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Abstract

In the environmental and earth sciences, hypotheses about transient phenomena have
been universally investigated by collecting physical sample materials and performing
ex situ analysis. Although the gold standard, logistical challenges limit the overall
efficacy: the number of samples are limited to what can be stored and transported,
human experts must be able to safely access or directly observe the target site, and
time in the field and subsequently the laboratory, increases overall campaign expense.
As a result, the temporal detail and spatial diversity in the samples may fail to capture
insightful structure of the phenomenon of interest.

The development of in situ instrumentation allows for near real-time analysis of
physical phenomenon through observational strategies (e.g., optical), and in combi-
nation with unmanned mobile platforms, has considerably impacted field operations
in the sciences. In practice, mobile platforms are either remotely operated or per-
form guided, supervised autonomous missions specified as navigation between human-
selected waypoints. Missions like these are useful for gaining insight about a particular
target site, but can be sample-sparse in scientifically valuable regions, particularly in
complex or transient distributions. A skilled human expert and pilot can dynamically
adjust mission trajectories based on sensor information. Encoding their insight onto
a vehicle to enable adaptive sampling behaviors can broadly increase the utility of
mobile platforms in the sciences.

This thesis presents three field campaigns conducted with a human-piloted marine
surface vehicle, the ChemYak, to study the greenhouse gases methane (CH4) and car-
bon dioxide (CO2) in estuaries, rivers, and the open ocean. These studies illustrate
the utility of mobile surface platforms for environmental research, and highlight key
challenges of studying transient phenomenon. This thesis then formalizes the max-
imum seek-and-sample (MSS) adaptive sampling problem, which requires a mobile
vehicle to efficiently find and densely sample from the most scientifically valuable
region in an a priori unknown, dynamic environment. The PLUMES algorithm
— Plume Localization under Uncertainty using Maximum-ValuE information and
Search — is subsequently presented, which addresses the MSS problem and overcomes
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key technical challenges with planning in natural environments. Theoretical perfor-
mance guarantees are derived for PLUMES, and empirical performance is demon-
strated against canonical uniform search and state-of-the-art baselines in simulation
and field trials.

Ultimately, this thesis examines the challenges of autonomous informative sam-
pling in the environmental and earth sciences. In order to create useful systems
that perform diverse scientific objectives in natural environments, approaches from
robotics planning, field design, Bayesian optimization, machine learning, and the sci-
ences must be drawn together. PLUMES captures the breadth and depth required
to solve a specific objective within adaptive sampling, and this work as a whole high-
lights the potential for mobile technologies to perform intelligent autonomous science
in the future.

Thesis Supervisor: Anna Michel
Title: Associate Scientist of Applied Ocean Physics and Engineering, WHOI

Thesis Supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics, MIT
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Chapter 1

Introduction

Environmental and earth sciences are an undertaking to observe and explain natural

planetary processes and attributes. An interdisciplinary combination of physical,

biological, chemical, geological, and information sciences, these academic fields have

provided considerable insight about the places in which human life and activity are

closely intertwined. In order to investigate hypotheses or characterize new discoveries,

the vast majority of these disciplines require either physically realized samples (e.g.,

rock specimens, water samples) or direct measurements of physical attributes (e.g.,

temperature, gaseous concentration).

Collecting these samples or taking direct physical measurements of environmen-

tal phenomena is a considerable logistical and scientific challenge. Sample collection

requires that a human expert or technician can physically access the region of in-

terest and interact with the phenomenon. However, in many environments, this is

infeasible either due to hazards or remoteness of the region. Unmanned mobile plat-

forms have increased the number of feasible study sites by explicitly going in place

of human-occupied vessels. Contemporaneous development and improvement of in

situ instrumentation has further improved the resolution, accuracy, and scope of ob-

servations that can be gathered. Mobile “observatories” combine both unmanned

vehicles and in situ sensors to gather data at various deployment scales, including:

global continuous surveying (e.g., passive marine floats [1]), local monitoring (e.g.,

wire profilers [2]), and targeted sample retrieval (e.g., ROV [3]).
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Canonically, these mobile agents navigate passively, are piloted by a human oper-

ator, or autonomously traverse fixed, predetermined paths. This thesis presents three

case studies in which a human-piloted marine surface vehicle was used to study the

distribution of greenhouse gases in the upper water column of coastal rivers, estu-

aries, and near-shore seas. These case studies illustrate the fidelity to which mobile

observatories can resolve different chemical events, and highlight a major drawback

with canonical methods: data sparsity in regions of interest.

Chemical expressions are transient phenomena, which display dynamic spatio-

temporal behavior with temporal variation on the order of hours to days. When

the robotic mission is relatively short compared to the temporal variation of the

phenomenon, recovering the spatial distribution of the phenomenon dominates. In

human-piloted missions, either uniform-coverage of the region is performed or reactive

trajectories are executed. In both strategies, the number of samples of a target

phenomenon (e.g., high concentrations of a gas species), may be relatively low if the

volume of the expression is small relative to the target region, or time is spent following

misleading chemical signals. When the robotic mission is on a similar timescale to

the temporal variation of the phenomenon, then both spatial and temporal aspects

must be recovered, further complicating these missions.

In order to densely sample interesting, dynamic phenomena in a natural environ-

ment, intelligent, adaptive strategies are necessary to respond to stimulus. Adaptive

sampling is an autonomy technique which uses a history of observations to inform

navigation goals and mobile agent behavior to optimize a high-level scientific objec-

tive. For principled sampling in spatio-temporal systems, adaptive sampling regimes

can perform inference over a robot’s belief of a phenomenon based on historical ob-

servations, and strategically navigate to intercept interesting events. Key questions

with respect to the design and performance of an adaptive algorithm for the study of

transient phenomena are:

� How can scientific objectives be encoded as an adaptive sampling problem for

robotic systems?
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� How can transient phenomena at multiple temporal scales be modeled in order

to inform robotic decisions?

� How should scientific value be quantified in an unknown environment?

� In the face of uncountably infinite possible states of an unknown environment,

what performance guarantees can an autonomous framework provide with re-

spect to valuable sample collection?

This thesis presents the PLUMES algorithm, which addresses these questions and

overcomes core technical challenges to allow a mobile agent to intelligently seek and

densely sample from the most scientifically valuable region in an unknown natural en-

vironment. The rest of this chapter is structured as follows: Section 1.1 discusses the

practical challenges of sampling and collecting observations in natural environments,

further motivating autonomous unmanned vehicles and introducing key vocabulary.

Section 1.2 presents the motivating adaptive sampling problem of this thesis, the max-

imum seek-and-sample (MSS) problem, and its core technical challenges. Section 1.3

summarizes the contributions of this thesis and previews the remaining chapters.

1.1 Overview of Field Standards in Environmental

and Earth Sciences

Within the environmental and earth sciences, sample collection and physical mea-

surements are largely taken on field campaigns, which are dedicated trips to a target

region. Specialized equipment to observe, measure, or capture a phenomenon of in-

terest is carried on a campaign. Alternatives to field campaigns include stationary

observatories, passive drifters, or remote technologies (i.e., satellites), most of which

are calibrated using reference curves generated from physical samples collected and

processed by human experts. Human-staffed field campaigns can target specific ge-

ographic locations which may not have long-term infrastructure present, or may not

be accessible by other means (e.g., satellite optical instrumentation cannot penetrate
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water). Even in regions which can be observed by other means, data collected on field

campaigns serve to re-calibrate instrumentation, supplement a dataset with special-

ized measurements, or dynamically target a particular phenomenon.

1.1.1 The “Gold Standard”

Physically collecting (i.e., removing) singular, discrete samples of a target environ-

mental phenomenon is widely considered the “gold standard” in many disciplines [4].

In order to physically collect samples of an environment, it requires that a human

expert or mobile system is able to safely navigate to and from the target region and be

able to appropriately store the specimen for ex situ analysis in a laboratory. In ma-

rine campaigns, sample collection could involve pumping water samples from depth

to a ship, or sending a Remotely Operated Vehicle (ROV) to the seafloor to retrieve

sediment cores. In biological or chemical sciences, sample storage may involve us-

ing a poisoning chemical to terminate biological processes or adding preservatives for

long-term storage. Physical specimen collection and subsequent laboratory analysis

provides insurance that the target phenomenon of interest is directly observed and

measured. Generally, replicates are made (either by collecting multiple samples at the

same location or dividing a large specimen into separate samples) and independently

processed to constrain procedural error and noise.

Although the gold standard, there are notable drawbacks to relying on physical

sample collection alone. The first is logistical cost: due to the monetary expense

and time associated with finding, collecting, transporting, storing, and processing

specimen, the total number of samples that may be realized for a region may be rel-

atively few compared to the geographic extent, spatial volume, or transience of the

phenomenon. This is known as “data sparsity,” and makes characterizing distribu-

tions of a phenomenon in space or time challenging. In the worst case, these samples

may not be representative of the true underlying distribution of a phenomenon, lead-

ing to incorrect interpretations or misleading conclusions. The second drawback is

related to data analysis comparability across independent studies of similar phenom-

ena. Based upon recent inter-laboratory studies in environmental chemistry, it is
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unclear whether laboratories can draw consistent [5] or inconsistent [6] conclusions

from equivalent samples. In general, these contradictory results inspire caution with

respect to comparing published datasets or relying too closely on physical samples

alone to draw conclusions.

1.1.2 In situ Instrumentation and Unmanned Platforms

Given the drawbacks of solely using collected samples, it is necessary to supplement

samples with other direct observational data. In situ instrumentation records mea-

surements of observations in near-real time of physical attributes that either could be

confirmed by subsequent laboratory analysis, or simply may be difficult to extract in

a laboratory environment at all (i.e., local temperature). Generally, this equipment

is powered electrically, and the actual measurement that is observed is expressed as

a voltage, which can be converted to a physical quantity by applying a calibration

curve. In situ instrumentation is generally calibrated with a set of accepted labora-

tory measurements, so raw observations by this equipment can be directly compared

with simultaneously collected physical samples that are processed ex situ.

With the ability to take a hundred-fold more observations than traditional sample

collection, surveying strategies have emerged in which a mobile platform carrying an

instrument or suite of instruments is used to collect observations across a specified

target region. Generally, it is desirable to perform a one-shot mission, or a single

deployment of a mobile platform to collect data in a target region. Cost, time limit,

and vehicle safety all play a role in this preference. Among the most common strate-

gies in the environmental and earth sciences used to perform one-shot missions is

uniform coverage which is also known as lawnmowing or boustrophedonic* search [7],

e.g., [8–11]. In uniform coverage, a target region is traversed by making long sweeping

motions across one dimension of the region while incrementally moving in the other

dimension; much like how one may methodically mow a field. Although this method

enjoys simplicity in execution and guarantees with regards to spatial resolution, it

*from boustrophedon, which is a form of writing such that the lines alternate directions (right
to left followed by left to right)
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can suffer from data sparsity in interesting regions due to its non-adaptivity.

“Autonomy” in environmental and earth sciences has generally been in the ser-

vice of automating simple, predefined navigation tasks. However, with smaller and

more powerful computers, improved performance of in situ sensors, and continued

development in robust control and planning algorithms, intelligent autonomy is fully

realizable in practice. With intelligent autonomy comes the ability to specify more

complicated adaptive missions, to coordinate multi-vehicle fleets, and to create theo-

retically sound guarantees about the overall quality of samples that can be collected.

1.2 Maximum Seek-And-Sample

In many environmental and earth science applications, experts want to collect scien-

tifically valuable samples of a maximum (e.g., an oil spill source). This maximum

could correspond with collecting the most pristine sample in an environment, the

most productive source in an environment, the highest concentration area, or simi-

lar attributes. The maximum seek-and-sample (MSS) problem is pervasive in many

disciplines, however, natural environments are difficult to examine because they are

typically unknown a priori, are continuously distributed, partially observable, and dis-

play transience. This thesis presents the PLUMES adaptive sampling framework to

overcome these challenges to efficiently find and sample from the global maximum of

a natural environment.

Informative path planning (IPP) is a broad field which develops adaptive sampling

frameworks. To encode the challenging aspects of the MSS problem, a partially-

observable Markov decision process (POMDP) [12] is defined. A POMDP is a gen-

eral model for decision-making under uncertainty, and is composed of a state space,

observation space, action set, transition function, and reward function. In the MSS

POMDP, the state and observation space are continuous functions, where the state

represents the partially-observable underlying phenomenon. The action set defines

the behaviors that an agent can select from, and the transition function defines how

the robot’s internal model of the world, known as belief, will update according to
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observations collected during an action. The reward function encodes the scientific

objective of the MSS problem, giving value only to samples sufficiently close to the

global maximum. Solving a POMDP exactly is generally intractable [13], and the

MSS POMDP is additionally complicated by both continuous state and observation

spaces, and the sparse MSS reward function. This presents the three core challenges

that PLUMES addresses: compactly representing the robot’s belief of the state of the

transient phenomenon, overcoming reward function sparsity, and performing online

search in a belief-space over continuous functions.

1.2.1 Representing Belief

Every observation that a mobile agent collects provides partial information about the

underlying state of the world. In order to plan actions, the robot must consider what

it believes the complete, true state of the environment is based upon these observa-

tions. A belief representation functionally stores historical observations, incorporates

new observations, and can be queried while the vehicle plans what the next best ac-

tion is to take. Generally, this requires that the belief representation take the form of

a probability distribution over possible states, where a sample drawn from the distri-

bution is one possible realization of the environmental phenomenon. This allows the

robot to query the belief representation for a possible world model, evaluate actions

with respect to the phenomenon distribution within that model, and consider the

uncertainty associated with that model. In the MSS problem, the underlying distri-

bution is a continuous function, and observations which may update the belief state

are also continuous, thereby requiring that the belief representation be a probability

distribution over an uncountably infinite number of possible environments.

In order to compactly represent and plan with continuous states and observa-

tions, it is common in literature to discretize the state space [14, 15]. In the MSS

problem, discretization over space and time is complicated by the reward function,

which requires precision about the location of the global maximum. Poor choices for

discretization parameters will yield poor estimates of the maximum, and subsequently

poor performance for any planner. Thus, to represent the robot’s belief over continu-
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ous states conditioned on a history of observations without discretization, PLUMES

uses Gaussian Processes (GPs) [16]. The GP is parameterized by a mean function and

a covariance kernel function. Since the environment is unknown a priori, the mean

function is assumed to be uniform (e.g., uninformative). The kernel function can

be used to encode both spatial and temporal relationships in an environment based

upon human knowledge; for example the dispersion characteristic of a gas species in

the atmosphere, or the dynamics of an oil-leaking ship. This thesis provides insight

about designing kernel functions for transient phenomena, and properties of kernel

functions which allow for efficient inference about natural environments.

1.2.2 Heuristic Reward

In the MSS problem, the reward function is sparse; the single non-zero reward is

placed at the maximum of the world. This presents challenges for selecting useful

actions, especially at the beginning of a mission when few observations are available

to build a useful belief model of the target phenomenon and the location of the

maximum. Planning with sparse rewards requires long-horizon information gathering

and is an open problem in robotics [17]. To alleviate this difficulty, less sparse heuristic

reward functions are often used in place of the true reward function, to elicit an

explore-exploit behavior in the planner. In the explore phase, actions that drive

down uncertainty about the world are valued, and in the exploit phase the gathered

knowledge is used to target actions which more directly satisfy the scientific objective.

Selecting an appropriate heuristic reward for the MSS problem requires design-

ing an information-theoretic measure which elicits explore-exploit behavior, and effi-

ciently converges to good estimates of the global maximum. In the field of Bayesian

optimization (BO), black-box functions are typically used to optimize over an un-

known function or distribution. The most commonly used heuristic reward in IPP is

the Upper confidence Bound (UCB) reward [18, 19], which sums the predicted mean

and variance of a proposed sample to assign a reward value. This thesis shows that

for the MSS problem, UCB can lead to suboptimal behavior, and draws on work from

the BO community to propose the maximum value information reward (MVI) [20]
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for robotic systems. In contrast with UCB, MVI uses samples from the belief repre-

sentation of the robot to distribute reward according to the possibility of finding the

maximum at a particular location. As the robot examines promising regions and takes

more observations, the belief representation and the location of the inferred maximum

converges, and MVI places reward solely at this point, entering into the exploit phase.

For the MSS problem, this reward convergence is attractive as it encourages efficient

identification of and dense sample collection at the maximum.

1.2.3 Decision-Making and Planning in Continuous Domains

A planner searches over possible actions and environmental states (drawn from the

belief representation) in order to find the most rewarding action or action sequence

for the vehicle to take. Generally taking the form of a search tree, planners can

be classified as either myopic or nonmyopic. As the name implies, myopic agents

are short-sighted: they greedily take the best action based on local information. In

contrast, a nonmyopic agent will choose the best action based on global information.

The difference between these planners is highlighted in a demonstrative scenario

shown in Fig. 1-1, in which there are two modes in the distribution of the phenomenon

of interest; mode A is greater than mode B in value. The robot is given the objective

to collect as many high-valued samples as possible, knows the full distribution, is

initialized in a random location, and can move 1 unit in any cardinal direction. If

using a myopic planner, the robot will perform gradient ascent to the nearest mode

and remain there (as any other action will locally collect less reward). In this bi-

modal world, if the robot is initialized near mode B, it will converge to this lower

mode and fail to collect the globally optimal amount of reward, although the loca-

tion of mode A is known. However, if using a nonmyopic planner, the robot may

move away from mode B and towards mode A as it has the “foresight” to go to the

globally optimal location, even if it requires locally suboptimal choices. Although

in some environments a myopic planner may be suitable, PLUMES implements a

nonmyopic planner to optimize the MVI heuristic for the attractive convergence and

global planning properties.
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Figure 1-1: Simple illustration of myopic and nonmyopic planning A robot
tasked with collecting high-valued samples is placed in a world with two modes, A and
B. Mode A is greater (more valuable) than Mode B; the global maximum is marked
with a star. The robot has full knowledge of the world. When the robot is initialized
close to Mode B (at the marker labeled “S”), a myopic planner (center) will take a
series of locally optimal decisions and converge on Mode B. A nonmyopic planner
(right) will initially take several suboptimal actions in order to converge on Mode A
because it optimizes over the globally optimal action sequence.

Generally, nonmyopic search is most successful when state representations, which

are nodes in the search tree, can be revisited during multiple action sequence simu-

lations. By revisiting a state multiple times, the estimate of the reward that may be

accumulated by reaching or traveling through that state can be better constrained.

Due to the continuous observation space in the MSS problem, an uncountable set of

possible belief states arises (since each observation will be unique with probability

1), creating a degenerate tree. Practically, tree degeneracy leads to inefficient deci-

sions and theoretically prevents any formal guarantees regarding planner performance.

Given the importance of establishing confidence for an autonomy system in the envi-

ronmental and earth sciences, the key challenge to overcome is related to addressing

tree degeneracy in continuous, partially-observable domains and formulating perfor-

mance guarantees of the framework. This thesis extends planners for fully-observable

continuous-domains [21, 22] to partially-observable domains, and demonstrates that

theoretical performance guarantees are preserved.
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1.3 Thesis Overview

The contributions of this thesis are:

1. Presentation of three field campaigns which analyze transient chemical phenom-

ena in near-shore seas and coastal estuaries and rivers:

(a) The effect of wastewater effluent on the Wareham River, MA, USA

(b) Surface expression of methane from bubble plumes in the Cascadia Margin

(c) Arctic outgassing driven by spring-time river inflow in Cambridge Bay,

Nunavut, Canada

2. Formulation of the MSS problem as a POMDP

3. Presentation of the PLUMES adaptive sampling framework:

(a) Analysis of GP kernel functions to model spatio-temporal phenomena

(b) Identification, adaptation, and implementation of a BO black-box information-

theoretic reward function for the MSS problem

(c) Novel analysis of a nonmyopic planner demonstrating guarantees in con-

tinuous, partially-observable environments

(d) Demonstration of improved performance over baseline techniques in simu-

lated and field trials

The remainder of this thesis is organized as follows: Chapter 2 presents technical

background and related work on the foundations of adaptive sampling. Chapter 3

presents the three field campaigns and scientific discoveries, and discusses the role of

transience in those environments. In Chapter 4, the MSS problem is formalized and

the PLUMES algorithm is described in detail, including core sections on the belief

representation of transient phenomena, heuristic reward function, and nonmyopic

planner. Comparisons with baseline planners from literature are also presented. A

summary of results and brief discussion concludes in Chapter 5.
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Chapter 2

Technical Background and Related

Works

This thesis builds upon foundational work in probabilistic modeling, planning under

uncertainty, and information measures in order to examine the development and use

of intelligent robotic systems for environmental field campaigns. Central to this work

is the concept of adaptive sampling, which is a technique that informs future behaviors

of an agent or system by incorporating a history of observations. Within the fields

of robotics and sensing, adaptive sampling techniques have been broadly applied in

applications including:

1. Direct observation and study of environmental domains (e.g., [23–27])

2. Within localization frameworks to improve state estimates (e.g., [28–31])

3. Image processing (e.g., [32, 33])

4. Distributed sensor networks (e.g., [34–36])

This chapter will primarily frame the technical discussion of core adaptive sam-

pling concepts within the context of environmental sampling with mobile robotic

agents. Problem- and content-specific related work will be provided in each of Chap-

ters 3 and 4 in technical discussions of the thesis contributions.
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2.1 Measuring and Modeling Natural Phenomena

The intent of using robotic platforms in environmental and earth science campaigns

is to collect “useful data” about target phenomena, which allow scientists to gain

insight about an underlying process and address hypotheses. This insight is gener-

ally driven by comparing data to scientific models, which encode well-characterized

physical relationships between phenomenon (e.g., relationship between hypoxic zones

and high methane content in deep ocean waters). Numerical models based on first

principles dominate much of the sciences [37–40]. These models are incredibly expres-

sive and comprehensive. Collected data are generally used to tune free parameters

or define new relationships to be incorporated into these models in order to match

input conditions with realized physical observations [41].

Although the standard, numerical models are generally brittle to noisy or unex-

pected measurements and do not generalize well to new datasets, largely because

they rely on an assumption of determinism. This brittleness has motivated the use

of statistical or probabilistic models, which can capture uncertainty in measurements

and physical relationships (e.g., [42–44]). Innovation in environmental probabilistic

modeling complements innovations made in robotics; kriging is perhaps the most clear

example of a probabilistic model that was developed originally for characterizing geo-

static phenomenon [44] and has since been widely adopted in the form of Gaussian

process regression [16] in robotics and machine learning communities.

Probabilistic models are particularly attractive for robotic applications because

they allow for decision-making to be informed by measures of certainty (or uncer-

tainty). For example, one of the most ubiquitous probabilistic models in robotic

navigation is an occupancy grid [45] which is used to model occupied, free, and un-

known physical space based on observations of obstacles by an agent. The state of

a grid cell is a probabilistic measure based upon the history of noisy observations

collected by a robot platform and a model of the noise characteristic of the sensor.

When space is uncertain, then the robot has the ability to collect more measure-

ments to increase certainty, or choose alternate paths which may be believed to be
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safer. However, unlike metric obstacles, environmental phenomenon are generally as-

sumed to be complex, multimodal, dynamic, and stochastic. To suitably model such

phenomena, this thesis primarily makes use of Gaussian processes (GPs) [16], which

are a Bayesian nonparametric model from machine learning. Section 2.1.1 provides

background on Bayesian inference, Section 2.1.2 describes Bayesian model representa-

tions, and Section 2.1.3 specifically presents GPs and discusses work in environmental

sampling which has leveraged GPs for studying phenomena.

2.1.1 Bayesian Inference Techniques

Bayesian models, as the name implies, leverage Bayes Theorem as a basis for per-

forming inference over a set of unknown parameters:

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
(2.1)

where Bayes Theorem states that the posterior distribution of a set of parameters 𝜃

given a dataset 𝑦 is proportional to the likelihood of the data given the set of parame-

ters, and a prior distribution on the parameters. In environmental domains, the prior

distribution is a way to encode knowledge about scientific principles or relationships.

It has been observed that Bayesian techniques have become increasingly used in the

environmental sciences [46] due to the flexibility of various Bayesian frameworks, un-

certainty characterization, and robustness to variability and nondeterministic factors.

