 7,500 4,000	20,800 12,480 6,600 3,320 16,000 9,600 5,100	

Note: Assuming all the five cases have the same Nb_3Sn area fraction with the state-of-the-art RRP strands: the Nb_3Sn area fraction in a subelement is 60%, the non-Cu area fraction in a strand is 0.53, the wire diameter is 0.8 mm.

APC RRP?

Not Only Tube Conductor, but PIT, Bronze, or Internal Sn distributed barrier (e.g., RRP) -

As long as a structure allows for the addition of oxide powder in a proper position, so that oxygen can be transferred, this structure is OK.

Department of Materials

Patent: Xu, Peng, Sumption, PCT/US2015/016431.

What to expect from a Practical Conductor J_c and J_e (15 T)

- Layer J_c of RRP, Tube and PIT is 5000 A/mm², with 60% A15 in subelement for RRP, and 50% for PIT and Tube
- At 15 T J_c is 2700 A/mm², $J_{c,nonCu}$ (RRP) = 1600 A/mm², and Tube/PIT 1350 A/mm²
- At 12 T for APC
- Layer Jc of 10 kA/mm² seen at 12 T in mono
- Assuming 50% fill factor, $J_{c,nonCu}$ (12 T) should reach 4750 A/mm²
- For a RRP-like design, then $J_{c,nonCu}$ (12 T) should reach 5760 A/mm² in Binary

At 15 T for APC

- Layer J_c of 3800 A/mm² extrapolated from 14-15 T in mono
- Assuming 50% fill factor and mixed powders, tube J_{c,non} (15 T) should reach 1805 A/mm² (<u>Binary</u>)
- For RRP-like design, then $J_{c,nonCu}$ should reach 2165 A/mm² 15 T (Binary)
- With ternary push of B_{c2} to 25 T, a significant further increase would be seen at 15-<u>18 T</u>

So.... How to add the ternary?

Some possible methods: (1) Ti, (2) Ta

- We choose Ti, as it leads to a better strain tolerance conductor and, it can be added to the allow after drawing
- But you can't add it in the same area as the SnO₂ because Ti is a powerful oxygen getter
 Sn+Ti
 Nb
 SnO2

First try - back to Externally oxygen source: T3727-2

- Externally oxidized prototype
- Single filament
- Baked at 650°C for 300h
- 14 samples in presence of varying amounts of oxygen

or Superconducting and Magnetic Materials

SMM

Sample	CuO content	Heat treatment
Number	(mg, ±0.1)	
1	1.6	20 C/h + 700Cx100h
2	1.6	20 C/h + 650Cx300h
3	2.6	20 C/h + 700Cx100h
4	2.3	20 C/h + 650Cx300h
5	5.1	20 C/h + 700Cx100h
6	4.2	20 C/h + 650Cx300h
7	9.0	20 C/h + 700Cx100h
8	9.1	20 C/h + 650Cx300h
9	12.1	20 C/h + 700Cx100h
10	11.9	20 C/h + 650Cx300h
11	17.4	20 C/h + 700Cx100h
12	17.5	20 C/h + 650Cx300h
13	31.0	20 C/h + 700Cx100h
14	30.4	20 C/h + 650Cx300h

Externally oxidized fracture: T3757-2

Center for Superconducting and Magnetic Materials

CSMM

Higher oxygenated samples 4,6,8

- More samples with increasing amounts of oxide
 - SEM images (polished and fracture)
 - EDS compositional analysis
 - J_c and B_{c2} using PPMS

Fracture SEM for higher content oxygen external oxidized samples⁶

Sample		Grain size nm
	2	65
	4	55
	6	53
	8	48

4

8

Center for Superconducting and Magnetic Materials

Acc V Spot Magn Det WD 200 nm 1.0 kV 3.0 100000x TLD 3.6 T3727-8-20Cph+6650x300h

Trends in grain size, Ti, and B_{c2}

Sample 4

ample	Grain size (nm)	Ave Ti %	Bc2 (T)
2	65	1.9	22.6
4	55	1.6	20.3
6	53	1.1	21.3
8	48	0.25	21.7

Spot

(direct formation)

CSMM

Center for Superconducting and Magnetic Materials

Normalized F_p

Magnetic J_c for External oxidized strands

Area related Uncertainty for sample 2

Center for Superconducting and Magnetic Materials

CSMM

100 um

Acc.V

CSM₽

20.0 kV T3657-d07-450X24+650X1

Initial Multi development --Thick Nb barrier 61 restack

Science and Engineering

Center for Superconducting and Magnetic Materials

Thin Nb barrier 61 restack- HTR

Unreacted strand

Modified design and HT leads to Grain size reduction Reaction fraction reaching 20% (need more)!

Reacted strand

More recent Multi I

61-0.7 mm OD multi-650C/500h

50 nm grain size

Department of Materials ____ Science and Engineering

Center for Superconducting and Magnetic Materials

Strand Design Progression, New Strand Design

Note: 57.5% non-Cu

Push for retaining reduced grain size while increasing non-Cu fraction and % reaction under the barrier

0.5 mm OD strand

ter for Superconducting and Magnetic Materials

New Strand Results

Non-Cu fraction = 57.5% A15 in non-Cu fraction = 33%

Typical for RRP, Tube and PIT Non-Cu = 50% A15/nonCu = 60% (RRP) A15/Non-Cu=40% (Tube and PIT)

3000 A/mm2 at 12 T 2400 A/mm2 at 12 T

10000 * 0.33 = 3300 A/mm2, leads to expectation (prepare now to measure) of 3300 A/mm2 12 T.

Fracture

CSMM

High Field Comparison

Summary and Conclusions

- We have demonstrated grain refinement by a factor of 3 and a doubling of 12 T J_c in monofilaments
- Internal oxidation can be used in many Nb₃Sn strand types, including Tube (demonstrated) PIT (proposed), RRP/RIT (proposed) etc.
- Ternary strands under development: Possible to inject Ti into internally oxidized Nb3Sn layers
- Sn contents remain high with Ti additions, but Bc2 increase not yet seen may need to add more Ti
- Multifilamentary strands have been demonstrated with refined grains and enhanced Jc values.
- New designs which have push non-Cu fraction to above 50% and reaction fraction to above 30% are demonstrated (measurements underway) These need (1) To be optimized, and (2) To be demonstrated for a ternary alloy with the ternary alloy B_{c2}
- This route is very promising for future Nb₃Sn development

