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In this study, we anchored genotyping-by-sequencing data to the International Wheat 
Genome Sequencing Consortium Reference Sequence v1.0 assembly to generate 
over 40,000 high quality single nucleotide polymorphism markers on a panel of 376 
elite European winter wheat varieties released between 1946 and 2007. We compared 
association mapping and genomic prediction accuracy for a range of productivity traits 
with previous results based on lower density dominant DArT markers. The results 
demonstrate that the availability of RefSeq v1.0 supports higher precision trait mapping 
and provides the density of markers required to obtain accurate predictions of traits 
controlled by multiple small effect loci, including grain yield.

Keywords: mapping, quantitative traits, trait dissection, next-generation sequencing, genomic selection

INTRODUCTION
Historically, wheat breeding has focused on phenotypic selection for final yield potential combined 
with morphological and disease resistance traits (Cavanagh et al., 2013). The advent of genetic 
and genomic tools has largely supported marker-assisted selection for major genes in segregating 
generations. There is additional potential for the introgression of favorable genetic regions controlling 
variation in agronomically significant quantitative trait loci (QTL) through the routine application 
of genomic selection (GS) schemes that are based on the combined merit of genome-wide markers 
(Meuwissen et al., 2001; Stamp and Visser, 2012).

Advances in genomic technologies combined with computationally efficient statistical models 
present new opportunities for molecular crop breeding. Selection based on phenotype is complex, 
time-consuming, and still costly; thereby necessitating the adoption of molecular breeding systems. 
For crop geneticists and plant breeders, the adoption and applicability of genotyping-by-sequencing 
(GBS) has been recently demonstrated for a wide range of crops. This includes the detection of QTL 
controlling agronomic traits in rice and soybean (Begum et al., 2015; Sonah et al., 2015) and the 
detection of introgressions in cotton, Brassica, and sorghum (Kim et al., 2016).

GBS is an attractive alternative to array-based methods for generating high volume genome-wide 
single nucleotide polymorphisms (SNPs) for genome-wide association studies (GWAS) and GS. It 
is a fast, robust, and high-throughput method applicable across species in which genotyping and 
polymorphism discovery occur simultaneously, thereby avoiding the upfront effort of discovering, 
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screening, and characterizing polymorphisms that is generating 
such ascertainment bias (Poland and Rife, 2012). Initially 
developed by Elshire et al. (2011), the technique was modified by 
Poland et al. (2012b) to produce a two enzyme version suitable for 
polyploid species with large genomes. This uses a combination of 
methylation sensitive restriction enzymes, PstI and MspI, cutting 
at rare and common restriction sites, respectively followed by 
next-generation sequencing. An accompanying bioinformatics 
pipeline, Tassel-GBS (Glaubitz et al., 2014), is in place for calling 
SNP variants from the resulting GBS sequences. GBS has recently 
been employed in wheat for linkage mapping and genomic 
prediction studies (Poland et al., 2012a; Poland et al., 2012b; He 
et al., 2014) and the availability of a high-quality reference RefSeq 
v1.0 genome assembly (International Wheat Genome Sequencing 
Consortium, 2018) should enhance the efficiency and quality of 
GBS data for downstream analysis (Kim et al., 2016).

GWAS combines high-density genome wide marker 
information (such as those derived from GBS) with high levels of 
genetic diversity in panels of individuals in order to map QTL. In a 
breeding context, it is used to detect genomic regions controlling 
complex quantitative traits and identifying alleles (and associated 
markers) for exploitation in variety improvement. GWAS has 
been used to detect marker-trait associations for several traits in 
wheat including grain protein content, thousand kernel weight 
and specific weight (Reif et al., 2011), agronomic traits (Bentley 
et al., 2014; Mora et al., 2015), and resistance to Fusarium Head 
Blight (Arruda et al., 2016).

Despite the power of GWAS to detect significant associations, 
many agronomically important traits under selection are 
polygenic, meaning these traits are influenced by many common 
SNPs, each with small individual effect, and remain recalcitrant 
to conventional marker-assisted selection. GS was proposed to 
address this complexity (Meuwissen et al., 2001) because it omits 
the significance testing used in GWAS, modelling the effect of 
all genotyped markers simultaneously (Meuwissen et al., 2001). 
This avoids the “Winners’ Curse” bias (Beavis, 1994) caused by 
selection of a subset of markers, and also improves the accuracy 
of selection. By including genome-wide marker data in a model 
to predict complex traits, the accuracy of selection is increased 
through greater capture of low heritability traits. This could 
accelerate genetic gain through a shortening of the breeding 
cycle, particularly for traits that are expensive to phenotype, are 
measured late in the growing season or require large volumes of 
seed to assess.

Several studies have investigated the accuracy of prediction 
using real and simulated data. The central considerations in these 
studies have been the predictive ability of available statistical 
models and the composition and size of the training population 
(Heslot et al., 2012; Daetwyler et al., 2013; de los Campos et al., 
2013). Using eight datasets from four plant species including 
wheat and barley, Heslot et al. (2012) tested 11 GS models and 
found predictive abilities to be equivalent for many of the methods 
but with differences in computational times. Ridge regression 
best linear unbiased prediction (RR-BLUP), is computationally 
efficient (Endelman and Jannink, 2012; Lipka et al., 2015) and is 
used in the present study to assess predictive variation between 
genetic marker sets.