A Bayesian inference problem takes the following form: let 𝒳 = {𝑋0, ..., 𝑋𝑁−1}

be a set of 𝑁 random variables with a relationship described by joint distribution

Pr(𝑋0, ...𝑋𝑁−1). Some subset of these random variables are observed, 𝒳𝑜𝑏𝑠. Bayesian

inference allows for these observations to inform what values the unobserved, latent

variables 𝒳𝑙𝑎𝑡 = 𝒳∖𝒳𝑜𝑏𝑠 are likely to take. A direct application of Bayes Theorem

and probability theory yields:

Pr(𝒳𝑙𝑎𝑡|𝒳𝑜𝑏𝑠) =
Pr(𝒳𝑙𝑎𝑡,𝒳𝑜𝑏𝑠)

Pr(𝒳𝑜𝑏𝑠)
=

Pr(𝒳𝑙𝑎𝑡,𝒳𝑜𝑏𝑠)∫︀
𝒳𝑙𝑎𝑡

Pr(𝒳𝑙𝑎𝑡,𝒳𝑜𝑏𝑠)
(2.2)

where the denominator is the marginal likelihood of the observations. In practice,
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performing exact inference with Eq. 2.2 is computationally expensive to the point of

being intractable: calculating the marginal likelihood is exponential in the number of

latent variables. To overcome this challenge, approximation techniques are employed.

Variational Bayesian Inference One common approximate inference technique

is variational Bayesian inference [47,48], which approximates a posterior distribution

with a well-behaved function class, 𝑞*(𝜃) ≈ 𝑝(𝜃|𝑦). In order to identify 𝑞*(𝜃) from

class 𝑄, an optimization procedure over some distance measure 𝑓 is performed:

𝑞*(𝜃) = arg min
𝑞∈𝑄

𝑓(𝑞(·), 𝑝(·|𝑦)) (2.3)

The Kullback-Leibler (KL) divergence, KL(·||·) is a common choice for the distance

metric because of good empirical performance and adaptability to fast, streaming, and

distributed systems [48]. By using KL divergence, a convenient simplification for the

optimization problem arises:

KL(𝑞||𝑝(·|𝑦)) = log 𝑝(𝑦)−
∫︁
Θ

𝑞(𝜃) log
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑞(𝜃)
𝑑𝜃 (2.4)

𝑞*(𝜃) = arg max
𝑞∈𝑄

∫︁
Θ

𝑞(𝜃) log
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑞(𝜃)
𝑑𝜃 (2.5)

where the ELBO (evidence lower bound) of the KL divergence is the second term in

Eq. 2.4 and the optimization can primarily occur with respect the ELBO as it only

contains well-defined aspects of the model.

This only leaves selecting distributions 𝑄 that are well-behaved. A common choice

is to apply the mean-field approximation:

𝑄 = {𝑞 : 𝑞(𝜃) =
𝑛∏︁

𝑖=1

𝑞𝑖(𝜃𝑖)} (2.6)

which provides that the set of distributions over the latent parameters factorizes

and allows low-dimensional representations to be considered. With this family of

distributions, Eq. 2.5 can be solved using simple coordinate ascent approaches [47].

Extensions of variational inference, such as stochastic variational inference (SVI)

30



[49] and automatic differentiation variational inference (ADVI) [50], have been demon-

strated to improve standard variational techniques under assumptions of conjugacy

or differentiable properties.

Monte Carlo Inference Methods An alternative to variational techniques to

estimate the form of the true posterior 𝑝(𝜃|𝑦) are Monte Carlo (MC) methods [51].

Rather than perform an optimization over analytic functions to get a closed form for

the posterior, MC methods approximate estimators (Φ) of a function 𝜑(·) with respect

to the true density 𝑝(𝑦) by drawing samples from a proposal density 𝑞(𝑦). This work

generally assumes that the form of 𝑝(𝑦) is known and can be evaluated to within

a multiplicative constant, 𝑝(𝑦) = 𝑝*(𝑦)/𝑍, but is generally difficult to draw samples

from directly (especially in high-dimensional domains). Monte Carlo sampling instead

draws samples from a more tractable, known proposal distribution 𝑞(𝑦) = 𝑞*(𝑦)/𝑍𝑞

and evaluates those samples with respect to 𝑝*(𝑦) in order to approximate Φ. One of

the most straightforward MC samplers is importance sampling:

1. Draw 𝑥1, ...𝑥𝑁 i.i.d. samples from 𝑞(·).

2. Calculate weight 𝑤𝑖 = 𝑝*(𝑥𝑖)/𝑞
*(𝑥𝑖).

3. Calculate estimate Φ =
∑︀

𝑁 𝑤𝑖𝜑(𝑥𝑖)∑︀
𝑁 𝑤𝑖

Rejection sampling is another MC sampler, and leverages the intuition that some

samples generated from 𝑞(𝑦) may not align well with 𝑝(𝑦). An acceptance criteria for

adding a sample 𝑥𝑖 to the dataset is defined through the rule 𝑝*(𝑥𝑖) > 𝑢 where 𝑢 is a

draw from a uniform distribution with bounds [0, 𝑞*(𝑥𝑖)].

MC methods generally require that the form of 𝑞(𝑦) lie near the form of 𝑝(𝑦). In

large, complex systems, it is difficult to define a single density that captures these

characteristics. Markov chain MC (MCMC) algorithms address this by drawing new

samples 𝑥′ using a proposal density which relies on the state of the previous sam-

ple 𝑥(𝑡); 𝑞(𝑥′, 𝑥(𝑡)). In Metropolis-Hasting MCMC, an acceptance ratio is used to

transition between states:
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𝑎 =
𝑝*(𝑥′)𝑞(𝑥(𝑡);𝑥′)

𝑝*(𝑥(𝑡))𝑞(𝑥′;𝑥(𝑡))
(2.7)

where if 𝑎 ≥ 1 the new state 𝑥′ is accepted and 𝑥(𝑡+1) = 𝑥′; otherwise a new sample

𝑥′ is drawn from 𝑞(𝑥′, 𝑥(𝑡)) and 𝑥(𝑡+1) = 𝑥(𝑡). Other MCMC samplers, like Gibbs [51],

Reversible-Jump [52], and Hamiltonian [53] use other acceptance ratios or special

forms of 𝑞(𝑦) in order to improve the convergence characteristics, flexibility, and

speed of Metropolis-Hastings. In all MCMC samplers, because each new state relies

on a density informed by the previous state, a “burn-in” period, in which a potentially

large number of samples are drawn, must be used before virtually independent samples

are generated. It has been shown that for a large number of samples, the estimator

generated with MC methods will converge to the true estimator of the posterior [51].

2.1.2 Bayesian Representations

In order to perform inference, a model is necessary to describe (i.e., the likelihood,

prior, or other relationships between latent parameters). This section briefly describes

several ways within the scope of Bayesian inference that phenomena may be modeled.

Graphical Models Probabilistic graphical models (PGMs) exploit the conditional

independence structure of the latent parameters. Bayesian networks [54] are one

particular form of graphical model which has enjoyed adoption in both the environ-

mental sciences [55] and in robotic environmental sensing missions [15] as they allow

for specific relationships between latent parameters to be encoded.

Let a Bayesian network be defined as an acyclic graph 𝒢 = (𝑉,𝐸) where vertices

𝑉 represent random variables, and directed edges represent dependencies between

two variables indexed (𝑖, 𝑗) ∈ 𝐸 where 𝑖 in this example is a parent to 𝑗. The joint

probability of 𝑉 in the graph can be expressed as the product of all conditional

probabilities Pr(𝑋𝑖|parents(𝑋𝑖)) where the parents 𝑋𝑗 of node 𝑋𝑖 are the connected

edges (𝑗, 𝑖). In complex networks, exact inference may be intractable. Variational

and MCMC techniques can be used to approximately solve a Bayesian network.
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Parametric and Nonparametric Models An alternative to Bayesian networks

that allow for exact inference with respect to encoded or learned relationships are

parametric models. In a parametric model, a fixed number of parameters are fit to

a portion of data, known as the training set. The model’s accuracy is then assessed

using an unseen test set of data in a process known as cross-validation. By assessing

model accuracy, different numbers or types of parameters can be designed for desired

performance. Finite mixture models (e.g., [56]) are one form of parametric model.

Although typically seen as a computational advantage, in the environmental sci-

ences a drawback of parametric models is that model complexity remains the same

no matter the size of data available. Selecting a “good” number of parameters, or

even which parameters to use a priori may be difficult for processing real observa-

tions, as many phenomenon have complicated structure that may be entirely con-

text dependent. In general, it would be useful if the data could directly inform the

parameter-space, rather than have the parameter-space predefined. Nonparametric

models were designed specifically to allow model complexity to grow with more data,

and can handle a potentially infinite number of parameters.

To do this, nonparametric models capture the notion of representing probability

over a collection of distribution functions. The Dirichlet process [57], the Chinese

restaurant process [58], and other methods have all been proposed for generating

and representing infinite-mixture models for inference. In the environmental sciences

and for robotic applications within the environmental sciences, Gaussian Processes

(GPs) [16] have received considerable attention [19,35,59–61].

2.1.3 Gaussian Processes

Informally, a GP is used to represent a distribution over functions. Formally, Ras-

mussen and Williams define a GP in [16] as:

Definition 2.1.1. A Gaussian process is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

For modeling an environmental phenomenon, first let the domain of the inference
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target be represented as a 𝑑-dimensional compact set X ⊂ R𝑑. The unknown under-

lying, 𝑚-dimensional continuous function is 𝑓 : X → R𝑚. For notational simplicity,

𝑚 = 1 in the following discussion. Samples of 𝑓 can be drawn in a location x with a

noisy sensor: 𝑦 = 𝑓(x) + 𝜖 where 𝜖 ∼ 𝒩 (0, 𝜎2
𝑛) is normally distributed sensor noise.

A GP is fully parameterized by a mean 𝜇(x) and covariance function 𝜅(x,x′) (also

known as a kernel), which take the form:

𝜇(x) = E[𝑓(x)] (2.8)

𝜅(x,x′) = E[(𝑓(x)− 𝜇(x))(𝑓(x′)− 𝜇(x′))] (2.9)

so that 𝑓(x) ∼ 𝒢𝒫(𝜇(x), 𝜅(x,x′)). Given a history 𝒟𝑡 = {x𝑖, 𝑦𝑖}𝐷𝑖=0 of 𝐷 observations

and observation locations at time 𝑡, the posterior belief at a new location x′ ∈ X is:

𝑔𝑡(x
′) | 𝒟𝑡 ∼ 𝒩 (𝜇𝑡(x

′), 𝜎2
𝑡 (x′)),where (2.10)

𝜇𝑡(x
′) = 𝜅𝑡(x

′)⊤(K𝑡 + 𝜎2
𝑛I)

−1y𝑡, (2.11)

𝜎2
𝑡 (x′) = 𝜅(x′,x′)− 𝜅𝑡(x

′)⊤(K𝑡 + 𝜎2
𝑛I)

−1𝜅𝑡(x
′), (2.12)

where y𝑡 = [𝑦0, . . . , 𝑦𝐷−1]
⊤, K𝑡 is the positive definite kernel matrix with K𝑡[𝑖, 𝑗] =

𝜅(x𝑖,x𝑗) for all x𝑖,x𝑗 ∈ 𝒟𝑡, and 𝜅𝑡(x
′) = [𝜅(x0,x

′), . . . , 𝜅(x𝐷−1,x
′)]⊤.

In practice, 𝜇(x) is typically set to 0, and the kernel function is primarily used to

encode the relationship between features in the environment. Kernel functions con-

tain hyperparameters, which specify properties like smoothness, correlation strength,

periodicity, and scale. Hyperparameters can be set directly through prior knowledge

about a phenomenon of interest, or through online optimization techniques (e.g., [62]).

The popularity of GPs for environmental modeling and robotic planning is rooted

in the relative ease of training and performing inference with the representation, in

addition to the simple but expressive way in which kernel hyperparameters can be

utilized to enforce structure over data. In large datasets, GPs can be computationally

expensive, as the training and inference time is cubic with respect to number of

observations. Sparse GPs [63] can be employed to address scalability concerns.
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2.2 Environmental Sensing as a Robotics Problem

Environmental sensing with a robotic platform can be considered an information-

gathering mission. In such applications, the environmental model is useful for repre-

senting the robot’s belief about the state of the target phenomenon with respect to

a history of observations, but decision-making requires more information; a planning

model is necessary. A planning model specifies the vehicle dynamics, available ac-

tions, belief about the physical state of the vehicle, the precise mission objective, and

a method for evaluating an action with respect to the mission objective. Information-

gathering is most generally modeled as sequential decision-making in which actions

are evaluated, selected, and executed at each planning iteration. Sequential decision-

making processes are considered Markovian when an action selection is conditionally

independent of previous actions and observations given the current belief state of

the vehicle (with respect to both environmental and state model). Markov decision

processes (MDPs) [64,65] are a useful model for a robotic planning problem, and are

described in Sec. 2.2.1. An extension of MDPs to domains in which the state of the

world is only partially observable, POMDPs [12], is presented in Sec. 2.2.2.

2.2.1 Markov Decision Processes (MDPs)

A Markov decision process (MDP) is represented as a tuple (𝒮,𝒜, 𝑇, 𝑅, 𝛾, 𝑠0) where:

� 𝒮 is the set of finite or infinite (in the case of continuous functions) decision

states

� 𝒜 is the set of finite or infinite (in the case of continuous actions) actions that

are available to the vehicle, 𝒜𝑠 is the set of actions available from state 𝑠.

� 𝑇 : 𝒮 × 𝒜 → 𝒫(𝒮) is the transition function which represents the probability

density of being in state 𝑠 ∈ 𝒮, taking action 𝑎 ∈ 𝒜, and arriving in state

𝑠′ ∈ 𝒮; 𝑇 (𝑠, 𝑎, 𝑠′) = Pr(𝒮𝑡+1 = 𝑠′|𝒮𝑡 = 𝑠,𝒜𝑡 = 𝑎). This allows for imperfect

dynamics in either the robot control or the modeled environment.
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� 𝑅 : 𝒮×𝒜 → R is the reward function, which represents the value of performing

some action 𝑎 ∈ 𝒜 when in state 𝑠 ∈ 𝒮. Can alternatively be 𝑅 : 𝒮×𝒜×𝒮 → R

if value is awarded by arriving into a state 𝑠′ ∈ 𝒮 from state 𝑠 ∈ 𝒮 after taking

an action 𝑎 ∈ 𝒜.

� 𝛾 is the discount factor which is applied in infinite-horizon missions.

� 𝑠𝑜 is the initial decision state.

A policy 𝜋 : 𝒮 → 𝒜 which maps decision states to actions is a solution to an

MDP. An optimal policy 𝜋* describes the set of actions to take from any given state

that maximize the total (potentially discounted) reward for a ℎ-horizon mission (in

which ℎ can be infinity):

𝜋* = arg max
𝜋

E
[︂ inf∑︁

𝑡=0

𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡)|𝑠0, 𝜋
]︂

(2.13)

The optimal policy from state 𝑠 ∈ 𝒮 can be determined using value iteration, which

iteratively estimates the value of the optimal policy using the Bellman equation [65]:

𝑉 *
𝑡+1(𝑠)← max

𝑎∈𝒜

[︂∑︁
𝑠′∈𝒮

𝑇 (𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝑡(𝑠
′))

]︂
𝜋*(𝑠) = arg max

𝑎∈𝒜

[︂∑︁
𝑠′∈𝒮

𝑇 (𝑠, 𝑎, 𝑠′)(𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉 *(𝑠′))

]︂
.

(2.14)

For a threshold 𝜖, such that value iteration is terminated when |𝑉𝑡+1(𝑠)−𝑉𝑡(𝑠)|< 𝜖,

then max𝑠∈𝒮 |𝑉𝑡+1(𝑠)− 𝑉 *(𝑠)|< 2𝜖𝛾/(1− 𝛾). Value iteration converges in polynomial

time.

2.2.2 Partially Observable MDPs (POMDPs)

At their core, MDPs assume that the state at any time is fully-observable, however, in

the case of environmental sensing, a collected observation generally does not reveal the

full state of the phenomenon. Thus, the underlying function 𝑓 is partially-observable.
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Partially-observable Markov decision processes (POMDPs) [12] extends MDPs to par-

tially observable domains, defined as the tuple (𝒮,𝒜,𝒵, 𝑇, 𝑂,𝑅, 𝛾, 𝑏0) where 𝒮,𝒜, 𝑅,

and 𝛾 are defined as in Sec. 2.2.1 with:

� 𝒵 is the space of all possible observations. May be finite or infinite (in the case

of continuous functions).

� 𝑂 : 𝒮 × 𝒜 → 𝒫(𝒵) is the observation model, which represents the probability

density of observation 𝑧 ∈ 𝒵 after executing action 𝑎 ∈ 𝒜 from state 𝑠 ∈ 𝒮;

Pr(𝑂𝑡 = 𝑧|𝒮𝑡 = 𝑠,𝒜𝑡 = 𝑎). This function can model imperfect sensing.

� 𝑏0 is the prior distribution over the initial state 𝒮0; 𝑏0 = Pr(𝒮0 = 𝑠)

In partially-observable domains, the state of the world is uncertain. In general,

this means that the decision process is no longer Markov, as the optimal policy would

no longer be dependent on the state. However, by making decisions based on the

belief over states rather than making decisions based on the current best estimate

of the state, the Markov property can be restored, since the belief state summarizes

all the historical observation and action history relevant for policy calculation. Just

as in MDPs, the Bellman equation can be used to recursively quantify the value of

belief 𝑏𝑡 = 𝒫(𝑆𝑡) over horizon-ℎ under policy 𝜋 : 𝑏𝑡 → 𝑎𝑡 as:

𝑉 𝜋
ℎ (𝑏𝑡) = E[𝑅(𝑠𝑡, 𝜋(𝑏𝑡))] + 𝛾

∑︁
𝑧∈𝒵

𝑉 𝜋
ℎ−1(𝑏

𝜋(𝑏𝑡),𝑧
𝑡+1 ) Pr(𝑧 | 𝑏𝑡, 𝜋(𝑏𝑡)), (2.15)

where the expectation is taken over the current belief and 𝑏
𝜋(𝑏𝑡),𝑧
𝑡+1 is the updated

belief after taking action 𝜋(𝑏𝑡) and observing 𝑧 ∈ 𝒵. The optimal policy 𝜋*
ℎ over

horizon-ℎ is the maximizer of the value function over the space of possible policies Π:

𝜋*
ℎ = arg max𝜋∈Π 𝑉 𝜋

ℎ (𝑏𝑡).

In general, Eq. 2.15 is difficult or intractable to compute in large or continuous

state and observation spaces. The same holds for large or continuous-valued MDPs.

Thus, approximate solvers are necessary in order to extract the optimal policy for a

robotic agent to execute. Sec. 2.3 and Sec. 2.4 discuss in detail the formulation of the

reward function and methods for approximately solving MDPs and POMDPs.
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2.3 Reward Specification

In an MDP or POMDP formulation, the reward function serves to encode the scientific

objective of a mission. For example, if the objective was to drive the vehicle to the

maximizer of some distribution, then the reward function may deliver reward only

to actions that directly lead to states in the proximity of the maximizer. Some

objectives may be easy to encode as a heuristic reward, however in environmental

domains, objectives may be less obvious to encode, e.g., “map” a phenomenon, “learn”

a distribution, etc. Even with relatively straightforward objectives, like the illustrative

maximizer objective above, rewards that take on a “sparse” form (i.e., the reward

signal itself is only provided in very few states) are generally hard for a robot agent

to optimize well [17]. In either of these cases, it is useful to consider reward functions

that can quantify the value of information content of a potential observation in order

to elicit explore-exploit behaviors.

Explore-exploit describes decision sequences which initially allow the agent to ex-

plore the unknown state space in order to characterize the distribution and build a

sophisticated belief over the domain, then exploit that knowledge in service of some

objective (e.g., converging to a maximizer). Reward functions which encode this

trade-off may use hyperparameters to tune the balance in the explore-exploit behav-

ior, whereas other functions may naturally enforce these behaviors. Information mea-

sures have been studied as suitable reward signals to encode explore-exploit behavior

in several fields, including optimal experimental design, optimal sensor placement,

reinforcement learning, and Bayesian optimization. This section provides a brief

overview of these fields and core concepts in information measures, with particular

focus on information-theoretic measures from Bayesian optimization in Sec. 2.3.2.

2.3.1 Overview of Information Measures

Information measures provide a way to assess the utility of a measurement with

respect to the history of observations and ultimate objective. Several widely used

information measures have been proposed in multiple fields; for details on information
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measures in general, MacKay [66] provides a comprehensive overview.

Optimal Experimental Design In optimal experimental design [67], a typical

experiment requires estimating a vector z ∈ R𝑑 from a set of measurements x and

observations y such that 𝑦𝑖 = 𝑥𝑇
𝑖 z + 𝑤𝑖 for 𝑖 = 1...𝑁 observations, where 𝑤𝑖 is zero-

mean Gaussian noise. An estimator is then calculated for z given the experimental

set-up. Commonly, the maximum likelihood estimate (MLE), ẑ, is used because it

is an unbiased estimator. The estimation error between the ẑ and ẑ is 𝐸 = ẑ − z.

The covariance matrix of 𝐸 is ultimately used to characterize informativeness of a

measurement by inspecting how the measurements reduce overall error variance.

Several types of optimal design arise based upon different criteria for inspecting

variance reduction. Some optimal design regimes used in robotics, learning, and

sensing applications are listed:

� 𝐴-optimal: Minimizes the trace of the inverse covariance matrix, e.g., [68–70]

� 𝐷-optimal: Minimizes the determinant of the covariance matrix, e.g., [69–71,71]

� 𝐸-optimal: Maximizes the smallest eigenvalue of the covariance matrix, e.g., [70]

� 𝑉 -optimal: Minimize the average prediction variance, e.g., [72]

Soft Measures of Information In optimal experimental design, “hard” estimates

of a target variable (i.e., explicit estimators) are used to quantify the informativeness

of a measurement. In contrast, “soft” estimates use the probability distribution over

a target variable. Shannon’s entropy [73] was defined with respect to four key design

principles for an information measure, 𝐼(·), with respect to probability 𝑝:

1. Information measures are continuous, monotonic functions of probability; 𝐼(𝑝)

2. Information is non-negative; 𝐼(𝑝) ≥ 0

3. If an event has probability 1 (it is certain to occur), then no information is

gained; 𝐼(1) = 0
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4. The information gained from observing two independent events is the sum over

information gained from each individual event; 𝐼(𝑝1𝑝2) = 𝐼(𝑝1) + 𝐼(𝑝2).

From these principles, entropy was defined as:

𝐻(𝑋) = −
𝑛∑︁

𝑖=1

𝒫(𝑥𝑖) log𝑏𝒫(𝑥𝑖) (2.16)

where 𝒫(·) is a probability density over random variable 𝑋 with values 𝑥1, ....𝑥𝑛 and

𝑏 is a selected logarithm base. Entropy quantifies the expected log-loss of the distri-

bution over a random variable. In robotic information-gathering missions, it is useful

to be able to compare how informative one observation is with respect to another.

Relative or conditional entropy follows from Eq. 2.16 to quantify the informativeness

of observing a random variable 𝑍 after observing another random variable 𝑌 :

𝐻(𝑍|𝑌 ) = −
∑︁
𝑎,𝑏

Pr(𝑍 = 𝑎, 𝑌 = 𝑏) logPr(𝑍 = 𝑎|𝑌 = 𝑏) (2.17)

This is equivalently interpreted as the expected log-loss of the conditional distri-

bution Pr(𝑍|𝑌 ) with respect to 𝑍. In kind, mutual information quantifies how much

𝑌 reveals about 𝑍, or the average change in log-loss when observing 𝑌 :

𝐼(𝑍;𝑌 ) = 𝐻(𝑍)−𝐻(𝑍|𝑌 )

=
∑︁
𝑎,𝑏

Pr(𝑍 = 𝑎, 𝑌 = 𝑏) log
Pr(𝑍 = 𝑎, 𝑌 = 𝑏)

Pr(𝑍 = 𝑎)Pr(𝑌 = 𝑏)

(2.18)

Entropy, conditional entropy, and mutual information have been used extensively

in SLAM techniques [74–77], sensor placement [35, 78, 79], optimal navigation [80],

and robotic sampling [15,81].

2.3.2 Rewards in Bayesian Optimization

This thesis particularly draws inspiration from information-theoretic rewards designed

in the field of Bayesian optimization (BO). Several quintessential reward measures are
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presented in this section; Chapter 4 discusses in detail a state of the art BO reward

measure that is incorporated into an adaptive sampling algorithm.

