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Abstract

The present thesis describes the characterization of T cell responses to melanoma and 

its modulation by in situ cytokine therapy. Previous studies have shown that antibody 

cytokine fusion proteins, designated immunocytokines, achieve high cytokine 

concentrations in the tumor microenvironment and thereby effectively stimulate 

cellular immune responses against malignancies. Analysis of the T cell receptor 

repertoire of tumor infiltrating lymphocytes, as presented here, revealed operative 

differences in the immunomodulatory capacity of two proinflammatory cytokines,

i.e., interleukin 2 and lymphotoxin a , if applied targeted to the tumor site. While 

interleukin 2 is boosting an already established T cell response and enables the re­

circulation of clonally expanded T cells, lymphotoxin a ’s modus operandi is relying 

on newly recruited T cells. Via induction of a tertiary lymphoid organ at the tumor 

site lymphotoxin a  immunocytokines allow the recruitment, priming, and activation 

of naïve T cells to harness an effective T cell response against the tumor.
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Introduction

Cellu la r  Im m u ne  Responses

The Immune system is a remarkably adaptive defense system that has evolved in 

vertebrates to protect them from invading pathogenic microorganisms and cancer1. An 

enormous variety of cells and molecules capable of specifically recognizing and 

eliminating a large variety of antigens act together in a dynamic network. 

Functionally, an immune response can be dived into a recognition and an effector 

phase. Once a pathogen has been recognized, the immune system enlists the 

participation of a variety of cells and molecules to mount an appropriate response to 

eliminate or neutralize the danger. Subsequent exposure to the same pathogen induces 

a memory response, characterized by a more rapid and heightened immune reaction.

Immunity includes both non-specific and specific components. The non-specific 

component, innate immunity, is a set of disease resistance mechanisms that are not 

specific to a particular pathogen2. In contrast, the specific component, adaptive 

immunity, displays a high degree of specificity as well as the remarkable property of 

memory3. Since the initiation of an adaptive immune response requires some time, 

innate immunity provides the first line of defense during the critical period just after 

the host’s exposure to a pathogen. Innate and adaptive immunity do not operate in 

total independence of each other, but cooperate to produce effective immune 

responses. For example, the action of phagocytes can generate ‘danger’ signals that 

stimulate and direct adaptive immune responses; furthermore, they display the 

phagocytosed antigen in a manner that it can be recognized by antigen-specific T 

cells. Vice versa when encountering appropriately presented antigen, some T cells 

synthesize and secrete cytokines that activate macrophages, e.g., increase their ability 

to kill ingested microbes.

Adaptive immunity relies on antigen specificity which allows to distinguish subtle 

differences among antigens. This specificity is based on a tremendous diversity in its 

recognition molecules4. Immune responses involve two major groups of cells: 

lymphocytes and antigen-presenting cells (APC). Lymphocytes are produced in the 

bone marrow, circulate in the blood and lymphatic system, and reside in various
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lymphoid organs5. Lymphocytes, e.g. B and T cells, produce and/or display antigen- 

binding surface receptors which allow them to mediate the defining immunologic 

attributes. B lymphocytes mature within the bone marrow; when they leave it, each B 

cell expresses a unique antigen-binding receptor which is a membrane bound antibody 

molecule. When a naïve B cell first encounters antigen that matches its antigen 

receptor this interaction causes the cell to divide rapidly; its progeny differentiate into 

memory and effector B cells, i.e., plasma cells. Although plasma cells only live for a 

few days, they secrete enormous amounts of antibody, which are the major effector 
molecules of humoral immunity.

Cellular immunity is largely based on T lymphocytes. T cells also arise from the bone 

marrow; unlike B cells, however, they migrate to the thymus for maturation. During 

this process the T cell comes to express its unique antigen-binding molecule, called 

the T-cell receptor (TCR), on the membrane6. In contrast to membrane-bound 

antibodies on B cells, which can recognize antigen alone, the majority of TCR can 

only recognize antigen that is bound to cell membrane proteins called major 

histocompatibility complex (MHC) molecules. When a T cell encounters antigen in 

the context of a MHC molecule, it undergoes clonal expansion and differentiates into 

memory and various effector T cells, e.g., helper (Th) and cytotoxic T lymphocytes 

(CTL). While the Th cells provides help to activate B cells, antigen-presenting cells 

and CTL, the CTL has a vital function in monitoring the cells of the body and 

eliminating any cell that displays antigen, such as virus infected cells, tumor cells, and 
cells of a foreign tissue graft.

Activation of both the humoral and cell-mediated branches of the immune response 

requires help from Th cells, which is provided both by direct cell-cell contacts as well 

as by the production of cytokines. Thus, it is essential that activation of Th cells is 

carefully regulated, as an inappropriate Th-cell response could have fatal 

consequences. To ensure a tight regulation of Th cells, naïve cell can only get 

activated when recognizing antigen that is presented by MHC class II molecules 

together with appropriate co-stimulatory molecules on the surface of APC7. These 

specialized cells, which include macrophages, B cells and dendritic cells internalize 

antigen by phagocytosis or endocytosis, process it and then display a part of the 

antigen, bound to a MHC class II molecule on their surface. Although APC encounter 

and incorporate antigen in many different compartments, the interaction with Th cells
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is largely confined to secondary lymphoid organs, i.e., lymph nodes, since the 

circulation and homing capacities of naïve Th cells restrict their presence to the 
peripheral blood and such organs.

Ma jo r  H isto c o m patibility  Com plex

The MHC is a collection of genes arrayed within a long continuous stretch of DNA on 

chromosome 6 in humans and on chromosome 17 in mice8. The MHC is referred to as 

the HLA complex in humans and the H-2 complex in mice. The proteins encoded in 

the MHC encompass three different classes: (I) glycoproteins expressed by almost all 

nucleated cells presenting peptide antigens to CTL, (II) glycoproteins expressed 

primarily on APC presenting peptide antigens to Th cells, and (IE) secreted proteins 

possessing immune function, including the complement system components C2 and 

C4, as well as proinflammatory cytokines such as TNFcc, lymphotoxin and heat shock 

proteins.

Both class I and II MHC genes are highly polymorphic; within a species each gene 

exists in many different alleles. The MHC loci are closely linked, e.g., the 

recombination frequency within the murine H-2 complex is less than 0.5%; thus, most 

individuals inherit the alleles encoded by the closely linked loci as of two sets, the 

haplotype, one set from each parent. In outbred populations, the offspring are 

generally heterozygous at many loci and will express both maternal and paternal 

MHC alleles. If mice, however, are inbred each H-2 locus will be homozygous 

because the maternal and paternal haplotypes are identical. Certain inbred mouse 

strains have been designated prototype strains, and the MHC haplotype expressed by 

these strains is designated by an arbitrary italic superscript. The mouse strain 

C57BL/6J used in the majority of experiments described in this Thesis has the same 

haplotype as the prototype strain BIO, i.e., H-26.

Class I molecules contain a large (45kD) polymorphic a-chain noncovalently 

associated with the much smaller p2-microglobulin (12kD). These molecules are 

encoded by genes in the A, B and C regions of the human leukocyte antigen (HLA) 

complex and the K and D/L regions of the murine H-2 complex. These are referred to 

as classical class I  molecules. Additional genes within the HLA and H-2 complex, 

designated HLA-E, -F, -G, and -H in humans and Qa and Tla in mice encode the so
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called non-classical class I  genes. Although these non-classical MHC molecules are 

not directly involved in antigen-presentation to CTL, they have a highly specialized 

role in controlling immune responses to self-antigens9. Class II MHC molecules are 

heterodimeric glycoproteins, consisting of an a- and a (3-chain. There are three class 

II gene loci in humans (DR, DP, and DQ) and two in mice (LA and IE).

MHC molecules also function as antigen-recognition molecules: although they do not 

possess the fine specificity for antigen characteristic for T-cell receptors, each MHC 

molecules can bind only a defined spectrum of antigenic. Hence, a given MHC 

molecule can bind numerous different peptides, and some peptides can bind to several 

different MHC molecules. Class I and class II molecules exhibit some common 

peptide-binding features. Both class I and II peptide ligands are held in a largely 

extended conformation along the length of the peptide-binding cleft10. The cleft in 

class I molecules, however, is blocked at both ends, whereas the cleft is open in class 

II molecules. As a result of this difference, class I molecules bind peptides that 

typically contain 8-10 amino acid residues, while the open groove of class II 

molecules accommodates slightly longer peptides of 13-18 amino acids. Another 

difference is that class I binding requires that the peptides contain certain amino acid 

residues, anchor residues, near the N and C termini; there is no such requirement for 

class II peptide binding.

An tig en  Processing  and  Presentation

The formation of peptide-MHC complexes requires that a protein antigen is degraded 

by a sequence of events called antigen processing. Intracellular and extracellular 

antigens present different challenges, i.e., the latter being eliminated by secreted 

antibodies, whereas intracellular antigens are more effectively eliminated by CTL. 

Thus, the immune system uses two different antigen presenting pathways enabling the 

initiation of immune responses against intracellular as well as extracellular 

antigens11,12: endogenous antigens are processed in the cytosolic pathway and 

presented on the membrane with class I MHC molecules; exogenous antigens arc 

processed in the endocytic pathway and presented on the membrane with class II 

MHC molecules (Figure 1) However, it should be noted that intracellular antigens can 

also be directed into the endocytic pathway, a phenomenon known as cross
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presentation. Cross presentation is of particular importance to ensure Th assistance for 

CTL responses13.

Cytosolic

Ubiquitin

Peptide-class I 
MHC complex

Endoplasmatic
reticulum

^  Cytplasmatic 
proteasome 

complex

Amino
acidsEndopeptidases

Endocytic

Peptide-class II 
MHC complex

Endocytic compartments
Endocytosis

phagocytosis

F igure 1. Cytosolic and endocytic pathways for antigen processing

In eukaryotic cells, protein levels are carefully regulated; denatured, misfolded, or 

otherwise abnormal proteins have a very short half-life11. Those proteins targeted for 

proteolysis often get covalently linked to ubiquitin via a lysine-amino group near the 

amino terminus of the protein. Ubiquitin-protein conjugates are degraded by a 

multifunctional protease complex, called the proteasome. The immune system utilizes 

this general pathway of protein degradation after modification of the proteasome by 

the addition of two subunits: LMP2 and LMP7. These subunits are encoded within the 

MHC gene cluster and are induced by IFN-y. Subsequently, peptides are transported 

across the membrane of the rough endoplasmic reticulum by the ATP-binding 

transporter associated with antigen processing (TAP)14. The genes for TAPI and 

TAP2 also map within the class II MHC region. Notably, both the LMP and the TAP 

genes are polymorphic and alleleic differences in LMP-mediated proteolytic cleavage 

or in the transport of different peptides may contribute to the observed variation 

among outbred individuals in their response to different endogenous antigens. The 

calnexin-associated class I MHC chain binds to (32-microglobulin, dissociates from 

calnexin, and binds to calreticulin and to tapasin, which is associated with TAP. This 

class I MHC complex then captures an antigenic peptide, which allows the 

dissociation of the MHC-peptide complex from the chaperones14. Finally, the class I
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MHC molecule-peptide complex is transported through the Golgi complex to the 

plasma membrane.

APC internalize antigen by phagocytosis, pinocytosis, or endocytosis and 

subsequently degrade it to peptides within compartments of the endocytic processing 

pathway which involve three increasingly acidic compartments: endosomes (pH 6.0- 

6.5), endolysosomes (pH 5.0-6.0), and lysosomes (pH 4.5-5.0)12. Class II MHC 

molecules are only capable of binding peptides generated in the endocytic processing 

pathway as newly synthesized a  and p chains associate with the invariant Ii chain 

within the rough endoplasmic reticulum. This complex is routed to compartments of 

the endocytic processing pathway where the Ii chain is degraded to the class II- 

associated invariant chain peptide (CLIP) occupying the antigen binding cleft. Within 

the lysosomes HLA-DM catalyzes the replacement of CLIP by antigenic peptides15.