In this study, a previously described panel of 376 elite winter 
wheat varieties released or commercialized in the UK, France, 
and Germany between 1946 and 2007 (Bentley et al., 2014) were 
genotyped with GBS to provide dense genome-wide marker 
coverage. By re-genotyping the panel, we aimed to compare 
GWAS and GS performance across low- and high-marker density 
genotyping platforms and demonstrate the use and applicability of 
GBS given the recent release of a high-quality International Wheat 
Genome Sequencing Consortium (IWGSC) RefSeq v1.0 genome 
assembly (International Wheat Genome Sequencing Consortium, 
2018). We tested GBS as an effective means to identify large 
numbers of SNPs to detect broadly relevant QTL controlling key 
traits with high precision and to demonstrate the usefulness of 
GBS for GS and its potential for breeding applications.

MATERIAls AND METHODs

Plant Material and Phenotyping
The previously described TriticeaeGenome panel consisting of 376 
elite winter wheat varieties was used in this study (Bentley et al., 
2014). The panel was evaluated for a range of agronomic traits 
in replicated European trials in France (FRA), Germany (DEU), 
and the UK (GBR) in 2010 and 2011 as described in Bentley et al. 
(2014). Flowering time (FT), grain yield (GY), and plant height 
(PH) were evaluated across all trials while nine additional traits 
including presence/absence of awns (Awns), winter kill (Wkill), 
maturity (MAT), grain protein content (Gpt), ears/m2 (Ears), 
lodging resistance (LR), grain specific weight (GSW), tiller 
number (TN), and thousand grain weight (TGW) were scored in 
single European locations as described in Bentley et al. (2014). 
All trait data are summarized in Supplementary Table S1 and 
available from Figshare DOI: 10.6084/m9.figshare.7350284. For 
each trait, best linear unbiased estimates (BLUEs) were generated 
in GenStat (Payne, 2009) for variety performance at each site and 
over all sites for use in association analysis and genomic prediction. 
Marker-trait association for FT and GY was calculated on BLUEs 
for each site per year and overall values from all sites. Association 
for PH and LR was calculated from overall site BLUEs.

Genotyping, Variant sNP Calling,  
and Imputation
Genomic DNA was isolated from 2-week-old seedlings of each 
line using a modified Tanksley extraction protocol (Fulton et al., 
1995). GBS was conducted as described by Poland et al. (2012b). 
To ensure adequate sequencing coverage and enhance accuracy 
each line was replicated four times with each replicate identified 
by a unique barcode. GBS libraries were sequenced in 96-plex 
across four flow cell lanes in Illumina HiSeq. Fastq sequence 
files were processed in the TASSEL GBS pipeline version 5.2.31 
(Glaubitz et al., 2014). Reads were trimmed to 64 base pairs and 
filtered based on sequence quality score to obtain only good 
quality reads with a barcode sequence, five nucleotides of PstI 
restriction site fragment and no unreadable bases (N) in between. 
Reads were aligned to the IWGSC RefSeq v1.0 reference genome 
(International Wheat Genome Sequencing Consortium, 2018) 
using Bowtie2 (Langmead and Salzberg, 2012). SNP sites were 
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filtered to remove loci with extremely low coverage or high levels 
of missing data and heterozygosity. Filtering also removed SNPs 
with minor allele frequencies (MAFs) below 5%. Individuals with 
more than 50% data missing were excluded from downstream 
analysis. The filtered GBS data in Hapmap format is available from 
Figshare DOI: 10.6084/m9.figshare.7350284. Missing SNPs were 
imputed using the LD-kNNi method implemented in TASSEL 
(Money et al., 2015) with the following parameters: number of 
sites in LD = 200; maximum number of nearest neighbors used 
in imputation = 50; 10 imputation iterations.

linkage Disequilibrium
Linkage disequilibrium (LD) was evaluated for average decay 
for each genome and between pairs of SNPs per chromosome. 
For the overall genome LD decay pattern, only SNP sites with 
MAFs of at least 0.1 were included. Pairwise LD was calculated 
as the squared correlation of allele frequency r² between SNP 
loci (Weir, 1996). The P-values of LD between any two loci were 
determined by a two-sided Fisher’s exact test. To summarize the 
pattern of decay of LD with distance, a curve of decay of r² with 
distance in base pairs was estimated by nonlinear least squares 
(Remington et al., 2001; Marroni et al., 2011). LD was estimated 
in TASSEL (Glaubitz et al., 2014). LD decay plots of r² values with 
distance in base pairs were plotted and the LD decay curve fitted 
in R (R Core Team, 2016).

Population structure
A subset of 7,865 uncorrelated SNPs derived from thinning the 
full set of SNPs based on physical distance (minimum distance 
100,000 bp) was used for evaluation of population structure. 
Principal coordinate analysis (PCoA) was conducted in the R 
package “ade4” (Dray and Dufour, 2007). The first two principal 
coordinates accounting for the largest proportion of variation 
were used to visualize patterns of population structure within the 
panel. Population structure was also evaluated using the Bayesian 
clustering approach implemented in the software STRUCTURE 
2.3.4 (Pritchard et al., 2000). A burn-in of 100,000 iterations 
followed by a Markov Chain Monte Carlo (MCMC) of 100,000 
iterations was executed to estimate the number of subpopulations. 
An admixture model was applied for two to ten putative 
populations (K) and six independent runs were conducted for each 
K. The optimal K value was inferred based on the rate of change in 
log probability of data between successive K values using the ad 
hoc statistic, DeltaK (Evanno et al., 2005). The program CLUMPP 
was used to assign results from separate STRUCTURE runs to 
common populations (Jakobsson and Rosenberg, 2007). The panel 
had been previously genotyped with 2,012 polymorphic dominant 
Diversity Array Technology (DArT; www.diversityarrays.com) 
array markers and 1,804 markers retained for analyses. In this 
study, a subset of 1,117 unlinked DArT markers were reselected 
and used to re-estimate PCoA based on DArT.