Upper-Confidence Bound The upper-confidence bound (UCB) [82–84] is among

the most commonly used reward functions for robotic environmental sampling/sensing

missions (e.g., [19, 85–88]). The reward function takes the form:

𝑅UCB = 𝜇(x) +
√︀
𝛽𝑡𝜎(x) (2.19)

where for a set of queries x, the UCB reward is the sum of the predictive mean 𝜇 and

variance 𝜎 at the queries, where variance is scaled by a time-dependent hyperparam-

eter. UCB is a submodular function, which is defined by Nemhauser et al. [89]:

Definition 2.3.1. Given a finite set 𝐸, a real-valued function 𝑓 on the set of subsets

of 𝐸 is submodular if 𝑓(𝐴) + 𝑓(𝐵) ≥ 𝑓(𝐴 ∪𝐵) + 𝑓(𝐴 ∩𝐵),∀𝐴,𝐵 ⊆ 𝐸.

Intuitively, this definition encodes the notion of diminishing returns. In the con-

text of environmental sensing, submodularity can be interpreted: “as a robot agent

learns more about an environment, new measurements tend to yield less information.”

Submodularity is used in the analysis of UCB-guided algorithms to place bounds

and guarantees on overall performance. Srinivas et al. [19] provide detailed analysis

of UCB-based reward functions for use in environments represented by GPs, ulti-

mately demonstrating a bound on regret for some selection of 𝛽𝑡. Regret is a general

performance metric used to quantify the loss in reward from sub-optimal decisions

made because the underlying function 𝑓 is unknown. For robotic and sensor-selection

missions, no-regret performance implies that as time approaches infinity the accumu-

lated regret goes to 0, and is a popular way of proving useful convergence properties

of an algorithm. UCB reward, and UCB variants have been shown to elicit no-regret

properties in robotics and sensor selection problem [19,86,90].

Probability of Improvement A different measure of sample quality with respect

to information is probability of improvement (PI) [84, 91], which is intuitively the
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probability measure of whether a proposed query x will be better than the current

best measurement x*. For a GP, PI can be written:

𝛾(x) =
𝑓(x*)− 𝜇(x)

𝜎(x)
(2.20)

𝑅𝑃𝐼 = Pr(𝑓(x) ≥ 𝑓(x*)) = Φ(𝛾x) (2.21)

where Φ is the cumulative density function of a standard normal distribution, 𝑓 is

the unknown function, and 𝜇(·), 𝜎(·) are the predictive mean and variance of 𝑓 over

the queries.

Expected Improvement Expected improvement (EI) [84,92] is a measure of how

much better a proposed measurement will be over the current best measurement. For

a GP, EI can be written:

𝑅𝐸𝐼 = 𝜎(x)(𝛾(x)Φ(𝛾(x)) + 𝜖) (2.22)

where 𝛾(x) is the same form as in Eq. 2.20, and 𝜖 is normally distributed noise.

Predictive Entropy Search Predictive entropy search (PES) [93] is a relatively

recent reward function in BO derived specifically for GPs, and specifically aims to

find an optimum in some function 𝑓 . PES is an extension of Entropy Search, which is

derived by Hennig et al. [94]. The intuition of PES is that by using predictive mean

and variance of the GP belief state, the conditional entropy between a proposed

measurement x and the predicted optimizer of the GP x* can be used to guide useful

queries. The reward function takes the form:

𝑅𝑃𝐸𝑆 = 𝐻(Pr(x*|𝐷))− EPr(𝑦|𝐷,x)[𝐻(Pr(x*|𝐷 ∪ x, 𝑦))]

= 𝐻(Pr(𝑦|𝐷,x))− EPr(x*|𝐷)[𝐻(Pr(𝑦|𝐷,x,x*))]
(2.23)

where 𝐷 is a history of measurements and observations, and 𝑦 are observations (i.e.,
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the value of 𝑓 at measurement locations). The second term in Eq. 2.23 arises from

noticing that the first term is equivalently the mutual information between x* and

𝑦 given a history 𝐷, and that mutual information is a symmetric function. In order

to compute the reward function, it is necessary to draw estimates of x*. For certain

forms of the GP, these samples can be drawn using a spectral density function; details

are provided in [93] and briefly described in Chapter 4.

2.4 Decision-Making under Uncertainty

As explained in Sec. 2.2, solving a POMDP or large MDP requires an approximate

planning strategy. In the most broad sense, a planner can be characterized as either

being online or offline, which describes at what point in a mission a plan may be gen-

erated. This thesis primarily focuses on online planning regimes, which can be further

characterized as either myopic or nonmyopic, referring to how many actions ahead an

agent considers when making a decision. In this section, a brief overview of different

planners used in robotic environmental sampling and exploration are presented.

2.4.1 Offline Planning

Offline planning approaches specify an execution pattern for an agent prior to a mis-

sion, which the agent then executes in open-loop control. Simplistic offline planners

perform coverage or monitoring tasks [95,96] in a priori known metric environments.

Reward functions like “shortest path length” or “minimal energy expenditure” are

typical. Offline planning also refers to a system in which many potential plans or

contingencies are computed prior to a mission, and during execution one of these

plans is selected on-the-fly based on robot state [97].

2.4.2 Online Planning

In contrast to offline planners, online planners are used “in the loop” for vehicle con-

trol during mission execution. Online planners may be fully closed-loop, wherein
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streaming measurements and observations have direct consequence on robot behav-

ior. Generally, closed-loop planners are used for motion-control, in which obstacle

avoidance, perturbation rejection, and navigation are core tasks [98,99].

To optimize over an information measure, open-loop feedback control (also referred

to as partially closed-loop control) can be used [14,15,100], in which a planner designs

a trajectory to a finite horizon ℎ, the plan is executed using open-loop control, and a

subsequent trajectory from the robot’s new state is planned based upon observations

gathered. Horizon length further classifies open-loop feedback controllers into myopic

or nonmyopic regimes, in which the former refers to short-horizon (typically ℎ = 1)

planning, and the latter refers to long-horizon planning.

Myopic Planners

As the name implies, myopic planners are “short-sighted” — the single best action

to take at some planning iteration 𝑡 is selected according to some reward function.

Selecting the locally best option at a planning iteration is often referred to as greedy

planning.

The simplest interpretation of a greedy-myopic planner is:

𝑎* = arg max
𝑎∈𝒜

𝑅(𝑠, 𝑎) (2.24)

where the most rewarding action 𝑎* is selected from all actions 𝒜 such that the reward

function 𝑅 is maximized with respect to the robot’s current state 𝑠. Another form of

greedy plan with respect to set notation can be written as in Alg. 5 [101].

Algorithm 1: Greedy Algorithm: An illustrative format for a myopic-greedy
planner [101].
Data: reward function 𝑅, possible measurements 𝒳 = 𝑥𝑖, sampling capacity 𝐾
Result: sample set 𝒜 ⊆ 𝒳

1 𝒜 ← ∅ ;
2 while |𝒜|≤ 𝐾 do
3 x* = arg max𝑥∈𝒳 𝑅𝒜(x) ;
4 𝒜 ← 𝒜∪ x* ;

5 return 𝒜
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The performance of a greedy-myopic planner is arbitrarily worse than the optimal

plan; however under submodular (Def. 2.3.1) reward functions, such as UCB in GP

representations, the greedy-myopic search performance can be bounded. Moreover,

it has also been shown to be “no-regret” [19, 86], that is, the average regret per

action goes to 0 at the limit of infinite planning iterations. More generally, a bound

can also be defined for set-representations given a submodular, monotone reward

function [101] and greedy-planner in the form of Alg. 5, where a function 𝑓 is monotone

iff ∀𝑆 ⊆ 𝑇 ⊆ 𝑁, 𝑓(𝑆) ≤ 𝑓(𝑇 ). In practice, these performance bounds are loose, and

in finite-duration missions agents can be arbitrarily poor-performing.

Nonmyopic Planners

To specifically address improved finite-duration performance, nonmyopic planners

simulate taking several actions in order to select the next behavior to execute, op-

timizing over the expected future reward. Sampling-based methods like RRT [102]

are nonmyopic planners which use random samples of target domains to perform

computationally efficient, globally optimized path planning. Informative sampling-

based planners [103,104] have also been developed, which allow for optimization of a

sampled path over an information-theoretic objective.

By far, the most common form of nonmyopic planner in IPP problems are vari-

ations of tree search. The most naive form of this type of planner is brute-force

search over a finite horizon, enumerating all possible combinations of action sequences.

Perhaps obviously, this method is generally expensive for large or complex discrete

systems, and intractable for continuous-domain systems. For problems with dis-

crete states, branch and bound methods [105] have been used under monotone re-

ward functions to prune unpromising pathways and improve overall planning time.

For continuous-valued domains, state-of-the-art planners use deterministic discretiza-

tion [106] or a combination of sampling techniques and particle filter belief represen-

tations [87,107–109] to reduce the size of the possible set of states to search over, and

then perform classic tree search techniques. Specific discussion of the challenges of

searching over continuous domains can be found in Chapter 4.
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Monte Carlo Tree Search (MCTS) [110] has received increased attention in the

IPP domain and takes the general form:

1. Selection Select a valid action from the robot’s current state

2. Rollout Forward simulate taking that action and subsequent actions up to a

horizon ℎ

3. Calculate the reward of the simulated trajectory

4. Backup Update the value of the root action to be the average reward accumu-

lated by the present simulation and all previous simulations

5. Repeat 1-4 until termination criteria are met

6. Return the most rewarding action

MCTS differs from other tree searches by asymmetrically growing the tree by

selecting the most “urgent” node for examining based upon a meta-search heuristic,

which examines average accumulated reward for a node, and number of visits for a

node (this is the selection phase). The meta-search heuristic is known as the tree

policy, and itself can define the explore-exploit characteristics of the tree search. The

upper confidence bound for trees (UCT) policy has been shown to converge to the

minimax tree as the number of simulations expands to infinity, and the probability of

selecting a suboptimal action converges to 0 [110, 111]. This convergence guarantee

is particularly attractive as it is agnostic to the specific reward function that is being

used to assess the quality of a simulated rollout. This thesis discusses how to adapt

MTCS for POMDPs with continuous state and observations spaces in Chapter 4.

2.5 Robots in the Wild

This thesis is primarily interested in using robotic agents to examine environmental

phenomenon. Robotic technologies were first used in field campaigns to execute sim-

ple, preset missions, e.g., [112]. Many of the early robotic systems were for marine
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studies [113] or in efforts to develop extraterrestrial rovers [114]. Presently, appli-

cations for robotics can be found in agricultural sciences [115], forestry [116], and

climate monitoring [117], to name only a few. This thesis specifically highlights the

utility of the ChemYak marine vehicle [118] for biogeochemical studies in Chapter 3.

One of the first recognized marine surface vehicle was ARTEMIS [119] which was

able to perform simple bathymetry studies. The JetYak [120] developed by Woods

Hole Oceanographic Institution (WHOI), the WaveGlider [121] developed by Liquid

Robotics, and the Saildrone [122] are among the most prolific surface vehicles for

performing science missions.

Complementary developments in the environmental sciences and robotics have

driven innovation in both fields. As discussed in Sec. 2.1.1, environmental modeling

and probabilistic modeling for planning have considerable overlap. Practically, sensor

development, networking, wireless communication, longterm monitoring, and energy

consumption are shared concerns in general robotics and environmental engineering.

In the subsequent chapters, work at the intersection of the sciences and robotics will

be presented as a contribution to both fields.
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Chapter 3

Transience in Marine Science:

Greenhouse Gas Emissions

The study of water bodies on Earth — oceans, estuaries, rivers, lakes, and the land-

water continuum — connects the marine sciences. Transient phenomenon are ubiq-

uitous in marine environments, referring to a physical property (that is spatially

distributed) which changes over time. For example, on Cape Cod, MA, estuaries and

salt marshes (e.g., Little Sippewissett Marsh) are influenced by both fresh and salt wa-

ters, which are cyclically mixed by tides, stochastically influenced by weather events

and human-influence, and annually impacted by the changing seasons. In an estuary,

phenomenon may change on time-scales of hours (in the case of tides) to months (in

the case of seasons). In order to completely study biological, chemical, geochemical,

and physical aspects of marine environments, transience must be considered.

Canonical methods of studying marine environments have relied on physical sam-

ple collection. For example, from a bottle sample of water quantities like dissolved

gases and minerals, biological content, and water source (e.g., ground water, storm

water) can be examined. However, bottle samples can be difficult to collect in haz-

ardous environments or expensive to collect when specialized equipment is necessary.

Moreover, exhaustive bottle collection is generally not practical for logistical reasons,

including collection time, sample storage, and timely sample processing. Thus, every

bottle sample that can be collected in an environment may be considered “precious”
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in a field campaign, and significantly influence conclusions drawn from a study.

Collecting good bottle samples is a hard problem in the environmental and ma-

rine sciences, especially when the phenomenon of interest is not obvious and the

distribution is unknown. For example, chemical properties of a water body, like the

concentration of dissolved gases, may not be detectable to a human observer and

often analysis of a water sample will be delayed for weeks or months after collection.

In these cases, bottle samples may be distributed uniformly in space over a target

region, although the phenomenon of interest may have temporal characteristics, or

a spatial distribution, for which this is not well-suited. In situ instrumentation can

provide near real-time insight about the distribution of a target phenomenon. To use

in situ instrumentation effectively may require exhaustive and repetitive navigation

of a target region. Robotic platforms, particularly unmanned agents, are uniquely

suited for performing these tasks. Such agents additionally expand the number of

environments that it is possible to observe by going where a piloted vessel or a larger

vessel may be unable to navigate for safety or scientific reasons (e.g., shallow waters,

at the site of a calving glacier, or in biologically dense areas).

This chapter presents three field campaigns which primarily study the distribution

of the greenhouse gases methane (CH4) and carbon dioxide (CO2) with an unmanned

mobile surface platform, the ChemYak. Section 3.1 motivates the study of CH4 and

CO2 in the marine sciences, and Section 3.2 presents the ChemYak platform and

data processing techniques. Sections 3.3-Section 3.5 present the three field cam-

paigns, which represent near-shore open seas, coastal estuaries, and Arctic estuaries.

Section 3.6 discusses transience in natural environments, drawing on the field cam-

paigns to illustrate key challenges in characterizing and sampling such phenomenon

with a mobile platform and ultimately motivating adaptive sampling.

3.1 Studying Methane and Carbon Dioxide

Greenhouse gases absorb infrared radiation and contribute to the overall warming

of the atmosphere. Methane and carbon dioxide are potent greenhouse gases, and
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together with nitrous oxide (N2O), contribute 80% of total radiative forcing in the

atmosphere [123]. Since the industrial revolution, atmospheric levels of these gases

have significantly increased from historical levels (in the known geological record),

largely due to human activity [123]. CO2 increased by 40% between 1750 and 2011;

and CH4 increased by 150% in the same time period [123].

3.1.1 Carbon Dioxide

CO2 is an odorless, colorless gas that is soluble in water [124]. Major sources of anthro-

pogenic CO2 include burning of fossil fuels, cement production, and agriculture/land-

use changes [125]. CO2 emissions also occur naturally e.g., from soils (generally driven

by decomposition, microbial respiration, or plant respiration) [126], and near-shore

aquatic environments like estuaries and marshes [127]. Through gas exchange, the

largest natural contributor of CO2 into the atmosphere is the surface ocean, driven

by the partial CO2 pressure differential between water and air. Interestingly, the

ocean also serves as one of the largest sinks of atmospheric CO2, sequestering nearly

48% of all anthropogenic emissions [128]. The complex relationship between CO2 and

seawater is described by three core mechanisms: the solubility pump, the biological

pump, and the marine carbonate pump [125].

The solubility pump refers to the relationship between the solubility of CO2 in

water and temperature; in cold water CO2 is more soluble [129]. Temperature and

salinity circulation in the ocean can carry CO2 from the surface to the depths, effec-

tively sinking CO2. However, in upwelling conditions (e.g., warming of interior water),

CO2 can be outgassed at the surface ocean [130]. The biological pump describes the

biologically-driven process of carbon cycling. At the surface ocean, phototrophs, like

phytoplankton, use atmospheric CO2 in photosynthesis. When these organisms die,

they sink through the ocean column where bacterial decomposition in transit and

at the seafloor recycles the carbon. Any carbon that escapes decomposition is se-

questered in sediments [131]. The carbonate pump completes the carbon cycle, and

describes the process of inorganic carbon recycling in the ocean, centered primarily on

calcium carbonate which forms shells and hard exteriors of marine organisms [132].
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3.1.2 Methane

CH4 is a colorless, odorless hydrocarbon that is soluble in water (although much

less so than CO2) [133]. CH4 is less abundant in the atmosphere than CO2, but

has a significantly higher global warming potential (GWP). For a time horizon of

20 years, the GWP of CH4 is 87 gCO2eq/gCH4 and for a 100 year horizon (the

standard reporting horizon) is 36 gCO2eq/gCH4 [123, 134]. Although CH4 is more

potent than CO2, the overall lifetime in the atmosphere is shorter; approximately

12.4 years [123, 134]. Natural sources of methane include geochemical systems like

marine/terrestrial seeps or geothermal vents, wetlands, biogenic sources (like termi-

nates), and the ocean [125, 135]. Anthropogenic sources of methane are generally

attributed to fossil fuel extraction and use, agriculture, livestock (i.e., ruminants),

landfills, and waste treatment [125, 135–138]. More generally, CH4 is a key com-

ponent of natural gas [139], and is used in chemical processes like steam methane

reforming, which produces bulk hydrogen stock [140].

CH4 is generally removed from the atmosphere by reacting with hydroxide (OH-)

radicals in the stratosphere [141, 142]. The products of this chemical reaction are

water and CH3 (known as methyl) [142]. Additionally, some bacteria and archaea

have been shown to oxidize methane [143, 144]. In the ocean, large geological stores

of methane exist as frozen gas hydrate in shallow ocean sediments and permafrost

soils [125, 145]. Additionally, aquatic methanotrophs consume CH4 at natural seeps

or at exposed hydrate ridges [145,146].

3.1.3 Impacts

CO2 contributions from natural sources are volumetrically much greater than from

anthropogenic sources; nearly half of all emissions are from air-sea exchange, whereas

burning fossil fuels accounts for approximately 5% [125, 147]. Similarly, atmospheric

CH4 is dominated by natural sources, although anthropogenic sources of CH4 have

increased at faster rates than CO2 since 1750 [123]. The influx from anthropogenic

sources, however, is enough to perturb the balance between natural sources and sinks.
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The most general and direct consequence of elevated greenhouse gases in the at-

mosphere is known as global climate change or global warming, and describes the shift

in the Earth’s climate driven by anthropogenic contribution of greenhouse gases to

the atmosphere. Elevated CH4 and CO2 concentrations, and global climate change

itself, has secondary, compounding impacts on the environment. Rising tempera-

tures have been shown to impact seasonal freeze-thaw cycles and permafrost in the

Arctic [123, 148], insect populations [149, 150], and sea-level rise [151]. For these

specific examples, consequences include increased greenhouse gas emissions from the

Arctic [123, 152, 153], mass extinction events of insects in tropical regions [150], and

coastal reshaping that impacts human habitation. Cyclical behaviors, such as in-

creased emissions of gases from Arctic soils or temperature destabilization of gas

hydrates in warming seas [154], are of considerable concern.

A second direct consequence of elevated CO2 in the atmosphere is ocean acidifica-

tion [155,156]. The ocean sequesters atmospheric carbon, and the resulting chemical

reaction produces small amounts of acid. As the ocean absorbs more carbon avail-

able in the atmosphere, the net pH of the water decreases. Ocean acidity has been

shown to negatively impact coral colonies and invertebrates which rely on carbonate

to form shells [156]. Other direct effects of elevated gas levels include impacts to plant

tissues [157] and ozone pollution [158].

The impact of climate change and elevated greenhouse gases has implications for

health and safety of humans, human activities, and ecosystems at large. A better

understanding of natural and anthropogenic sources, in addition to the efficiency and

efficacy of natural sinks and engineered interventions, is a considerable focus in the

environmental sciences. The ultimate goals of field work associated with the study

of greenhouse gases are to (1) quantify chemical flux, (2) characterize spatial and

temporal trends of gas concentration, and (3) identify flux drivers (e.g., river inflow,

anthropogenic sources, seasonal warming). Marine environments are particularly im-

portant natural sources and sinks, and stand to be disproportionately impacted by

climate change and elevated atmospheric CH4 and CO2 levels [159]. In the field cam-

paigns presented in this chapter, a ChemYak surface vehicle [118] equipped with in
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situ instrumentation was used to capture the fine-scale dynamics of CH4 and CO2 in

the coastal ocean, a tidal estuary and river, and an Arctic estuary.

3.2 The ChemYak Mobile Platform

The ChemYak (Fig. 3-1) is an unmanned, remotely operated mobile platform devel-

oped at the Woods Hole Oceanographic Institution (WHOI) for in situ measurement

of chemical species in the surface ocean and coastal waters [118] (based on the JetYak

platform [120]). The chassis of the vehicle is a Mokai* jet-propelled kayak with servo

steering control. The vehicle is remotely piloted through a 2.4 GHz radio channel, or

can be programmed to follow a pre-specified trajectory using a PixHawk� autopilot,

which runs open-source Ardupilot. A central computer onboard the ChemYak logs

data from instruments and is connected to a high bandwidth local network to stream

data and diagnostic information to a remote computer. The vehicle is equipped with

a 10 m profiling winch mounted at the port-aft of the vehicle, and a rigid arm for

sensors is mounted at the starboard-aft.

The ChemYak is equipped with a sensor suite capable of measuring CH4 and CO2,

in addition to other physical and chemical properties of a target environment. The

most general configuration of the ChemYak includes a weather station, an oxygen

optode, a nitrate sensor, a CTD, and a gas extractor and analyzer.

Weather Station: An Air-Marine� 200WX Weather Station is used to record GPS

coordinates, relative velocity of the vehicle, wind speed, and air humidity and tem-

perature. GPS coordinates are served by Wide Area Augmentation System (WAAS)

satellites, with 3 m accuracy 95% of the time. The weather station is mounted at

the rotational center, approximately 1.5 m above the hull of the vehicle. Data are

streamed from the weather station through a serial connection to the onboard central

computer, and logged to a text file at 1 Hz.

*mokai.com
�pixhawk.org
�airmar.com
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Figure 3-1: The ChemYak The ChemYak is a jet-propelled unmanned kayak with
servo-controlled steering. The ChemYak can be piloted by a remote human user
through a radio link, or can execute predetermined waypoints with a PixHawk au-
topilot. To measure gas species in the top 10 m of the water column, a winch with
a CTD and pump inlet can be lowered. The pump inlet serves a field-portable Los
Gatos Research (LGR) Dissolved Gas Extraction Unit (DGEU) and LGR Greenhouse
Gas Analyzer (GGA), which uses infrared laser spectroscopy to optically determine
the content of an extracted gas sample. An oxygen optode and nitrate sensor are
optionally attached to a rigid sensor arm on the starboard-aft of the vehicle at about
0.15-0.25 m depth. A weather station provides GPS coordinates, wind speed, and
relative velocity. All instruments log at 1 Hz. On the figure, inlet channels for water
samples (blue) and gas samples (green) are indicated; all waste water and gas are
pumped and released at the aft of the vehicle. Data connections are marked in red.
Electrical connections are not drawn, however all instruments are connected to the
battery supply provided by 2 12 V lead-acid batteries.

Oxygen Optode: An Aanderaa* oxygen Optode 4831 is mounted to the rigid arm

of the vehicle, approximately 0.15-0.25 m below the water surface. Optode 4831 uses

a gas permeable foil to passively extract a gas species to a small sample chamber, and

blue light is used to excite a sensing foil. The red light reflection is measured, and

oxygen (O2) content corresponds to the reflection intensity (by applying principles

of fluorescence). Dissolved oxygen within 0-1000 𝜇M is measured with a <0.1 𝜇M

precision and accuracy of <2 𝜇M or 1.5%. CH4 rich environments tend to be hypoxic;

adding an optode to the ChemYak configuration provides a second avenue to detect

*aanderaa.com
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elevated greenhouse gas content. The instrument can return measurement at 1 Hz

and is logged by the central computer on the vehicle.

Nitrate Sensor: In the most general configuration, the ChemYak carries a nitrate

(NO3) sensor, co-located with the optode on the sensor arm. For the purposes of the

studies presented here, the nitrate sensor was not used.