The  T-CELL Rec epto r

The membrane bound TCR heterodimers consisting of an a  and P chain or a y and 6 

chain display a remarkable similarity in their domain structure to that of 

immunoglobulins; thus, they are classified as members of the immunoglobulin 

superfamily16. Each chain has two domains containing an intra-chain disulfide bond 

that spans 60 to 75 amino acids (Figure 2). The amino-terminal domain in both chains 

exhibits marked sequence variation, but the remainder of each chain are conserved. 

The variable domains have three hypervariable regions, which appear to be equivalent 

to the complementary determining regions (CDR) in immunoglobulin light and heavy 

chains. Adjacent to the constant domain, each TCR chain contains a short connecting 

sequence, in which a cysteine residue forms a disulfide link with the other chain. The 

transmembrane domains of each chain contain positively charged amino acid 

residues, which enables the TCR heterodimer to interact with chains of the signal- 

transducing CD3 complex17.

CD3 is a complex of five invariant polypeptide chains that associate to form three 

dimers: a ye-and a ôe-heterodimer, as well as a ÇÇ-homodimer; the latter can be 

replaced by a Çq-heterodimer (Figure 2). The Ç and q chains, which are encoded by 

the same gene, differ in their carboxyl-terminal ends because of differences in RNA 

splicing. The cytoplasmic chains contain a motif called the immunoreceptor tyrosine-
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based activation motif (ITAM). These sites interact with tyrosine kinases and thereby 

play an important role in signal transduction18.

a  p
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Figure 2. Schematic diagram of the TCR-CD3 (with the kind permission of J. Dietrich)

The genes encoding the <xP and yô TCR are expressed only in cells of the T-cell 

lineage (Figure 3). Their germ-line organization is very similar to that of the 

immunoglobulin genes, separate V, D, and J segments rearrange during T-cell 

maturation to form functional genes, which encode the TCR (Figure 4)4'19. In the 

mouse, the a-, p-, and y-chain gene segments are located on chromosomes 14, 6, and 

13, respectively20. The ô-chain gene segments map on chromosome 14 between the 

Va and Ja segments. Mouse germ-line DNA contains approximately 100 Va and 50 

Ja  gene segments and only a single Ca segment; for the ô chain there are ~10 V, two 

D, two J, and one C gene segments; The p-chain gene family has about 20 V gene 

segments and two almost identical repeats of D, J, and C segments, each repeat 

consisting of one Dp, six Jp and one Cp; The y-chain gene family contains seven VY 

segments and tree different JY /Cy repeats.
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Mouse TCR a-chain  and ô-chain DNA
Va/z= -1 0 0  ; VgH =  -1 0
L Vttl L V a2 L V a/z L V 81 L V 5n D51D 52 J81 J82 C5 L V 85 Ja Ja2 Ja3 Ja« Ca

M ouse TCR P-chain DNA
V |i/i=  - 2 0
L Vpl L V()2 L V|)Z2 Djil —  Jpl. 1 —  Jpl . 7 —  Cpl Dp2 —  Jp2.1 —  Jp2.7—  Cpl L Vpl

M ouse TCR y-chain DNA
L VY L VY L V Y L

- ■ ■ / / ■ I

F igure 3. Germ-line organization of murine TCR a-, P-, y-, and ô-chain gene segments.

The mechanisms of TCR DNA rearrangement are similar to that of Ig-gene 

rearrangements4. Conserved heptamer and nonamer recognition signals sequences 

(RSS) containing either 12-bp or 23-bp spacer sequences flank each S, D, and J gene 

segment with the 12-bp RSS being joined to a 23-bp RSS. The V-(D)-J 

recombination, which takes place at the junctions between RSS and coding sequences, 

is catalyzed by two recombination-activating enzymes, designated RAG 1 and RAG-2

21. These enzymes recognize the heptamer and nonamer recognition signals and 

enable the deletional or inversional V-J and V-D-J joining. RAG 1/2 introduces a nick 

on one DNA strand between the coding and signal sequences followed by a 

transestérification resulting in a hairpin at the coding sequence and a flush 5’ 

phosphorylated double-strand break at the signal sequence.

Rearrangements of the TCR P-chain genes exhibit allelic exclusion22. The 

organization of the p-chain segments in two clusters implies that if a non-productive 

arrangement occurs, a second rearrangement is attempted at the other allele. Once, 

however, a productive rearrangement for one p-chain allele takes place, the 

rearrangement o f the other allele is inhibited. Allelic exclusion appears less stringent 

for the TCR a-chains; hence, there are rare occasions in which more than one a  chain 

is expressed on the membrane of a given T cell.



L Val L Va2 L v a/î L V51 L V5« D81D82 JS1 J82 C5 L V85 J«1 J«2Ja3 Ja« Ca

Y
L V a l L V a2 L Va J« JaH C„

T cell

CplbDp2Cpl

L Vpl L Vp2 L Vpn Dpi —  J pl. l  —  Jp l . 7 —  Cpl Dp2 —  Jp2.1 —  Jp 2 .7 —  Cpl L V p M

- m m  Hvfümoooo^-H^raDOoooo-H-HB- ̂
F igure 4. Example of gene rearrangements that yield a functional gene encoding the a  (3 T-cell receptor

Several mechanisms operate during TCR gene rearrangement to generate a high 

degree of diversity4. Combinatorial joining generates a large number of random 

combinations for all the TCR chains, e.g., more than 50 Vp, two Dp and 12 Jp gene 

segments can give 1.2 x 103 possible combinations (Figure 5a). Moreover, the joining 

of gene segments exhibits junctional flexibility (Figure 5b); although this generates 

many nonproductive rearrangements, resulting from creation of in-frame stop codons 

or substitutions of amino acids that render the product nonfunctional, it also increases 

diversity by encoding several alternative amino acids at each junction. Furthermore, 

nucleotides may be added at the junction between gene segments during 

rearrangement (Figure 5c). Variation in endonuclease cleavage leads to the addition of 

further nucleotides that are palindromic. Such P-region nucleotide addition can occur 

in the genes encoding for all TCR chains. Addition of N-region nucleotides, catalyzed 

by a terminal deoxynucleotidyl transferase, generates further junctional diversity, as 

many as six nucleotides can be added by this mechanism23.

These mechanisms enable that despite the fact that each junctional region in a TCR 

encodes only 10-20 amino acids, an enormous diversity can be generated, i.e. more 

than 1013 possible amino acid sequences. Thus, it is not surprising that the diversity is
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most pronounced in the CDR 3 where diversity is generated by junctional flexibility 

during joining of V, D, and J segments which allows introduction of P and N 

nucleotides at any of these junctions (Figure 5d).

(a) Combinatorial V-J and VD-J Joining

P and 8 chainsW a

M mw m a  and y chains

(b) Junctional flexibility

12-bp RSS

C

D
G T G G  A C

(c) N-region nucleotide addition
0-6 nucleotides; 6! = 5461

p and 8 chains 

(6!)2 = 3.0 x 107

a  and y chains 

^  (6!)1 = 5.5 x 103

(d) Rearranged TCR P-chain gene

vp cp

C A C  A G
V  23-bp RSS

F igure 5. Mechanisms generating diversity in TCR genes.
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T C R - m e d i a t e d  T  c e l l  a c t i v a t i o n

As outlined above, amino acid sequence comparisons suggest that TCR heterodimers 

are immunoglobulin-like in structure, including regions with homology to the Ig 

CDR 1, 2, and 3. Early studies proposed that CDR 1 and 2 are the parts of the TCR 

responsible for interaction with the MHC molecule whereas CDR 3 should contact the 

peptide. Recently, the crystal structure of the TCR showed that this is not completely 

correct16. The orientation of the TCR to the MHC/peptide complex suggests an 

interaction of all CDR with the peptide.

The affinity of TCR/MHC-peptide interactions have a dissociation constant in the 

range of 10"4 to 10'6 M, orders of magnitude weaker than comparable antibody- 

antigen interactions. This finding is consistent with the scanning nature of T cell 

recognition and suggests that antigen-independent adhesion precedes TCR 

engagement24. Notably, although TCR/MHC-peptide interactions are characterized by 

a short half life, cellular interactions between T lymphocytes and target cells may last
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for hours during which the T cell polarizes multiple TCR at the interaction site25,26. 

The observation that very few MHC/peptide complexes are sufficient to induce T-cell 

activation provided the rationale for a model of serial TCR triggering. According to 

this model, the TCR encounters the MHC/peptide for a short time, reaches an 

activation threshold upon which the TCR is removed, and another TCR becomes 

activated by interaction with the MHC/peptide complex27. Hence, the ability of an 

MHC/peptide complex to induce T-cell activation depends on the kinetics of the 

MHC/TCR interaction in combination with the number of TCR available on the T-cell 

surface as well as the number of ligands on the target cell.

Ligation of the TCR with the MHC/peptide complex leads to clustering of the 

TCR/CD3 complex with CD45 and CD4 or CD8. Signal transduction is initiated by 

an activation of protein tyrosine kinases of the src and syk families. p56lck tyrosine 

kinase is associated with CD4/CD8 that become aggregated with the TCR/CD3 upon 

activation, and p59f̂ n becomes associated with the CD45 molecule that likewise co- 

localizes with the TCR/CD3 complex18. This close encounter enables the p56lck/ 

p59f̂ n mediated phosphorylation of tyrosine residues of IT AM present in the CD3 

subunits, which allows activation of the ^-associated protein 70 (ZAP-70). The 

activation of p56lck, p59fyn and Zap70 leads to the phosphorylation of several proteins 

initiating different signaling pathways28. The nuclear targets for these signaling 

pathways are transcription factors such as AP-1 and NFAT.

A naïve T cell requires a co-stimulatory signal in order to reach a state of proliferation 

and clonal expansion. For example, a co-stimulatory signal may be provided by 

ligation of CD28 expressed by the T cell and B7-1 (CD80) or B7-2 (CD86) expressed 

on the ARC29. Activation and signaling of the CD28 molecule induce an increase in 

the expression and stability of the EL2 mRNA. It also reduces the number of 

TCR/MHC-peptide interactions necessary for T-cell activation. Early events in CD28- 

mediated signal transduction include the activation of AP-1 and NFAT; thus, an 

integration of TCR and CD28 activation signals occurs on the level of transcriptional 

control30. In addition, other membrane-bound or soluble molecules participate in the 

activation of T cells either by direct signaling or by increasing the affinity of cell to 

cell interaction. All of these molecules are assembled to form the immunological 

synapse31.
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Clonotype  M a pping

The rearrangement of the TCR gene segments creates a DNA sequence unique to that 

cell and its progeny. The large number of possible configurations of the rearranged 

genes makes this new sequence a marker that is specific for each T cell clone. These 

unique DNA sequences can be used to detect and characterize specific T cell 

responses. Reverse transcription (RT) coupled polymerase chain reaction (PCR) has 

been the method of choice in most laboratories analyzing the expression of TCR BV 

regions32. TCR transcripts are amplified with a set of primers covering the variable 

region families, together with a common constant region primer. This approach 

allows to proceed directly through steps of cloning or sequencing. However, the 

validity of semi-quantitative RT-PCR is highly dependent on parameters such as 

primer stability in duplex formation, specificity and discrimination of non-targets. 

Furthermore, it is imperative that all reactions work well and are being carried out 

within the linear range of amplification. Thus, the major obstacle in semi-quantitative 

RT-PCR analyses of multi-gene families is to select primers that work equally well 

and do not cross-react within the different families. The first primer panels for TCR 

a/p chains were published almost a decade ago33; since then the genomic DNA 

sequences of TCRAB regions have been completely elucidated, and the classification 

of different BV/AV sequences into the relevant families has been updated20. 

Obviously, primer panels for amplification of these multi-gene families had to be 

updated to ensure that all members of the different families are amplified. Most of the 

previously published primer panels either did not optimally match each sub-member 

of the different families, or show potential cross-reactivity to other families. All 

available TCR BV sequences were used to construct library files according to each 

BV family and aligned them to detect sequence stretches of optimal consensus in 

which primer sequences could be selected32. All primer sequences were tested for 

match to non-relevant BV families, aiming at a minimum of 5 mismatches. Moreover, 

primers were tested for their ability to amplify the BV region in question with high 

efficiency.