Association Mapping
Association was estimated by mixed linear modeling (MLM) 
implemented using the efficient mixed model association 

method (EMMA; Kang et al., 2008) in the Genomic Association 
and Prediction Integrated Tool (GAPIT; Lipka et al., 2012). To 
improve statistical power and exclude bias due to relatedness, the 
PCA + K mixed model (Yu et al., 2006; Zhang et al., 2010) was 
used. Within this model, population structure and relatedness 
were accounted for by jointly incorporating PCA as fixed effects 
and a kinship matrix as a random effect, respectively. The 
kinship matrix was estimated by the centered identity-by-state 
method derived by Endelman and Jannink (2012) in TASSEL. 
Bayesian information criterion (BIC) was used to determine the 
optimal number of principal components in the mixed model 
for estimating marker-trait association. A Bonferroni correction 
threshold for multiple testing was calculated at an experimental 
P-value = 0.01. The amount of phenotypic variation controlled 
by identified QTL was estimated as the difference in residual 
variance between models with and without the marker effect. 
Significance of associations was tested using a false discovery 
rate (FDR) P-value at a cutoff of 0.05 according to Benjamini 
and Hochberg (1995). Marker-trait association for FT and GY 
was calculated on BLUEs for each site per year and overall values 
from all sites. Association for PH and LR was calculated from 
overall site BLUEs. Association mapping results from the present 
study using GBS markers were compared to previous results on 
the panel using DArT markers (Bentley et al., 2014).

Genomic Prediction
RR-BLUP as implemented in the R package “rrBLUP” (Endelman, 
2011) was used to predict genomic estimated breeding values 
(GEBVs). The predictive ability of GBS and DArT markers were 
compared across the panel for all 12 traits using tenfold cross-
validation. The panel was also split by country of origin (FRA, 
DEU, and GBR) and prediction accuracy assessed within each 
group by tenfold cross-validation. Training populations were 
assembled separately from FRA, DEU, and GBR with 192, 82, 
and 70 varieties, respectively and with each used to predict 
the phenotypes of varieties from the two remaining countries 
combined and separately. In all cases prediction accuracy was 
evaluated as the average Pearson’s correlation between the 
predicted GEBVs and the true phenotype value across 10 runs.

REsUlTs

Genotyping
Approximately 1.4 million good quality reads (defined as bar-coded 
reads of 64 nucleotides in length with high quality scores) were 
generated from alignment to IWGSC RefSeq v1.0 (International 
Wheat Genome Sequencing Consortium, 2018). There was an 
overall alignment rate of 91.28% and of these 20.54% aligned to 
unique positions and a total of 200,712 SNP sites were identified 
from the alignment. Sequencing coverage per allele per line was 
variable among all lines dependent on the quality of genomic DNA. 
However, because the lines were sequenced in replicates, the effect 
of low coverage was minimal. Filtering on low coverage eliminated 
28% of the data. The data were further filtered to remove lines with 
>30% SNPs missing, and SNP sites with >20% data missing. Highly 
heterozygous SNP sites were also filtered to avoid confounding 
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effects from homoeologous SNPs. After filtering, a total of 42,795 
SNPs and 350 individuals were retained for subsequent analyses. 
The proportion of SNP markers across the three wheat genomes 
was highest on the B genome (52%) followed by the A genome 
(32%) and the D genome (10%), which was lowest, as expected. 
Chromosome 1B had the highest number of SNPs (4,878) while 
4D had the least (240). Unmapped SNPs comprised 2% of the SNP 
dataset (Supplementary Table S2). MAF were slightly skewed in 
favor of lower values. MAFs for 22.5% of SNPs were within the 
range 5%–10% (Supplementary Figure S1).

linkage Disequilibrium
LD was estimated between SNP loci on each chromosome as 
the squared correlation of allele frequency r². A nonlinear least 
squares curve was fitted to estimate the distance in mega base 
pairs (Mbp) within which LD decayed to 0.2 on each chromosome 
(summarized in Supplementary Table S2). Overall, LD decayed 
with increasing physical map distance on all chromosomes and 
on all genomes. However, on all chromosomes, some marker 
pairs separated by long distances were observed to be in high 
LD (r² = 1). Over the whole genome, LD decayed at an average 
distance of 4.98 Mbp. The slowest rate of LD decay was observed 
for the D genome followed by the B and A genomes with average 
LD decay distance estimates of 6.4, 4.5, and 4 Mbp, respectively. 
The average trend of LD decay rate estimated across each genome 
revealed that the percentage of SNP loci pairs with r² values above 
0.2 on the A, B, and D genomes were 28.61%, 25.55%, and 19.37%, 
respectively. On the D genome, LD decay distance ranged from 
2.5 Mbp (4D, 7D) to 10 Mbp (1D, 2D, 3D). On the B genome, the 
highest LD was observed on chromosome 2B at 10 Mbp and the 
lowest on 1B (1.0 Mbp). On the A genome, LD decay distance was 
5 Mbp on chromosomes 4A, 5A, 6A, 7A. LD decay plots for 1A, 
1B, and 1D are shown in Figure 1. LD decay plots for all other 
chromosomes are shown in Supplementary Figure S2.

