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Precis: 

Among the six IOP measurements provided by four tonometers, the bIOP by the Corvis 

ST was the least influenced by the change in corneal biomechanical properties caused 

by FS-LASIK. 
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Abstract 

Purpose: To test the performance of the four tonometers in providing IOP 

measurements that were free of effects of corneal biomechanics changes caused by 

refractive surgery. 

Methods: Four tonometers were employed to provide IOP measurements for 65 

participants who accepted Femtosecond laser-assisted LASIK (FS-LASIK). The 

measurements included GAT-IOP by the Goldmann Applanation Tonometer, DCT-IOP 

by the Dynamic Contour Tonometer, Goldmann-correlated IOP (ORA-IOPg) and 

corneal-compensated IOP (ORA-IOPcc) by the Ocular Response Analyzer, and 

uncorrected IOP (CVS-IOP) and biomechanically-corrected IOP (CVS-bIOP) by the 

Corvis ST. Statistical analyses were performed to assess the association of the 

differences in IOP caused by FS-LASIK with central corneal thickness (CCT), mean 

corneal curvature (Km), age, refractive error correction (REC), optical zone diameter 

(OZD), ablation zone diameter (AZD), residual stromal bed thickness (RSB) and RSB 

ratio (RSB/CCT). Multiple linear regression models were constructed to explore factors 

influencing IOP changes. 

Results: All four tonometers exhibited significant differences between IOP 

measurements taken pre and post-surgery except for CVS-bIOP in the low to moderate 

myopia group (t= 1.602, p= 0.12). CVS-bIOP, followed by DCT-IOP, provided the best 

agreement between pre and post-FS-LASIK measurements with the lowest differences 

in IOP and the narrowest limits of agreement. The pre-post IOP differences were also 

significantly associated with the reduction in CCT in only GAT-IOP, ORA-IOPg and 

CVS-IOP. CVS-bIOP and ORA-IOPcc were the only measurements that were not 

correlated with CCT, Km or age both before and after FS-LASIK. 

Conclusions: The biomechanically-corrected bIOP from the Corvis ST provided post-

FS-LASIK measurements that were in closest agreement with those obtained before 

surgery. In comparison, GAT-IOP, ORA-IOPg, ORA-IOPcc and CVS-IOP appeared to 

be more influenced by the changes in corneal biomechanics caused by FS-LASIK. 

Keywords: Biomechanics changes; FS-LASIK; Intraocular pressure measurements, 

Corvis ST, Dynamic Contour Tonometer 
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Introduction 

Measurement of Intraocular pressure (IOP) is an important eye examination needed to 

risk-profile and manage glaucoma. The accuracy of current methods of IOP 

measurement is influenced by corneal stiffness which varies with thickness, curvature, 

age and medical history 1-5, and the resulting errors have been estimated to affect the 

accuracy of glaucoma management in more than 20% of patients 6. 

 

Since its introduction in the 1950s, the Goldmann Applanation Tonometer (GAT, 

Haag-Streit AG) has become the reference standard in tonometry 7 despite the 

inaccuracies of its IOP measurements caused by variations in corneal parameters, most 

notably the central corneal thickness (CCT) 8. Numerous studies have since been 

conducted to assess the effect of CCT variation on GAT-IOP and the estimates range 

between 0.7 and 7.1 mmHg for every 100 μm change in CCT 2,9-13. Further studies 

estimated the effect of corneal curvature, on GAT-IOP to be between 0.57 and 1.14 

mmHg per 1mm change in the central anterior radius 9 5,14. The studies also reported a 

significant effect of the tissue’s material properties on GAT-IOP, but the practical value 

of this observation was limited by the current inability to measure corneal material 

properties in vivo. 