CTD: An RBR* Concerto CTD probe (Conductivity-Temperature-Depth) depth-

rated for 100 m is attached to the end of the profiling winch. A CTD is used to

generally observe basic water properties, like salinity and temperature. Data from

the CTD can be streamed to the central computer and transmitted to a remote user,

providing some feedback with respect to probe depth. The reported depth accuracy is

±0.05% of full-range, with resolution of 0.001% of full-range. Temperature is reported

in degrees Celsius with accuracy ±0.002°, and 0.00005° resolution. Conductivity,

which is used to ultimately calculate salinity, is reported with ±0.03 mS cm−1 and

resolution 0.001 mS cm−1. The CTD self-logs on an internal computer at 1 Hz.

Gas Analysis: Two instruments are dedicated to the extraction and subsequent

analysis of greenhouse gas species in a water sample. The first instrument, a Los

Gatos Research� (LGR) Dissolved Gas Extraction Unit (DGEU), is used to extract

gas from a water sample. The DGEU actively pumps water samples for analysis;

the inlet to the pump is attached to the end of the profiling winch, co-located with

the CTD. The DGEU also pumps a sweep-gas reference sample from the ambient

atmosphere; the sweep-gas inlet is located at the bow of the vehicle, and is scrubbed

of CO2 and water vapor before entering the unit.

The DGEU uses a membrane contactor (Liqui-Cel G420 2.5 x 8) to separate gas

and water by using gas permeable tubing and filters. It is generally assumed that the

extraction is imperfect, so it is necessary to apply an efficiency correction to better

constrain gas content in a sample. Each gas species has its own associated efficiency,

*rbr-global.com
�lgrinc.com
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largely due to the differences in solubility between the two species. To estimate

this efficiency for a field campaign, laboratory analysis by Nicholson et al. [118],

empirical analysis with contemporaneous bottle samples, or analysis of measurement

distributions can be used. The selected technique for each field campaign will be

indicated in the respective sections.

The separated gas sample is subsequently pumped to a LGR greenhouse gas an-

alyzer (GGA), which is a field-portable infrared spectroscopic instrument (a propri-

etary off-axis integrated cavity enhanced absorption technique is used). Gas mea-

surements are reported in partial pressure units (ppm). Logging is performed at a

frequency of 1 Hz, which corresponds to precision in CH4 of <2 ppb and CO2 of <300

ppb. The instrument self-logs. Waste gas is released into the atmosphere at the stern

of the vehicle and waste water from the DGEU is expelled into the water body at the

aft of the vehicle, near the motor servo nozzle.

3.2.1 Measurement Analysis

In this chapter, all data reported have been quality controlled by hand to remove

anomalous events (typically when sensors are out of the water, during the beginning

and end of a mission, or while performing periodic filter checks). Although the gas

sensor directly reports partial pressure units (ppm), it is standard to report CH4 in

molar quantities (e.g., nM) and CO2 in atmospheric quantities (e.g., 𝜇atm). To

perform this conversion, it is necessary to apply the efficiency correction to the raw

measurements. This takes the form:

𝑝𝑑𝑟𝑦 = (
𝑚− 𝑔𝑝𝑝𝑚

𝜑
+ 𝑔𝑝𝑝𝑚)

𝑝𝑒𝑞
1000

(3.1)

where 𝑚 is the observed measurement from the instrument, 𝑔𝑝𝑝𝑚 is the reference

concentration of the target gas in the atmosphere (e.g., 1.86 ppm for CH4), 𝑝𝑒𝑞 is

the pressure imposed by the pump during extraction, and 𝜑 is the efficiency to be

applied. 𝑝𝑑𝑟𝑦 is the efficiency-corrected measure, now reported in 𝜇atm. For CH4, an

additional step where the corrected value is converted to a molar quantity is necessary.
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Principles from [160–162] are implemented by the open-source library gasex * in order

to perform the conversion to molar units. The conversion for CH4 follows:

𝑦 = 1.00024𝑇 + 𝐾0 (3.2)

log𝐾 = 𝑎0 + 𝑎1
100

𝑦
+ 𝑎2 log

𝑦

100
+ 𝑆(𝑏0 + 𝑏1

𝑦

100
+ 𝑏2(

𝑦

100
)2)− log 𝑉𝐶𝐻4 (3.3)

𝐶𝐶𝐻4 =
𝐾𝑝𝑑𝑟𝑦
1𝑒− 9

(3.4)

where 𝑆 is the salinity measure in practical salinity units (PSS), 𝑇 is temperature in

degrees Celsius, 𝐾0 is a constant set to 273.15 (0°C in Kelvin), constants 𝑎 and 𝑏 are

set from [160], and 𝑉𝐶𝐻4 is the molar volume of CH4.

To perform this conversion, contemporaneous salinity and temperature measure-

ments are required. In general, the CTD, gas analyzer, optode, and weather station

log on different computers with different clocks. To perform the desired conversion,

in addition to assigning a geolocation to every measurement, the instrument data are

interpolated onto a common timestamp; the time logged with the GPS coordinates

from the weather station is used.

3.3 Wastewater Effluent in Tidal Estuaries

Coastal zones are found at the interface of land and ocean environments, and host

the most productive ecosystems on Earth, largely due to a diversity of physical and

geochemical processes. The complexity of carbon cycling in these environments makes

characterizing and modeling atmospheric flux particularly challenging. For example,

rivers are considered sources of CH4 and CO2, which are outgassed during turbulent

events [163, 164], however salt marshes can be considered a carbon sink through

biological activity [165]. When anthropogenic influences are examined with respect

to these environments, there are further complications. Estuaries and rivers receive

a considerable amount of treated and untreated wastewater. Major facets of research

*github.com/dnicholson/gasex-python
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on estuarine waters include characterizing the impacts of synthetic materials (e.g.,

antibiotics [166]), increased organic materials (e.g., fertilizers and treatment feedstock

[167]), and urban developments (e.g., stormwater run-off [168]).

To better understand both natural and anthropogenic carbon cycling in estuaries,

this field campaign examines an estuary and river in New England with a treated

sewage outfall. The Wareham River in Massachusetts is one of the largest river sys-

tems in the Buzzards Bay feeder network*. This study focuses on an approximately

1 km stretch of the Wareham River on which the Wareham Sewerage Department is

located and pumps treated effluent. Several other local rivers flow into the Wareham

river downstream of the treatment facility, which ultimately opens into Buzzards

Bay. The river experiences semi-diurnal tidal cycles, with a water level change of

approximately 1.0-1.5 m�. At the field site, only small motor-watercraft could tra-

verse the river, and at low tide only personal watercraft (e.g., kayaks) could traverse

the shallow portions of the river, and other regions became exposed mudflats. The

tidal plane of the river varies from 12 m at its narrowest to 155 m at it’s widest. The

sewage treatment plant is a 1.56 MGD (million-gallon-per-day) BNR (biological nu-

trient removal) wastewater pollution control facility. The feedstock for bacteria in one

treatment stage is methanol, which scientists hypothesize may lead to elevated levels

of CH4 entering the estuary through the treated water. Disruption of the biogeo-

chemical processes of the estuary may have effects to the immediate surrounding area

around the treatment facility, as well as downstream. To better determine whether

CH4 is present in wastewater effluent and the extent to which it may be transported

by the river, the ChemYak was used to perform dense spatial mapping over the course

of a tidal cycle (high-tide to low-tide) in the Summer of 2017.

3.3.1 Overview of Field Work and Analysis

The ChemYak was deployed near the outfall of the treatment facility (41.758022,

-70.684128) and piloted by a human user. Over the course of 4-5 hours, 5 transects

*savebuzzardsbay.org/embayments/wareham-river/
�tides.mobilegeographics.com/locations/8728.html
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(which will be referenced as Transects A through E), on average 800 m long, were

conducted at the end of high tide (Transects A, B), at slack tide (Transect C), and

during the falling tide (Transects D, E), where the falling tide pulls water downstream

towards Buzzards Bay. An oxygen optode, CTD, and gas analyzer were available on

the ChemYak to take measurements of the river body, and all instruments were at-

tached (or had inlets attached as is the case for the gas analyzer) to the rigid sensor

arm of the vehicle, at approximately 0.15 m depth. Over 11,500 measurements repre-

senting approximately 9.5 km of travel are presented. Fig. 3-2 shows the 5 transects

undertaken during the field trials overlaid onto a reference map of the region, where

the outfall of the treatment plant is marked with a red star. The extraction effi-

ciency applied to convert CH4 and CO2 measurements was equivalent to that used in

Nicholson et al. [118], and set to 15% and 70% respectively.

3.3.2 Results

The field campaign revealed that elevated CH4 was present in source water that was

likely from the wastewater effluent outfall. Fig. 3-3 shows each transect that was con-

ducted and overlays CH4, CO2, O2, salinity, and temperature onto a representative

map. In general, elevated CH4 levels are present near the outfall, reaching 450 nM. A

trail of elevated CH4 toward Buzzards Bay, likely pulled by the falling tide, is evident

in the transects, however CH4 levels consistently decline to less than 100 nM at the

far extent of the field site. This decrease may be indicative of rapid outgassing of

CH4 occurring in the river, or other physical dynamics such as a mixing boundary.

Based upon the average salinity (1.63±1.5 PSS) and temperature (25.29±0.4°C) of

the surface waters, the expected equilibrium for the system is approximately 2.6 nM

(assuming atmospheric concentration of CH4 was 1.86 ppm). Elevated CO2 is also

evident with similar patterns to CH4 and likely derived from effluent waters, with a

peak concentration of over 4500 𝜇atm. At this field site, considerable biological activ-

ity was evident, and the waters were measured to have an oxygen content of over 220

𝜇M. In waters with elevated greenhouse gas content, reduced oxygen concentrations

between 120-160 𝜇M were observed.
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Figure 3-2: Wareham River field site A representative map of the Wareham River
Estuary field site is provided, with Transects A-E overlaid for reference. The outfall is
marked with a red star. To the left of the outfall, annotated with an arrow, the river
leads to Buzzards Bay, whereas to the right, the river winds through dense marshland.
The site of the treatment facility is also annotated, for reference.
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Figure 3-3: Wareham River ChemYak transects Individual transects are plotted
on a representative map of the field site, colored by observed attributes. A red star
marks the site of the outfall. Generally, elevated CH4 and CO2 are evident near the
outfall and pulled toward Buzzards Bay; likely driven by the falling tide. These regions
are also generally associated with lower O2 readings. A salinity and temperature
gradient is also evident, with saltier, warmer water present towards Buzzards Bay.
Fresher, colder water appears associated with elevated greenhouse gases, however, the
relationship is not necessarily strict.
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A salinity and temperature gradient is evident, with saltier, warmer water at the

far extent and fresher, colder water near the outfall. Fig. 3-4 shows the relationship

between salinity, temperature, and gas concentrations. It appears that water with

elevated greenhouse gas content tends to be colder and fresher. From the salinity and

temperature plots alone, it is difficult to distinguish treated water from natural fresh

water that is being pulled out of the deeper estuary by the tide. The distinguishing

feature is the presence of CH4 and to some extent CO2, which both tend to be

found downstream of the outfall, except during slack tide, in which an accumulation

upstream of gases seems to occur.
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Figure 3-4: Wareham River salinity, temperature, and gas relationships
These ST-plots highlight the correspondence between fresh, cold water and elevated
CH4 and CO2. In general, the field site has an established salinity and temperature
gradient, with saltier, warmer water towards Buzzards Bay, and fresher, colder water
near the outfall. Water with elevated greenhouse gas content appears to be present in
colder, fresher waters, which is partially to be expected from a wastewater treatment
plant. It is difficult, however, to distinguish treated water from fresh estuary water.

Fig. 3-5 captures the spatio-temporal variation evident during the field trials, with

orange bars indicating points away from Buzzards Bay (upstream), and blue bars

indicating points towards Buzzards Bay (downstream). Generally, the temperature
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of the region remained stable, with little variation. A temporally variable salinity

gradient was measured, with points upstream generally being the freshest observed,

and downstream points having higher salinity. The effect of the falling tide is evident;

as water is being pulled from upstream, the salinity levels towards Buzzards Bay seems

to decrease as freshwater flushes the area. The gas content of the river demonstrates

a more complex behavior relative to the tides.

At the end of high-tide (transects A-B), CH4 is generally stable at the outfall and

downstream, but upstream, the concentration of CH4 grows; at slack tide, CH4 levels

detected upstream of the outfall are the highest observed during the campaign, ap-

proximately 450 nM. Similarly, CO2 concentration also appears to become elevated

upstream during slack tide, and O2 correspondingly seems depleted. As the tide falls,

represented by transects D and E, flushing of upstream water occurs, showing rapid

decrease of CH4 and CO2 concentrations in upstream waters. For CH4, concentra-

tions during the flushing event appear to become elevated downstream; but a similar

trend does not hold for CO2 and O2. With respect to CH4, there appears to be little

loss from upstream concentrations to downstream concentrations during the flushing

event; in Transect C, 425 nM was recorded in upstream waters 250 m from the outfall,

and in transect D, 400 nM was recorded 450 m downstream from the outfall. However,

over 600 m away from the outfall, the ChemYak consistently observed concentrations

of CH4 around 100 nM. During the flushing event, CO2 and O2 appear to generally

decrease and increase, respectively, across the entire field site.
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Figure 3-5: Wareham River spatio-temporal trendsWaters away from Buzzards
Bay (upstream) are indicated by orange gradients and waters towards Buzzards Bay
are indicated by blue gradients. Averages at 450 m downstream, at the outfall, and
250 m upstream are shown to highlight trends. Red bars indicate the standard devia-
tion of the measurements. Generally, CO2 and O2 demonstrate consistent decreasing
and increasing trends, respectively. The salinity downstream decreases as fresh waters
from upstream flush the estuary, pulled by the falling tide. Temperature remains gen-
erally stable throughout the field site. CH4 demonstrates a complex spatio-temporal
trend that appears indicative of “accumulation” during the end of rising tide and slack
tide, and then “flushing” during the falling tide.
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3.3.3 Significance and Role of Transience

Together, these observations show that longitudinal transport of CH4 driven by tidal

flushing events occurs at the Wareham River. CH4 appears to be derived from waters

associated with wastewater effluent, which may also contain elevated CO2. Rapid

outgassing or metabolization of CH4 may occur within the river, as indicated by rapid

decrease of CH4 concentration towards saltier, warmer waters. In this environment,

transience is evident on the order of minutes and hours, associated with the tides and

the source of effluent that is constantly pumping into the estuary. Characterizing

this transience with sparse bottle samples alone would clearly be challenging, or

impossible. The ChemYak, performing simple trajectories along the field site, was

able to examine some of these dynamics in coarse detail, and particularly capture a

slack tide “accumulation” event, followed by a “flushing” event of the estuary.

Future work in the estuary may include extending the field site to better constrain

the extent of lateral CH4 transport, collecting complimentary bottle samples to con-

firm (through isotope analysis) the methane sources (known as end-members) present

in the sampling region, and quantifying the impact of biological CH4 consumption

in the region versus physical outgassing/venting. Further, observing several full tidal

cycles may help to characterize the accumulation-flushing event in the estuary, and

aid in the development of models of the region that could be ultimately used to inform

pumping policies and new treatment interventions at the facility.

3.4 Methane Bubble Plumes in the Cascadia Margin

Methane seeps, also known as cold seeps, are found throughout the ocean [169, 170]

at continental margins, geologically active sites (e.g., mud volcanoes), and in hy-

drate fields. Although a vast number of sites have been identified, the contribution

of methane seeps to the global atmospheric carbon budget is poorly constrained.

Few measurements of methane bubble plumes from seeps have been recorded at the

surface ocean [171]. Mechanisms that limit CH4 emissions include biologic metabo-

lization/oxidation and dissolution of bubbles at the seafloor, leaving only turbulent
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diffusion as a means for gas transport from the deep ocean [172, 173]. Estimates of

the contribution of CH4 from deep seeps has been shown to be negligible, however,

CH4 from shallow seep sites, lakes, and reservoirs may contribute a non-negligible

amount of atmospheric CH4, as bubbles can reach the surface in coherent forms [172].

In the Cascadia Margin (Pacific Ocean, Northern California, USA to Vancouver

Island, Canada), CH4 enters the water column from destabilized hydrate fields, and

stable hydrates that are exposed on the seafloor and oxidized by bacterial colonies

[174,175]. Numerous bubble plumes have been recorded in Cascadia Margin through

acoustic studies from depths of 104-2073 m [176, 177]. Plumes found along Hydrate

Ridge at depths greater than 500 m have been observed using acoustic imaging to

remain coherent to approximately 460 m before dissolution [178], and further studies

have shown that elevated concentrations of CH4 have been observed in water samples

around 200 m at these sites [179]. The majority of closely studied seep sites have been

found at the boundary of the hydrate stability zone, at depths between 600-400 m

[177], where negligible flux has been estimated to enter the atmosphere [173, 179].

However, shallow plumes sites stand to significantly influence the overall contribution

of CH4 from the Cascadia Margin. Small CH4 supersaturations have been shown to

be expressed at the surface of waters along Hydrate Ridge in addition to elevated

surface concentrations near the coast due to upwelling [179, 180]. Coastal upwelling

may be a primary driver of atmospheric CH4 contributions from the Cascadia Margin,

which has been shown to pull waters from as deep as 100-200 m to the surface. Given

shallow plumes in the coastal regions, in addition to deep sea plume penetration to

200 m, it is likely that CH4 from shallow seep sources is reaching the surface.

Traditional methods of measuring CH4 in the water column at sea usually em-

ploy CTD rosettes, which collect water samples for ex situ analysis at predetermined

depths. In a single field campaign, the number of CTD casts that can be conducted

is relatively small compared to the size of the entire region, and the sparsity makes

resolving the distribution of CH4 in surface layers difficult. Acoustic surveys can

identify expressions of seeps on the seafloor, which can help to ultimately target lo-

cations for CTD casts, however, surface expressions of the gas are still unresolved.
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Using a ChemYak surface vehicle, in conjunction with acoustic surveys and CTD

casts, this field campaign investigated representative shallow bubble plumes in the

Cascadia Margin, by fully resolving the water column from seafloor to the sea surface.

The results from the ChemYak deployments are discussed in detail.

3.4.1 Overview of Field Work and Analysis

In September 2018, field work in the Cascadia Margin was conducted onboard the

Schmidt Ocean Institute’s R/V Falkor (FK 180824; Hunting Bubbles Cruise). Two

representative sites are presented: Yachats (44° 21’N, 124° 10’W) and Stonewall Bank

(44° 27’N, 124° 16’W). Both are shallow plume sites, with average depths of 46 m and

68 m respectively.

Shipboard multibeam sonar was used to produce bathymetric maps of the seafloor

and look for bubble plumes in the mid-water. From these, scatter anomalies (known

as flares) were used to identify and localize bubble seep candidates. CTD rosettes

were subsequently cast over-the-side of the vessel in strategic locations to determine

whether elevated CH4 was present in the water column. Typically, CH4 rich and hy-

poxic waters were observed from the depth of the cast site to 15-20 m. The ChemYak

was launched from the ship in locations with seep activity and elevated concentra-

tions of CH4 at depth in order to observe fine spatial features in the top 10 m of

the water column. The ChemYak was equipped with the gas analyzer, CTD, and

oxygen optode as in the previous campaign, and the profiling winch was employed to

change the depth of the CTD and inlet tube of the gas analyzer over the course of

the mission. A secondary watercraft was deployed to monitor the ChemYak in the

open ocean, and to allow a human pilot to better observe sea-state conditions while

operating the vehicle.

CH4 measurements were converted to molar units using an empirical extraction ef-

ficiency calculated by inspection of the distribution of measurements gathered, shown

in Fig. 3-6. The median of the distribution of all measurements was compared with

the expected equilibrium concentration of CH4 (1.86 ppm, the global atmospheric

level of CH4 in September 2018) to calculate the efficiency correction necessary to
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make them equivalent. For the salinity and temperature at the test sites (32.96 PSS

and 12.7°C respectively), 1.86 ppm corresponds to a 2.7 nM concentration of CH4.

As a result of this analysis, an efficiency correction of 5.2% was applied. Across the

two representative sites, over 16,500 measurements were recorded, and over 20 km

traveled by the ChemYak.
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Figure 3-6: Distribution of corrected observations in Cascadia Margin To
determine the extraction efficiency for the field campaign, the distribution of the
CH4 measurements collected were inspected, and the median concentration set to the
hypothesized equilibrium value, 2.7 nM. The equilibrium value is calculated using
1.86 ppm as the atmospheric concentration of CH4 at the time of sampling, and the
average salinity (32.96 PSS) and temperature (12.7°C) between both test regions.
The fit of the data for both test sites is shown, where the red dashed line indicates
2.7 nM.

3.4.2 Results

The ChemYak observed elevated CH4 levels in the surface layers at both representative

sites coupled with low-oxygen conditions. Fig. 3-7 and Fig. 3-8 show the geolocated

measurements observed by the ChemYak at Stonewall Bank and Yachats, respectively.

At Stonewall Bank, up to 35 nM at 10 m depth was observed in highly localized,

approximately 25 m diameter pockets. To the southeast of the measurement site,

elevated CH4 of 3-4 nM was generally observed throughout the top 10 m of the water

column. Three bubble plumes were detected with the multibeam sonar in the field

site; and a CTD cast was performed near the southern most plume site. It is generally

difficult to correlate any of the small supersaturations with a particular plume source,
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however the presence of plumes in general indicates that there is CH4 rich and hypoxic

waters at depth (which is confirmed by the CTD cast). Low-oxygen conditions at

the surface are generally correlated with elevated CH4 concentrations. Fig. 3-9a

shows a tentative relationship between O2 and CH4, in which more CH4 rich waters

appear to have slightly lower O2 content (O2: 380 𝜇M, CH4: 3-7 nM) than waters at

CH4 equilibrium (O2: 387 𝜇M, CH4: <2.7 nM).

In comparison, CH4 was found in less supersaturated pockets at Yachats, although

localized pockets of 3-7 nM were observed, with a diameter of approximately 50-100 m.

The multibeam observed tens of seeps at the seafloor at this location, however it is

difficult to distinguish a spatial relationship between these detections and elevated

surface expressions. The O2 and CH4 at Yachats does not show a clear correlation

— most surface CH4 detections were at equilibrium — however, a potentially anoma-

lous positive correlation between O2 and CH4 can be seen for CH4 concentrations

from 3.5-6.5 nM.

A summary of the relationship between depth and CH4 observed at both sites is

provided in Fig. 3-10. At Stonewall Bank, significantly elevated CH4 was observed

at approximately 8 m depth, with occasional peaks between 2-6 m. In the top meter,

concentrations of > 7 nM (nearly 3 times the equilibrium concentration) was also

observed. Throughout the water column, the average observed CH4 concentration was

distributed around the equilibrium; only at 8 m did the average concentration vary

significantly from the equilibrium to 10 nM. At Yachats, elevated CH4 was observed

throughout the water column, with peaks between 2-8 m. In general, the average

CH4 observed at various depths in Yachats was skewed slightly above the equilibrium

value (approximately 3.1 nM). At both sites, the majority of observations fall between

2-4 nM.
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Figure 3-7: ChemYak tracks at Stonewall Bank The ChemYak was piloted by a
human user given rough GPS coordinates of the bubble plumes (marked with magenta
circles) and the CTD cast (marked with a red star). The map, center, shows an
overhead view of the path the ChemYak took, and the two side panels at the bottom
and right show the depth of the CTD probe and gas analyzer inlet for each sample.
Significantly elevated CH4 is found at several sites, with a peak at 38 nM detected
at 8 m. CH4 concentration levels above 2.7 nM were largely observed to the north
and southeast of the field site, at depths of 0.5-4 m. There does not appear to be
a direct spatial correlation between concentrated CH4 expressions and discovered
seafloor seeps. Note: log-scale used for CH4 concentration.
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Figure 3-8: ChemYak tracks at Yachats The ChemYak was piloted by a human
user given rough GPS coordinates of the bubble plumes (marked with magenta cir-
cles). The map, center, shows an overhead view of the path the ChemYak took, and
the two side panels at the bottom and right show the depth of the CTD probe and gas
analyzer inlet for each sample. Relatively little CH4 elevation was observed at this
site as a whole, however several concentrated expressions of 3-7 nM were observed at
depths up to the top 1-2 m.
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Figure 3-9: Cascadia Margin surface methane and oxygen Measurements ob-
served in surface (0.5-1.5 m) waters at (a) Stonewall Bank and (b) Yachats are plotted
to compare oxygen and methane. At Stonewall Bank, there are distinct “clusters”
shown in the data, which roughly correspond to elevated CH4-low O2 waters and wa-
ters that are near CH4 equilibrium and show higher O2 content. In Yachats, there is
no clear correspondence between CH4 and O2, although an interesting and potentially
anomalous rise in O2 and CH4 levels appears to be present in some portion of the
field site.
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Figure 3-10: Cascadia Margin methane depth profiles Measurements from the
ChemYak field campaigns at Stonewall Bank and Yachats plotted as CH4 versus
depth, with average CH4 values at depth binned by 0.25 m increments marked in
red, and 2.7 nM equilibrium marked with a black line. A representative density of
CH4 measurements is provided above the scatter plot. At Stonewall Bank, signifi-
cantly elevated CH4 was observed at 8 m. Both sites show elevated CH4 concentrations
up to 8 nM in the top meter of the water column, with the majority of observations
falling between 2-4 nM.
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3.4.3 Significance and Role of Transience

These preliminary results indicate that CH4 from shallow methane seeps may be

reaching the top 10 m of the water column. At Stonewall Bank, evidence of up-

welling (elevated CH4 and depleted O2) and highly local supersaturated expressions

were observed. At Yachats, local supersaturations were observed, and measurements

throughout the water column were skewed slightly above the equilibrium value (al-

though O2 content did not demonstrate a strong relationship).