Population structure
Principal coordinate analysis was used to estimate and visualize 
population structure within the panel based on a subset of 7,865 
evenly distributed GBS markers compared to the 1,117 dominant 
DArT markers that were previously reported. The proportion of 
genetic variation explained by the first two PCs was higher for 
GBS than for DArT markers, cumulatively explaining 14.4% and 
8.9% of variation, respectively (Figure 2). The first five GBS PCs 
cumulatively explained 23.2% of variation while the equivalent 
DArT PCs explained 16.9%. For both GBS and DArT markers, 
PCoA did not clearly discriminate between lines from different 
countries of origin (Figure 2) although some basic grouping 
by origin was observed with the DEU and GBR lines clearly 
separated and those of French origin overlaying the other two. 
Structure analysis based on GBS revealed that the panel could 
be split into K = 4 groups as inferred from the analysis of the ad 
hoc ΔK statistic (Evanno et al., 2005; Supplementary Figure S3). 
Only 92 of the varieties could not be placed into a single 
distinctive group. Similar to the results of PCoA, the groups were 
not discriminated by country of origin.

Association Mapping Using GBs
GBS association mapping was conducted for GY, three yield-
related (TGW, GSW, and ears/m²), seven morphological (FT, 
PH, Awns, LR, Wkill, TN, and MAT) and one quality (Gpt) 
trait using 42,795 SNPs and 350 individuals (Supplementary 
Table S1). The mixed model method detected a total of 63 
loci (comprising 638 SNPs) with significant marker-trait 
associations for eight traits. Of the total number of significant 
SNPs, 77 were significant at the experiment-wide Bonferroni 
threshold (–log₁₀ p-value = 6.63) and the remaining 561 SNPs 
were declared significant at the less stringent FDR p-value ≤ 
0.05. The total number of significant SNPs detected for each trait 
is shown in Table 1. No significant associations were detected 

FIGURE 1 | Linkage disequilibrium (LD) decay plots of r² over physical distance in mega base pairs (Mbp) on chromosomes 1A, 1B, and 1D. The dark blue line is 
the LD decay curve fitted by nonlinear least squares. LD decayed to r² of 0.2 (dotted line) at an approximate distance of 2.0, 1.0, and 10.0 Mbp on each group 1 
chromosome, respectively. The deeper shades of blue in the graphs correspond to regions of the genome with high SNP marker density and lighter shades of blue 
corresponds to regions where SNP markers are less dense.

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1278

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Mapping and Prediction in WheatLadejobi et al.

5

for four traits; TN, TGW, GSW, and ears/m². Manhattan plots 
for FT and PH are presented in Figure 3. Manhattan plots 
for all other traits are in Supplementary  Figure S4. For FT 
analysis across sites, significant marker-trait associations were 
detected on six chromosomes corresponding to eight loci and 
comprising of 47 SNPs (Table 1). Based on multiple regression 
analysis they together explained 45.1% of the variation in FT. 

Additional site-specific QTL were detected on chromosomes 
2B in FRA (2010), 5A in DEU (2010) and 6D in FRA and DEU 
(2010). Two loci on chromosome 2D (Figure 3) (at physical 
positions 31468893 and 42097013) had the most significant 
association with FT at all sites controlling an average of 9.6 and 
9.3% of FT variation, respectively (Supplementary Table S3). 
These two loci were presumed to be tightly linked with the 

FIGURE 2 | Principal coordinate analysis based on the first two principal coordinates using (A) Genotyping-by-sequencing (GBS) markers and (B) Diversity Array 
Technology (DArT) markers. Each point represents a line in the variety collection colored by its country of origin (DEU: blue; FRA: red; GBR: green).

TABlE 1 | | Summary of quantitative trait loci (QTL) detected with significant marker-trait associations for across site and site-specific analysis for flowering time (FT) and 
grain yield (GY). 

Trait site Chromosomes Number of 
loci

Number of sNPs Range of variation 
controlled

Overall variation 
controlled (%)

FT Across sites 1B, 2D, 6A, 7A, 7D, Un 8 47 3.4–9.6 45.10
GBR 2010 2D, 7A, 7D 4 22 4.0–5.3
GBR 2011 1B, 2D, 7A 4 7 6.9–11.7
FRA 2010 1B, 2B, 2D, 6D, 7A, 7D, Un 8 31 3.8–8.8
FRA 2011 2D, 7A, Un 4 11 4.2–12.6
DEU 2010 2D, 5A, 6D, 7A, 7D, Un 7 39 3.7–7.6
DEU 2011 – – – –

GY* Across sites 6A, 7B 2 13 3.1–3.9 32.98
GBR 2010 – – – –
GBR 2011 6A, 7A 2 13 3.3–4.1
FRA 2010 6A, 7B 2 10 3.4–4.0
FRA 2011 – – – –
DEU 2010 – – – –
DEU 2011 2A, 6A, 7B 3 9 4.1–5.0