In general, methods for detection of T-cell clonality are based on RT-PCR followed 

by single strand conformation polymorphism, PCR heteroduplex analysis or CDR3 

size determination34. All these methods require steps of either blotting and
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hybridisation or re-amplification using end-labelled probes followed by computerised 

data analysis. However, the method used in the present Thesis is based on denaturing 

gradient gel electrophoresis (DGGE). It detects the presence of T-cell clonotypes, 

covering the BV regions 1-24 for the human or 1-18 in the murine system, and 

facilitates the possibility to produce full and detailed clonotype maps.

DGGE reveals small deletions, small insertions and point mutations with a detection 

efficiency close to 100%35. The method relies on the fact that the melting properties 

of DNA molecules are highly dependent on their nucleotide composition. During 

electrophoresis in a denaturing gradient gel, the DNA molecule will partially melt at a 

sequence-dependent concentration of dénaturants, and the resulting partial separation 

of the DNA duplex will retard the electrophoretic mobility of the molecule in the gel. 

Even single base pair changes in a DNA sequence can be revealed in DGGE by a shift 

of the position at which the molecule stalls. In a polyclonal T-cell population, all TCR 

DNA sequences will, in theory, differ from each other in their melting properties and 

will therefore be revealed as a smear in the denaturing gradient gel. In contrast, any 

population of clonally expanded T cells will be revealed as a distinct band that can be 

recovered for further analysis. Using the computer algorithm MELT87 melting maps 

for each amplified TCRBV region were calculated to establish the ability to be 

resolved in DGGE using standardised conditions. For most of the BV-regions a 

suitable melting profile could be obtained by the attachment of a 50 bp “GC-clamp” 

to the 5 '-end of the constant region primer.

Most analyses of T-cell clonality focus on the examination of tissues for the presence 

of clonotypic T cells. An important aspect is therefore related to the sensitivity of the 

method. Clonotypic transcripts constituting as low as 2.5% of the BV region in 

question can easily be visualised in the gel by ethidium bromide staining. Assuming 

that all regions are expressed at equal levels, this means that a T-cell clone can be 

detected in a mixed population at a fraction of 0.1 %.

Mela no m a

Melanocytes originate from the neural crest and migrate during embryogenesis to the 

skin where they reside within the basal epidermal layer separated from each other by 

several kératinocytes. The prime function of melanocytes is the production of
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melanin, offering UV protection. Malignant transformation of melanocytes gives rise 

to melanoma; this tumor has a fatal prognosis if not cured by surgical excision prior to 

metastatic dissemination36. The presence of even micro-metastases in the sentinel 

lymph node deteriorates prognosis37,38.

There is a consensus that melanoma cells are antigenic since they express tumor- 

associated antigens, which are recognized by syngeneic T cells39. Indeed, the presence 

of tumor reactive CTL in the sentinel lymph node has been demonstrated40. 

Furthermore, cellular components that should be able to reject the tumor, i.e., 

T lymphocytes and macrophages, are infiltrating both primary and metastatic tumors. 

Nevertheless, the prognosis of melanoma, if not cured by surgical resection, is one of 

the most unfavorable in medicine. The coexistence of tumor specific immunity with a 

progressing tumor remains a major paradox of tumor immunology41. This enigma is 

most evident in partially regressing melanoma, where efficient eradication of tumor 

cells occurs in close vicinity to uncontrolled tumor growth42.

Multiple melanoma associated antigens (MAA) recognized by T cells have been 

characterized and HLA class I and class II restricted peptides have been identified43. 

These antigens can be divided into three different groups: cancer-testis antigens, 

melanocyte differentiation antigens, and mutated or aberrantly expressed antigens. 

Several of these proteins give rise to more than one antigenic peptide; hence, the 

number of antigenic peptides has exceeded fifty and is still increasing. Some of these 

peptides only induce cytotoxicity against peptide loaded target cells, but not 

melanoma cells expressing both the relevant protein and the required MHC 

molecules; hence, it is not known whether these peptides are actually processed and 

presented naturally or if additional signals are necessary to stimulate the effector 

cells44.

Several studies have focused on the characterization of the T-cell response against 

malignant melanoma in situ, and evidence has been provided for the presence of 

clonally expanded T cells in both primary and metastatic lesions45. However, this 

T-cell response is obviously inadequate to control tumor growth. This notion raises 

the question of how melanoma cells escape immune surveillance. Possible 

mechanisms include the reduction or even complete loss of MHC class I expression or 

the impaired signaling capacity through the TCR/CD3 complex among tumor 

infiltrating lymphocytes (TIL) due to downregulation of the CD3 (-chain41. In
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addition, melanoma cells are known to secrete a number of different cytokines, some 

of which may suppress cellular immune responses46.

Over the past years immunologists and oncologists aimed at boosting ongoing or at 

inducing new T-cell responses to melanoma43,47,48. Several trials were based on the 

systemic administration of immunomodulatory cytokines such as Interleukin-2 (IL2). 

Although some beneficial effects were observed, the general results were not 

encouraging, as the response rates were limited and the side effects severe. One of the 

major obstacles was that the systemic administration neglected the paracrine nature of 

cytokines. This limitation can be overcome by means of fusion proteins consisting of 

a tumor-specific antibody and a cytokine. In a murine tumor model targeted IL2 

therapy has been shown that the eradication of established métastasés is due to 

specific CTL responses49.
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Scientific Results

Aim s  o f  the Study

The primary aim of the present study was to scrutinize the T-cell responses to 

melanoma and its modulation by in situ cytokine therapy. For this purpose a 

syngeneic murine melanoma model, i.e., a subline of B 16-melanoma in C57BL/6J 

mice with clinically relevant sites of métastasés such as skin, lung, and liver was 

established. The analysis of the T-cell response was based on TCR clonotype maps of 

TIL, secondary lymphoid organs such as draining lymph nodes or spleen, and 

peripheral blood.

The present Thesis is introduced by a review on in situ cytokine therapy by tumor- 

specific antibody cytokine fusion proteins, designated immunocytokines (Paper 1). 

Immunocytokines achieve high cytokine concentrations in the tumor 

microenvironment and thereby effectively stimulate cellular immune responses. Proof 

of concept is presented indicating that immunocytokine-induced activation and 

expansion of immune effector cells in the tumor microenvironment can effectively 

eradicate established tumor métastasés..

Since it was unclear whether this therapeutic effect was due to a boost of a preexisting 

or to an induction of a new T cell response clonotype mapping of TIL in treated and 

untreated animals was performed (Paper 2). The obtained results demonstrated an 

over-expression of several TCRBV families in tumors after IL2 immunocytokine 

treatment. DGGE analysis of selected TCRBV regions, however, revealed the 

presence of clonotypic T-cells in tumors from both treated and untreated animals. 

Thus, targeted-IL2 therapy does not induce clonal T-cell responses de novo, rather it 

acts as an activator for an already existing population of clonotypic T-cells.

Immunity to tumors relies on re-circulating antigen-specific T cells. The observation 

that the therapeutic effect of IL2 immunocytokines is not restricted to tumors 

expressing the targeted antigen, but extends to antigen negative variants of the tumor 

if present in the same animal suggested the re-circulation of activated T cells 

(Paper 3). Analysis of the T-cell infiltrate by quantitative RT-PCR demonstrated the 

presence of highly expressed TCR BV-regions in both tumor variants; clonotype
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mapping further revealed that the high expression of these regions were caused by 

clonal expansions and, notably, that these specific clonotypic TCR transcripts were 

identical in both tumors. Thus, therapeutic T-cell clones activated locally by targeted- 

IL2 therapy re circulate and mediate eradication of distant tumor sites not subjected to 
in situ cytokine therapy.

Although the IL2 immunocytokine was able to boost a pre-existing T-cell response, 

the induction of additional tumor-specific T cells was not achieved. Since it has been 

reported that tumor-antigen-specific T cells can be rendered anergic by the tumor, 

priming of additional T cells may be particularly critical. Therefore, the efficacy of 

targeting cytokines to the tumor site that are likely to promote the induction of new 

tumor-specific T cells was tested. Lymphotoxin-a (LTa) was chosen because it is a 

potent mediator of proinflammatory and tumoricidal activities as well as of lymphoid 

genesis. The final study describes that the use of an antibody-LTa fusion protein 

offers an effective treatment resulting in the eradication of established métastasés 

(Paper 4). This is achieved by an improved T-cell response, which is most likely 

evoked by the induction of peripheral lymphoid tissue at the tumor site. In fact, the 

functional significance of this tertiary lymphoid tissue at tumor sites was confirmed 

by immunohistologic and electron microscopic analyses of endothelial/lymphocyte 

interactions as well as TCR clonotype mapping providing evidence for the induction 

of new T-cell clones among TIL.

17



TARGETED-IL2 THERAPY FOR MELANOMA BY IMMUNO­

CYTOKINES

Summary

A major goal of tumor immunotherapy is the induction of tumor-specific T cell 

responses that are effective in eradicating disseminated tumors, as well as mounting a 

persistent tumor-protective immunity. Recombinant antibody-cytokine fusion proteins 

are immunocytokines that achieve high cytokine concentrations in the tumor 

microenvironment and thereby effectively stimulate cellular immune responses 

against malignancies. The activation and expansion of immune effector cells, such as 

CD8+ T lymphocytes by JL2 immunocytokines resulted in the eradication of 

established pulmonary and hepatic métastasés of murine melanoma in syngeneic 

mouse models. The effective eradication of métastasés by immunocytokines resulted 

in significant prolongation in life span of mice over that of controls receiving 

equivalent mixtures of antibody and JL2. Proof of concept was established indicating 

that immunocytokine-induced activation and expansion of immune effector cells in 

the tumor microenvironment can effectively eradicate established tumor métastasés. 

These results suggest that antibody-targeted delivery of cytokines provides means to 

elicit effective immune responses against established tumors in the immunotherapy of 
neoplastic disease.
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Introduction

After the discovery of antibodies by Emil von Behring in 1890, their use as “magic 

bullets” to specifically direct substances to pathogenic targets was initially proposed 

by Paul Ehrlich, who employed the term immunotherapy as early as 190050. Progress 

in this field began to accelerate in 1974 with the development of specific monoclonal 

antibodies directed against well-characterized antigens by Cesar Milstein and Georges 

F. Kôhler, who immortalized antibody-producing cells by hybridization with long- 

lived myeloma cells resulting in hybridomas. Isolation and propagation of one 

hybridoma clone would thus yield large quantities of monoclonal antibodies specific 

for one single antigenetic determinant 51. This key development was followed by the 

introduction of recombinant DNA technologies that facilitated the engineering of 

novel antibody molecules with the unique targeting abilities of monoclonal 

antibodies. It is remarkable that it took almost one century, from the time Ehrlich first 

envisioned “therapia magna sterilisans” with “magic” substances like antibodies that 

exclusively affected harmful pathogens, to the first approval of a monoclonal antibody 

by the Food and Drug Administration for adjuvant immunotherapy of human B-cell 

Lymphoma in late 199752.

Most immunotherapeutic approaches using monoclonal antibodies are based on the 

concept of targeting tumor-associated antigens that are expressed to a greater extent 

on the surface of tumor cells than on normal cells and tissues. Once the antibody 

recognized a malignant cell tumor growth and dissemination should be suppressed via 

the natural effector mechanisms of antibodies. These include the complement- 

dependent cellular cytotoxicity (CDC) following activation of the complement 

cascade in proximity to the tumor cells with the formation of the membrane attack 

complex consisting of the complement components C5-C9 and the generation of 

chemotactic fragments, e.g. C3a and C5a. The latter have the ability to attract 

phagocytic cells, such as monocytes, macrophages or natural killer (NK) cells which 

can use their Fc receptors to lyse tumor cells mediated by antibody-dependent cellular 

cytotoxicity (ADCC)53. An alternative approach aimed at the induction of tumor 

regression via the anti-idiotype network. Specifically, immune competent hosts are 

vaccinated with an anti-idiotypic antibody mimicking the antigenic determinant of the
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original immunogen, which ideally is recognized by B-cells and followed by a 

humoral response leading to the endogenous production of tumor-specific anti- 
idiotypic antibodies54.