To get a sense of the potential impact of shallow seeps as a methane source, a

conservative estimate for CH4 flux is presented. The total area of Stonewall Bank

and Yachats observed by the ChemYak was approximately 2.87 km2. The mean con-

centration of CH4 in the waters was observed to be approximately 2.1 𝜇atm, with

a maximum of 4.45 𝜇atm. During the field trials, a sustained 10 m s−1 wind was

observed, and is assumed to be a representative measure of wind-speed throughout

the year. The atmospheric concentration of CH4 is given at 1.86 𝜇atm, with average

salinity (32.96 PSS) and temperature (12.7°C) taken from the trials. Under these

conditions, a conservative average positive flux for the region is 0.0006 mol m−2 y−1

with upper bound of 0.0056 mol m−2 y−1. This ultimately implies a contribution of

29-259 kg y−1 of CH4 from the study sites to the atmosphere. Further work would be

required to better constrain this estimate, and a scaling exercise could be applied to

estimate the total contribution of shallow seeps to the global carbon budget.

Tracing bubble plumes directly through the water column is a considerable task:

ocean currents, the effect of the halocline and mixing boundaries, waves, and atmo-

spheric conditions all impact the journey of CH4 from sea floor to the atmosphere.

In minutes, we found that the concentration of a previously sampled region would be

measured by the ChemYak to have a different gas character. Although seep locations

were known, there was no clear correlation between sources and surface expressions,

likely due to ocean current and surface perturbation by wind and waves. This field

campaign motivates future work in the Cascadia Margin and at shallow methane seeps

with in situ equipment to densely survey and map surface expressions of CH4, and
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developing regimes that seek and densely sample supersaturation pockets. Addition-

ally, underwater technologies could be used to target and examine methane bubble

release events. The outcome of this and future work could ultimately be used to

revisit the methane and carbon budget of ocean sources to the atmosphere.

3.5 Spring Freshet River Inflow in Arctic Estuary

Global climate change has significantly impacted freeze-thaw cycles in the Arctic; the

ice-free season has lengthened and once permanently frozen land now thaws season-

ally [148,181]. Seasonal thawing generally has been associated with outgassing of CH4,

CO2, and other greenhouse gases, like nitrous oxide (N2O) [148, 152, 153, 182, 183].

Previous studies of Arctic ice sheets, lakes, estuaries, and coastal waters have shown

that gas emissions are transient, and vary with the seasons [148,152,153,182,184,185].

However, published measurements in the Arctic are significantly skewed towards sum-

mertime measurements under open-water conditions. In order to better constrain the

CH4 and CO2 budget of coastal Arctic waters, characterizing short-duration out-

gassing events, such as during the spring freshet, is critical.

For this study, Cambridge Bay, Nunavut, Canada (Fig. 3-11) served as a rep-

resentative field site in the North American high Arctic to perform dense spatial

mapping with the ChemYak. Cambridge Bay (69°07’N, 105°03’W) is a hamlet on the

southeastern coast of Victoria Island in the Kitikmeot Region. Generally, the island

environment is sedge-moss-meadow and polar semi-desert [186]. Cambridge Bay har-

bor is fed by the Freshwater Creek estuary; the major riverine influence in the region

is Freshwater Creek, which receives discharge from Greiner Lake to the Northeast of

the hamlet. The lake, river, and harbor freeze annually, with the estuary freezing

to approximately 1.5 m thick by late Spring. Ice acts as a cap for the water body,

trapping gases underneath it and preventing air-sea interactions [153, 184]. During

seasonal ice melt, rapid re-equilibration occurs as the air-sea interface is restored. In

Cambridge Bay, river discharge begins in June, leading to the start of ice-free season

in late-June through early-July.
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Figure 3-11: Cambridge Bay reference map This map shows the location of
Cambridge Bay with respect to North America. Cambridge Bay is found on the
southeastern coast of Victoria Island (highlighted), which lies about the Arctic circle.
In the inset, the location of Cambridge Bay on the island is marked with a red star.

A year-long series of bottle samples from sampling station B1 (69.107556°N,

105.059667°W) and from Freshwater Creek (69.12975°N, 104.99459°W) were collected

from Cambridge Bay in 2017-18, consisting of over 30 measurements. These samples

indicated that shortly before the harbor became ice-free, the under-ice measurements

of CH4 in Freshwater Creek peaked at 240,000% saturation and in the estuary to

19,000% saturation in late-June and then decreased by over a factor of 100 within

four weeks, indicating rapid air-sea ventilation as the ice cover receded. The pre-

liminary measurements indicated a significant and unprecedented outgassing period,

however, the temporal resolution of the samples left open questions about the rate

of the re-equilibration within the estuary and lateral transport of CH4 to the coastal

ocean. In order to characterize the fine-scale temporal dynamics just as ice melt

begins, it is necessary to employ in situ instruments for rapid and dense collection.
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3.5.1 Overview of Field Work and Analysis

The ChemYak was deployed for a 5-day campaign in late-June through early-July

of 2018 in recently ice-free waters in the Freshwater Creek estuary. From 28 June

through 02 July, the ChemYak was piloted by a human user from the receding ice

edge in Cambridge Bay harbor to the mouth of Freshwater Creek. In addition to

the main estuary, a small embayment near the mouth of the river was also surveyed

on several days of trials (29 June, 01 July, 02 July). This embayment was fed by a

much smaller, minor river. The ChemYak traveled an average of 11±2 km each day,

typically between the hours of 15:00-22:00 UTC and over 75,000 observations were

collected. The greenhouse gas analyzer and CTD were made available for this study,

and the profiling winch was used to make measurements above and below the mixing

layer in the estuary. A representative map of the study region and daily trajectories

followed by the ChemYak are shown in Fig. 3-12.

An empirical extraction efficiency correction for CH4 and CO2 measurements was

determined using bottle samples that were collected contemporaneously to ChemYak

measurements for each day of the campaign. To compare with bottle samples, Che-

mYak measurements were sorted by the day the sample was taken, depth proximity

to the point at which the Niskin collection bottle was fired (±0.38 m), and geographic

proximity (within 50 m radius) of the logged bottle sample location. An extraction

efficiency that allowed for a linear fit of slope 1 between ChemYak measurements

and bottle samples was then selected. The outcome of the calibration is shown in

Fig. 3-13. An empirical extraction efficiency of 5.09% for CH4 (r2=0.842) and 50.5%

(r2=0.717) for CO2 was found. One bottle sample was eliminated from the calibration

as the temperature/salinity measured in the bottle did not match the temperature

and salinity profile with the associated ChemYak measurements; likely caused by a

misfiring of the Niskin sample bottle used.
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Figure 3-12: Cambridge Bay field site and ChemYak tracks The study site
with ChemYak trajectories from each day overlaid. The mouth of Freshwater Creek
(69.1257°N, 105.0042°W) is marked with a star, and concentric rings at increments of
500 m centered at the mouth are provided for scale. Northeast of the red dashed line
lies Freshwater Creek (red box) and a small embayment (blue box) which receives
input from a much smaller river.
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Figure 3-13: Cambridge Bay calibration results for gas analyzer The extrac-
tion efficiency used to scale ChemYak measurements was determined by comparing
ChemYak observations with collected bottle samples. In the plots above, ChemYak
observations of CH4 are calculated using an extraction efficiency of 5.09% (r2=0.842)
and for CO2 using an extraction efficiency of 50.5% (r2 = 0.717). ChemYak mea-
surements are representative of the mean (point coordinate) and standard deviation
(error bar) of all observations filtered by location (<50 m radius), depth (±0.38 m),
and day, as recorded for the bottle sample. Error bars reported for bottle samples are
determined by processed replicates for CH4 and uncertainty in total alkalinity, dis-
solved inorganic carbon, salinity, temperature, and carbonate equilibrium constants
for Arctic estuarine environments for CO2.

3.5.2 Results

Over the course of the 5 day field campaign, the ChemYak revealed a strong pycno-

cline in the estuary that divided fresh, gas-rich water at the surface from salty, cold

water. Fig. 3-14 shows the pycnocline at approximately 1.5-2.5 m over the campaign

period. Using the mouth of Freshwater Creek as a reference point, elevated CH4 and

CO2 levels were observed in the surface layers over 2 km towards the receding ice edge

in the harbor. This figure also demonstrates the difference between the embayment

and river-forced waters. The embayment is composed of very warm, fresh water with

gas concentrations that are lower than those measured in nearby surface waters. For

example, on 29 June, surface water at Freshwater Creek mouth was observed to have
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concentrations of CH4 around 417±31 nM and CO2 around 1398±109 𝜇atm. On

the same day, the embayment was observed to have concentrations of approximately

243±41 nM and 790±137 𝜇atm respectively. This difference illustrates that river

inflow is likely driving significant lateral transport of gases into the estuary; as the

embayment is somewhat protected from river forcing, the residence time of the water

is longer and more gas exchange can occur than in the short-lived river forced waters.

During the campaign, river inflow had an average discharge rate of (40 m3 s−1), which

would have refreshed the surface layer of the campaign region every 0.6 days.

To further examine the potential for lateral transport in the estuary, Fig. 3-15

shows the spatio-temporal trends of CH4, CO2, salinity, and temperature over the

campaign in the top 1 m of the estuarine waters. In general, the distribution of

CH4 and CO2 demonstrated a slight gradient each day, with higher concentrations

at the mouth of Freshwater Creek and lower concentrations at the receding ice edge.

The presence of a gradient can be indicative of several processes, including outgassing,

vertical mixing, or biological oxidation of gas species during transport.

One key event that emerges from the surface data is a warm, outgassing period

in the river. Between 01-02 July, the temperature at Freshwater Creek increases

nearly a degree, and the observed gas content at the mouth is significantly reduced

compared to other sampling days. This is further illustrated in Fig. 3-16 which shows

salinity and temperature plots colored by gas concentrations; on 02 July a significant

number of warm freshwater samples were collected with decreased gas concentration.

Interestingly, the gradient on 02 July is reversed, with higher concentrations of gas

observed toward the receding ice edge. This may be indicative of the transport time

of waters in the estuary (i.e., during the sample period, the estuary had not been fully

flushed by new river waters). A second key event occurred on 30 June, when elevated

winds (approximately 10 m s−1) were measured coming from the northeast. Compared

to other regions of the estuary on the same day, gas concentrations at the ice edge (to

the southwest) were comparably elevated, effectively creating a bimodal distribution

with high concentrations at the Freshwater Creek mouth, and high concentrations at

the ice edge, in the southwest. This may be indicative of surface waters being pushed
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toward the ice edge by the wind, and the ice acting as a barrier for mixing, causing

a brief period of accumulation.

Vertical mixing is generally evident by the salinity gradient in the surface waters,

and examining the pycnocline highlights interesting spatial trends and ephemeral

events in the estuary. As shown in Fig 3-17, regions near the mouth of the river were

observed to have a less strict division between the fresh and saline layers. Especially

with respect to gas concentrations, there is significantly elevated CH4 and CO2 levels

as deep as 3-4 m near the mouth of the river, whereas 2-3 km from the river mouth

elevated gas concentrations were more strictly observed above 2 m. The nature of the

pycnocline at the river mouth may be indicative of turbulent mixing at the interface

between the shallow river and the deeper estuarine waters. The mean location of

the pycnocline shifted in the water column by approximately 1 m within the span of

1 sampling day (from 29 June to 30 June), which may be indicative of changes in

river flow or vertical mixing from wind conditions on 30 June. At the ice edge, the

pycnocline remained consistent, on average, between campaign days.

Fig. 3-18 summarizes the temporal trends over each day relative to measurement

depth. CH4 concentrations decreased from 410±20 nM on 28 June to 150±70 nM on

02 July, a rate of -55 nM d−1. CO2 similarly declined, from 1340±40 𝜇atm to 600±150

𝜇atm, a rate of -146 𝜇atm d−1. Although considerable losses, if river inflow were

not a factor (i.e., the water was “stagnant”), the expected observations of CH4 and

CO2 on 02 July would have been 70 nM and 570 𝜇atm respectively, given the starting

conditions on 28 June. Although observed CO2 concentration nearly match this

expectation, CH4 observations were over double this estimate, indicating continued

CH4 transport by the river from Greiner Lake. At the pycnocline, gas concentrations

also declined over the field campaign, and brief temperature and salinity perturbations

can be seen on 30 July. The effects of these perturbations in gas concentration are

most generally observed by an influx of CO2 and (lesser, but still present) CH4 in

deeper waters. Outside of these perturbations, deeper waters generally demonstrated

stable CH4 and CO2 levels, around 50 nM and 380 𝜇atm respectively. These deeper

waters became slightly fresher and warmer over the campaign period.
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Figure 3-14: Cambridge Bay depth profiles Observations made by the ChemYak
are plotted by depth versus distance from the Freshwater Creek mouth, where negative
distances to the right of the red line represent points northeast of the mouth (a small
embayment) and positive distance to the left of the red line represent points southwest
of the mouth (downstream). As indicated by the salinity plots, the pycnocline falls
between 1.5-2.5 m throughout the estuary, and the fresh surface layer was generally
higher in both CH4 and CO2 concentration than layers below of the pycnocline. The
gas concentrations decreased over the multi-day measurement campaign.
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Figure 3-15: Cambridge Bay spatio-temporal surface trends Bar graphs show-
ing CH4, CO2, salinity, and temperature in the top 1 m of the campaign area, colored
by distance binned in 100 m intervals. Trend lines are added to show the average value
of measurements in the surface layer at Freshwater Creek mouth (within 100 m), at
1 km towards the ice edge, and at 2 km towards the ice edge. Generally, a gas gradient
exists at the surface, with higher concentrations at the mouth of the river and lower
concentrations at the ice edge. However, this gradient is disturbed on 30 June with
gas accumulation at the ice edge, potentially due to elevated winds from the north-
east. On 02 July, the gradient is reversed, simultaneously the river water increased in
temperature significantly, potentially indicative of warming outgassing. The high gas
concentrations downstream may capture the residence time of water in the estuary
(i.e., the river had not yet flushed the estuary). Vertical mixing is indicated by the
salinity gradient in the surface waters.
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Figure 3-16: Cambridge Bay salinity, temperature, and gas relationships
a-b. Each day of the measurement campaign is marked with a unique color, and
samples collected are binned into 0.25 m increments from the surface to 6 m. Both
(a) CH4 and (b) CO2 exhibit decreasing trends for each subsequent day, and there is
strong stratification between the surface layer and water below 2 m. c-j. Temperature-
salinity plots showing changes in (c-f) CH4 and (g-j) CO2 concentrations. Two events
are captured in the data. One is wind-driven mixing on 30 June when cold, saline
water from below the pycnocline mixed with gas-rich waters at the surface. The
second is warming degassing on 02 July, when warm, fresh water without significantly
elevated gas concentration is observed.
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Figure 3-17: Cambridge Bay depth profiles binned by estuary region To ob-
serve regional variation in the pycnocline between the mouth of Freshwater Creek
(0-500 m) the embayment to the northeast, and the ice edge downstream to the
Southwest (>500 m), we bin the observations of the ChemYak by day (color), depth
(0.25 m), and distance. The embayment was generally warm, fresh water that is uni-
formly low in CH4 and CO2 content in the three days it was observed (29 June, 1 July,
and 2 July). At the river mouth, the pycnocline is less pronounced, with elevated gas
concentrations observed up to 3-4 m deep. In contrast, towards the ice edge elevated
gas content is largely in the top 2 m. Elevated CH4and CO2was evident below 2 m at
the ice edge on 30 June compared to other days, likely due to increased wind speeds
driving vertical mixing.
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Figure 3-18: Cambridge Bay spatio-temporal trends of the pycnocline Bar
graphs showing CH4, CO2, salinity, and temperature, colored by depth binned in
0.25 m intervals. Trend lines are added to show the average value of measurements in
the surface layer (top 1 m), the pycnocline (1.5-2.5 m), and below the pycnocline (4-
5 m). On 30 June, elevated wind briefly disturbed the pycnocline leading to vertical
mixing, as evidenced by elevated CH4 and CO2 levels below the mixed layer, and
elevated salinity in the surface layer. Both CH4 and CO2 decreased substantially in
the surface layer over the 5 day measurement period.
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3.5.3 Significance and Role of Transience

River inflow drives CH4 and CO2 in the Freshwater Creek estuary during the spring

freshet. While there is ice-cover, river water laterally transports greenhouse gases

into the estuary and into the harbor. When the ice recedes, the air-sea interface

allows for rapid outgassing of methane into the atmosphere. By considering this brief

period of flux, total estimates of methane that enters the atmosphere increases 22-

fold from 7.4 kg to approximately 640 kg. The contribution in this short time-frame

alone could account for as high as 95% of emissions for the estuary. Additionally, due

to the lateral transport of gas out of the study region under ice in the harbor, it is

hypothesized that significant gas concentrations will continue to build under the ice

cover in the harbor to eventually be ventilated to the atmosphere at a later date from

within the harbor or as far as the coastal ocean.

Seasonally ice-covered Arctic estuaries receive approximatively 10% of global river

discharge [187]. If Freshwater Creek is representative of Arctic coastal estuaries, then

there may be a significant underestimate of CH4 and CO2 contributions from Arctic

environments reported using only summertime, low-ice measurements. Additionally,

projected increases of river inflow from warming conditions [188] may exacerbate these

outgassing events.

Using traditional methods, bottle samples were able to resolve that a major out-

gassing event occurs in the spring, however, the extent and dynamic of this flux was

difficult to constrain. Using the ChemYak, ephemeral lateral transport and vertical

mixing events were revealed. Over a 5-day sampling period, the total gas concentra-

tion in the surface waters significantly decreased, highlighting the need for dense tem-

poral measurements to constrain the rate of outgassing. Future work that specifically

inspects the role of biological processes in the estuary and performs contemporane-

ous under-ice sampling, can further characterize the carbon cycle in this environment.

Additionally, autonomous monitoring regimes to inspect spatio-temporal events could

be employed to free human experts to collect and analyze more contemporaneous

samples.
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3.6 Sampling Transient Phenomenon and Motivat-

ing Adaptive Regimes

In each of these field campaigns, transient phenomenon were targets of interest. Us-

ing a human-piloted ChemYak aided in the dense collection of in situ measurements

to reveal complex spatio-temporal structure in post-analysis. Although these cam-

paigns were successful, several key challenges of sampling in transient phenomenon

are highlighted.

Tidal Estuary: At Wareham River, Section 3.3, the ChemYak performed several

transects over the course of a few hours. Repeated transects revealed fine-scale tran-

sience as the spatial distribution of the phenomenon of interest changed significantly

with respect to the tides. Although the source of the effluent was known, the distribu-

tion of the effluent in the surface waters was unknown and not detectable by a human

pilot. This ultimately resulted in a spatial uniform coverage strategy, which resulted

in sample sparsity in regions of interest; particularly mixing boundaries and accu-

mulation events. Practically, piloting the ChemYak became challenging during the

falling tide, when the waters became shallow enough to make navigation treacherous

for the human-occupied chase vehicle.

Open Ocean: At the Cascadia Margin, Section 3.4, the ChemYak revealed small,

local supersaturation structures in the water column, however the number of samples

of these pockets is relatively few compared to other, less interesting regions. Although

a uniform coverage trajectory was manually attempted, piloting the vehicle was made

difficult due to waves and lack of physical navigation references.

Arctic River Inflow: In Cambridge Bay, Section 3.5, the ChemYak was used over

multiple days. Just as in the tidal estuary, the “source” of the gas signal was known,

but the distribution of the phenomenon in the estuary and harbor was unknown and

undetectable by a human. In post-processing, it was revealed that there were daily

differences in the distribution both vertically and laterally that were indicative of
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potentially key environmental influences, like wind, upwelling, or ice melt. If these

differences had been known, more observations would have been collected in regions

that displayed unique or changed characteristics between deployments.

Challenging and changing physical conditions, in addition to transient behavior

in these environments, limited the obvious action set for a human pilot. A naive

strategy to improve spatial coverage would be to implement an autonomous uniform

coverage search or design a set of repeatable monitoring trajectories. However, these

environments illustrate the potential failure of these regimes: sparse sampling of

local phenomenon (e.g., supersaturation), missing ephemeral events (e.g., wind-driven

vertical mixing, warming outgassing, slack-tide accumulation), and collisions with

unknown/changing metric environments (e.g., tidal shallows). An adaptive regime is

necessary to optimize a scientific objective with respect to transient phenomenon.

In the next chapter, the maximum seek-and-sample (MSS) scientific objective is

defined. Using an adaptive sampling framework, optimizing this objective allows for

a robotic vehicle to find the globally most interesting region to densely sample in an

environment. With respect to these field campaigns, this would be equivalent to trac-

ing the extent of wastewater effluent diffusion, densely sampling supersaturations, or

inspecting the Arctic area with most unique/unexpected dynamics. The remainder of

the chapter discusses and demonstrates an adaptive sampling regime which optimizes

the MSS objective and provides theoretical performance guarantees.
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Chapter 4

Adaptive Sampling for Transient

Phenomenon

As highlighted in Chapter 3, transience in natural environments can describe both

short- and long-term temporal evolution of a phenomenon. In order to draw useful

samples of a target environment, consideration of the impact and nature of tempo-

ral changes may need to be considered. A pervasive and specific adaptive sampling

problem ubiquitous in the sciences is the maximum seek-and-sample (MSS) problem,

which necessitates consideration of transience. In many environmental and earth

science applications, experts want to collect scientifically valuable samples of a max-

imum (e.g., an oil spill source), but the distribution of the phenomenon is initially

unknown. When environmental samples are collected using uniform coverage meth-

ods as discussed in Chapter 1, few samples are generally collected of the maximum,

known as sample sparsity. Increasing the number of valuable samples at the maxi-

mum requires adaptive online planning and execution. To address the MSS problem,

this chapter draws on perspectives from informative path planning (IPP), decision

making under uncertainty, and Bayesian optimization (BO) to present PLUMES

— Plume Localization under Uncertainty using Maximum-ValuE information and

Search. PLUMES is an adaptive, flexible algorithm that enables a mobile robot to

efficiently localize and densely sample an environmental maximum, subject to prac-

tical challenges including action constraints, unknown geometric map and obstacles,
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noisy sensors with limited field-of-view, and phenomena transience. Work presented

here has been published in brief form [189].

MSS problems are a subset of IPP problems, which require that an agent makes

decisions to optimize over an information-theoretic reward function in order to study

a target distribution. Typical offline IPP techniques for pure information-gathering

that optimize submodular coverage objectives can achieve near-optimal performance

[19, 105]. However, in the MSS problem, the value of a sample depends on the un-

known maximum location, requiring adaptive planning to enable the robot to se-

lect actions that explore to localize the maximum and then seamlessly transition to

selecting actions that exploitatively collect valuable samples there. Even for adap-

tive IPP methods, the MSS problem presents considerable challenges. The target

environmental phenomenon is partially observable and most directly modeled as a

continuous scalar function. Additionally, efficient maximum sampling with a mobile

robot requires consideration of vehicle dynamics, travel cost, and a potentially un-

known obstacle map. Handling these challenges in combination excludes adaptive

IPP algorithms that use discrete state spaces [14, 15], known metric maps [100, 190],

or unconstrained sensor placement [35].