PH Across sites 2D, 3A, 4A, 4B, 5A, 6A, 7A, 7B 12 123 2.5–5.0 52.55
Awns 1A, 1B, 1D, 2B, 2D, 3A, 4A, 4B, 

5A, 5B, 6A, 6D, Un
13 147 3.0–28.9 76.92

Wkill 4B, 5A 2 16 3.6–4.6 33.35

MAT 2D 2 2 6.1–7.2 25.27
Gpt 1A, 3B, 4A, 5B, 6A, 6B, 7A, 7B 10 159 2.7–5.5 52.60

*QTL detected with the most significantly associated SNPs with PH and FT included in mixed model as covariate.
The number of loci identified, the total number of single nucleotide polymorphisms (SNPs) identified per loci, and the overall variation controlled based on mixed linear modeling are 
also shown.
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Ppd-D1 gene controlling photoperiod sensitivity. This was 
verified with the use of the Ppd-D1 gene marker reported in 
Bentley et al. (2013) as a covariate which resulted in the loss of 
significant effect at the two loci. An environmentally stable QTL 
was also identified on 7A which encompassed up to 31 SNPs that 
controlled approximately 4% to 8% of phenotypic variation in 
FT (Supplementary Table S3). Two significant loci detected on 
chromosome 1B were more environment specific, only detected 
in the GBR and FRA in 2011 and 2010, respectively, and in the 
across site analysis (Table 1). The allelic effects for the three most 
significant SNPs on chromosomes 1B, 2D, and 7A are shown 
in the box plot summary in Figure 4. The 2D and 1B SNPs had 
alleles conferring the earliest flowering effect (147–148 days after 
planting) while the 7A SNP had a more intermediate effect (153–
156 days after planting).

GY QTL were detected on chromosomes 6A and 7B for the 
across site analysis when the most significant PH and FT SNPs 
(on 2D and 6A, respectively) were included as covariates in the 
mixed model. The same loci on 6A and 7B were also detected 

in the FRA (2010) and GBR (2011) experiments. Both SNPs 
produced equivalent effects on grain yield (Figure 4). Additional 
QTL were detected on chromosomes 2A and 7A from the DEU 
and GBR (2011) experiments, respectively (summarized in 
Supplementary Table S3). In total, 13 significant SNPs were 
found in association with GY, explaining 33% of variation 
(Table 1). Significant associations were detected for PH on eight 
chromosomes across all experiments comprising 12 loci and 
123 SNPs. Together the SNPs explained approximately 53% of 
the total PH variation. The most significant QTL for PH was 
detected on chromosome 6A (Figure 3) (from physical position 
373461190 to 452372111) with 76 SNPs (Supplementary 
Table S3) which controlled approximately 23% of the variation 
in PH. Two additional loci were also detected on chromosome 
6A in association with PH (Supplementary Table S3). Covariate 
analysis with two of the most significant SNPs on 6A as fixed 
effects in the mixed model did not reveal any additional 
associations with PH. Significant QTL were also detected for 
PH on chromosomes 4A and 4B with FDR significance value ≤ 

FIGURE 3 | Manhattan plots summarizing association mapping results for flowering time (FT) and plant height (PH). The green line represents the experiment-wide 
Bonferroni adjusted threshold of p = 0.05 while the black line represents the false discovery rate (FDR) p-value of 0.05. 
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0.005 and 0.001, respectively. The previously detected FT QTL on 
2D (31468893 and 42097013) were also significant for PH (FDR 
p-value ≤ 0.004 and 0.001, respectively).

Our analysis detected 147 SNPs in significant association with the 
presence/absence of awns across 13 chromosomes (Supplementary 
Table S3) which together controlled approximately 77% of variation 
(Table 1). The most significant QTL for presence/absence of awns 
was detected on chromosome 5A, comprising 71 SNPs which 
altogether controlled approximately 69% of the phenotype variation. 
The SNP with the highest significance at position 255590080 on 5A 
controlled approximately 29% of variation (Supplementary Table 
S3). Two QTL were detected in significant association with Wkill on 
chromosome 4B and 5A covering 16 SNPs which in total controlled 
33 % of variation (Table 1). MAT was linked in association with 
FT on chromosome 2D (position 31468893 and 42097013) and 
together they explained approximately 25% of the variation. 
Significant associations were detected on eight chromosomes for 
Gpt comprising 10 loci of 159 SNPs which together explained 52% 
of variation controlled (Table 1). LR was significantly associated 
with 14 loci across 10 chromosomes, covering 128 SNPs which 
altogether explained over 50% of the variation present. The most 

significant QTL for LR, Gpt, PH, and GY colocalized within the 
same region of chromosome 6A (physical position 373461190 to 
450106742) (Supplementary Table S3).