 

In response to the inaccuracies reported in GAT, the Dynamic Contour Tonometer 

(DCT, SMT Swiss Microtechnology AG, Switzerland) was designed with a tip that has 

a curvature, which the cornea naturally achieves when the pressure is the same on both 

sides 15,16. On this basis, the DCT is reported to be much less affected by the corneal 

stiffness parameters than GAT 15; a claim that has been validated in a number of clinical 

studies 15,17-19. Other attempts to address the effect of corneal stiffness on tonometry 

results include the Ocular Response Analyzer (ORA, Reichert Ophthalmic Instruments, 

Depew, NY). The ORA provides the corneal-compensated IOP (IOPcc), which is 

intended to be less dependent on corneal thickness than applanation tonometers 20. More 

recently, another non-contact tonometer, the Corvis ST, was developed by OCULUS 

Optikgeräte, Inc. (Wetzlar, Germany) for the same purpose. The Corvis relies on high-
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precision, ultra-high-speed, Scheimpflug technology to monitor corneal deformation 

under air puff and produces a wide range of tomography and deformation parameters, 

which have the potential to enable accurate estimates of both corneal stiffness and IOP. 

Earlier research led to the development of a biomechanically-corrected IOP (bIOP) 

measurement that has been validated both experimentally and clinically and found to 

have lower dependence on the corneal parameters; CCT and material properties which 

vary with age 21, compared with the uncorrected Corvis measurement (CVS-IOP) 22,23. 

 

This paper attempts to assess the effectiveness of the four tonometers in estimating the 

true value of IOP (IOPtrue). However, since IOPtrue cannot be determined directly 

(without conducting manometry), we have used the assumption that it does not change 

after refractive surgery, in which the tissue becomes ablated, a flap or a cap becomes 

separated and the cornea experiences stiffness changes due to the wound-healing effect 

24,25. Therefore, the ability of a tonometer to provide similar estimates of IOP before 

and after surgery is considered an indication of success in avoiding the inaccuracies 

caused by changes in corneal biomechanics. 

 

Methods 

Patients 

65 eyes of 65 myopes, (26.32±5.96 years, range 17-40) including 32 males and 33 

females who underwent Femtosecond laser-assisted LASIK (FS-LASIK) refractive 

surgery in the Eye Hospital of WenZhou Medical University were involved in this 

prospective study. The study followed the tenets of the Declaration of Helsinki and was 

approved by the Scientific Committee of the Eye Hospital. Surgical parameters 

including optical zone diameter (OZD), ablation zone diameter (AZD), residual stromal 

bed thickness (RSB) and refractive error correction (REC) were recorded from surgery 

planning/treatment printouts. REC was converted into spherical equivalent (SE). 

Central corneal thickness (CCT) and mean corneal keratometry (Km) were both 

measured with a Pentacam (OCULUS Optikgerate GmbH, Wetzlar, Germany). Km was 
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taken as the average of cornea’s central curvature in the horizontal and vertical 

directions, Kh and Kv. RSB ratio was defined as RSB/CCT. According to SE measured 

pre-surgery, participants were divided into two groups with low to moderate myopia (-

0.50D>SE≥-5.00D, 30 eyes) and high myopia (-5.00D>SE, 35 eyes). The exclusion 

criteria included a history of ocular disease, surgery and/or trauma, stopping use of 

contact lenses for less than two weeks. Those not willing to participate or not 

completing the 3 months postoperative follow-up were also excluded from the study. 

 

Examinations and Measurements 

Four tonometers were employed in this study to provide IOP measurements for each 

participant. The measurements included GAT-IOP by the Goldmann Applanation 

Tonometer, DCT-IOP by the Dynamic Contour Tonometer, corneal-compensated IOP 

(ORA-IOPcc) and Goldmann-correlated IOP (ORA-IOPg) by the Ocular Response 

Analyzer, and uncorrected IOP (CVS-IOP) and biomechanically-corrected IOP (CVS-

bIOP) by the Corvis ST. Of these measurements, DCT-IOP, ORA-IOPcc and CVS-bIOP 

were designed to significantly reduce effect of corneal biomechanics on IOP 

estimations. 

 

To eliminate bias, all participants underwent the following tests in a single session and 

in the same order: measurement of topography, IOP measurement using non-contact 

tonometers (ORA and CVS arranged randomly), then contact tonometers (GAT and 

DCT arranged randomly) as described in previous studies 26-28. Non-contact IOP 

measurements were repeated in 3 minutes in between until there were 3 readings by 

each tonometer, in which the difference between the highest and lowest values was 

within 2 mmHg. Contact measurements by GAT and DCT were taken 20 minutes after 

completion of all non-contact measurements, and drops of topical Alcaine 0.5% (Alcon, 

Missisauga, Canada) were applied before taking measurements as described in previous 

studies 29. Each contact tonometer was used twice with a pause of at least 5 min between 
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measurements 30. 