To precisely describe the MSS problem, this chapter defines the MSS POMDP.

Partially-observable Markov decision processes (POMDPs) are general models for

decision-making under uncertainty that allow the challenging aspects of the MSS

problem to be encoded. In the MSS POMDP, the partially observable state represents

the continuous environmental phenomenon and a sparse reward function encodes the

MSS scientific objective by giving reward only to samples sufficiently close to the

global maximum. “Sparsity” with respect to the reward function refers to the small

region that is given non-zero or non-trivial reward. Solving a POMDP exactly is

generally intractable, and the MSS POMDP is additionally complicated by both

continuous state and observation spaces, and the sparse MSS reward function. This

presents the two core challenges that PLUMES addresses: performing online search

in a belief-space over continuous functions, and overcoming reward function sparsity.

To address the former challenge, PLUMES uses a Gaussian Process (GP) model
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to represent belief over the environment state, which is itself a continuous function. A

GP representation is a compact probabilistic model with well-characterized analytic

methods for online data incorporation and posterior queries. With continuous belief

and observations functions, there is an uncountable set of possible GP beliefs which

arise as every observation (and resulting state) is unique with probability one. This

makes planning over possible actions and their outcomes difficult. To address this

difficulty, state-of-the-art online POMDP solvers use deterministic discretization [106]

or a combination of sampling techniques and particle filter belief representations [87,

107–109] to reduce the size of the possible set to be tractable. However, efficiently

discretizing or maintaining a sufficiently rich particle set to represent the underlying

continuous function in MSS applications is itself a challenging problem, and can lead

to inaccurate inference of the maximum [191]. Other approaches have considered

using the maximum-likelihood observation to make search tractable [85]. However,

this assumption can compromise search and has optimality guarantees only in linear-

Gaussian systems [192]. Instead, PLUMES uses Monte Carlo Tree Search (MCTS)

with progressive widening, referred to as continuous-observation MCTS, to limit the

growth of the planning tree [22] and retain optimality [21] in continuous environments.

To plan with sparse rewards requires long-horizon information gathering and is

an open problem in robotics [17]. To alleviate this difficulty, less sparse heuristic

reward functions can be optimized in place of the true reward. These heuristics

need to be selected carefully to ensure the planner performs well with respect to

the true objective. In IPP, heuristics based on the value of information have been

applied successfully [35, 85, 86, 193], primarily using the GP-UCB criteria [18, 19].

This criteria requires setting a hand-tuned parameter, 𝛽, that handles the explore-

exploit trade-off. For some values of 𝛽, UCB heuristics can guarantee convergence

to the global maximum at the limit of time, however this chapter will show that

using UCB for the MSS POMDP in practice can lead to suboptimal convergence to

local maxima due to inefficient explore-exploit regimes in finite duration missions.

Instead, PLUMES takes advantage of a parameterless heuristic function from the BO

community for state-of-the-art black-box optimization [20], which is referred to as
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maximum-value information (MVI). MVI overcomes reward sparsity and encourages

long-term information gathering, in addition to efficiently converging to the true

reward of the MSS POMDP for more effective exploitative sampling of the maximum.

The contribution of this chapter is the MSS POMDP formalism and the corre-

sponding PLUMES planner, which by virtue of its belief model, information-theoretic

reward heuristic, and search framework, enables efficient maximum seek and sample

with asymptotic optimality guarantees in continuous environments. PLUMES ex-

tends the state-of-the-art in MSS planners by applying a BO heuristic reward function

to MSS that alleviates the challenges of the true sparse MSS reward function, and in-

tegrating GP belief representations within continuous-observation MCTS. PLUMES

is demonstrated in extensive simulation and field trials, showing a statistically signif-

icant performance improvement over state-of-the-art baselines.

4.1 Maximum Seek-and-Sample POMDP Formalism

Let the physical region of the environmental domain be a 𝑑-dimensional compact set

X𝑤 ⊂ R𝑑. Let X𝑤 contain obstacles with arbitrary geometry and let X ⊂ X𝑤 be the

set of reachable points with respect to the robot’s initial pose in the environment.

An unknown underlying continuous function 𝑓 : X𝑤 → R represents the value of a

continuous phenomenon of interest. The objective is to find the unique global max-

imizer x* = arg maxx∈X 𝑓(x) by safely navigating while receiving noisy observations

of this function 𝑓 . Because 𝑓 is unknown, there is no access to derivative information

or any analytic form.

The process of navigating and generating observations is modeled as the MSS

POMDP: an 8-tuple (𝒮,𝒜,𝒵, 𝑇, 𝑂,𝑅, 𝛾, 𝑏0):

� 𝒮: continuous state space of the robot and environment

� 𝒜: discrete set of action primitives

� 𝒵: continuous space of possible observations

� 𝑇 : 𝒮 ×𝒜 → 𝒫(𝒮), the transition function, i.e., Pr(𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)
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� 𝑂: 𝒮 ×𝒜 → 𝒫(𝒵), the observation model, i.e., Pr(𝑍𝑡+1 = 𝑧 | 𝑆𝑡+1 = 𝑠, 𝐴𝑡 = 𝑎)

� 𝑅: 𝒮 × 𝒜 → R, the reward of taking action 𝑎 when robot’s state is 𝑠, i.e.,

𝑅(𝑠, 𝑎)

� 𝛾: discount factor, 0 ≤ 𝛾 ≤ 1

� 𝑏0: initial belief state of the robot, 𝑏0 ∈ 𝒫(𝑆0)

where 𝒫(·) denotes the space of probability distributions over the argument.

The Bellman equation is used to recursively quantify the value of belief 𝑏𝑡 = 𝒫(𝑆𝑡)

over a finite horizon ℎ under policy 𝜋 : 𝑏𝑡 → 𝑎𝑡 as:

𝑉 𝜋
ℎ (𝑏𝑡) = E[𝑅(𝑠𝑡, 𝜋(𝑏𝑡))] + 𝛾

∫︁
𝑧∈𝒵

𝑉 𝜋
ℎ−1(𝑏

𝜋(𝑏𝑡),𝑧
𝑡+1 ) Pr(𝑧 | 𝑏𝑡, 𝜋(𝑏𝑡)) d𝑧, (4.1)

where the expectation is taken over the current belief and 𝑏
𝜋(𝑏𝑡),𝑧
𝑡+1 is the updated

belief after taking action 𝜋(𝑏𝑡) and observing 𝑧 ∈ 𝒵. The optimal policy 𝜋*
ℎ over

horizon-ℎ is the maximizer of the value function over the space of possible policies

Π: 𝜋*
ℎ = arg max𝜋∈Π 𝑉 𝜋

ℎ (𝑏𝑡). Unfortunately, Eq. 4.1 is intractable to compute in

continuous state and observation spaces; an approximation is necessary. Using a

sequential decision-making structure, PLUMES performs receding-horizon, online

search to approximate the optimal policy for the MSS POMDP online:

1. Conditioned on 𝑏𝑡, approximate the optimal policy 𝜋*
ℎ for finite horizon ℎ and

execute the action 𝑎 = 𝜋̂*
ℎ(𝑏𝑡).

2. Collect observations 𝑧 ∈ 𝒵, according to 𝑂.

3. Update 𝑏𝑡 to incorporate these new observations; repeat.

In the following sections, the specific choice of belief model, planning algorithm, and

heuristic reward function that PLUMES uses to solve the MSS POMDP is presented.
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4.2 Representing Belief with Gaussian Processes

The robot’s pose x𝑡 at planning iteration 𝑡 is assumed to be fully observable (e.g.,

GPS or local positioning system is available) and the unknown phenomenon 𝑓 is only

partially observable for any time step. The full belief-state can be represented as a

tuple 𝑏𝑡, of robot metric state x𝑡 and environment belief (i.e., belief about the form

of function 𝑓) 𝑔𝑡 = 𝒫(𝑓) at time 𝑡. Because 𝑓 is a continuous function, the belief 𝑔𝑡

cannot be represented as a distribution over discrete states, as is standard in POMDP

literature [12]. As an alternative, PLUMES uses a Gaussian process (GP) [16], to

represent 𝑔𝑡 conditioned on a history of past observations. A GP is parameterized

by mean 𝜇(x) and covariance function 𝜅(x,x′), which allow for prior knowledge to

be encoded. For the purposes of this work, a 0 mean function is assumed. For

spatio-temporal phenomena, kernels that incorporate knowledge of the current time

or planning iteration are used, which allow the predictive mean and variance of the

spatial distribution to change temporally [194].

The robot traverses a location x and gathers observations 𝑧 ∈ 𝒵 of 𝑓 subject

to sensor noise 𝜎2
𝑛, such that 𝑧 = 𝑓(x) + 𝜖 with 𝜖

𝑖.𝑖.𝑑.∼ 𝒩 (0, 𝜎2
𝑛). Given a history

𝒟𝑡 = {x𝑖, 𝑧𝑖}𝐷𝑖=0 of 𝐷 observations and observation locations at planning iteration 𝑡,

the posterior belief at a new location x′ ∈ X is computed:

𝑔𝑡(x
′) | 𝒟𝑡 ∼ 𝒩 (𝜇𝑡(x

′), 𝜎2
𝑡 (x′)),where (4.2)

𝜇𝑡(x
′) = 𝜅𝑡(x

′)⊤(K𝑡 + 𝜎2
𝑛I)

−1z𝑡, (4.3)

𝜎2
𝑡 (x′) = 𝜅(x′,x′)− 𝜅𝑡(x

′)⊤(K𝑡 + 𝜎2
𝑛I)

−1𝜅𝑡(x
′), (4.4)

where z𝑡 = [𝑧0, . . . , 𝑧𝐷−1]
⊤, K𝑡 is the positive definite kernel matrix with K𝑡[𝑖, 𝑗] =

𝜅(x𝑖,x𝑗) for all x𝑖,x𝑗 ∈ 𝒟𝑡, and 𝜅𝑡(x
′) = [𝜅(x0,x

′), . . . , 𝜅(x𝐷−1,x
′)]⊤.

4.2.1 Kernels for Natural Phenomenon

Using a kernel function, relationships in space and time can be encoded, e.g., spatial

diffusivity of a chemical plume, period of a seasonal or tidal cycle. Representative
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kernels for modeling natural phenomenon are described in this section.

Radial Basis Function (RBF) One of the most common kernel functions used

with GPs is the radial basis function (RBF), also known as the squared exponential

kernel, which takes the form:

𝜅𝑅𝐵𝐹 (x,x′) = 𝜎2exp(−||x− x′||2

2𝑙2
) (4.5)

where 𝜎2 is a variance parameter, and 𝑙 is a lengthscale parameter. In the RBF kernel,

variance acts as a scale factor, and directly describes the range at which measurements

may fall around the mean. The lengthscale describes the smoothness of a distribution,

and captures the relatedness of points which lie “near” each other in the distribution.

Fig. 4-1 illustrates three distributions drawn from three GPs with RBF kernels that

have different parameter settings.

variance: 100.0
lengthscale: 1.0

variance: 20.0
lengthscale: 1.0

variance: 100.0
lengthscale: 0.5

Figure 4-1: GP with RBF kernels Shown are several draws of a GP endowed
with RBF kernels with varying lengthscale and variance hyperparameters. Generally,
lengthscale corresponds to the diffusivity or smoothness of the distribution, whereas
variance captures the range at which values may fall around the mean. The maximum
in each distribution is marked with a black star. All plots share the same color-scale.

An RBF kernel can be used to model random-walk behavior in time by simply

extending the kernel from 2-dimensional inputs (e.g., Cartesian coordinates) to 3-

dimensional inputs, in which the third dimension is time. Fig. 4-2 shows several

snapshots of an RBF kernel with 3-dimensional input to show the slight stochasticity

in the spatial distribution over time.
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t = 0 t = 50 t = 100 t = 150 t = 200

Figure 4-2: GP with time-varying RBF kernel In this example, several snapshots
of a dynamic phenomenon, modeled with an RBF kernel in 3-dimensions (spatial and
temporal) is shown with spatial lengthscale 2.5, temporal lengthscale 30, and variance
100. This type of model is compelling when the time-variation of a phenomenon is
stochastically changing and normally distributed about some general average or mean.
The maximum is noted with a star. All images render with the same color-scale.

Periodic Another common kernel function is the periodic kernel, which relates

points in a distribution according to a period. This kernel captures the idea that

information at a point in space may yield information about points which are a set

distance away or at a set time in the future. The kernel takes the form:

𝜅𝑃𝐸𝑅((x), (x′)) = 𝜎2exp(−
𝑠𝑖𝑛2(𝜋||x−x′||

𝐹
)

2𝑙2
) (4.6)

where 𝜎2 is the variance, 𝐹 is the period of the cycle, and 𝑙 is the lengthscale of

the process. Fig. 4-3 shows a series of distributions drawn from a GP with periodic

kernel of varying parameters. Like the RBF kernel, extending a periodic kernel to

time simply requires adding another dimension to the kernel.

lengthscale = 1.5
period = 10
variance = 100

lengthscale = 1.5
period = 5
variance = 100

lengthscale = 0.5
period = 5
variance = 100

lengthscale = 1.5
period = 10
variance = 500

Figure 4-3: GP with Periodic kernel These representative distributions are drawn
from a GP with periodic kernel. Like in the RBF kernel, variance controls the scale
of distribution around the mean and lengthscale controls the smoothness of the dis-
tribution. The period controls the frequency with which cyclic relationships appear.
All plots share a color-scale.

With only the RBF and periodic kernels, a large number of processes can be
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described. Composite kernels can be formed by adding or multiplying kernels to-

gether [16], which could allow spatial phenomenon to be distributed according to an

RBF kernel, but the scale of the phenomenon to cycle according to time. Fig. 4-4

shows snapshots of a Periodic-RBF kernel (𝜅𝑃𝐸𝑅 + 𝜅𝑅𝐵𝐹 ) to illustrate the complex

relationships that can be captured from simple kernel composition.

25

0

-25

Time
Figure 4-4: GP with compositional Periodic-RBF kernel Several snapshots in
time of a phenomenon simulated with a GP using a Periodic-RBF kernel is shown.
Such a kernel allows for cyclic patterns to be captured in the value of the distribution.
The maximum in the distribution is marked with a star. All plots share a color-scale.

With respect to natural phenomenon, periodic kernels or composition kernels with

periodic features can be used to describe tides, seasons, diurnal cycles, biological cy-

cles, and many more processes which follow a regular (or predictable) cyclic schedule.

Custom Kernels In some environments, a specific dynamic may be known about

the phenomenon, e.g., a moving ship leaking fuel, a river flow in a channel, the

trajectory of a migratory species. Kernels can be designed with specific dynamic

functions. Marchant et al. [85] demonstrate their adaptive sampling algorithm in

a world drawn from a specific spatio-temporal function. It is adapted here as an

illustration of the flexibility of kernel and GP formulations:

𝑓(x, 𝑇 ) = exp(−
x0 − 𝑐0 − 𝑠𝑖𝑛( 𝑇

𝐹0
)

𝑙0
)exp(−

x1 − 𝑐1 − 𝑠𝑖𝑛( 𝑇
𝐹1

)

𝑙1
)

𝜅𝐷𝑌𝑁((x, 𝑇 ), (x′, 𝑇 ′)) = 𝜎2(𝑓 2(x, 𝑇 )) · (𝑓 2(x′, 𝑇 ′))

(4.7)

where 𝑓(−,−) describes the dynamic function of a moving source, parameterized by
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𝑐{0,1}, 𝐹{0,1}, and 𝑙{0,1} which represent the center point of the circular motion, the

period of the rotation cycle, and the lengthscale of the spatial source in Cartesian

coordinates (0, 1), respectively. 𝜎2 is the kernel variance. Fig. 4-5 shows several

frames of a dynamic target that can be described with a GP using this kernel.

Figure 4-5: GP with dynamics model embedded in kernel Several snapshots
in time of a phenomenon simulated using the kernel defined in Eq. 4.7 is shown.
The path of the source follows a roughly circular trajectory around the center of the
environment.

4.3 Planning in Continuous State, Observation Spaces

PLUMES selects high-reward actions with receding-horizon search over possible belief

states. This search requires a simulator that can sample observations and generate

beliefs given a proposed action. The GP model, which represents the belief over the

continuous function 𝑓 , can simulate drawing continuous observations from proposed

actions by sampling from the Gaussian distribution defined by Eq. 4.3 & 4.4.

PLUMES uses continuous-observation MCTS to overcome the challenges of plan-

ning in continuous state and observation spaces. Continuous-observation MCTS has

three stages: selection, forward simulation, and back-propagation. Each node in the

tree is a tuple of robot pose and GP belief, 𝑏𝑡 = {x𝑡, 𝑔𝑡}. Additionally, each node

is provided a label distinguishing belief nodes and belief-action nodes. The root of

the tree is a belief node which contains the entire history of physically realized ac-

tions and observations through the current planning iteration. Through selection and

simulation, belief and belief-action nodes are alternately added to the tree (Fig. 4-6).

From the root, a rollout begins with the selection stage, in which a belief-action

child is selected according to the Polynomial Upper Confidence Tree (PUCT) policy

[21]. The PUCT value 𝑄̂*
𝑎𝑢𝑔(𝑏𝑡, 𝑎) is the sum of the average heuristic rewards (i.e.,

MVI) from all previous simulations and a term that favors less-simulated children:
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𝑄̂*
𝑎𝑢𝑔(𝑏𝑡, 𝑎) = 𝑄̂*(𝑏𝑡, 𝑎) +

√︃
𝑁(𝑏𝑡)

𝑒𝑑

𝑁(𝑏𝑡, 𝑎)
, (4.8)

where 𝑄̂*(𝑏𝑡, 𝑎) is the average heuristic reward of choosing action 𝑎 with belief 𝑏𝑡 in

all previous rollouts, 𝑁(𝑏𝑡) is the number of times the node 𝑏𝑡 has been simulated,

𝑁(𝑏𝑡, 𝑎) is the number of times that particular action from node 𝑏𝑡 has been selected,

and 𝑒𝑑 is a depth-dependent parameter*.

Once a child belief-action node is selected, the associated action is forward simu-

lated using the generative observation model 𝑂, and a new belief node is generated

𝑏𝑡+1 = {x𝑡+1, 𝑔𝑡+1} as though the action were taken and samples observed. The sim-

ulated observations are drawn from the belief-action node’s GP model 𝑔𝑡, and the

robot’s pose is updated deterministically based on the selected action.

*Refer to Table 1 of Auger et al. [21] for parameter settings.

Figure 4-6: Continuous-observation MCTS Illustrated to horizon ℎ = 1, the
tree consists of alternating belief and belief-action nodes. Action decisions are made
at belief nodes and random belief transitions according to the observation function
occur at belief-action nodes. Note that belief-action nodes have a varying number of
children due to progressive widening and unequal simulation (not visualized) due to
PUCT policy. Reprinted from [189].
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Since the observations in a GP are continuous, every sampled observation is unique

with probability one. Progressive widening, with depth-dependent parameter* 𝛼𝑑

incrementally grows the tree by limiting the number of belief children from each belief-

action node. When growing the tree, 𝑏𝑡+1 is either chosen to be the least visited child if

⌊𝑁(𝑏𝑡, 𝑎)𝛼𝑑⌋ = ⌊(𝑁(𝑏𝑡, 𝑎)−1)𝛼𝑑⌋, or otherwise a new child with observations simulated

from 𝑏𝑡. By limiting the search tree width and incrementally adding explored children,

progressive widening avoids search degeneracy in continuous environments.

Once a sequence of actions has been rolled out to a horizon ℎ, the accumulated

heuristic reward is propagated upward from the leaves to the tree root. The average

accumulated heuristic reward and number of queries are updated for each node visited

in the rollout. Rollouts continue until the computation budget is exhausted. The most

visited belief-action child of the root node is executed. Pseudo-code for continuous-

observation MCTS is provided in Algorithms 2 & 3.

Algorithm 2: Pseudo-code for continuous-observation MCTS

1 def Main(pose, world, budget, horizon):
2 root = (pose, world, label =‘belief’, queries =0);
3 while budget not exhausted do
4 children ← GetActions (root);
5 child ← SelectChild (children);
6 current_node = child;
7 i = 0;
8 while 𝑖 < horizon do
9 if current_node.label is ‘belief ’ then
10 children ← GetActions (current_node);
11 current_node ← SelectChild (children);
12 i += 1;
13 end
14 if current_node.label is ‘belief-action’ then
15 current_node, reward = Simulate (current_node);
16 total_reward += reward;
17 end

18 end
19 BackProp (current_node, total_reward);
20 end
21 return best child of root.children according to child.queries;

*Refer to Table 1 of Auger et al. [21] for parameter settings.
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Algorithm 3: Pseudo-code for supporting functions of continuous-observation
MCTS
1 def GetActions(node):
2 node.children ← valid actions from node.pose;
3 label all node.children as ‘belief-action’ nodes;
4 return node.children;
5 def SelectChild(nodes):
6 puct_values = [];
7 for node in nodes do
8 if node.queries is 0 then
9 return node;
10 end

11 puct_values.append(child.rewardchild.queries + 𝑐

√︂
node.parent.queries𝑒𝑑

node.queries );

12 end
13 return node with largest corresponding value in puct_values;
14 def Simulate(node):
15 if node.children is not None then
16 if round(len( node.children)𝛼) == round(len( node.children)-1)𝛼) then
17 return child with fewest queries ;
18 end

19 end
20 world ← node.world updated with locations at node.action and samples of

node.world at node.action;
21 child ← (pose = node.action [-1], world, label =‘belief’, queries =0);
22 reward ← Heuristic (node.action, node.world);
23 add child to node.children;
24 return child, reward;
25 def BackProp(node, reward):
26 node.queries += 1;
27 node.reward += reward;
28 if node.parent is None then
29 return;
30 end
31 else
32 BackProp (node.parent, reward);
33 end
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4.3.1 Analysis of Continuous Observation MCTS

Continuous-observation MCTS within PLUMES provides both practical and theoret-

ical benefits. Practically, progressive-widening directly addresses search degeneracy

by visiting belief nodes multiple times even in continuous observation spaces, allow-

ing for a more representative estimate of their value. Theoretically, PLUMES can

be shown to select asymptotically optimal actions; analysis from Auger et al. [21]

for PUCT-MCTS with progressive widening in MDPs is extended here for PLUMES.

Note: the optimality of actions selected by continuous-observation MCTS with PUCT

and progressive-widening modifications is characterized with respect to any reward

function bounded in [0, 1].

Lemma 4.3.1. Given a POMDP of the form 𝑀 = (𝒮,𝒜,𝒵, 𝑇, 𝑂,𝑅, 𝛾, 𝑏0), derive an

equivalent belief-state MDP, with a state for each of the uncountably infinite beliefs

of 𝑀 , such that 𝑀̃ = (𝒮,𝒜, 𝑇 , 𝑅̃, 𝑏0). In the derived belief-state MDP, the transition

function 𝑇 is the probability density of taking action 𝑎 ∈ 𝐴, observing 𝑜 ∈ 𝒵 ac-

cording to the current belief-state 𝑏𝑡 and observation function 𝑂, and transitioning to

belief-state 𝑏𝑡+1, while the reward function 𝑅̃ is the expected reward 𝑅 of the original

POMDP with respect to the current belief.

Then the value function 𝑄ℎ(𝑠, 𝑎) of the derived MDP 𝑀̃ is equal to that of the

POMDP 𝑀 , 𝑄ℎ(𝑏, 𝑎), for any policy 𝜋 and finite horizon ℎ, and the optimal policy

of the belief-state MDP is the optimal policy for the original POMDP.

Proof. The observation that the belief-state is fully-observable to the robot, and that

stochastic observations lead to stochastic transitions in the continuous belief-state

immediately provides this well known reduction found in e.g., Kaelbling et al. [12],

and applications of which appear in e.g., Lemma 1 of Silver et al. [108].