Comparison of GBs and Dart Marker 
Mapping
The full panel of 376 lines had previously been genotyped with 
genome-wide dominant DArT markers and candidate adaptation 
gene markers with significant marker-trait associations detected 
for FT, GY, PH, Wkill, Gpt, and TGW (Bentley et al., 2014). These 
were compared to the GBS mapping results for QTL that had 
been detected on common and unique chromosomes (Table 2). 
Figure 3 summarizes QTL detected using DArT for FT and PH. 
Pearson’s correlations of DArT and GBS markers significant for 
FT, GY, PH, and Gpt revealed highly significant correlations 
(P-value ≤ 0.001) between markers identified on common 
chromosomes (1B, 2D, 5A, and 6A) for the same traits (Figure 
5; Supplementary Table S6). This is likely to be an indication 
that the significant loci were linked between the different marker 
platforms. GBS mapping detected more significant marker-trait 

FIGURE 4 | Effects of the selected significant alleles for flowering time (FT), plant height (PH), grain yield (GY), maturity (MAT), winter kill (WKill), and lodging resistance (LR).
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associations (on more chromosomes) than DArT markers for 
FT, PH, and Gpt, but no significant association was detected for 
TGW and fewer QTL were identified for GY using GBS. Wkill 
QTL were identified on different chromosomes in the GBS 
compared to DArT mapping. In the present study no marker-
trait associations were detected on chromosome 4D. GWAS 
analysis accounting for the Ppd-D1 gene marker as a covariate 
resulted in loss of the two loci detected on chromosome 2D with 
GBS markers.

Genomic Prediction
The highest prediction accuracies were observed for GY and 
PH, and the lowest for TN using cross-validation across the 
full panel (Figure 6). Prediction accuracies were highest for 
most of the traits when cross-validation was run across the 
full germplasm panel (rather than by country subsets). This 
trend was observed for most of the traits except Wkill which 
was predicted with highest accuracy in the DEU subset 
(Supplementary Table S4). The lowest accuracy values were 
recorded for the smallest population size in the GBR subset 
(Supplementary Table S4). In contrast, the highest accuracies 
were observed in FRA where the training population size was 
largest (Supplementary Table S4). Across country predictions, 
achieved by training the model on the subset of varieties 
from one country and predicting the values for the varieties 
from remaining two countries both singly and jointly also 
revealed the influence of training population size and degree 
of phenotypic variation. Accuracy was highest when FRA was 
used as the training population to predict GY in DEU, GBR and 
the combined DEU and GBR dataset and lowest when the GBR 
set was used as the training population to predict performance 
of the FRA and DEU sets (Supplementary Table S5). FT and 
Awns could only be predicted within the FRA varieties; while 
ears/m² was only predicted when the FRA varieties were used 
to train the prediction model.

TABlE 2 | Comparison of genotyping-by-sequencing (GBS) and Diversity Array 
Technology (DArT) mapping analysis based on the chromosomes on which 
significant associations were detected.

Unique QTl Common QTl

Traits GBs DArT GBs & DArT

FLT 6A, 7A, 7D, Un 7B 1B, 2D
GY 5D 1B, 3A, 4A, 4D 6A,7B
PH 2B, 3A, 3B, 4A 4D 2D,4B, 5A, 6A

Wkill 5A,4B 2D, 6B –
Gpt 1A, 4A, 5B, 

6B,7A, 7B
– 6A

TGW – 2B –

FIGURE 5 | Diagrammatic representation of correlations between significant markers from Diversity Array Technology (DArT) and genotyping-by-sequencing (GBS) 
marker platforms. Significant DArT and GBS markers are shown on the vertical and horizontal axis respectively. The DArT and GBS markers used in the correlation 
shown here are significant for FT, PH, grain protein content (Gpt), and GY on chromosomes 1B, 2D, 4B, 5A, 6A, and 7B. The full names of markers used in 
correlation are shown in supplementary Table s6. The size and shade of the squares corresponds to the magnitude of the correlation coefficient as shown in the 
scale. The p-values of correlations are as follows: p ≤ .05*, p ≤ .01**, p ≤ .001***.
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Using GBS markers, prediction accuracies by tenfold cross-
validation on the whole panel were higher than predictions in 
FRA, DEU, and GBR subsets for FT, PH, MAT, Gpt, LR, and 
GSW. A similar trend was observed using dart markers and cross-
validation on the whole germplasm panel for predicting FT, PH, 
Wkill, MAT, and GSW (Figure 6). Overall predictions made 
using GBS by tenfold cross-validation for the full dataset resulted 
in higher genomic prediction accuracy for GY (0.71) compared 
to DArT markers (0.67). However, variation was observed for 
GY predictions by country and GBS gave higher predictions 
(Compared to DArT) in DEU, equivalent predictions in FRA and 
lower predictions in GBR. Predictions for FT on the whole panel 
were equivalent for both GBS and DArT markers. Predictions 
for Wkill, MAT, Ears, LR, and TGW revealed higher accuracy 
with DArT than with GBS markers both in cross-validation and 
training model experiments (Figure 6).

DIsCUssION
GBS is a genotyping tool combining simultaneous de novo 
sequencing and polymorphism discovery. It is useful for diverse 
variety panels, such as used in this study, to generate markers with 
broad potential relevance to breeding programs. In this study, a 
total of 42,795 SNPs were used to generate a high-density physical 
map and used to study the pattern of LD decay within the wheat 
genome. Our results showed that on average, LD decayed at the 
slowest rate on the D-genome and fastest on the A-genome while 
the B-genome had the largest proportion of polymporphic loci. 
A previous study of LD among several winter and spring wheat 
breeding populations revealed a similar pattern of decay among 
genomes for all the populations (Chao et al., 2010). This trend 

has been attributed to the latest polyploidization event between 
tetraploid (AABB) and diploid (DD) progenitors which gave rise 
to domesticated hexaploid bread wheat (Akhunov et al., 2010). 
Per chromosome, LD decayed fastest on 1B with the slowest rates 
recorded for chromosomes 1D, 2B, 2D, and 3D. This could be the 
result of indirect selection for blocks within these chromosomes 
containing genes conferring agronomic advantage within our 
collection of elite European varieties although there is not yet 
gene-level information to support this. The D-genome also had 
the lowest number of GBS SNPs with only 240 mapped to 4D 
and no QTL identified on this chromosome. Similarly, no QTL 
were identified on chromosomes 1D, 3D, and 5D thought to be 
generally indicative of the low levels of diversity in the D-genome 
(Akhunov et al., 2010).