First clinical data were obtained by using monoclonal antibodies in patients with B- 

cell lymphoma52 and several solid tumors, including colon carcinoma55 and 

neuroblastoma56. Despite the intellectual appeal described above, the general 

therapeutic efficacy of tumor reactive mAbs has been rather disappointing. An 

obvious conclusion to be drawn from these results was, that in spite of their exquisite 

specificity and apparent ability to target tumor cells, antibodies alone were either not 

sufficiently cytotoxic or could not adequately harness the patients' own effector 

mechanisms. Consequently, a broad research effort was initiated to improve the 

cytotoxicity of antibodies by conjugating them with radioisotopes, cytotoxic drugs or 

potent toxins57'59. Clinical trials applying these constructs revealed that although a 

sizeable rate of remissions could be induced in patients with Non-Hodgkin 

lymphomas and myeloid leukemia, the therapeutic efficacy in solid tumors still 

remained very low. One of the major obstacles thwarting antibody based cancer 

therapy is the heterogeneity of target antigen expression within the tumor. 

Furthermore, mAbs do not sufficiently penetrate large tumor masses due to their 

pharmacokinetic characteristics60.

Since becoming available in recombinant form, IL2 has been used as an in vivo T cell 

growth factor either alone or in combination with in vitro activated lymphocytes in 

the treatment of patients with advanced renal cell carcinoma or melanoma61,62. The 

aim of this partially successful approach is to generate or propagate tumor-reactive 

lymphocytes. Fomi et al demonstrated that injection of a physiological dose of IL2 

directly into tumors caused suppression of their growth63. The major advantage of an 

in situ application is that it avoids certain forms of toxicity associated with the 

systemic use of cytokines. Cancer patients receiving systemic EL2, often experience 

potentially life-threatening side effects that limit the total amount that can be 

administered64. Recently, in situ cytokine therapy has been developed further by 

transferring cytokine genes into tumor cells65. The expected goal is that in vivo 

injection of tumor cells transduced with cytokine genes will produce effective local 

concentrations of the cytokine to generate an anti-tumor response via the immune
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system of the host, but systemic concentrations too low to produce significant side 
effects.

We reasoned that by using the targeting ability of tumor specific monoclonal 

antibodies we could develop a technically more simple strategy to achieve effective 

concentrations of IL2 in the tumor microenvironment66. Recombinant fusion proteins 

consisting of tumor-specific antibodies and cytokines were developed for this 

purpose. The novelty of this approach lies in its attempt to induce a tumor specific 

cellular immune response by means of elements derived from the antibody immune 

response. We named these antibody-cytokine fusion proteins immunocytokines, since 

they can direct cytokines to the tumor microenvironment and induce tumor-specific 

immune responses. This overview summarizes some of our results obtained in a series 

of studies that evaluated the efficacy of immunocytokines in eradicating established 

métastasés in a syngeneic animal model of melanoma.

Immunocytokines

The rationale for constructing recombinant antibody cytokine fusion proteins is to 

achieve optimal biological effectiveness by using the unique targeting ability of 

antibodies to direct multifunctional cytokines to the tumor microenvironment. The 

hypotheses that needed to be tested with this approach were: (i) that such fusion 

proteins effectively direct cytokines to tumor sites and thereby stimulate and expand 

immune effector cells sufficiently to achieve efficient tumor cell lysis; and (ii) that 

low dose levels of the fusion protein will be more effective than equivalent mixtures 

of antibody and cytokine in suppressing tumor growth or ideally in eradicating 

established metastasis. Should these hypotheses prove correct, one might anticipate 

that lower effective dose levels of the antibody-cytokine fusion protein are required 

that may be less toxic than the relatively high levels of cytokines used thus far in 

systemic clinical applications and that this will ultimately result in a more effective 

immunotherapy of cancer.

The first successful constructions of antibody-cytokine fusion proteins that retained 

full cytokine activity were those of chimeric anti-ganglioside GD2 antibody (chl4.18) 

with recombinant human tumor necrosis factor beta (TNF-P)67 and IL268. Several 

other groups used the concept of increasing antibody-mediated host anti-tumor 

responses by genetic linkage of cytokines to the heavy chains. Thus, Tao and Levy 69
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reported the effective use of a fusion protein consisting of an idiotype-antibody and 

granulocyte/macrophage colony stimulating factor (GM-CSF) as a vaccine for murine 

B-cell lymphoma. Specifically, such a fusion protein was demonstrated to induce an 

idiotype-specific antibody response, which was effective in protecting mice from 

challenges with B-cell lymphoma cells. A different strategy was followed by 

Sabzevari et al, who used an antibody-cytokine fusion protein to target recombinant 

human IL2 into the tumor microenvironment70. These initial data were obtained in a 

xenograft model of human neuroblastoma in mice with severe combined 

immunodeficiency disease (SCID), reconstituted with human lymphokine activated 

killer (LAK) cells. These data clearly demonstrated for the first time the superior 

effect of the fusion protein in contrast to equivalent amounts of IL2. A human 

melanoma xenograft model was employed to confirm this therapeutic effect and to 

establish its specificity71. A similar strategy was followed by Homick et al, who 

generated fusion proteins comprised of a human/mouse chimeric antibody specific for 

B-cell lymphoma (chCLL-1) and rhIL2 or GM-CSF, respectively72. These fusion 

proteins were demonstrated to maintain both antigen binding and cytokine activity in 

vitro and in vivo. However, these initial studies yielded only limited information on 

immune mechanisms involved in the treatment effect of antibody-cytokine fusion 

proteins. Thus, extended efforts were made to establish the in vivo function of such 

constructs, including the effective eradication of micrometastases and the delineation 

of immune mechanisms involved in preclinically relevant syngeneic animal models.

The immunocytokines, which are currently used in preclinical evaluations, were 

constructed by following one common strategy. The coding sequences for the 

cytokines were generated by RT-PCR with primers that include designated restriction 

sites used for cloning purposes. Once generated, these cytokine genes are fused with 

the human Cyl gene at the carboxyl end of the heavy chain of an antibody. Gillies et 

al inserted the fused genes of either an anti-ganglioside GD2 (chl4.18) or an 

anti-EGF-receptor (ch225) antibody and recombinant human IL2 into the vector 

pdHL2, which encodes the dihydrofolate reductase gene68. The same vector carried 

the gene encoding for the light chain of the ch!4.18/ch225 antibody in a separate 

expression unit. Both expression units were driven by a metallothionine promoter. 

The expression plasmid was transduced into the immunoglobulin-nonproducer murine
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hybridoma cell line Sp2/0-Agl4 cells by protoplast fusion and selected in the 

presence of increasing concentrations of methotrexate (100 nM to 5 pM).

Tao and Levy69 and Chen et a lP  fused the carboxyl terminal of the heavy chain of a 

38C13 mouse B-cell lymphoma idiotypic antibody with the genes encoding either 

GM-CSF, IL2 or IL4. By contrast to the work of Gillies, the plasmids encoding heavy 

and light chains were co-transfected separately into immunoglobulin non-secreting 

plasmocytoma Ag8.653 cells by electroporation and selected for G418 resistance. 

Homick et al used a vector with two expression units that contained the genes 

encoding the light and heavy chain of a human mouse chimeric antibody, specifically 

recognizing a human major histocompatibility complex class II variant that is strongly 

expressed on human B-cell non-Hodgkin’s lymphoma, chronic lymphocytic leukemia 

and multiple myeloma72. The heavy chain was fused with human GM-CSF and EL2 

and the fusion proteins were expressed in non-secreting NSO murine myeloma cells in 

the absence of glutamine, since glutamine synthetase was used as a selection marker. 

All the fusion proteins described were purified by making use of the Fc-portion of the 

antibody molecule, which selectively binds Protein-A Sepharose. Following elution 

at low pH, pure preparations of the antibody-cytokine fusion proteins were obtained 

and used for further characterization.

This brief review focuses entirely oh antibody-IL2 fusion proteins and the in vivo 

results obtained in the authors' laboratories. Evaluation of biological activities of 

interleukin-2 fusion proteins indicated that fusion of IL2 to the caiboxy terminal of 

the immunoglobulin heavy chain fully maintained IL2 activity when measured in 

proliferation assays with IL2 dependent mouse or human T-cell lines. In these assays, 

the IL2 activity of both constructs, chl4.18-IL2 and ch225-IL2, was compared to that 

of commercially available rhIL2. These fusion proteins proved remarkably stable 

throughout their purification and during subsequent storage for over four years at - 

20°C, or lyophilized. A comparison of the binding activity of the chl4.18-IL2 fusion 

protein with that of the chi 4.18 antibody revealed essentially identical GD2 binding, 

as determined by both direct and competitive binding assays68,70. Dissociation 

constants, calculated from Scatchard analysis of saturation binding curves, were 

18 nM and 24 nM for ch!4.18 and its IL2 fusion protein, respectively.

In summary, these findings indicate that these immunocytokines were biologically 

functional and combine the targeting ability of antibodies with the
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immunomodulatory properties of cytokines. These data encouraged us to critically 

evaluate the anti-tumor activity of these immunocytokines as tools to deliver effective 

amounts of IL2 to the tumor microenvironment capable of local activation of suitable 

effector cells.

In vivo Studies

Human melanoma is a neuroectodermal malignancy that is characterized by the 

expression of various gangliosides, including disialoganglioside GD2. A classical 

melanoma model used to study various immunotherapeutic approaches in an 

immunocompetent host is the B16 melanoma cell line in C57BL6/J mice. In contrast 

to the human situation, all mouse melanoma cell lines, including Bid, lack the 

expression of the ganglioside GD2. In order to test the hypothesis, that targeted IL2 

therapy with the anti-GD2 antibody-IL2 fusion protein chl4.18-IL2 is effective in a 

syngeneic melanoma model, B id melanoma cells were transfected with human genes 

encoding for the two enzymes in the last stages of GD2 biosynthesis, i.e. a-l,4-N- 

acetylgalactosaminyltransferase and a-2,8-sialyltransferase74,75. This transduction 

resulted in a cell line that expressed GD2, as demonstrated by specific binding of anti- 

GD2 antibodies (14G2a, chl4.18) and the chl4.18-IL2 fusion protein. These tumor 

cells formed experimental pulmonary and hepatic metastasis following intravenous or 

intrasplenic injection, respectively76. The question whether such hepatic and 

pulmonary micrometastases are specifically targeted by the chl4.18-IL2 fusion 

protein was addressed in biodistribution experiments using 125I labeled ch!4.18-IL2. 

Specifically, ten days after induction of hepatic or pulmonary métastasés, mice were 

injected with 5 pCi of 125I labeled chl4.18-IL2 fusion protein and the amount of 

radioactivity assessed 12 hr after injection in lungs and livers, respectively. An 

effective localization of tumor-specific chl4.18-IL2 was observed only in metastasis- 

bearing organs, as compared to naïve organs, indicating effective targeting in vivo.

The effect of the antibody-IL2 immunocytokine on disseminated established 

pulmonary melanoma metastasis was tested by treating C57BL6/J mice one week 

after tumor cell inoculation with 8 pg chl4.18-IL2 fusion protein injected 

intravenously for seven days. This treatment completely eradicated pulmonary 

métastasés in the vast majority of animals, as confirmed by histologic examination of 

serial sections of lung specimens. Animals with residual macroscopic disease
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revealed a dramatic decrease in tumor load, as compared to mice receiving either no 

treatment or injections of an equivalent mixture of chi4.18 antibody and JL2. Similar 

results were obtained when animals bearing established hepatic métastasés were 

treated intravenously with 8 jig chl4.18-IL2 fusion protein for seven days. This 

treatment also resulted in a complete regression of micrometastases in the majority of 

mice. Specificity of this treatment was demonstrated by using a non-specific ch225- 

IL2 fusion protein targeting the human EGF-receptor, which failed to exert any anti- 

tumor effect76.

Survival studies following the induction of hepatic or pulmonary melanoma 

métastasés indicated a dramatic increase in life span only in mice treated with the 

chl4.18-IL2 fusion protein. This was demonstrated by a doubling in life span of 

fusion protein treated mice as compared to control animals receiving either injections 

with PBS or an equivalent mixture of ch!4.18 antibody and IL2, which revealed a 

median survival of only 41 or 44 days, respectively.