Given the reduction from POMDP to belief-state MDP, the convergence proof of

fully-observable PUCT-MCTS with PW to partially observable problems with contin-

uous observation functions and belief-state spaces can be adapted. By using GPs to

perform belief updates in each stage of PLUMES, the potential challenges of applying

MCTS to continuous, partially observable problems discussed in [195] is overcome.
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Definition 4.3.1. Exponentially sure in 𝑛. A property depending on integer 𝑛 is

exponentially sure in 𝑛 if there exists positive constants 𝐶, ℎ, such that the probability

the property holds is at least: 1− 𝐶exp(−ℎ𝑛) [21].

Theorem 4.3.2. For the right choice of PUCT exploration 𝑒𝑑 and progressive widen-

ing 𝛼𝑑 parameters, the derived belief-state MDP value function estimated using con-

tinuous observation PUCT-MCTS with PW converges to the value function of the

optimal policy, as number of forward simulations approaches infinity. The bias of

the value function decreases polynomially with the number of visits to a belief-action

node, such that:
⃒⃒⃒
𝑄̂*

ℎ({x𝑡, 𝑏𝑡}, 𝑎)−𝑄*
ℎ({x𝑡, 𝑏𝑡}, 𝑎)

⃒⃒⃒
≤ 𝐶

𝑁({x𝑡,𝑏𝑡},𝑎)𝛾𝑑 exponentially surely,

for depth-dependent constants 𝐶 > 0 and 𝛾𝑑.

Proof. The proof of this theorem follows directly from Lemma 4.3.1, which reduces

the original POMDP with continuous observations and belief-state, to a belief-state

MDP with stochastic transitions in a continuous state space; and from Theorem 1 in

Auger et al. [21], which provides convergence results for MCTS in continuous MDPs

with PUCT and double PW. Although only discrete action spaces are considered in

this work, the method presented by Auger et al. additionally searches over continuous

action spaces. For finite action spaces with only PUCT exploration, every child belief-

action node will be visited infinitely often as the number of simulations approaches

infinity, and Lemma 3 of their analysis is satisfied.

Corollary 4.3.2.1. After 𝑛 simulations, the value of the most simulated action from

the root belief node differs from the optimal value by less than 𝑂(𝑛−1/𝑐), exponentially

surely in 𝑛, for constant 𝑐 > 0 that depends on the horizon ℎ (see Lemma 4.3.1

and [21]).

This result provides asymptotic and finite-time performance guarantees for the

continuous-observation MCTS proposed in PLUMES, implying that PLUMES selects

actions according to the optimal policy with high probability, without exploring the

entire infinitely large search tree.
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4.4 Maximum-value Information Heuristic Reward

The true state-dependent reward function for the MSS POMDP would place value

on collecting sample points x within an 𝜖-ball of the true global maximum x*:

𝑅(𝑓,x) = 1‖x−x*‖<𝜖, (4.9)

where 𝜖 is determined by the scientific application. Optimizing this sparse reward

function directly is challenging, so PLUMES approximates the true MSS reward by

using the maximum-value information (MVI) heuristic reward [20]. MVI initially

encourages exploration behavior, but ultimately rewards exploitative sampling near

the inferred maximum.

The belief-dependent MVI heuristic reward 𝑅̃(𝑏𝑡,x) quantifies the expected value

of having belief 𝑏𝑡 and collecting a sample at location x ∈ X. MVI reward quantifies

the mutual information between the random variable 𝑍, representing the observation

at location x, and 𝑍*, the random variable representing the value of the function 𝑓

at the global maximum:

𝑅̃(𝑏𝑡,x) = 𝐼({x, 𝑍};𝑍* | 𝑏𝑡), (4.10)

where 𝑍* = maxx′∈X 𝑓(x′). To compute the reward of collecting a random observation

𝑍 at location x under belief 𝑏𝑡, PLUMES approximates the expectation over the

unknown 𝑍* by sampling from the posterior distribution 𝑧*𝑖 ∼ 𝑝(𝑍* | 𝑏𝑡) and uses

Monte Carlo integration with 𝑀 samples following Wang et al. [20]:

𝑅̃(𝑏𝑡,x) = 𝐻[Pr(𝑍 | x, 𝑏𝑡)]− E𝑧′∼Pr(𝑍*|𝑏𝑡)[𝐻[Pr(𝑍 | x, 𝑏𝑡, 𝑍* = 𝑧′)],

≈ 𝐻[Pr(𝑍 | x, 𝑏𝑡)]−
1

𝑀

𝑀∑︁
𝑖=0

𝐻[Pr(𝑍 | x, 𝑏𝑡, 𝑍* = 𝑧*𝑖 )].
(4.11)

Each entropy expression 𝐻[·] can be respectively approximated as the entropy

of a Gaussian random variable with mean and variance given by the GP equations
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(Eq. 4.3 & 4.4), and the entropy of a truncated Gaussian, with upper limit 𝑧*𝑖 and

the same mean and variance.

To draw samples 𝑧*𝑖 from the posterior 𝑝(𝑍* | 𝑏𝑡), spectral sampling [196] can

be employed. Spectral sampling draws a function 𝑓 , which has analytic form and is

differentiable, from the posterior belief of a GP with a stationary, shift-invariant co-

variance function [20,93]. The restriction on kernel properties is a result of Bochner’s

theorem [197], which provides that for a valid (i.e., positive definite) shift-invariant

kernel, then the Fourier dual of the kernel is also a probability distribution. To

complete the evaluation of Eq. 4.11, 𝑧*𝑖 ∼ 𝑝(𝑍* | 𝑏𝑡) can be computed by applying

standard efficient global optimization techniques (e.g., sequential least squares pro-

gramming, quasi-Newton methods) to find the global maximum of the sampled 𝑓

from the normalized spectral density.

In practice, spectral sampling requires deriving the spectral density of a kernel

analytically, and the restriction on stationary kernels generally limits the flexibility

of the approach. An alternative technique which does not place a restriction on the

form of the kernel function was suggested by Wang et al. [20], which approximates

𝑧*𝑖 using a Gumbel distribution, 𝒢(𝑎, 𝑏). The Gumbel distribution is generally used

to describe the distribution of extrema in samples of various root distributions, and

in this work is used such that Pr(𝑍* < 𝑧) ≈ 𝒢(𝑎, 𝑏). Parameters 𝑎 and 𝑏 of the

distribution are set according to [20]. PLUMES makes use of Gumbel sampling for

all 3-dimensional and non-RBF kernel functions.

Once 𝑧* is drawn, MVI reward can be expressed as:

𝑅̃(𝑏𝑡,x) ≈ 1

𝑀

𝑀∑︁
𝑖=0

𝛾𝑧*𝑖 (x)𝜑(𝛾𝑧*𝑖 (x))

2Φ(𝛾𝑧*𝑖 (x))
− log(Φ(𝛾𝑧*𝑖 (x))) (4.12)

where 𝛾𝑧*𝑖 (x) =
𝑧*𝑖 −𝜇𝑡(x)

𝜎𝑡(x)
, 𝜇𝑡(𝑥) and 𝜎𝑡(𝑥) are given by Eq. 4.3 & 4.4, and 𝜑 and Φ are

the standard normal PDF and CDF. For actions that collect samples at more then

one location, the reward of an action 𝑅̃(𝑏𝑡, 𝑎) is the sum of rewards of the locations

sampled by that action. Pseudo-code for calculating MVI reward is provided in

Algorithm 4.
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Algorithm 4: Calculating MVI Reward
Data: query as locations to calculate reward, world as current GP belief state,

𝑀 number of 𝑧* samples to draw
Result: reward of query as determined by MVI
/* draw samples of 𝑧*𝑖 by spectral or Gumbel sampling */;

1 for 𝑖 ∈ range(𝑀) do
2 if using spectral sampling then
3 compute 𝜑(x) by Bochner’s Theorem [20,197];
4 compute 𝑎̃𝑇 ← 𝒩 (𝜈,Σ) where 𝜈 and Σ can be found from

world.mean(x) = 𝜈𝑇𝜑(x) and world.kernel = 𝜑(x)𝑇Σ𝜑(x′);
5 𝑖 = 0;
6 while 𝑖 < 𝑀 do

7 draw 𝑓𝑖 from 𝑎̃𝑇𝜑(x);
8 𝑧*𝑖 ← maxx∈X 𝑓𝑖;
9 𝑖 += 1;
10 end

11 end
12 else
13 draw 𝑝(x) from 𝒩 (x−mean(world(x)), std(world(x)));
14 𝑞1, 𝑞2 ← interquartile range of 𝑝(x);
15 𝑚← median of 𝑝(x);
16 𝑏← 𝑞1−𝑞2

log(log(1.3̄))−log(log(4))
;

17 𝑎← 𝑚 + 𝑏 log(log(2));
18 𝑖 = 0;
19 while 𝑖 < 𝑀 do
20 draw 𝑟 from Uniform[0, 1];
21 𝑧*𝑖 = 𝑎− 𝑏 log(− log(𝑟));
22 𝑖 += 1;
23 end

24 end

25 end
/* now approximate reward of query based on samples of 𝑧*𝑖 */;

26 return 1
𝑀

∑︀𝑀
𝑖=0

𝛾𝑧*
𝑖
(query)𝜑(𝛾𝑧*

𝑖
(query))

2Φ(𝛾𝑧*
𝑖
(query)) − log(Φ(𝛾𝑧*𝑖 (query)))

MVI initially favors collecting observations in areas that have high uncertainty due

to sampling maxima from the initial uniform GP belief. As observations are collected

and uncertainty diminishes, the sampled maxima converge to the true maximum and

reward concentrates locally at this point, encouraging exploitative behavior. This

contrasts with the Upper Confidence Bound (UCB) heuristic, which distributes re-
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ward proportional to predictive mean 𝜇𝑡(x) and weighted variance 𝜎𝑡(x) of the current

GP belief model (Eq. 4.3 & 4.4): 𝑅̃UCB(𝑏𝑡,x) = 𝜇𝑡(x) +
√
𝛽𝑡𝜎(x). As the robot ex-

plores, UCB reward converges to the underlying phenomenon, 𝑓 . The difference in

convergence characteristics between MVI and UCB can be observed in Fig. 4-7.

Figure 4-7: Convergence of MVI vs UCB heuristic The true environmental
phenomenon with the global maximum marked by a star is shown in the center; high
regions are colored yellow and low regions blue. In (A,C), the robot trajectory and
corresponding reward functions are shown early (20 actions) and later (140 actions)
in a mission. On the top row, snapshots of the robot belief state with planned
trajectories are shown, with recent actions colored pink and earlier actions colored
blue. Red stars mark maxima sampled by MVI. In the bottom row, the corresponding
reward function is shown, with high-reward regions colored yellow and low reward
regions colored purple. By the end of the mission, MVI clearly converges to placing
reward only at the global maximum, which in turn leads to efficient convergence of
the robot. In contrast, the reward landscape resulting from canonically used UCB
converges to the underlying function, causing the UCB planner to uniformly tour
high-valued regions of the environment. Reprinted from [189].

4.5 Results in Static Environments

Using a GP belief, continuous-observation MCTS, and the MVI reward heuristic,

PLUMES is a novel algorithm in the field of IPP. To compare the performance of

PLUMES with state-of-the-art baselines, PLUMES is applied to “static” environ-

ments with and without obstacles. This situation generally mimics the scenario in

which the target phenomenon transience takes place over durations that are longer

than a robotic mission (e.g., seasonal changes versus minutes-long mission). Even
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without transience, the problem of optimizing over a static, complex, multimodal,

and unknown spatial field is a nontrivial problem, and is the standard demonstration

for IPP algorithms. Results in which the spatial distribution varies with respect to

the timescale of a mission will be presented in Section 4.6.

4.5.1 Evaluation

Target phenomenon are generated by drawing a (seeded) random sample from a GP

with known mean and covariance function. Convex environments are used to illustrate

MSS problems in marine and atmospheric domains, in which a mission generally takes

place in a geographically bounded, obstacle-free region. Nonconvex environments are

used to model terrestrial applications, in which physical barriers or safety “no-go”

zones may be placed throughout the target region. Nonconvex environments are

simulated by placing rectangular obstacles throughout a bounded mission region,

and the robot is endowed the ability to “sense” the obstacles in order to generate safe,

valid trajectories at a given planning iteration. Examples of convex and nonconvex

environments are shown in Fig. 4-8.

Figure 4-8: Overview of simulation environments The multimodal simulated
10m × 10m environments. Yellow regions are high-valued; blue regions are low-
valued. The global maximum is marked with a star. The left and center environments
represent convex-worlds (Section 4.5.2), while the right environment is representative
of a non-convex world (Section 4.5.3). Reprinted from [189].

PLUMES is compared against three baselines used in environmental surveying:

non-adaptive lawnmower-coverage (Boustro., an abbreviation of boustrophedonic [7]),
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greedy myopic planning with UCB reward (UCB-Myopic) [86], and nonmyopic plan-

ning with traditional MCTS [110] that uses the maximum-likelihood observation and

UCB reward (UCB-MCTS) [85]. The performance of UCB planners has been shown

to be sensitive with respect to the 𝛽 value [85]. In order to avoid subjective tun-

ing, a time-varying 𝛽𝑡 that is known to enable no-regret UCB planning [19, 86] is

selected. PLUMES uses continuous-observation MCTS with hyperparameters pre-

sented in Auger et al. [21] and MVI with spectral sampling [93] in these trials.

To evaluate the mission performance of all planners, the accumulated MSS reward

(Eq. 4.9) is reported, which directly corresponds to the number of scientifically valu-

able samples collected within an 𝜖-ball of the true maximum. Several other metrics

commonly used in IPP to evaluate posterior model quality are also reported: overall

environmental posterior root mean-squared error (RMSE) and error in posterior pre-

diction of x* at the end of a mission (x* error). A Mann-Whitney U non-parametric

significance test [198] is used to report statistical significance (p = 0.05 level) in

performance between PLUMES and baseline algorithms over repeated trials.

4.5.2 Bounded Convex Environments

PLUMES and baselines planners on a point robot are applied to 50 unique 10 m ×

10 m simulated environments with multimodal phenomena drawn randomly from a

GP prior with a squared-exponential covariance function and zero mean (𝑙 = 1.0,

𝜎2 = 100.0, 𝜎2
𝑛 = 1.0 [1%]) (see Fig. 4-8). The action set for the vehicle consisted

of ten viable trajectories centered at the robot’s pose with path length 1.5 m, and

samples were collected every 0.5 m of travel. Mission lengths were budgeted to be

200 m. Nonmyopic planners rolled out to a 5-action horizon and were allowed 250

rollouts per planning iteration. Summary simulation results are presented in Table

4.1 and MSS reward is illustrated in Fig. 4-9.
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Table 4.1: Accumulated True MSS Reward (Eq. 4.9), RMSE, and x* Error, Re-
ported as Median (Interquartile Range) for static, convex environments. Asterisks
denote baselines whose difference in performance is statistically significant compared
to PLUMES. Reprinted from [189].

Convex Simulation Trials Field Trial
𝜖 = 1.5 m, 50 trials 𝜖 = 10 m, 1 trial

MSS Reward RMSE x* Error MSS Reward
PLUMES 199 (89) 3.8 (9.2) 0.21 (0.23) 524
UCB-MCTS 171 (179)* 3.7 (9.6) 0.24 (0.29) -
UCB-Myopic 148 (199)* 3.6 (9.2) 0.33 (3.25) -
Boustro. 27 (3)* 2.7 (10.4) 0.26 (0.46) 63

Figure 4-9: Distribution of accumulated MSS reward in 50 static convex
simulationsAccumulated MSS reward is calculated for each trial and the distribution
for each planner is plotted as a kernel density estimate (solid line). The dashed lines
represent the median accumulated reward for each planner (reported in Table 4.1).
The gray area of the plot indicates a low performance region where the planner
collected <50 samples near the maximum. PLUMES has a single mode near 200,
whereas both UCB-based methods are multi-modal, with nontrivial modes in the low
performance region. Reprinted from [189].
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In these trials, PLUMES accumulated significantly (0.05-level) more reward than

baselines. The distribution of accumulated reward (Fig. 4-9) shows that PLUMES

has a single dominating mode near reward 200 and few low-performing missions (re-

ward <50). In contrast, both UCB-based methods have distributions which are mul-

timodal, with non-trivial modes in the low-performance region. Boustro. collected

consistently few scientifically valuable samples, clearly demonstrating sample sparsity

in regions of interest. PLUMES additionally achieved statistically indistinguishable

levels of posterior RMSE and x* error compared to baselines (Table 4.1), indicating

that PLUMES preserves exploration performance of the state of the art.

To demonstrate PLUMES in real-world field conditions, maximum search was

performed in the Bellairs Fringing Reef, Barbados in January 2019 with a custom-

built autonomous surface vehicle (ASV), with the objective of localizing the most

exposed coral head. Fig. 4-10 illustrates the motivating application.

Figure 4-10: Coral head localization with an autonomous surface vehicle
(ASV): The objective of the ASV was to find and measure at the most exposed
(shallowest) coral head in a region of Bellairs Fringing Reef, Barbados. Overlaid on
the aerial photo is the a priori unknown bathymetry of the region (yellow is shallow,
blue is deep). Equipped with an acoustic point altimeter, the ASV had to explore to
infer the location of the maximum (marked with a star) and then measure at that
coral colony. Reprinted from [189].
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In a reef environment, scientists may be interested in collecting high-resolution

images of coral species [199] or to study exposure effects on coral organisms, e.g.,

ultraviolet radiation [200]. Generally, the best images come from coral heads that are

located in more shallow waters and the best target for imaging is the most exposed

coral colony. If the location of this colony is unknown, then the ASV must use a

“cheap” proxy sensor — in this case an acoustic altimeter to measure depth — to

identify the location of the target coral head by taking observations and inferring the

location of the maximum (i.e., most exposed coral head). Due to time and resource

constraints, only one trial of two planners was feasible on the physical reef; Boustro.

was selected to compare against PLUMES as it is one of the most canonical surveying

strategies in the marine sciences.

The ASV (1 m × 0.5 m) had holonomic dynamics and a downward-facing acoustic

point altimeter (Tritech Micron Echosounder) with returns at 1 Hz. Ten valid 10 m

straight paths radiating from the location of the ASV were used in the action set. The

environment was bounded with a 50 m by 50 m geofence. Localization and control

was provided by a PixHawk Autopilot with GPS and internal IMU; the fused state

estimate was empirically suitable for the desired maximum localization accuracy (𝜖 =

10 m). The budget for each mission was 1000 m, which took approximately 45 minutes

to travel. A RBF kernel was trained on altimeter data from a dense dataset collected

the day before the trials (parameters 𝑙 = 2.01, 𝜎2 = 0.53, 𝜎2
𝑛 = 0.02 [26%]) to provide

useful hyperparameters. Note the high noise in the inferred GP model, as well as the

relatively small length-scale in the 2500 m2 field site. Although the true topography

of the environment was unknown, the trained GP on the dense data collection (shown

in Fig. 4-11) served as a “ground-truth” measurement for the purposes of discussion.

PLUMES successfully identified the same coral head to be maximal as that in-

ferred from the GP trained on the dense dataset, as indicated by accumulated reward

in Table 4.1, overcoming the challenges of moving in ocean waves, noisy altimeter

measurements, and highly multimodal environment. Additionally, the posterior pre-

diction x* error (error in the location of the global maximizer) was only 1.78 m while

Boustro. reported 8.75 m error due to its non-adaptive sampling strategy.
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Figure 4-11: Coral head map and ASV (A) The ground truth bathymetric map
inferred from all collected data, mean corrected in depth. Yellow represents shallower
depths, and blue is deeper. The global maximum (most exposed coral head) is marked
with a black star. (B) The custom ASV used to traverse the 2500 m2 region. Reprinted
from [189].

4.5.3 Non-Convex Environments

PLUMES, UCB-Myopic, and UCB-MCTS were deployed in 50 simulated trials with

the same simulated phenomenon as in Section 4.5.2, with the addition of 12 block

obstacles placed uniformly around the world in known locations (see Fig. 4-8). Bous-

tro. was not used as a baseline in these trials because of the non-generality of the

offline approach to complex and potentially unknown geometries. Summary results

are presented in Table 4.2 and MSS reward for the simulated trials is inspected in

Fig. 4-12.
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Table 4.2: Accumulated True MSS Reward (Eq. 4.9), RMSE, and x* Error, Reported
as Median (Interquartile Range). Asterisks denote baselines whose difference in per-
formance is statistically significant compared to PLUMES. Reprinted from [189].

Non-convex Simulation Trials Dubins Car Trials
𝜖 = 1.5 m, 50 trials 𝜖 = 1.5 m, 5 trials

MSS Reward RMSE x* Error MSS Reward
PLUMES 206 (100) 3.6 (2.1) 0.25 (0.56) 159 (74)
UCB-MCTS 115 (184)* 3.6 (1.5) 0.27 (1.18) 52 (17)
UCB-Myopic 86 (102)* 3.4 (1.0) 0.23 (0.34) 42 (66)

Figure 4-12: Distribution of accumulated MSS reward in 50 static, non-
convex mission simulations Accumulated MSS reward distribution (solid line)
and median (dashed line, reported in Table 4.2) for each planner. The gray area of
the plot indicates a low performance region (reward <50). PLUMES has few low-
performing missions and a primary mode near reward 250. The primary mode of
both UCB-based methods is in the low performance region due to convergence to
suboptimal local maxima. Reprinted from [189].

As indicated in Table 4.2, PLUMES accumulated significantly more (0.05-level)

MSS reward than UCB-MCTS and UCB-Myopic. The distribution of reward across

the trials is visualized in Fig. 4-12. Like in the convex-world, PLUMES has a primary

mode between reward 200-250, while the UCB-based planners have a primary mode in
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the low-performance region (reward <50). There was no significant difference between

planners with respect to RMSE or x* error. The fact that PLUMES maximized the

true MSS reward while achieving statistically indistinguishable error highlights the

difference in exploitation efficiency between PLUMES and UCB-based methods.

The simulation experiments assume that a geometric map is known a priori. How-

ever in practical applications, like indoor gas leak detection, access to a map may be

limited or unavailable. A scenario to model MSS in an environment with unknown

obstacles is performed with a nonholonomic car equipped with a laser range-finder

in a cluttered room. The vehicle must build a map online of the cluttered indoor

environment (Fig. 4-13). A simulated chemical phenomenon from a GP (𝑙 = 0.8,

𝜎2 = 100.0, 𝜎2
𝑛 = 2.0 [2%]) was used to provide noisy observations to the vehicle at

1 Hz. The action set for the vehicle consisted of eleven 1.5 m Dubins curves projected

in front of the vehicle, one straight path behind the vehicle, and a “stay in place”

action. Results for five trials are shown in Table 4.2 and illustrate that PLUMES

accumulates more MSS reward than baselines, indicating robust performance in a

more realistic physical environment and difficult navigation conditions.

As a whole, the simulation and robot trials in convex and nonconvex environments

demonstrate the utility of PLUMES compared to canonical and state-of-the-art base-

lines in a diverse set of environments with challenging practical conditions. For high-

stakes scientific deployments, the consistent convergence and sampling performance

of PLUMES is critical and beneficial.
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C) MVI Reward D) Continuous-Observation MCTS
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A) Action Primitives

Figure 4-13: Snapshot of unknown non-convex map scenario: (A) shows ex-
amples of how the action-primitives change based upon obstacle detection (black
lines) and safety padding (gray lines). (B-D) show a planning iteration of PLUMES,
starting with the current belief map and obstacle detections (B). The MVI heuristic
is illustrated in (C) where lighter regions are higher value. (D) shows the rollout
visibility of continuous-observation MCTS where darker regions are visited more of-
ten. Areas of high reward are generally visited more often by the search as the tree
expands. Reprinted from [189].
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4.6 Results in Dynamic Environments

The theoretical results of PLUMES directly extend to time-variant systems in which

time is a third dimension that can be modeled with the GP belief. This section

primarily illustrates the behavior of PLUMES in several representative scenarios in

which transience is either unknown/unmodeled, modeled as a third dimension, or

modeled with respect to a specific dynamic. These scenarios will be referred to as

maximum-value cycling, temporal random-walk, and target tracking. As a point of

comparison, the UCB-MCTS baseline is presented. Previous work by Marchant et

al. [85] has discussed the use of UCB-MCTS to learn dynamic phenomenon, but

demonstrated that there was significant sensitivity in performance with the selection

of the explore-exploit parameter 𝛽 and the depth of the tree. With this in mind, the

results are generally used to highlight the performance of PLUMES “out of the box”

versus one tuned version of UCB-based systems. In these trials, the same 𝛽𝑡 for UCB

is used as in Sec. 4.5, and all nonmyopic planners are given the ability to simulate 7

actions ahead, with 150 rollouts per planning iteration. PLUMES uses MVI reward

that leverages Gumbel sampling to infer the value of the maximum.