Population structure analysis revealed that there was no clear 
structural partitioning within our association mapping panel. As 
the panel was assembled from elite lines originating from three 
different European countries, it was expected that the panel 
would be structured by country. Although the varieties in the 
panel did tend to approximately group by country of origin, there 
was no clear separation of clusters into country of origin. This is 
an indication of the extent to which European wheat breeding 
materials are related and exchanged among breeders. Similar 
trends were also observed in other studies on European winter 
wheat mapping panels (Langer et al., 2014; Albrecht et al., 2015). 
PCs derived from GBS markers explained a larger proportion 
of the variation that DArT markers, likely an effect of the larger 
number of markers available.

High density genotyping appreciably increased the precision 
of association mapping in the panel. This was established by 
the identification of similar loci to the previous study on the 
panel (Bentley et al., 2014) in addition to detection of loci not 

FIGURE 6 | Prediction accuracy of genotyping-by-sequencing (GBS) versus Diversity Array Technology (DArT) markers based on tenfold cross-validation on the full 
data panel.
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previously found. High density genetic linkage maps are one of 
the key factors for high precision QTL detection in association 
mapping studies (Elshire et al., 2011; Poland et al., 2012b). 
Both DArT and GBS use the methylation sensitive restriction 
enzyme Pst1 for cutting the genome (with GBS also using 
methylation sensitive Msp1 as the second cutting enzyme while 
DArT uses nonmethylation sensitive MseI). In combination 
with the diverse panel of germplasm used in this study, we 
expected that as a result SNPs in strong LD with known genes 
and causal loci should be detected to a high precision, and to 
a higher degree with GBS compared to DArT. Although some 
DArT markers are anchored to RefSeq v1.0 and are available via 
the Wheat@URGI portal (Alaux et al., 2018) it is not currently 
possible to anchor the DArT markers used in Bentley et al., 
2014 to the physical map to facilitate a complete comparison 
of QTL detection. While previous studies have shown that it is 
possible to find microsatellite repeats within DArT microarray 
clone sequences and then design PCR-based markers and 
assign to map locations, this is a low-throughput process (Fiust 
et al, 2015). However, we are able to report on the scale and 
correlation of detected marker trait associations and predictive 
ability between the anchored GBS data and previous DArT data.

Marker trait associations for FT were identified at seven loci 
across five chromosomes. Three of the associations detected for FT 
mapped to chromosomes with known genes regulating FT. The two 
loci detected on chromosome 2D were established to be linked to 
Ppd-D1 (Beales et al., 2007) when the gene marker was accounted 
for as a covariate in the mixed model. Chromosomes 1B and 7A 
have both been associated with Earliness per se in separate studies 
by Griffiths et al. (2009) and Hanocq et al. (2004). Chromosome 7A 
carries the vernalization gene, Vrn-3A, which accelerates flowering 
in wheat. The two QTL on 2D and the locus on 7A (spanning 4 to 31 
SNPs) were also stable across all trial environments. They reveal good 
potential for FT genetic marker screening in breeding materials and 
variability in allelic effects for these SNPs can be potentially useful 
in marker assisted breeding where these loci are not already fixed.

PH QTL were detected across 12 loci on eight chromosomes. 
The most significant QTL on 6A (373461190:452372111) was 
also identified to be highly significant in a QTL mapping study 
in a RIL population by Marza et al. (2006). In the previous 
GWAS study with DArT markers (Bentley et al., 2014), the most 
significant PH QTL was the Rht-D1 gene marker on chromosome 
4D. No QTL were mapped with GBS to chromosome 4D in 
this study. This is in contrast to our expectation that GBS 
should detect known genes to high precision and is likely 
to be due to a lack of SNPs in sufficient LD with this gene; 
only 240 GBS SNPs were identified on 4D (Supplementary 
Table  S2). However, two loci were identified to be associated 
with PH on chromosomes 4A (290527503:291878645) and 
4B (21378087:21379808) which may be linked to homologues 
of Rht-D1 on 4D (18780696:18781314) (Worland et al., 1998; 
Wilhelm et al., 2013) although there is not a correspondence 
in physical position. Although a homoeologous locus (Rht-A1) 
exists on 4A, and has been shown to express the DELLA protein, 
linked markers, or phenotypic effects on plant height have yet to 
be determined (Pearce et al., 2011).