 

Data were collected preoperatively and at 3 months postoperatively. The 3-month-

postoperative time point was selected as postoperative stromal edema would have 

resolved by then and postoperative corneal astigmatism typically stabilized 31. All 

measurements were completed in one clinic visit in the same half day session (morning 

08:30-11:30 or afternoon 01:30-04:30) to improve follow-up, ensure consistency and 

minimize diurnal effects 32. All measurements were taken with participants in the sitting 

position and with undilated pupils. They were taken by the same experienced clinician 

(WH) and using the same instruments to minimize potential for variability associated 

with either the instrument or the operator, and in line with procedures adopted in earlier 

studies 18,33,34. Only one eye per patient, randomly selected, was included in the study. 

 

Surgical Technique 

In the FS-LASIK procedure, a 100-110 μm thick, 8.0-9.0 mm diameter flap with a 

superior hinge was created using femtosecond laser (Ziemer Ophthalmic Systems AG, 

Port, Switzerland), followed by tissue ablation using the Amaris 750 excimer laser 

(Schwind eye-tech-solutions, Kleinostheim, Germany). Postoperatively, 1 drop of 

tobramycin/dexamethasone (Tobradex; Alcon, TX, USA) was instilled at the surgical 

site and a bandage contact lens (Acuvue Oasys; Johnson & Johnson, FL, USA) was 

placed on the cornea and removed 1 day later. After surgery, fluorometholone 0.1% 

(Flumetholon; Santen, Osaka, Japan) and topical levofloxacin 0.5% (Cravit; Santen, 

Osaka, Japan) were applied 4 times a day for 1 week, then the dosage was tapered each 

subsequent week until it was stopped 1 month post-operation. 

 

Statistical analyses 

The Statistical analyses were performed using SPSS (version 20.0, IBM, Inc.). The 

difference between pre- and post-surgery IOP values was analyzed using paired-sample 

T test, while the comparison between low-to-moderate myopia group and high myopia 

group was assessed through independent-samples T test. MANOVA of repeated 
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measurements was employed in the analysis of the difference between DCT-IOP and 

the other five IOP measurements. The level of agreement between the IOP 

measurements obtained by GAT, DCT, ORA and CVS pre and post-FS-LASIK was 

evaluated using Bland-Altman plots. The relationship between each of the IOP 

measurements (DCT-IOP, GAT-IOP, ORA-IOPg, ORA-IOPcc, CVS-IOP and CVS-

bIOP) and each of age, Km and CCT was assessed using the Pearson’s or Spearman 

linear correlation factor according to a normal distribution test. Multiple linear 

regression analyses with the stepwise method were used to identify significant 

associations of ∆CCT, ∆Km, age, REC, OZD, AZD, RSB and RSB ratio with the IOP 

differences between pre and post-FS-LASIK. p values less than 0.05 were considered 

statistically significant. 

 

Results 

The mean preoperative CCT was 550.7±22.6 μm, which reduced to 460.9±37.1 μm (p< 

0.01) post-FS-LASIK, and the mean REC, OZD and AZD were -5.38±1.90 D, 

6.70±0.36 mm and 7.77±0.33 mm, respectively. At the pre-surgery stage, the low-to-

moderate myopia group and high myopia group were closely matched in age 

(26.61±6.61 years vs 26.07±5.43, t= 0.361, p= 0.720), gender ratio (Male/Female: 

16/14 vs 16/19, 2=0.375, p= 0.622), Km (43.34±1.63 D vs 43.30±1.16 D, t= 0.103, p= 

0.918), CCT (551.2±25.3 μm vs 550.3±20.6 μm, t= 0.150, p= 0.881) and GAT-IOP 

(13.06±2.13 mmHg vs 13.18±1.96 mmHg, t= -0.246, p= 0.807). 