A third clinically relevant metastatic site in human melanoma, in addition to lung and 

liver, is the skin. Thus, we tested the effect of antibody-IL2 fusion protein on 

established subcutaneous tumors. Ten days after inoculation of tumor cells, mice were 

treated over a period of seven days by intravenous injection of 16 jig chl4.18-IL2 

fusion protein. Objective responses were observed in all treated animals as compared 

to untreated controls. Three out of eight animals had a complete tumor rejection, and 

five out of eight showed a partial regression. Even if treatment was delayed as long 

as 35 days, resulting in large subcutaneous tumors (-1,000 mm3), chl4.18-IL2 was 

able to induce a temporary partial response with subsequent delay of future growth77.

One of the major obstacles of antibody-based immunotherapies is the heterogeneity of 

antigen expression within the malignancy. However, successful treatment with an 

antibody-IL2 fusion protein may be achieved with only a small percentage of tumor 

cells being targeted by the fusion protein. This leads to the hypothesis that by 

increasing IL2 concentrations in the tumor microenvironment with an 

immunocytokine, using a tumor-associated antigen as a docking site, cellular immune 

responses mediated by T and/or NK cells are induced, which are completely 

independent of the target antigen. In order to test the hypothesis that antibody-IL2 

fusion protein treatment can overcome heterogeneity of the docking site antigen, 

pulmonary métastasés were induced that were heterogeneic in GD2 expression by
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admixing GD2-positive and -negative B16 melanoma cells at a ratio of 5:1. Treatment 

with chl4.18-IL2 dramatically reduced the number of metastatic foci on the lungs of 

five out of eight animals and induced a complete eradication of métastasés in three out 

of eight animals (Figure 6). If only GD2-negative cells were used for inoculation, 

chl4.18-IL2 displayed no anti-tumor effect, proving the requirement of a docking site 

for directing the immunocytokine to the tumor microenvironment77.

F igure 6. Effect of chl4.18-IL2 on heterogeneous métastasés. Pulmonary métastasés were induced by 
i.v. injection of either 5 x 106 B16 melanoma cells alone (lower left specimen) or the mixture of 5 x 
106 B78-D14 and 1 x 106 B16 cells (upper and lower right specimen). Treatment with 8 pg chl4.18- 
IL2 fusion protein was initiated 1 wk after tumor cell inoculation (upper and lower left specimen). 
Control animals (lower right specimen) received PBS over the same period instead. A representative 
lung specimen for each group is shown. Figure taken from .

The immune response induced in tumor bearing animals receiving treatments with the 

chl4.18-IL2 immunocytokine was found to be T-cell-dependent. This was established 

by histological and functional characterization of the effector cells and in vivo 

analyses of mice with distinct immune defects or mice depleted of T-cell 

subpopulations.

First, histomorphological and immunohistochemical analyses of subcutaneous tumors 

from mice that received the chl4.18-IL2 immunocytokine demonstrated an 

inflammatory response in subcutaneous tumors, whereas such cellular infiltrates were 

not found in control mice treated with an equivalent antibody/IL2 mixture. 

Morphological and immunohistochemical evaluations of the cellular infiltrates 

indicated predominance of lymphocytes intermixed with occasional granulocytes and 

macrophages and strong staining for CD8+ T-cells, but to a lesser extent for CD4 T- 

cells. Staining of tumor specimens with a specific marker for NK cells, revealed only 

an occasional presence of NK cells that were primarily located in the periphery of the 

tumor, in contrast to T-cells that infiltrated the tumor microenvironment77.
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This immunohistological characterization of inflammatory infiltrates in GD2-positive 

B78-D14 s.c. tumors provides strong evidence for a T-cell-mediated mechanism and 

argues against a relevant role for NK-cells in tumor eradication. However, more 

rigorous proof of this mechanism was established by using mouse strains that were 

defective in distinct compartments of their cellular immune system76. These included 

C57BL/6 scid/scid, which lack mature T- and B-cells due to a defect in gene 

rearrangement of the T-cell receptor and immunoglobulins and C57BL/6 beige/beige 

mice that carry the autosomal recessive beige gene inducing a selective impairment of 

functional NK-cells. Established pulmonary melanoma métastasés were induced in 

both of these strains of mice and subsequently treated with the immunocytokine. The 

treatment was completely successful in the beige/beige mice, which are known to 

have a fully functional T-ccll repertoire, in contrast to the scidlscid strain in which the 

effect of the fusion protein was abrogated, despite the presence of functional NK- 

cells. These experiments clearly demonstrated the involvement of T-cells in the 

immune response induced by immunocytokine treatment, as opposed to NK-cells, 

which appear to be ineffective in this tumor model. The involvement of a distinct T- 

cell subpopulation in the eradication of established melanoma métastasés was 

established in vivo by depletion of CD4+ and/or CD8+ T-cells. In order to exclude a 

contribution by NK-cells to the treatment effect of the immunocytokine, C57BL/6 

beige/beige mice were used, since NK-cells are known to partially substitute for 

absent T-cells in certain functional aspects. Eradication of established pulmonary 

melanoma métastasés following treatment with the immunocytokine was only 

observed in non-depleted controls and in mice depleted of CD4+ T-cells. Depletion of 

CD8+ or both CD8+ and CD4+ T-cells abrogates the effect of immunocytokine 

therapy, which suggests that only the presence of CD8+ T-cells is mandatory for an 

effective immune response in this melanoma model.

A third line of evidence indicating an involvement of CD8+ T-cells was provided by 

functional in vitro cytotoxicity studies of effector cells obtained from successfully 

treated mice bearing established pulmonary métastasés. Specifically, only splenocytes 

from mice that received the tumor-specific chl4.18-IL2 immunocytokine therapy 

displayed a cytolytic response against tumor target cells in a standard chromium 

release assay. This is in contrast to splenocytes of mice treated with a non-specific 

immunocytokine, e.g. ch225-IL2, which produced only background cytolytic activity.
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The cytotoxic activity observed with CD8+ and CD4+ T-cells, purified from 

splenocytes of chl4.18-IL2 treated mice, was only detectable in the CD8+ T-cell 

fraction. In addition, blocking of MHC class I antigens on tumor target cells by 

H-2Kb/H-2Db antibodies, completely inhibited the cytolytic response of both CD8+ 

T-cells and non-separated splenocytes. This finding clearly demonstrated MHC class 

I restriction of the cytolytic response, a classical feature of tumor-specific CD8+ T- 
cells78.

A further proof for a T-cell mediated immune response was the demonstration of a 

long-lived and transferable immunity following successful therapy with the 

chl4.18-IL2 immunocytokine. Specifically, it was shown that mice cured of 

established subcutaneous tumors or pulmonary metastasis by immunocytokine 

therapy completely rejected a subsequent i.v. challenge with melanoma cells in 50% 

of all mice up to four months after initial treatment. In the remaining 50% of mice, a 

significant reduction in metastasis was observed. This was in contrast to mice that 

were initially treated with an equivalent mixture of antibody and cytokine or that 

received cryotherapy of their s.c. tumors, suggesting that neither IL2 nor the release of 

tumor antigens recognized by T-cells are sufficient to induce the long-lived protective 

immunity only observed in mice subjected to targeted-IL2 therapy. It is important to 

note that challenges with an unrelated tumor cell line (EL4), that also expresses the 

GD2 antigen, initially used as a docking site for the immunocytokine, induced 

fulminate métastasés in the same mice that could be fully protected against challenge 

with murine melanoma cells. This finding clearly demonstrated that not yet defined 

tumor antigens recognized by T-cells are required for the induction of protective 

immunity which are independent of the GD2 docking antigen that was simply used to 

deliver IL2 into the tumor microenvironment. The adoptive transfer of T-cell 

subpopulations from immune mice into T-cell deficient scid/scid mice indicated that 

only CD8+ T-cells were able to efficiently protect these animals from challenge with 

melanoma cells, whereas CD4+ T-cells were completely ineffective in this regard. 

Using this model, it was also possible to demonstrate the homing of CD8+ CTL into 

s.c. melanoma métastasés following passive transfer (Figure 7)78.
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F igure 7. H om ing o f  passively  transferred  C D 8+  T cells to subcutaneous tum ors. C57BL/6 
scid/scid  mice were injected s.c. with 5 x 106 B78-D14 cells. After 18 days, 3 x 10 lymphocytes 
obtained from immunocompetent C57BL/6 mice which had previously rejected B78-D14 tumors 
following chl4.18-IL2 treatment, were admistered i.v.. Twenty-four hr later, 8 pm sections of these 
tumors were prepared and subjected to immunostaining with anti-CD8 antibodies. Arrowheads mark 
the border between tumor and surrounding tissue. Magnification: (A) 80x, (B) 200x. Figure taken 
from reference 78.

The data obtained in the murine melanoma system provided proof of concept that 

targeted-IL2 therapy with an immunocytokine can engage a T-cell-mediated immune 

response followed by a long-lived transferable protective immunity. However, a 

successful anti-tumor T cell response involves induction, recruitment, and effector 

function of T cells. Antibody-directed IL2 therapy may influence this process in a 

number of different ways. First, the tumor cells themselves might interact with naive 

T cells with IL2 acting as the second co-stimulatory signal in the activation of 

cytotoxic T cells. A recent model proposed by J. Sprent for the activation of naïve T 

cells provides the rationale for this mechanism According to this model, high-avidity 

interactions between peptide-MHC class I complexes and the T cell receptor promote 

strong crosslinking of T-cell receptor-CD3 complexes, which in turn leads to strong 

signaling; thereby stimulating the production of cytokines, such as IL2, and receptors 

thereof; costimulation boosts the T cell receptor mediated signal. If the intensity of 

signaling is below a certain threshold, e.g., when the density of peptide-MHC 

complexes or the level of costimulation is low, the responding T cells express only 

IL2 receptors, but no IL279’80. Hence, these T cells fail to proliferate unless exposed to 

exogenous IL2. The second possible scheme for the establishment of T cell activation 

is based on tumor antigens being processed by antigen-presenting cells. It has been 

shown that preactivated macrophages, dendritic cells and granulocytes express 

receptors for IL2 and that in vitro culture with IL2 causes functional changes in these
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cells81. After arriving at the tumor site these cells may be activated by the antibody- 

targeted IL2 to kill the tumor cells and subsequently present the tumor antigens to 

T cells. The obvious infiltration of mononuclear cells within the tumor after 

administration of the antibody-IL2 fusion protein supports this hypothesis. In 

addition, antibody-IL2 fusion proteins are likely to be involved in the recruitment and 

activation of primed cytotoxic T cells and the activation of their effector function. 

This is particularly obvious in view of the demonstrated effect of antibody-IL2 fusion 
proteins on large subcutaneous tumors.

Perspectives

The preclinical data obtained with IL2 immunocytokines in the described melanoma 

model established proof of concept that directing IL2 into the tumor 

microenvironment effectively activates immune cells to eradicate established 

metastasis. Considering the efficiency of the IL2 immunocytokine and its immune 

mechanisms, it is very likely that its clinical application will lead to further 

improvements in the outcome of patients subjected to immunotherapies. In this 

regard, it will be of interest to assess whether immunocytokines might also be useful 

when applied in combinations with other experimental approaches currently under 

clinical investigation. These include the use of gene therapy with cytokine transduced 

autologous tumor cells or dendritic cells pulsed with tumor-associated peptides, which 

are currently used as cellular vaccines aimed at the induction of a long lasting T-cell 

mediated tumor-protective immunity82,83. In both cases, an increase of the cellular 

immune response could be achievable by directing cytokines into the tumor 

microenvironment. Thus, to test the efficacy of applying immunocytokines in 

conjunction with cellular vaccines will be a major goal to improve the immunotherapy 
for cancer.
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Activ a tio n  o f  Pr e-Ex istin g  T-Cell  Clo nes  by  

Targ eted  Interleuk in-2 Therapy

Summary

The induction of an immunological anti-tumor response capable of eradicating 

metastatic tumors is the ultimate goal of immunotherapy. We have recently shown 

that this can be achieved by IL2 therapy directed to the tumor microenvironment by a 

recombinant antibody-IL2 fusion protein. It is not known, however, whether this 

curative treatment is associated with a predominance of T-cells carrying specific 

TCR BV or the presence of clonally expanded T-cells. To address this question we 

have used a quantitative RT-PCR method to analyze the TCR BV region repertoire in 

TIL of treated and untreated animals. As controls the TCR BV region repertoire was 

analyzed in blood and skin from disease-free animals. The results indicate an 

overexpression of TCR BV5 in the tumors of all treated mice and an additional 

overexpression of individual regions in each tumor. Direct sequencing of these 

TCR BV regions did not reveal any evidence of clonal expansions. However, since 

clonal expansions could exist as subpopulations in highly expressed regions, not 

detectable by direct sequencing, a DGGE assay was used for clonal analysis of 

TCR BV PCR products. DGGE analysis of selected TCR BV regions revealed the 

presence of clonotypic T-cells in tumors from both treated and untreated animals. 