4.6.1 Transience Rejection in Maximum-Value Cycling

In the maximum-value cycling scenario, the spatial distribution of a phenomenon

does not change in time, but the mean of the distribution fluctuates according to

some underlying period. This would be akin to long-term missions in the Bellairs

Fringing Reef under the influence of tides — the maximal coral head is constant in

time, but the proxy depth measures are influenced by tides. With respect to maximum

seeking, although the spatial distribution does not change, the fluctuation in mean

value observations poses a non-trivial challenge. For some arbitrary point in time, the

maximum value may be much lower than previous measurements of the maximum,

or could even be lower than historical values measured in other locations.

The environmental phenomenon in these trials is modeled by an RBF-Periodic

kernel (Sec. 4.2.1) with RBF spatial parameters (𝑙 = 1.5, 𝜎2 = 100) and periodic
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temporal parameters (𝑙 = 50, 𝜎2 = 10). Observations were drawn with noise variance

(𝜎2
𝑛 = 0.1). As in the static simulations, PLUMES is endowed with a two-dimensional

RBF kernel, with spatial parameters (𝑙 = 1.5, 𝜎2 = 500, 𝜎2
𝑛 = 0.1); no explicit

knowledge about the temporal variation is provided; instead, the variance term is

set so that it could potentially “absorb” the cyclic nature of the maximum values.

Practically, this is useful when the transient phenomenon may not have a regular or

known period such as in systems with episodic fluctuations.

Fig. 4-14 demonstrates the behavior of PLUMES and UCB-MCTS over snapshots

of a mission in a representative trial. As showcased by the result, MVI reward is

still able to be confidently placed at the location of the global maximum, despite

fluctuations. In the calculation of MVI reward, the high variance encoded in the kernel

influences sample draws of 𝑧*, which rely on posterior estimates of state with respect

to historical values. This in turn allows draws of 𝑧* to be distributed according to the

variance that is representative of the periodicity-driven scale of the maximum value,

and ultimately still lead to convergence. For UCB-based planners, the same applies,

but because variance factors directly into the calculation of the reward heuristic,

much more exploration is required before the reward function can converge well to

the underlying phenomenon.
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Figure 4-14: Robust performance under unknown transience This figure shows
the performance of PLUMES and UCB-MCTS in a world with a cyclic mean function.
Across the top, the true world at the specified time is pictured, with the maximum
marked with a star. Under each planner, the robot’s trajectory and reward distri-
bution at the specified time are pictured, wherein the samples along the trajectory
are plotted as black dots, and the most recent trajectory selection is colored in pink,
and the oldest in blue. High value is colored in yellow in the reward plots. MVI
reward in PLUMES is able to converge on the true maximum efficiently, leading to
compelling exploitative sampling. UCB baselines generally require more exploration
before converging, and the myopic planner showcases a classic failure case of local
maxima convergence.
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4.6.2 Transience Incorporation

In the temporal random walk scenario, the spatial distribution of the phenomenon of

interest stochastically changes, according to a three-dimensional RBF kernel (Eq. 4.5).

In natural environments, this may be indicative of short-term transient events like

surface-waves on the ocean, or sediment transport. For these illustrative trials, a

kernel with spatial parameters (𝑙 = 1.5, 𝜎2 = 100) and temporal parameters (𝑙 = 100,

𝜎2 = 100) was used. Observations were drawn with noise parameter 𝜎2 = 0.1.

Unlike in the previous scenario, the location of the maximum may change between

modes over time. An ideal agent would be able to either predict the change in the

maximum location, or perform occasional monitoring actions in order to exploit the

time-accurate maximum for sample collection. This requires the agent to directly

consider the transience of the phenomenon. A GP kernel with parameters set based

on those of the illustrative model is provided to the robot agent, just as was done in

simulation trials in Sec. 4.5. A representative scenario which demonstrates monitoring

behavior from PLUMES is shown in Fig. 4-15.

Through transience consideration, an agent should be able to track between time-

dependent maximum in the environment. Fig. 4-16 shows MSS reward (Eq. 4.9)

accumulation for PLUMES and UCB-MCTS for 10 representative trials. As evidenced

in both accumulated performance and the representative trial, PLUMES is able to

implicitly track the modes of the environment, and transition between modes as

posterior predictive estimates of MVI reward change over time; eliciting directed

monitoring behavior and accumulating more reward than UCB-MCTS. Indeed, UCB

strategies suffer from consideration of the variance, which will generally grow over

time everywhere in the world, encouraging extensive exploratory actions over the

whole domain.
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Hotspot Uncertainty Building Touring Behavior Initiated Return to Max.

Figure 4-15: Emergent monitoring behavior with modeled transient phe-
nomena This figure shows the emergent monitoring behavior of PLUMES in a rep-
resentative trial. Across the top the true world at the specified time is pictured, with
the maximum marked with a star. The robot’s trajectory and reward distribution at
the specified time are pictured underneath, wherein the samples along the trajectory
are plotted as black dots, and the most recent trajectory selection is colored in pink,
and the oldest in blue. High value is colored in yellow in the reward plots. Towards
the end of the mission, the agent engages in a hotspot monitoring behavior in which
modes that were previously seen are revisited, as the uncertainty in the stochastic
transition drives the potential reward of returning to the locations up.
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Figure 4-16: Comparison of PLUMES and UCB-MCTS behavior in known
transience On the left, this figure shows the performance of PLUMES and UCB-
MCTS with respect to accumulated MVI reward over 10 represented missions mis-
sions. The dashed line has slope 1, points falling above the line indicate that PLUMES
collected more reward for that specific mission than UCB-MCTS. Red-regions indicate
low-performance areas, when fewer than 50 samples were collected of the time-varying
maximum. Generally, PLUMES outperforms UCB-MCTS in convergence to maxi-
mum; UCB-MCTS tends to take many more exploratory actions before converging.
On the right, an illustrative PLUMES trial, in which the maximum changes locations,
is shown at the top, where the maximum is marked with a star. The world model and
reward function for the corresponding time are shown below. As in static regimes,
PLUMES initially explores the environment and converges to it’s belief of the max-
imum. As time passes, uncertainty about the other high modes in the environment
grows, and PLUMES explores these modes again. In this case, this led to convergence
to the new maximum location.
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4.6.3 Target Tracking

In the target tracking scenario, a singular mode moves in a circle, represented by a

custom kernel (Eq. 4.7). The mode begins at the center-top of the environment, and

completes a full revolution in 78 time steps. The mode itself has a detectable radius

of approximately 1.5 m. Refer to Fig. 4-5 for an illustration.

Similar to the temporal random walk, direct consideration of the phenomenon

transience is required. In the trivial case, the robot has complete insight to the

trajectory of the phenomenon, and convergence to the mode and tracking can occur

in even myopic planning. Fig. 4-17 illustrates how perfect phenomenon knowledge

results in explicit near-optimal behavior of the vehicle.

Figure 4-17: Trivial dynamic tracking case When any planner has the perfect
kernel for the phenomenon, even myopic planners (pictured) can trivially find and
track the mode.

However, in many cases, only partial knowledge about a phenomenon may exist,

and only intuition about the other factors can be encoded. To illustrate this process,

the robot agent is given knowledge of the approximate period of the phenomenon (it

is given the period of 80 time intervals for a full revolution), and the center of the

rotation. The distance of the mode from the center, the number of modes, and the

lengthscale of the mode are unknown. To approximately model the distribution of

the system, the following model was used to convert Cartesian and time vectors to

time-dependent polar coordinates (r,Θ):

125



r =
√︁

(x− 𝑐𝑥)2 + (y − 𝑐𝑦)2

Θ = 2𝜋
t

𝐹
+ arctan(

y − 𝑐𝑦
x− 𝑐𝑥

)

xp = r cos(Θ)

yp = r sin(Θ)

(4.13)

where 𝑐 represents the rotation center, 𝐹 represents the estimated period of rotation,

x and y are input coordinate vectors, and t is input time vector. An RBF kernel

(Eq. 4.5) is then placed over the polar coordinates with parameters (𝑙 = 1.5, 𝜎2 =

100.). Observations were drawn with noise 𝜎2
𝑛 = 2.0. This kernel generally captures

that a measurement at some coordinate in time will be correlated with a point along

an arc.

By using an approximate kernel and adding significant noise to measurements,

the act of finding and tracking the maximum is non-trivial, as uncertainty must be

sufficiently reduced everywhere before the maximum can converge to the moving

target and confounding measurements will cause uncertainty to fluctuate throughout

the mission. Fig. 4-18 shows the convergence-monitoring behavior that PLUMES

exhibits with the approximate model. As a point of comparison, UCB-MCTS is also

shown for this scenario, as a similar task was presented by Marchant et al. [85] for this

algorithm. Unlike the MVI heuristic reward, UCB reward more significantly suffers

from the measurement noise, increasing the attractiveness of exploratory behaviors

in the mission.

As a whole, these three representative simulation results demonstrate the emergent

behaviors of agents using PLUMES in different forms and treatments of transience.

They also further reveal the robustness of the MVI heuristic under noisy observations

or underlying variance, in addition to the utility of nonmyopic planning in general for

strategic monitoring behaviors.
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Figure 4-18: Tracking an unknown moving source Using an approximate kernel,
PLUMES initially explores the world, encountering the maximum during the initial
exploration to place a prior on the location. After reducing uncertainty in the world,
the agent converges and tracks with the maximum. As time passes, uncertainty in the
world state grows and brief exploratory behaviors emerge. The agent re-converges
with the maximum by the end of the mission. In contrast, the agent using UCB-
MCTS tends towards more exploratory actions throughout the mission.
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4.7 Discussion

Online planning methods for robotic maximum seek-and-sample are critical in a vari-

ety of contexts, including general environmental monitoring (scientific inquiry, recon-

naissance) and disaster response (oil spill, gas leak, radiation). For partially observ-

able environments that can be modeled using a GP, PLUMES is a novel approach for

global maximum seek-and-sample that additionally extends to transient phenomenon.

With respect to the constituent elements of PLUMES, both MVI and continuous-

observation MCTS provide considerable advantages for adaptive sampling regimes in

natural environments. This work presents MVI as an empirically suitable alternative

to the canonical GP-UCB heuristic in MSS solvers. MVI is both naturally adaptive

and avoids using a hand-tuned parameter to balance exploration and exploitation,

instead sampling potential global maxima from the robot’s full belief state to manage

exploration and exploitation. This method is additionally robust to transience with

respect to placing value at the true maximum. In contrast, heuristic functions like

UCB place reward on all high-valued or highly uncertain regions, leading to unneces-

sary exploration and limiting the time available to exploit knowledge of the true max-

imum. In transient regimes, this inefficiency is exacerbated by growing uncertainty in

previously explored regions over time, making tuning the exploration parameter dif-

ficult. Ultimately, the MVI heuristic allows PLUMES to collect exploitative samples,

while still achieving in static environments the same overall level of posterior model

accuracy (shown by RMSE) as UCB-based planners. Continuous-observation MCTS

allows PLUMES to search nonmyopically over belief-spaces on continuous functions

without discretization or maximum-likelihood assumptions. Logistically, this allows

for navigation in the presence of obstacles and empirically improves finite-time con-

vergence to global maximum.

This work primarily focused on exploiting knowledge about a transient phenomenon

in order to select good GP models for belief representation. In scenarios in which

nothing is known about a phenomenon of interest, an extension of this work which

performs online GP kernel hyperparameter learning [201] could be used. For some
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phenomenon and scientific objectives, a GP may not be the best representation. In-

corporation of scientific models into PLUMES, in place of or in conjunction with GP

belief models, is an open line of potential research. Additionally, it was generally

assumed that a discrete action was sufficient for navigation in an environment, such

that all reachable space could be accessed by some combination of available actions.

In many natural environments, particularly convex environments, such action sets

are generally sufficient, however for some nonconvex environments, continuous ac-

tions spaces in the spirit of, e.g., Morere et al. [202], would allow increased flexibility

and path sophistication.

Recalling the field campaigns from Chapter 3, PLUMES is most immediately ap-

plicable in environments like the shallow seep fields in the Cascadia Margin, where

ephemeral supersaturations are the target of interest. PLUMES can be used without

modification to effectively, autonomously conduct similar campaigns. For operations

like those in the Wareham River where the location of the maximum is already known

(i.e., the outfall pump), or like those in Cambridge Bay where there is no clear maxi-

mum in the environment, PLUMES could be used to optimize over a meta-distribution

which encodes more abstract scientific quantities. For example, rather than optimize

over raw measurements, PLUMES could be used to optimize a distribution which

represent flow velocities, spatial gradients, or co-dependent phenomena.

Ultimately, this chapter formalizes the MSS POMDP and presents PLUMES,

an adaptive planning algorithm that employs continuous-observation MCTS and

maximum-value information reward to perform efficient maximum-seeking in par-

tially observable, continuous environments. PLUMES outperforms canonical coverage

and UCB-based state-of-the-art methods with statistical significance in challenging

simulated and real-world conditions (e.g., multiple local maxima, unknown obsta-

cles, sensor noise) and demonstrates robust performance under transient conditions.

Maximum seek-and-sample is a critical task in environmental monitoring for which

PLUMES, with theoretical convergence guarantees, strong empirical performance,

and robustness under real-world conditions, is well-suited.
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Chapter 5

Conclusions

The study of natural phenomena forms the core of the environmental and earth

sciences. To examine scientific questions about natural environments, in situ ob-

servations and samples are required to draw conclusions. Sample collection can be

logistically time-consuming, difficult, and dangerous for a human operator, and choos-

ing where to draw representative or valuable samples is an open technical challenge

as the distribution of the phenomenon may be unknown or ephemeral. Robotic tech-

nologies, in conjunction with in situ instrumentation, are poised to disrupt sample

methodologies in the environmental sciences due to the many-fold more observations

that can be collected in longer, unsupervised missions. This presents an opportunity

to both demonstrate the utility of robotic platforms in various field conditions and

set new standards in sampling regimes.

This thesis presented in Chapter 3 scientific findings from three field campaigns

that used an unmanned surface vehicle equipped with gas sensors to examine two

greenhouse gases (CH4 and CO2) in unique marine environments. As a whole, the

results of these campaigns serve as a compelling case study for robotic technologies,

and highlighted a key challenge that should be addressed by sampling regimes: phe-

nomenon transience. In many natural environments, a target of interest is subject to

time-variation; whether the phenomenon itself dynamically moves or is influenced by

changing environmental conditions (e.g., tides, seasons).

To begin to address sampling regimes in natural environments, this thesis con-
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siders a specific scientific sampling objective, the maximum seek-and-sample (MSS)

problem. A scientist poses the MSS problem when seeking a gaseous plume source

or searching for the most nutrient rich soils to collect a time-consuming physical

sample. Canonically, uniform-coverage strategies have been adopted in the environ-

mental and earth sciences in order to collect representative observations, however in

the MSS problem and in environments with transient phenomenon, these methods

tend to be sample sparse in the region of interest. To address sample sparsity, an in-

telligent and adaptive regime is necessary. Chapter 4 formalizes the MSS problem as

a partially-observable Markov decision process (POMDP) and proposes the PLUMES

adaptive sampling algorithm to approximately solve it, demonstrating better perfor-

mance than state of the art baselines in a variety of static, dynamic, convex, and

nonconvex simulations and field trials.

5.1 Thesis Contributions

This thesis offers contributions in both the marine sciences and in adaptive sampling.

5.1.1 Marine Sciences

With respect to the marine sciences, the three field campaigns each present novel

results in their domains. Logistically, the ChemYak [118] vehicle played a critical role

in the collection of all measurements, and this thesis illustrates the use of the vehicle

in rivers, open seas, and Arctic environments.

The Wareham River Estuary field study in Sec. 3.3 examined the impact of

wastewater effluent on a tidal salt-water estuary in Massachusetts. The bacteria

used to treat the water at one point of processing required methanol feedstock to be

injected in the water, and the campaign was motivated by the question of whether

the bacteria were fully metabolizing the stock before the water was pumped into the

estuary. The results of this work demonstrated that CH4 concentrations in the treated

water were elevated at the wastewater pump outfall, and both CO2 and CH4 were

longitudinally transported by the river from the outfall, driven by tidal cycles. The
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spatial and temporal resolution of gas transport generally goes unmeasured in wastew-

ater effluent studies and these observations show the strong influence of the ebbing

tide on longitudinal transport of greenhouse gases in the estuary.

Sec. 3.4 presented results from the Cascadia Margin, an area with natural CH4 seeps

from hydrate instability and bacterial activity [174, 175]. Previous studies [179, 180]

hypothesized that supersaturations on surface waters may be possible in shallow water

sites, driven by bubble transport and coastal upwelling. Evidence of these supersat-

urations in the top 10 m of the water column were presented and observed at two

independent locations, in addition to generally elevated CH4 levels in surface waters

above active venting sites. Based on the ChemYak measurements, a conservative

estimate of the potential quantity of CH4 that reaches the atmosphere from the cam-

paign sites is 20-250 kg y−1. These results add to the small body of literature which

specifically estimates contributions from shallow seeps.

Sec. 3.5 presented an extended field campaign in Cambridge Bay, Nunavut, Canada

to capture a major CH4 and CO2 outgassing event during the annual spring freshet in

which the ice cap over the Freshwater Creek estuary recedes. The results not only re-

vealed extremely elevated gas concentration in river-derived waters, but also showed

that considerable lateral transport of gas to the coastal ocean likely occurs in the

early freshet and rapid outgassing to the atmosphere occurs in recently ice-free wa-

ters. With typical sampling methods, this event would largely be under-constrained

or potentially missed, as summer-time, ice-free measurements are the standard in

biogeochemical studies of Arctic regions. Analysis from measurements drawn in this

study were used to estimate that 95% of greenhouse gas emissions from Cambridge

Bay over the course of an entire year likely occurs during the spring freshet alone.

This work has far-reaching implications about the overall contribution of atmospheric

CH4 and CO2 from Arctic regions and compels future studies which continue to re-

solve transient phenomena in Arctic waters.
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5.1.2 Informative Path Planning and Adaptive Sampling

This thesis further presents the MSS POMDP formalism, and derives the PLUMES

algorithm which utilizes Gaussian process (GP) belief representations of natural

phenomenon, maximum value-information (MVI) reward heuristic, and continuous-

observation Monte Carlo tree search (MCTS) to optimize over the MSS problem.

GP belief states offer a compact representation over the uncountably infinite number

of possible realizations of a phenomenon’s distribution with respect to a history of

continuous observations. By leveraging knowledge of a scientific phenomenon (e.g.,

diffusivity, trajectory), this work demonstrates that the GP kernel function can encode

this insight for efficient prediction in complex, multimodal, and potentially transient

environments.

The true reward of the MSS problem — value placed only at the global maximum

— is difficult to optimize over as the signal is sparse. State-of-the-art methods use

the Upper Confidence Bound (UCB) heuristic to find the global maximum of a dis-

tribution, however this reward function converges to the underlying distribution of

a phenomenon and can, in practice, yield suboptimal convergence to local maxima

in finite time missions. Moreover, UCB has a hand-tuned parameter to control the

explore-exploit behavior of a vehicle, and this parameter can be difficult to tune in

one-shot missions. The MVI reward heuristic, first presented as a black-box opti-

mizer in Bayesian Optimization [20], has no tunable parameter and instead converges

to place value (after sufficient exploration) to the true global maximum. This leads

to efficient seek and sample behavior in finite duration missions. This thesis further

demonstrates that calculating MVI is possible in time-varying distributions, and can

lead to attractive monitoring behaviors in difficult, transient regimes.

Finally, continuous-observation MCTS uses progressive-widening to search over

continuous state and observation spaces, which are typically difficult to search over

because every state is unique with probability 1. This thesis extends performance

guarantees for fully-observable MDPs solved with continuous-observation MCTS [21]

to the partially observable domain.
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The demonstration of PLUMES and state-of-the-art baselines in static and dy-

namic environments, convex and nonconvex metric spaces (with known and unknown

obstacles), and in the presence of a variety of illustrative transience shows that

PLUMES is a robust tool for robotic exploration, mapping, and sample collection.

Together with the technical content, this work serves as a comprehensive presentation

of PLUMES for the MSS problem.

5.2 Future Work

Several directions for future efforts in developing robotic solutions for environmental

and earth science objectives include: novel representations of scientific phenomenon,

multi-objective missions, long-term monitoring regimes, and multi-agent fleets.

5.2.1 Representing Scientific Phenomenon for Planning

GPs are primarily leveraged in this thesis to represent target phenomena. The advan-

tage of a GP lies in the compact representation of a state (through mean and kernel

function) and closed form data incorporation and posterior inference. For complex

phenomenon, GPs may not be expressive enough or simply may not have features

that can be described using a Gaussian relationship. To improve the flexibility of

GPs, kernel learning [203, 204] is one potential avenue for development, in which

using observations collected online or through a training dataset offline, the hyper-

parameters of a kernel function can be optimized to better conform the kernel to

the relationships inherent in the data. However, alternative representations for some

environmental phenomenon will still be required. A rich history of science modeling

and analytical computation, e.g., [205], presents an opportunity to incorporate first

principle specifications with probabilistic or learning frameworks for robotic decision-

making. Bayesian networks [206], neural networks and genetic programming [207],

topic modeling [208], and other methods are among some representations already

under consideration in the field.
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5.2.2 Multi-Objective Missions

This thesis primarily examined scientific objectives which require optimizing over a

single “task” or target. However, in some applications, multiple phenomena may be

of interest and the science objective may be more general (e.g., mapping several phe-

nomenon, finding and taking note of “interesting” phenomena, exploration). Multi-

objective missions describe these applications, and pose a significant set of challenges

to address, including: learning relationships between phenomena, optimal planning in

multi-dimensional spaces, compact belief representation, encoding “curiosity” onto a

platform. Some work in this space has examined heuristics [209], Petri nets [210], and

particle swarm optimization [211] among other techniques to consider multiple objec-

tives that must be met by a single agent. Work specific to multi-objective planning

with respect to information-measures is an open area.

5.2.3 Longterm Monitoring

Some realistic objectives of science missions may require multiple deployments or

longterm monitoring (over weeks or months) to detect events, characterize temporal

trends, or map large fields. Some monitoring objectives may include MSS, hotspot

coverage, mapping, exploration, gradient characterization, and others. Longterm

monitoring requires data management solutions, consideration of power requirements,

and physical robustness of the platform and instruments. From a decision-making and

modeling perspective, longterm monitoring presents an opportunity to consider how

scale of an optimization problem changes potential robotic behaviors. For example,

in a small world it may be feasible for a robot to move from one end to the other

multiple times in a mission, but in large environments such transit may be forbidden.

This requires consideration of how to perform no-regret actions in local regions, long-

range strategic planning, and periodic mission reformulation based on incremental

data updates. Additionally, longterm monitoring may benefit from incorporation of

remote data streams (e.g., satellites) and other novel sensing technologies to improve

strategic planning.
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5.2.4 Multi-Agent Systems

Robot swarms or multi-agent fleets have direct utility in the environmental sciences:

coordinated agents could distribute workload in longterm monitoring applications,

allow for specialized task-management for multi-objective missions, and provide a

dense temporal “snapshot” of a spatial phenomenon. All of the challenges of using

a single agent, in addition to developing communication, coordinate, and planning

frameworks can be addressed by work in this domain.

5.3 Final Thoughts

This thesis proposes that natural phenomenon are an interesting context for algorithm

development in robotics, and presents an argument for robotic systems to be incorpo-

rated into environmental and earth science practices. To tackle difficult questions in

the environmental and earth sciences, massive amounts of spatial and temporal data

are needed, and this data cannot be collected through standard sampling techniques

alone. Remote sensing through satellites has offered unprecedented global resolution

of phenomenon, but mid- to small-scale phenomenon, and calibration of these sen-

sors, require in situ examination. New technologies are immediately necessary, and

robotics is well-suited to respond. Within robotics, using science applications as a

means of inspiration for technical innovation requires consideration of both theoreti-

cal and practical aspects of intelligent design to create robust agents which can elicit

community trust, guarantee efficacy, and produce inherently useful products (e.g.,

raw observations, belief models/representations). In the pursuit of resolving difficult

science questions and creating sophisticated robotic technologies, multidisciplinary

and diverse perspectives, like those presented in this thesis, will be necessary.
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