 

Table 1 showed the mean preoperative and postoperative IOP measurements for all 

patients. The results showed significant differences between the IOP measurements 

taken pre and post-surgery in DCT-IOP, GAT-IOP, ORA-IOPg, ORA-IOPcc and CVS-

IOP in both myopia groups (all p< 0.05). On the other hand, CVS-bIOP decreased 

significantly after FS-LASIK only in the high myopia group (t= 4.232, p= 0.000), but 

not in the low-to-moderate myopia group (t= 1.602, p= 0.12). 
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DCT-IOP was higher than the other five IOP measurements both before and after FS-

LASIK (p< 0.01). IOP differences between pre and post-FS-LASIK in the low-to-

moderate myopia group were lower than in the high myopia group for DCT-IOP and 

CVS-IOP (t= -2.804, p=0.007 for DCT-IOP; t= -3.195, p= 0.002 for CVS-IOP) but not 

in GAT-IOP, ORA-IOPg and ORA-IOPcc and CVS-bIOP (p> 0.05). 

 

Using Bland-Altman plots, the agreement between pre and post-operative IOP 

measurements by DCT, GAT, ORA and CVS were evaluated in Figure 1 (low to 

moderate myopia group) and Figure 2 (high myopia group) where the mean difference 

was the estimated bias, and the standard deviation (SD) of the differences measured the 

random fluctuations. Both Figures 1 and 2 showed that CVS-bIOP, followed by DCT-

IOP, provided the best agreement between pre and post-FS-LASIK measurements with 

the mean differences in IOP being closest to zero and the data showing the smallest 

ranges of limits of agreement (LoA) in both low to moderate myopia group and high 

myopia group. 

 

Pre-operatively, DCT-IOP, ORA-IOPg and CVS-IOP were correlated with CCT (p< 

0.05), while only ORA-IOPg and CVS-IOP were correlated with CCT (p< 0.01) in the 

post-operative stage. Further, none of the six IOP measurements taken pre-surgery was 

correlated with Km or age (p> 0.05), while only GAT-IOP and CVS-IOP were 

correlated with Km post-operatively (p< 0.05, Table 2). 

 

Table 3 summarizes the results of multiple linear regression analyses in the study group. 

The analysis shows that, only ∆DCT-IOP and ∆CVS-bIOP were correlated with age 

(all p< 0.05), while only ∆GAT-IOP, ∆ORA-IOPg and ∆CVS-IOP were associated with 

∆CCT (all p< 0.01). Further, both ∆DCT-IOP and ∆GAT-IOP seemed to be 

significantly affected by the RSB ratio (p< 0.05). However, ∆ORA-IOPcc seemed to 

be the least affected by these parameters, followed by ∆CVS-bIOP. None of the pre-

post FS-LASIK IOP differences showed significant association with ∆Km, REC, OZD, 

AZD or RSB. 
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Discussion 

Laser-assisted in situ keratomileusis (LASIK) is the most common refractive procedure 

used to change anterior corneal shape and enable the eye’s optical system to focus light 

on the retina 35. As the procedure involves separating an anterior flap and ablating a 

layer of corneal tissue, it leads to considerable reductions in overall corneal stiffness, 

which may lead to underestimations in intraocular pressure (IOP) measurements. Three 

tonometers have been developed to overcome this problem and produce IOP 

estimations that are less affected by corneal biomechanics than GAT, the reference 

standard in tonometry. These tonometers, the Dynamic Contour Tonometer (DCT), the 

Ocular Response Analyzer (ORA) and the Corvis ST (CVS), were assessed in this study 

in their ability to produce consistent IOP measurements pre and post-FS-LASIK, and 

compare this performance to that of GAT. 

 

Among all IOP measurements, the biomechanically-corrected IOP obtained by CVS 

(CVS-bIOP) produced the smallest difference between pre and post-surgery 

estimations (0.78±1.52 mmHg) followed by DCT-IOP (1.58±2.06 mmHg). Other 

measurements produced consistently larger differences with means of 2.85±2.22 

mmHg by GAT-IOP, 3.11±1.77 mmHg by CVS-IOP, 3.56±1.72 mmHg by ORA-

IOPcc and 6.15±2.01 mmHg by ORA-IOPg. 