These data indicate that targeted-IL2 therapy in this model does not induce clonal T- 

cell responses de novo, rather it acts as an activator for an already existing population 

of clonotypic T-cells.
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Introduction

Melanoma is a highly malignant tumor but several lines of evidence suggest that it is 

capable of eliciting a specific immune response, i.e., a number of melanoma 

associated antigens have been identified and the presence of clonotypic T-cells has 

been demonstrated in melanoma lesions42,84'86. Therefore, several immunomodulatory 

therapeutic approaches were initiated to improve the prognosis of melanoma patients. 

IL2 is one of the most potent antitumor cytokines known, and was recently approved 

for treatment of metastatic melanoma61. However, objective responses induced by 

systemic IL2-therapy are still insufficient, and the associated side effects are severe87. 

These findings are due to the fact that a systemic application of IL2 disregards the 

paracrine nature of this cytokine under physiological conditions88.

As a means to target IL2 directly to the tumor site we have recently shown that human 

IL2 can be genetically engineered as a fusion protein with the chimeric mouse-human 

monoclonal antibody 14.18 which recognizes the ganglioside GDz, retaining both 

antigen binding and cytokine activity68. Furthermore we have shown that treatment 

with this antibody-IL2 fusion protein can eradicate human hepatic and pulmonary 

melanoma métastasés in SCID mice71 as well as autologous murine B16 melanomas76. 

Although it was shown in these studies that tumor eradication was dependent on 

CD8+ T-cells, it is not known whether tumor clearance is associated with a clonal 

expansion of T-cells. Furthermore, it remains to be established whether such a clonal 

expansion would be due to a de novo induction or to the activation and expansion of 

preexisting T cell clones. Here, we demonstrate both the overexpression of certain 

TCR BV regions as well as the clonal expansion of T-cells in melanoma lesions 

subsequent to targeted-IL2 therapy. However, clonally expanded T-cells were also 

detectable prior to therapy, suggesting that antibody-IL2 targeted therapy act as an 

activator rather than an inducer of an anti-tumor T-cell response.
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Experimental Procedures

Cell lines, antibodies and immunocytokines

Thq murine melanoma cell lines, B16 G.3.12 and B78-D14, have been described 

previously68. B78-D14 was derived from B16 melanoma cells by transfection with 

genes coding for (5-1,4-N-acetyIgalactosaminyltransferase and <x-2,8-sialyltransferase 

inducing a constitutive expression of the gangliosides GD2 and GD3. B16 melanoma 

cells were maintained as monolayers in RPMI 1640 medium supplemented with 10% 

fetal calf serum and 2mM L-glutamine and were passaged as necessary. The culture 

medium for B78-D14 cells was further supplemented with 400 pg G418 and 50 jug 

Hygromycin B per pi.

Mouse/human chimeric antibodies directed against the EGF receptor (ch225) or GD2 

(chl4.18) were constructed by joining the cDNA for the variable region of the murine 

antibodies with the constant regions of the yl heavy chain and the k  light chain as 

previously described71. The antibody-IL2 fusion proteins, ch225-EL2 and chl4.18- 

IL2, were constructed by fusion of a synthetic sequence coding for human DL2 to the 

carboxyl end of the human Cyl gene as described68. The fused genes were inserted 

into the vector pdHL2, which encodes for the dihydrofolate reductase gene. The 

resulting expression plasmids were introduced into Sp2/0-Agl4 cells and selected in 

Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and 

100 nM methotrexate. The fusion proteins were purified over a protein A-Sepharose 

affinity column.

All other antibodies used are commercially available and have been described in 

detail by the manufacturer (Pharmingen, La Jolla, CA)

Animals

C57BL/6J mice were obtained from Jackson Laboratory at the age of 4 - 6 weeks. 

These animals were housed under specific pathogen-free conditions and all 

experiments were performed according to National Institute of Health guidelines for 

care and use of laboratory animals.
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Subcutaneous tumors

Tumors were induced by s.c. injection of 5 x 106 tumor cells in RPMI 1640, which 

resulted in tumors of approximately 40 pi volume within 14 d.

Immunohistology

Frozen sections were fixed in cold acetone for 10 minutes followed by removal of 

endogenous peroxidase with 0.03% H2O2; and blocking of collagenous elements with 

10% species specific serum in 1% BSA/PBS. The antibodies where then overlaid onto 

serial sections, at predetermined dilutions (usually 20 pg/ml) and the slides were 

incubated in a humid chamber for 30 minutes. With PBS washes between every step, 

a biotinylated link antibody was applied for 10 minutes followed by a streptavidin- 

linked enzyme, i.e. either peroxidase or alkaline phosphatase, for 10 minutes. After 

another wash, the substrate was added and the slides were incubated in the dark for 20 

minutes. After a wash in PBS, the slides were counter stained, mounted and viewed 

using an Olympus BH2 microscope with photographic capabilities.

RNA extraction and cDNA synthesis

RNA was extracted using the method of Chomczynski and Sacchi as described89. 

cDNA synthesis was carried out using 1-3 pg of total RNA with oligo-dT and 

M-MLV Superscript II reverse transcriptase (Gibco-BRL, Life Technologies Inc., 

Gaithersburg, MD, USA) in a total volume of 50 pi IX buffer (Gibco-BRL, Life 

Technologies Inc., Gaithersburg, MD, USA) containing 10 mM DTT. Incubations 

were performed at 42°C for 50 min, 72°C for 5 min.

Primer design and characteristics

Primers used for the amplification of murine TCRBV regions include 18 primers 

specific for BV families 1-18 and a constant region primer, BC (Table 1). Murine 

TCR BV sequences in the GenBank database20 were used together with the PCGENE 

FASTSCAN program (Intelligenetics, Palo Alto, CA, USA) to create library files for 

the BV families 1-18. Optimal primer sequences were found by using the computer 

program Oligo Version 3.4 (Medprobe, Oslo, Norway) aiming at a AG below -40.0 

and a Tm between 50°C and 60oC90. Selected primer sequences were tested for match 

to all members of the respective families. Importantly, all sequences were
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subsequently tested for potential homology to all other families, aiming at a minimum 

of 5 mismatches to non-relevant templates. All primers fulfill these criteria.

BV1
BV2
BV3
BV4
BV5
BV6
BV7
BV8
BV8A
BV9
BV10
BV11
BV12
BV13
BV14
BV15
BV16
BV17

BV18

BC

BC-5'
BC-3'

T able 1. Primers used for the amplification of murine TCRBV regions include 18 primers specific for 
BV families 1-18 and a constant region primer, BC. Selected primer sequences were tested for match to 
all members of the respective families. Importantly, all sequences were subsequently tested for 
potential homology to all other families, aiming at a minimum of 5 mismatches to non-relevant 
templates. Position +1 is defined as the first nucleotide 5' to the sequence coding for the conserved 
amino-acid sequence CASS in the proximal end of the variable region. The approximate size is 
calculated using an estimated length of the DJ region of 50 bp

TCR BV analysis and quantitation

Preliminary experiments were performed to certify that TCRBV analyses were 

performed in the exponential phase of the amplification, ensuring a proportional 

relationship between the amount of mRNA in the original sample and the amount of 

PCR product. cDNA was serially diluted (2 fold dilutions down to 1/512) and PCR 

amplified for 26 cycles with TCRBC specific primers (BC-5 and BC-3). The amount 

of TCR BC PCR product was quantitated using Imagequant software91 and these 

results were used to ensure that all TCR BV analyses were carried out using an equal 

amount o f TCR cDNA. Amplifications were performed twice in a total volume of 

25 j j .1 containing 5 pmol of each primer, 2.5 mM dNTPs (Pharmacia LKB, Uppsala,
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Sweden) and 1.25 U Amplitaq polymerase (Perkin Elmer Cetus Corporation, U.S) in 

IxPCR buffer (50 mM KC1,20 mM Tris pH 8.4,2.0 mM MgCfe, 0.2 mM cresol, 12% 

sucrose, 0.005% (w/v) BSA (Boehringer-Mannheim, Mannheim, Germany.). 

Inclusion of sucrose and cresol red in the reaction buffer enables direct loading of 

aliquots on the gel 92. Negative controls were samples without cDNA. TCRBV 

amplifications were performed by 30 cycles in a Perkin Elmer GeneAmp PCR System 

9600 (Perkin Elmer Cetus Corporation, U.S.) using the following parameters: 94°C 

for 30 sec., 60°C for 30 sec. and 72°C for 60 sec. Taq polymerase and dNTPs were 

added to the reaction at an 80°C step between the dénaturation and annealing steps of 

the first cycle {hot start)93. For quantitative PCR analysis the constant region primer 

(BC) was end-labeled with y-[33P]. Ten-microliter aliquots of PCR products were 

electrophoresed in a 2% NuSieve 3:1 agarose gel (FMC BioProducts, Rockland, ME) 

which was subsequently dried under vacuum and exposed to a Molecular Dynamics 

Storage Phosphor Screen (Molecular Dynamics, Sunnyvale, CA). Quantitation was 

accomplished using the Imagequant software91.

DGGE

Melting maps were generated using the computer algorithm MELT8794. DGGE 

analyses were done in 6% polyacrylamide gels containing a gradient of urea and 

formamide from 20% to 80%95. Electrophoresis was performed at 160 V for 4.5 hours 

in Ix TAB buffer at a constant temperature of 58°C. After electrophoresis, the gels 

were stained with ethidium bromide and photographed under UV transillumination. In 

order to validate the resolving power of the method, BV regions selected for clonal 

analysis were cloned using the TA-cloning kit following the manufacturer’s 

suggestions (Invitrogen, San Diego, CA, USA). Positive bacterial clones were PCR 

amplified for 35 cycles with the specific BV-primer together with the “GC-clamped” 

BC primer and 12-pl aliquots were analyzed using DGGE.

Sequencing reaction

Several PCR products were subjected to sequence analysis in order to investigate the 

clonality of the transcript using the Thermo Sequenase cycle sequencing kit 

(Amersham, Life Science, Cleveland, USA) according to the manufacturer’s 

instructions. In brief, bands were excised from the denaturing gradient gel, and DNA 

was eluted in H2O and reamplified. An aliquot (0.2 pi) of the PCR product was used
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as template in a 40-cycle sequencing reaction with Y-[33P]end-labeled BC as 

sequencing primer. Gels were dried under vacuum and exposed to a Phosphor Screen.