The presence or absence of awns is a simple trait controlled 
by a known locus with a large effect on 5A (Kato et al., 1998; 
Mackay et al., 2014). In this study GBS detected this major 
effect locus in the same location as the previously validated 
marker tagging the 5AL genetic locus (previously reported 
based on validation in this panel). Additional minor QTL 
linked with the presence/absence of awns were detected 
on twelve other chromosomes. Although it is a binary trait 
(presence/absence), these additional QTL could be useful to 
understanding the genetic network controlling the presence 
of awns. Further understanding of the genetic architecture of 
this trait is relevant to breeding as awns have been shown to 
contribute to photosynthesis and increase in grain size and yield 
in drought stressed environments (Rebetzke et al., 2016). Both 
environmentally stable and site-specific QTL were identified for 
GY. The QTL on 6A was detected in all three European trials. 
Other QTL and association mapping studies have also reported 
loci on 6A associated with yield under varying environmental 
conditions (Cui et al., 2014; Edae et al., 2014; Sukumaran et al., 
2014). Chromosomes 2D and 6A featured associations with 
several key traits. Six traits: FT, GY, PH, Awns, Gpt, and LR were 
identified in association with loci on 6A while FT, PH, MAT, and 
LR were associated with loci on 2D. Similar to this trend, Marza 
et al. (2006) also observed the colocalization of QTL for several 
traits on chromosome 6A. Most of the traits with colocalized 
QTL in the present study were also observed to have high 
positive or negative correlations with each other (Figure 7). A 
similar pattern was observed in an association study of QTL 
controlling agronomic traits in an elite rice breeding panel 
(Begum et al., 2015). On chromosome 2D, the same SNPs 
were found in significant association with FT, PH, and MAT 
while a nearby SNP was found in association with LR. SNPs 
on 6A, significantly associated with GY, PH, Gpt, and LR were 
located within the same region of the chromosome and were 
in LD. This observation supports the likelihood of pleiotropy 
on 2D and an underlying gene linkage on 6A. Photoperiod 
insensitivity and reduced height genes have a positive impact 
on GY and LR (Hedden, 2003; Wilhelm et al., 2013). Reduced 
height and photoperiod genes have been shown to enhance LR 
while simultaneously conferring adaptive advantages to favor 
GY in different agro-climatic conditions (Worland et al., 1998; 
Donmez et al., 2001). The overlap between GY and Gpt loci on 
6A could potentially be exploited to simultaneously improve 
yield and quality traits of wheat. Phenotype correlations 
between GY and Gt were however observed to be highly 
negative (r² = –0.75) (Figure 7). A similar negative association 
was found in a QTL mapping study of GY and grain quality 
by Tsilo et  al.  (2010) and has also been reviewed in detail by 
Balyan et al. (2013). Breeding efforts to increase Gpt resulted in 
lower genetic gains in yield compared to high yielding cultivar 
checks. Several QTL have been detected in this study for Gpt 
which are possibly independent of GY that could be further 
studied for exploitation in breeding.

Comparison of predictive abilities between the two marker 
platforms for all traits revealed only slight differences in 
accuracies with predictive ability mostly depending on the 
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genetic architecture of the trait. Using GBS, GY was predicted 
with higher accuracy than FT despite fewer loci detected in 
significant marker trait association with GY. This could indicate 
the effectiveness of GBS in GS for capturing many small effect 
loci underlying GY which did not reach the significance 
threshold for association mapping. On the other hand, FT was 
predicted with greater accuracy using DArT markers in most of 
the scenarios tested with the highest accuracy estimated within 
the FRA variety set. Prediction of FT in the DEU and GBR 
germplasm was ineffective. As discussed by Bentley et al. (2014), 
this was due to the dominating effect of Ppd-D1a photoperiod 
insensitive mutation within the FRA germplasm which conferred 
earlier flowering effects for the FRA varieties compared to those 
from DEU and GBR which are almost exclusively photoperiod 
sensitive Ppd-D1b types. Due the absence of variation for awns 
within the DEU and GBR germplasm, awn presence or absence 
could not be predicted within the country subsets by tenfold 
cross-validation.

In a similar study by Poland et al. (2012a), GBS consistently 
produced higher prediction accuracies than DArT markers for 
1,000 kernel weight and heading date, even with a comparable 
number of GBS and DArT markers. Jiang et al. (2015) 
conducted GS for prediction of resistance to Fusarium Head 
Blight using three different marker platforms (single sequence 
repeats, a 9K SNP array, and a 90K SNP array) and observed 
similar prediction accuracies with the three platforms for three 
prediction models. They concluded that relatedness was a key 
driver of prediction accuracy and we propose that the ability 
of the higher density of GBS markers to account for kinship 
is the main driver for increased prediction accuracies in this 
study. Validation of GS in diverse germplasm is important for 
the integration of this method in routine breeding programs. 

As shown in this study, GS across country germplasm is feasible 
for most of the traits measured, however, the composition of 
the training populations needs to be optimized for adequate 
genetic variation.

CONClUsION
The use of GBS has potential for practical application in 
wheat breeding and is a cost-effective platform for generating 
thousands of polymorphic SNPs with genome-wide coverage. 
Using the IWGSC Ref Seq v1.0 (International Wheat Genome 
Sequencing Consortium, 2018) for alignment of sequence reads 
and variant SNP calling enabled the generation of over 40,000 
high-quality SNP data points. When applied to association 
mapping and genomic prediction in European winter wheat, 
GBS data anchored to IWGSC RefSeq v1.0 generally improved 
accuracy. In particular, this study demonstrates the utility of 
GBS for effectively predicting traits with many loci of small 
effects proving its suitability for GS. For mapping, the high 
marker density provided by GBS enhanced the precision of QTL 
mapping by increasing the probability of finding and tagging 
causal polymorphisms, although this was still limited on the 
D-genome. Prediction accuracies were higher when calculated 
across the panel; however, accuracy was highly dependent on the 
trait genetic architecture. This feature was common across both 
GBS and DArT marker platforms.
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