 

Earlier studies have questioned the validity of GAT following corneal refractive 

surgeries 36 and reported significant differences in IOP measurements before and after 

LASIK including 3.4±2.5 mmHg 37; 3.8±2.2 mmHg 38; 5.4±3.0 mmHg 39 and 1.8±2.8 

mmHg 40, some of which are close to the mean difference recorded in our study 

(2.85±2.22 mmHg). While most relevant studies on GAT concentrated on the 

biomechanical effect of refractive surgery, further insight was provided by a study by 

Chang and Stulting linking the change in measured IOP to the change in refraction in 

over 8,000 subjects after a myopic refractive procedure 41. Subsequently, and in order 

to avoid the dependence of GAT on corneal biomechanics, several formulas were 
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produced to correct GAT-IOP based on CCT, keratometry and age 42,43. 

 

The DCT, proposed as a possible solution for the error measurement caused by GAT, 

has a concave tip that is designed to be closely adapted to the mean curvature of the 

cornea when subjected to equal pressure on both sides (IOP on the posterior surface 

and tonometric pressure on the anterior surface) 15,16,44. While most studies reported 

that DCT measurements did not change significantly after LASIK 15,45, we obtained 

lower results in the low-to-moderate myopia group (0.81±1.97 mmHg, p< 0.05), but 

found a significant mean reduction post-surgery in the high myopia group (2.22±1.94 

mmHg, p< 0.01), which was the second lowest difference after CVS-bIOP. The results 

also showed ∆DCT-IOP was influenced by factors including age (β= -0.402) and RSB 

ratio (β= -0.29). Further, the tendency of DCT to give higher IOP measurements 

compared with other tonometers was also evident in both pre and post-surgery results, 

which was similar to the findings of earlier studies 29,39,46,47. DCT showed good 

concordance with intracameral IOP 44, while GAT tended to give lower IOP values 17,48. 

The fact that tonometers are commonly calibrated against the GAT presents a possible 

explanation for this underestimation. 

 

On the other hand, ORA provides two measurements of IOP that serve different 

purposes. While ORA-IOPg simulates GAT-IOP, the ORA-IOPcc aims to correct for 

variations in corneal biomechanics. In our study, ORA-IOPg underwent significant and 

large reductions (6.15±2.01 mmHg) following FS-LASIK, which were similar to the 

values reported in earlier studies for ORA-IOPg (mean 6.2 mmHg 49, 3.9±2.19 mmHg 

50) and the values obtained for GAT-IOP (2.85±2.22 mmHg), which ORA-IOPg was 

intended to simulate. Our results also found ∆ORA-IOPg to be dependent on ∆CCT (β= 

0.523). 

 

In comparison with ORA-IOPg, ORA-IOPcc performed better with a smaller mean of 

difference between pre and post-surgery stages of 3.56±1.72 mmHg, which was still 

significant (p< 0.01) and higher than the results of earlier studies (mean 2.57 mmHg 49, 
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0.67±2.07 mmHg 50). ORA-IOPcc was also not dependent on ∆CCT, ∆Km, Age, REC, 

OZD, AZD, RSB or RSB ratio (p> 0.05). These results, combined, present evidence 

that ORA-IOPcc was less influenced by corneal parameters such as CCT and Km than 

ORA-IOPg 
51. 

 

Similar to the ORA, the Corvis ST provides two IOP measurements, the uncorrected 

CVS-IOP and the biomechanically-corrected CVS-bIOP. The uncorrected CVS-IOP 

showed large and significant differences between the pre and post-surgery stages of  

3.11±1.77 mmHg (p< 0.01) and was dependent on ∆CCT (β= 0.516). In comparison, 

the CVS-bIOP provided the most stable measurements before and after FS-LASIK; the 

differences were statistically insignificant in the low-to-moderate myopia group 

(0.47±1.56 mmHg, p> 0.05), which were slightly higher than those reported earlier 

(0.1±2.1 mmHg 52  and 0.26±1.41 mmHg 53). However, the differences were larger in 

the high myopia group (1.04±1.46 mmHg, p< 0.01), possibly due to the higher 

refractive error correction (-5.38±1.9 D in our study, -3.65±1.12 D 52, -4.28±1.36 D 53). 

Our study also showed dependence of ∆CVS-bIOP on age only (r= -0.266). 