Results

Quantitative RT-PCR of TCR BV regions

The tumors used for investigation were induced by subcutaneous injection of either 

the parental B16 melanoma line G3.1296 or the GD2 expressing melanoma line B78- 

D14 derived from the Bib melanoma cells by transfection with genes coding for p- 

1,4-N-acetylgalactosaminyltransferase and <x-2,8-sialyltransferase74. Tumors were 

obtained from mice which were treated by i.v. administration of 8 pg chl4.18-IL2 

fusion protein for 7 d. Therapy was initiated lOd after tumor cell inoculation. As 

controls, we used tumor samples obtained from mice receiving PBS instead of 

chl4.18-IL2. To analyze for the expression of TCRBV region expression in murine 

blood, skin and tumor tissues, we have designed 18 primers specific for murine 

TCRBV families 1-18. Prior to analysis of tumor lesions experiments were carried 

out to demonstrate that each amplified TCRBV product was obtained with the 

expected size (Table 1) and no spurious amplification products were observed. To 

validate the semi-quantitative RT-PCR methodology, serially diluted cDNA was PCR 

amplified for different numbers of cycles using the primers BV 1-18 together with the 

constant region primer BC end-labeled with y-[33P]. The data from these experiments 

were used to determine the amount of cDNA and the number of cycles through which 

the specific PCR products accumulated exponentially, enabling determination of the 

relative abundance of each TCR BV region. Furthermore, the accuracy and 

reproducibility of the method were investigated by repeated analyses of PBL 

indicating that the experimental variation represented 4-8% of the mean value. The 

relative expressions of TCR BV-regions in different tumors are shown in Table 2. The 

expression of each TCR BV family is given as the mean percentage (+/- SD) of the 

total TCRBV signal detected in the gel. As additional controls we analyzed the 

TCRBV 1-18 expression in PBLs and skin from four healthy animals. Results from 

these analyses are shown in Table 2.
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In general all analyses showed low expression of TCR B V I7 and 18, and high 

expression of TCRBV8. One possible explanation for this observation is that most 

murine BV families are single member families whereas BV8 is a three-member 

family. A comparison of Of^-expressing tumors in treated versus untreated animals 

indicates a significantly higher expression of BV5 in animals treated with the fusion 

protein (Table 3). The mean expression of BV5 in tumors derived from the untreated 

animals was 5.6% whereas it was 17.1% in tumors of animals treated with chl4.18- 

IL2. In several tumors, one or two additional BV families were expressed at levels 

>10%. This high expression was observed with the families BV1, 6, 11, 12 and 13. 

Like BV5, the high expression of BV I2 is observed in several B16 G3.12 tumors, as 

well as B78-D14 tumors from both treated and untreated mice.

animal 1 animal 1 animal 1
PBL Skin

% SD % SD
3.7 (1 1 ) 5.5 (0 .7)
6.7 (0 .8) 7.4 (0.1)
2.6 (0 .2) 3.7 (1.0)
1.2 (0 .8) 2.2 (0 .4)
5.8 (0.3) 10.3 (1 .2)
6.0 (2 .3) 6.0 (0.1)
7.8 (1.3) 4.5 (1.2)

24.2 (3 .8) 14.0 (3 .0)
3.6 (0.1) 4.3 (0 .2)
4.7 (0.1) 5.8 (0 .8)
2.7 (0 .3) 4.9 (0.6)
5.9 (0 .7) 9.5 (0.0)
4.1 (0.3) 5.0 (0 .2)
5.5 (0 .4) 4.9 ( 1 1 )
3.3 (0.1) 4.2 (0 .4)

12.0 (0.7) 7.2 (0 .6)
0.1 (0.1) 0.1 (0-1)
0.1 (0 .1) 0.4 (0 .0 )

PBL
% SD  

6.2 ( 1.0)
5.5 (0.0)
3.2 (0.0) 
4.1 (0.3)
7.6 (2.2)
7.3 (0.2)
4.4 (0.7) 

11.8 (2 .0 )
3.8 (0.5)
7.9 (1.8)
4 .0 (1.0)
8.4 (1.3)
7.1 (0.1)
7.6 (1.2)
3.2 (0.4) 
7.0 (0.0) 
0.4 (0.1) 
0.4 (0.0)

Skin 
% SD  

6.2 (0.8)
7 .0  (0 .7 )
3 .0  (0 .4 )
1.8 (0 .9 )
9.1 (0 .9 )
5 .8  (0 .7 )  
2 .5  (1 .1 )

12 .0  (5 .3 )
4 .0  (1 .4 )
4 .9  (2 .4 )
1.7 (0 .3 )

20.0 (2 .6 )
6.1 (0 .5 )
5 .8  (0 .9 )
4 .8  (1 .4 )  
3.3  (0 .1 )
1.1 (0 .1) 
0 .9  (0 .7 )

animal 1

‘ 6.2 (1 .0) 10:5 (2.1)

74.1 (0.3) , 1.6 (0.4) 
7.6  (2 .2) 9 .5 (0 .0)
7.3 (02) 5.1 (0 9)
4.4 (0,7)%f 4.1 (0.3)
: 1 ■  1 ■

f .3.8 lp.5) ' 2.9 (1.3) 
f!'7.9"(1.8) '&5(p.2)

|8:HTO)§8310:5).

r?.6 (1.2) r&O (0.9)
' 3 .2  (0 .4) 3 0  (0 .3)

7  0 . ( 0  0 ) ‘ 4 8  (0 3)
; 0 .4  (0 .1) 0 .9  (0 .5 )i

(0.0)'aLU (U)1

Table 2. TCRBV 1-18 expression in PBLs and skin from untreated animals. Preliminary experiments 
were performed to certify that TCRBV analyses were performed in the exponential phase of the 
amplification using an equal amount of TCR cDNA. TCRBV amplifications were performed by 30 
cycles using the following parameters: 94°C for 30 sec., 60°C for 30 sec. and 72°C for 60 sec und hot 
start conditions. For quantitative PCR analysis the constant region primer (BC) was end-labeled with y- 
[33P]. PCR products were electrophoresed in a 2% NuSieve 3:1 agarose gel which was subsequently 
exposed to a Molecular Dynamics Storage Phosphor Screen. The expression of each BV region was 
calculated as a percentage of the sum of all BV spots.
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B16 / 7 davs o f PBS B78-D14/ 7 days o f PBS
Animal 1 Animal 2 Animal 3 Animal 4

i  •- ■ % (SD) % (SD) % (SD) % (SD)
BVi. -, 5.4 (0.4) 4 9 (1.4) 11.3 (ND) 5.2 (0.7)

. BV i-’ 4.2(09) 5.1 (1.8) 4.1 (ND) 5.9 (1.8)
BV3, 5.7 (0.5) 4.9 (1.4) 1.2 (ND) 2.7(1.1)
BV4.;;,' 1.6 (0.6) 4.2(01) 2.5 (ND) 2.1 (0.5)
B V 5. 8.1 (0.6) 6.2(0.3) 5.9 (ND) 7.7 (2.3)

K M 12.7(0.4) 64(1.3) 19.9 (ND) 5.0 (0.1)
! BV7 3.7 (1.2) 4.3 (0.6) 2.3 (ND) 3.5 (1.9)
: B'vr; 13.2 (0.2) 5.3 (0.2) 10.5 (ND) 18.9(1.7)
-BV9 4.0(12) 43(1.3) 1.6 (ND) 3.7(1.1)
;BV10 3.1 (0.8) 7.4 (0.3) 3.1 (ND) 4.8 (0.3)

I 11.5(2.6) 5.7 (0.1) 12.6 (ND) 9.0 (3.1)
1 5.8(07) 8.4 (1.3) 10.8 (ND) 6.2 (0.0)

» BV13 1 9.9(40) 10.2(1.4) 3.4 (ND) 5.1 (1.2)
;BV14 I 28(1.3) 7.5 (2.1) 2.4 (ND) 3.0 (0.1)
BVI 5 1 38(1.0) 5.0 (1.0) 2.2 (ND) 4.5(0.2)
BVI6 :  3.9(02) 5.9 (1.8) 4.6 (ND) 6.4 (0.8)

B11M I  0.2(01) 1.1 (0.9) 0.7 (ND) 0.4 (0.2)
|  0.4(02) 3.3 (0.0) 0.5 (ND) 5.7 (0.9)

0

B 78-D 14/ 7 days o f  chl4.18-IL 2

Animal 1 Animal 2 Animal 3 Animal 4
% (SD) % (SD) % (SD) % (SD)
6.1 (0.1) 3.4 (0.2) 4.4 (0.4) 6.8 (2.2)
5.4 (0.6) 6.5(1.1) 4.7 (0.7) 7.1 (0.4)
2.5 (0.6) 1.4 (0.6) 2.7 (0.5) 4.5 (0.9)
2.1(06) 1.4 (0.1) 2.2 (0.1) 2.7(13)

11.6 (2.4) 28.8(1.2) 17.5(0.6) 10.3(1.4)
6.9 (0.4) 5.2(08) 4.1 (0.1) 5.1(03)
60(1.1) 46(1.1) 6.8(14) 5.8 (0.2)

18.2(0.4) 16.8(0.5) 17.7 (0.7) 9.3 (3.1)
5.8 (0.1) 3.8 (0.1) 3.3(12) 5.2 (0.4)
5.4(1.1) 4.8 (1.3) 7.8 (0.5) 6.1 (0.6)
5.2 (0.9) 6.1 (0.1) 4.7(0.8) 5.3(18)
7.5 (1.9) 67(1.6) 10.5(0.6) 7.7(1.1)
6.5 (1.5) 38(1.3) 4.1 (0.8) 6.8 (0.2)
2.5 (0.0) 2.3 (0.5) 3.2 (0.3) 5.7 (0.4)
2.0 (0.0) 1.4 (0.5) 2.1 (0.3) 4.5 (0.3)
5.1 (0.1) 2.8 (0.2) 3.6 (0.4) 4.5 (0.3)
05(0.1) 03(0.1) 0.4 (0.4) 0.2 (0.0)
0.7 (0.4) 0.2 (0.1) 0.2(01) 0.4 (0.1)

Table 3. Relative expression of TCRBV regions 1-18 in B16 G3.12 and B78-D14 tumors in PBS 
treated animals, as well as B78-D14 tumors in chl4.18-IL2 treated animals. Preliminary experiments 
were performed to certify that TCRBV analyses were performed in the exponential phase of the 
amplification using an equal amount of TCR cDNA. TCRBV amplifications were performed by 30 
cycles using the following parameters: 94° C for 30 sec., 60° C for 30 sec. and 72° C for 60 sec und hot 
start conditions. For quantitative PCR analysis the constant region primer (BC) was end-labeled with y- 
[33P]. PCR products were electrophoresed in a 2% NuSieve 3:1 agarose gel which was subsequently 
exposed to a Molecular Dynamics Storage Phosphor Screen. The expression of each BV region was 
calculated as a percentage of the sum of all BV spots.

Denaturing gradient gel electrophoresis

To investigate the clonality of the transcripts, several PCR products from tumor 

tissues were sequenced directly through the CDR3 coding region of the receptor. A 

total of 21 different PCR products were sequenced, including BV5 from all 12 

animals; BV8, BV11 and BV13 from animal l of the B ld  G3.12/fusion protein group; 

BV1 and BV8 from animal 1, as well as BV8 and BV12 from animal 3 of the B78- 

D 14/fusion protein group. These experiments revealed no indications of clonality. For 

a correct interpretation of this finding it is important to point out that clonally 

expanded T cells must account for at least 10% of the T-cell infiltrate in order to be 

detected by direct sequencing. Thus, we applied the DGGE methodology to resolve 

whether clonal T-cells might be present in the T-cell infiltrate at lower frequencies.

The melting properties of several TCRBV5, BV8 and BV12 sequences available, 

were evaluated by use of the computer program MELT 87 which predicts the melting 

of a double stranded DNA molecule on the basis of its base composition . These 

calculations indicated that the DNA molecules amplified by the BV5 and BV12 

primers were suited for denaturing gradient gel analysis, whereas the BV8 primer had 

to be changed (BV8A; Table 1). The subsequent attachment of a GC-rich sequence 

(GC-clamp) to the 5 '-end of the constant region (Table 1) altered the melting profile 

of all tested sequences to generate the desired two-domain profile . To validate the
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resolving power of the method, cloned transcripts derived from TCR BV5, 8, and 12 

were analyzed. In all cases clonal PCR products were resolved as distinct bands in the 

gel whereas analysis of polyclonal products revealed a smear (Figure 8). At least 8 

different clonotypic transcripts were analyzed for each of the BV regions BV5, 8 and 

12, and in all cases the products resolved at different positions in the gel.

BV5 BV8 BVI 2

F igure 8. Denaturing gradient gel analysis of polyclonal (PBL) and clonal TCR transcripts covering 
BV5, BV8 and BVI2. cDNA from peripheral blood lymphcytes was amplified with primers specific 
for BV families 5, 8 or 12, cloned into PCR™11 (Invitrogen, San Diego, CA, USA) and reamplified. 
PCR products were loaded onto a 20% - 80% denaturing gradient gel and run for 4.5 hours at 160 Volts 
at a constant temperature of 58°C. DNA was stained with ethidium bromide and photographed under 
UV light.