 

In our study, multiple linear regression analysis showed that ∆ORA-IOPcc seemed to 

be the least affected by ∆CCT, ∆Km, age, REC, OZD, AZD, RSB and RSB ratio, 

followed by ∆CVS-bIOP. The magnitude of effect of ∆CCT on IOP measurements 

varied widely (∆GAT-IOP > ∆ORA-IOPg ≈ ∆CVS-IOP). Interestingly, when all 

corneal factors were modeled (Table 3), ∆Km, REC, OZD, AZD and RSB were found 

to have no significant effect on all IOP measurements. 

 

In conclusion, among the six IOP values measured by the DCT, GAT, ORA and CVS, 

the biomechanically-corrected bIOP by the Corvis ST was the most successful in 

providing post-surgery measurements that were in close agreement with those obtained 

pre-surgery, and this was followed closely by the DCT-IOP. Measurements by the GAT, 

IOPg and IOPcc by ORA, and the uncorrected IOP by the Corvis all provided 

estimations with similar results that appear to be more influenced by variations in 
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corneal biomechanics caused by FS-LASIK. 
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Table Captions: 

Table 1 Six IOP measurements obtained by DCT, GAT, ORA and CVS in pre and post 

FS-LASIK stages 

Table 2 Correlation of CCT, Km and Age with six IOP measurements made by DCT, 

GAT, ORA and CVS in pre and post FS-LASIK stages 

Table 3 Correlation of ∆CCT, ∆Km, Age, REC, AZD, RSB and RSB ratio with the 

differences between IOP measurements obtained pre and post-surgery by GAT, DCT, 

ORA and CVS 
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Table 1 Six IOP measurements obtained by DCT, GAT, ORA and CVS in pre and post FS-LASIK stages 

 Stages DCT-IOP GAT-IOP ORA-IOPg ORA-IOPcc CVS-IOP CVS-bIOP 

Low to Moderate Myopia 

Group (-3.70±0.91 D) 

Pre-operation 16.57±2.87 13.06±2.13 14.88±3.06 15.37±2.65 13.72±2.13 13.35±1.99 

Post-operation 15.60±2.26 10.35±1.94 9.12±2.21 11.61±1.74 11.33±1.8 12.86±1.87 

Difference between pre 

and post-operation stages 
0.81±1.97 2.60±2.37 5.76±2.53 3.76±2.09 2.39±1.82 0.47±1.56 

 t value 2.186* 5.917** 12.465** 9.837** 7.071** 1.602 

High Myopia Group (-

6.83±1.22 D) 

Pre-operation 17.89±2.39 13.18±1.96 14.68±2.41 15.41±2.06 13.89±1.87 13.52±1.57 

Post-operation 15.65±2.32 10.09±2.14 8.20±2.04 12.01±1.56 10.18±1.83 12.48±1.72 

Difference between pre 

and post-operation stages 
2.22±1.94 3.07±2.1 6.48±1.39 3.39±1.34 3.71±1.5 1.04±1.46 

 t value 6.566** 8.506** 27.599** 14.966** 14.624** 4.232** 

Both groups combined (-

5.38±1.90 D) 

Pre-operation 17.27±2.69 13.13±2.02 14.77±2.71 15.39±2.33 13.82±1.98 13.44±1.76 

Post-operation 15.62±2.27 10.21±2.04 8.63±2.16 11.83±1.65 10.71±1.89 12.66±1.79 

Difference between pre 

and post-operation stages 
1.58±2.06 2.85±2.22 6.15±2.01 3.56±1.72 3.11±1.77 0.78±1.52 

 t value 5.961** 10.188** 24.603** 16.653** 14.073** 4.106** 
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DCT-IOP and GAT-IOP mean the IOP value provided by DCT and Goldmann, respectively; ORA-IOPg and ORA-IOPcc mean the Goldmann-

correlated IOP and corneal compensated IOP provided by ORA; CVS-IOP and CVS-bIOP mean the uncorrected IOP and the biomechanically-

corrected IOP provided by Corvis ST (CVS); * means p< 0.05, ** means p< 0.01.
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Table 2 Correlation of CCT, Km and Age with six IOP measurements made by DCT, GAT, ORA and CVS in pre and post FS-LASIK stages 

Parameters Stages DCT-IOP GAT-IOP ORA-IOPg ORA-IOPcc CVS-IOP CVS-bIOP 

Age 
Pre-operation -0.191 -0.105 -0.110 -0.129 -0.138 -0.184 

Post-operation 0.065 0.154 0.107 -0.165 0.183 0.045 

Km 
Pre-operation -0.041 0.082 0.094 -0.047 0.096 0.066 

Post-operation -0.025 0.249* 0.229 -0.167 0.369** 0.163 

CCT 
Pre-operation 0.258* 0.141 0.315* 0.139 0.284* -0.027 

Post-operation 0.187 0.159 0.465** 0.030 0.385** 0.069 

Km means the mean corneal keratometry; CCT means central corneal thickness; DCT-IOP and GAT-IOP mean IOP provided by DCT and 

Goldmann, respectively; ORA-IOPg and ORA-IOPcc mean the Goldmann-correlated IOP and corneal compensated IOP provided by ORA; CVS-

IOP and CVS-bIOP mean the uncorrected IOP and the biomechanically-corrected IOP provided by Corvis ST (CVS); * means p< 0.05, ** means 

p< 0.01.
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Table 3 The stepwise multiple linear regression models for IOP differences between pre and post-FS-LASIK 

Dependent Variables Parameters Β a P value Regression Equation Adjusted R2 F b P value 

∆DCT-IOP Age -0.402 0.001 
∆DCT-IOP(mmHg) = -0.136 x Age(year) - 13.09 x 

RSB Ratio + 13.70(mmHg) 
0.263 11.682 0.000 

 RSB ratio -0.29 0.013     

∆GAT-IOP ∆CCT 0.742 0.002 
∆GAT-IOP(mmHg) = 0.058 x ∆CCT(μm) + 23.77 

x RSB Ratio - 18.01(mmHg) 
0.145 6.166 0.004 

 RSB ratio 0.489 0.033     

∆ORA-IOPg ∆CCT 0.523 0.00 
∆ORA-IOPg(mmHg) = 0.036 x ∆CCT(μm) + 

2.84(mmHg) 
0.262 23.318 0.000 

∆ORA-IOPcc - - - - -  - 

∆CVS-IOP ∆CCT 0.516 0.000 
∆CVS-IOP(mmHg) = 0.033 x ∆CCT(μm) + 

0.132(mmHg) 
0.254 22.111 0.000 

∆CVS-bIOP Age -0.26 0.04 
∆CVS-IOP(mmHg) = -0.065 x Age(year) + 

2.46(mmHg) 
0.052 4.424 0.04 

∆ means the difference between pre and post FS-LASIK stages; CCT means central corneal thickness; RSB means residual stromal bed thickness, 

RSB ratio = RSB/CCT; DCT-IOP and GAT-IOP mean the IOP value provided by DCT and Goldmann, respectively; ORA-IOPg and ORA-IOPcc 

mean the Goldmann-correlated IOP and corneal compensated IOP provided by ORA; CVS-IOP and CVS-bIOP mean the uncorrected IOP and the 

biomechanically-corrected IOP provided by Corvis ST (CVS); a means Standardized Coefficients (Beta); b means Multiple Linear Regression 

Model (Stepwise).
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Figure Captions: 

Figure 1 Bland Altmann analysis of six IOP measurements made by DCT (a), GAT (b), 

ORA (c, d) and CVS (E, f) in pre and post FS-LASIK stages in low to moderate myopia 

group 

Figure 2 Bland Altmann analysis of six IOP measurements made by DCT (a), GAT (b), 

ORA (c, d) and CVS (E, f) in pre and post FS-LASIK stages in high myopia group 
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Figure 1 Bland Altmann analysis of six IOP measurements made by DCT (a), GAT (b), 

ORA (c, d) and CVS (E, f) in pre and post FS-LASIK stages in low to moderate myopia 

group 
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Figure 2 Bland Altmann analysis of six IOP measurements made by DCT (a), GAT (b), 

ORA (c, d) and CVS (E, f) in pre and post FS-LASIK stages in high myopia group 

 