Following this validation, we tested for the presence of clonotypic T-cells in different 

tumor samples. TILs from three groups, i.e., B16 G3.12 and B78-D14 tumors in PBS 

treated animals, as well as B78-D14 tumors in chl4.18-IL2 fusion protein treated 

animals were analyzed by DGGE for the presence of T-cell clonality in BV families 

5, 8, and 12. Skin and PBLs from four disease free animals were analyzed as controls. 

Clonotypic transcripts were revealed in all tumors for at least one of the regions 

analyzed (Figure 9). In contrast, for skin and PBL samples in only one single case 

(skin sample no. 3) a clonal BV I2 transcript could be detected (data not shown). 

Multiple DNA bands were recovered from the gels, re-amplified and sequenced in all 

cases verifying the clonality of the transcript. As shown in Figure 9, DGGE analysis 

demonstrated the presence of clonally expanded T-cells in B78-D14 tumors of 

animals receiving either chl4.18-IL2 or PBS. Furthermore, clonally expanded T-cells 

were also present in GD2 negative B16 G3.12 tumors; thus demonstrating the 

immunogenicity of the parental B16 line. In most lesions more than one clonal
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transcript were detected, and in some lesions several clonal transcripts were found 

that carried the same BV-region.

BV5 BV BV12

B16G3.12 

B78-D14/PBS 

B78-D14 chl4.18-IL2

F igure 9. Denaturing gradient gel analysis for clonality in tumor infiltrating lymphocytes in B16 
G3.12, B78-D 14/PBS and B78-D14 chl4.18-IL2. From four animals in each group (left to right) 
cDNA from tumor biopsies were PCR amplified with primers specific for BV5, BV8 and BVI2 
together with the ”GC”-clamped constant regions primer. Aliqouts were loaded onto a 20% - 80% 
denaturing gradient gel and run for 4.5 hours at 160 Volts at a constant temperature of 58°C. DNA was 
stained with ethidium bromide and photographed under UV light.

Discussion

The past decade has unveiled important insights into the role of T lymphocytes in the 

host's immune response to cancer in general and to melanoma in particular84. A number 

of MAA have been characterized which are specifically recognized by autologous T cell 

in the context of HLA molecules98. The notion that a functional and specific T-cell 

response is present in melanoma patients is corroborated by the observation that 

clonotypic T-cells exist in both primary and metastatic melanoma86’99. However, the 

unfavorable prognosis of metastatic melanoma clearly demonstrates that this 

immunological response is inadequate to eradicate the tumor.

Interleukin 2 which has a central role in the immune system has been widely used for the 

treatment of metastatic melanoma62. However, the systemic administration of this 

cytokine disregards its paracrine nature; thus resulting in limited anti-tumor responses 

and severe side effects87. Recently, we have tried to overcome these problems by 

developing antibody-IL2 fusion proteins that combine the unique targeting ability of 

antibodies with the multifunctional activity of cytokines. The therapeutic
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effectiveness of such constructs for the treatment of established hepatic, pulmonary, 

and subcutaneous melanoma métastasés has been documented in a number of 

different murine tumor models71,76,100*102. Detailed characterization in various tumor 

models revealed the superiority of antibody-IL2 fusion proteins over comparable 

amounts of IL2, the parental antibody, the combination of both or non-specific 

antibody-IL2 fusion proteins71. Even micrometastases displaying some degree of 

antigenic heterogeneity could be successfully addressed by this form of therapy. 

Several lines of evidence, i.e., immunohistology, in vivo depletion studies, adoptive 

transfer experiments, and cytotoxicity assays, indicated that this antitumor effect is 

largely dependent on CD8+ T cells103. However, the molecular basis of this T cell 

response remained elusive.

In the present study we scrutinized the nature of the T-cell response at the molecular 

level. Our aim was to test whether specific TCR BV regions were overexpressed in the 

T-cell infiltrate of tumors before and after targeted immunotherapy, followed by an 

analysis of these regions for clonality. The quantitative analysis of TCR BV1-18 in three 

groups of tumor samples, i.e. B16 G3.12 and B78-D14 tumors in PBS treated animals, 

as well as B78-D14 tumors in chl4.18-LL2 fusion protein treated animals, revealed an 

overexpression of BV5 in B78-D14 tumors after therapy with chl4.18-IL2 (Table 3). 

However, since the expression of BV5 was rather high in a limited number of skin 

samples (Table 2), it was not prudent to conclude that this overexpression was due to a 

clonal expansion of T cell induced by the applied immunotherapy. Hence, we 

subsequently analyzed the samples for clonally expanded T cells. This analysis was 

extended to cover not only BV5, but also the regions BV8 and BV12, which were highly 

expressed in some of the tumors. However, the initial approach to test for clonality by 

direct sequencing of PCR products was hampered by the inherent low sensitivity of this 

method. Thus, a DGGE-based method was established for the detection of clonotypic 

TCR transcripts in a murine system. We have recently described the use of DGGE for 

the detection of clonality in human T-cell populations. The sensitivity of this approach 

enables the detection of clonal transcripts constituting as low as 0.1% of the TCR 

transcripts in a mixed T-cell population32. As shown in Figure 9, DGGE analysis of both 

transfected and non-transfected tumors revealed the presence of clonotypic T-cells. 

These data suggest that the T-cells responsible for tumor clearance are recognizing 

TAAs expressed by the parental tumor cells and not antigens induced by the process of
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transfection. In this regard, the murine analogues of human MART-1, gplOO and 

tyrosinase related protein 2 were recently cloned from a B16 melanoma cDNA library 
104,105 Furthermore, cytotoxic T-cell clones recognizing B16 melanoma, which exert 

their action in a tumor specific and MHC restricted manner have been raised from 

C57BL6 mice106. These data strongly suggest that clonal T-cell responses against 

melanoma associated antigens are a general feature of murine B16 melanoma. Although 

B16 melanoma is generally considered to be a weak or even non-immunogenic tumor, 

possibly because of a low expression of MHC class I molecules107, these reports together 

with the data presented herein indicate that B16 melanoma fulfills the requirements to 

elicit a specific MHC restricted T-cell response. Such an immune response could have 

been boosted by targeted-IL2 therapy of established melanoma métastasés. For all three 

TCR BV regions analyzed, more than one clonal transcript was present; this was most 

evident in treated tumors (Figure 9), e.g. BV5 analysis revealed the presence of 5-8 

different clonal transcripts. This finding predicates that T-cell clones are present at levels 

which are not detectable prior to therapy, but are expanded by IL2 targeted to the tumor 

microenvironment by chl4.18-IL2. These data suggest that the majority of the T-cells 

present in the tumor subsequent to in situ DL2 therapy are tumor specific since their 

activation is dependent on both antigen recognition and the presence of IL2. However, at 

present it is not possible to confirm that the T cell clones detected in situ are directly 

implicated in the T-cell mediated anti-tumor immune response induced by targeted IL2 

therapy. Although our knowledge and understanding of tumor-specific T cells have 

expanded considerably, current in vitro analysis may not reflect the in vivo immune 

status as in vitro culture steps may introduce major biases108.

To date, only a limited number of studies have characterized TIL in tumors treated with 

IL2, at the molecular level. One of these studies suggested that regression of P815 

tumors, induced by intratumoral injection of an adenoviral vector expressing DL2, was 

caused by a polyclonal non-specific T-cell population109. • The means for assessing 

clonality in this study was based on analyzing infiltrating T-cells by the “Immunoscope” 

approach which uses CDR 3 size as a marker for clonality34. Consequently, a T-cell 

clone will be revealed by the presence of a high number of transcripts having the exact 

same length of CDR3. The inherent problems of this approach are obvious, i.e., a large 

number of different T-cell clones are difficult to distinguish simply by the length of 

CDR3. In contrast, the DGGE method reveals clonality on the basis of melting
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properties, meaning that transcripts having the exact same length will be focused at 

different positions in the gel32. TCR transcripts of different lengths may, in theory, 

have similar melting properties and consequently may focus at the same position in a 

denaturing gradient gel. Sequencing a high number of individual bands has, however, 

revealed a single sequence in all cases, suggesting that co-focusing of different TCR 

transcripts be probably a rare event. The discrepancy of the data in these two studies is 

therefore most likely due to the different methods employed. An alternative explanation 

for this obvious discrepancy between these two studies could be the different means of 

IL2 administration.

A successful antitumor T cell response involves induction, recruitment, and effector 

functions of T cells. The presence of clonotypic T-cells in the B16 G3.12 and B78-D14 

tumors without any specific therapy suggests that clonally expanded tumor-specific T- 

cells are present in the TIL population prior to therapy with the chl4.18-IL2 fusion 

protein; thus, targeted immune therapy seems to be involved in the modulation of later 

phases of a cellular immune response. Importantly, our results imply that anergized or 

otherwise inactive T-cells can be activated by means of targeted IL2 therapy without the 

requirement for specialized antigen-presenting cells or the induction of new or modified 

peptide antigens.

44



I n  s it u  C y to k in e  T h erap y: R e d is tr ib u t io n  o f

Clo nally  expanded  T-cell  Clones

Summary

Immunity to tumors relies on re-circulating antigen-specific T cells. Whilst induction 

of antigen-specific T cells by immunotherapy has been convincingly proven, direct 

evidence for re-circulation of such cells is still lacking. Here, employing a recently 

established in situ immunotherapy model for murine melanoma we directly 

demonstrate the redistribution of therapeutic T-cell clones. In this model IL2 is 

targeted to the tumor microenvironment by means of specific antibody-IL2 fusion 

proteins resulting in the expansion of therapeutic T cells. The therapeutic effect of the 

fusion protein is not restricted to tumors expressing the targeted antigen, but extends 

to antigen negative variants of the tumor if present in the same animal. Analysis of the 

T-cell infiltrate by quantitative RT-PCR revealed the presence of highly expressed 

TCR BV-regions in both tumor variants. TCR clonotype mapping revealed that the 

high expressions of these regions were caused by clonal expansions and, notably, that 
these specific clonotypic TCR transcripts were identical in both tumors. Thus, 

therapeutic T-cell clones activated locally by targeted-IL2 therapy re-circulate and 

mediate eradication of distant tumor sites not subjected to in situ cytokine therapy.
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Introduction

Malignant melanoma accounts for the majority of mortality from skin cancer, and the 

therapeutic options for advanced disease are limited. New treatment modalities are 

being explored, among which immunotherapy seems the most promising. JL2 has 

potent anti-tumor activity, and has been approved for treatment of metastatic 

melanoma48. However, systemic application of IL2 disregards the paracrine nature of 

this cytokine under physiological conditions88; hence, objective anti-tumor responses 

are insufficient and associated with severe side effects64. Targeting of IL2 directly to 

the tumor site can be accomplished with a tumor-specific antibody-IL2 fusion protein 

that retains both antigen binding and cytokine activity68. We have previously 

demonstrated that treatment with the chl4.18-IL2 fusion protein, which recognizes 

disialo-ganglioside GD2, can eradicate human melanoma métastasés in SCID mice 

upon reconstitution with lymphokme-activated killer cells71, as well as autologous 

murine B16 melanomas expressing the GD2 molecule76. The curative action of 

treatment with chl4.18-IL2 was shown to be dependent on CD8+ T cells. Recently we 

demonstrated the presence of clonotypic T cells in tumor lesions of both IL2-fusion 

protein treated and in non-treated control mice indicating that such clonotypic T cells 

are activated and expanded by IL2 in the micro environment and subsequently are 

capable of controlling tumor growth110.

In the current study we demonstrate the ability of targeted-IL2 therapy to eradicate 

not only targeted tumors, but also GD2-negative wtB16 tumors present in the same 

animal. TCR clonotype mapping in combination with comparative analyses DGGE 

revealed that clonotypic T cells were present in both B78-D14 and wtB16 tumors and 

that specific TCR transcripts in both tumors of the same animal were identical, thus, 

originating from the same T-cell expansion. Our data indicate that the effect of 

targeted EL2 therapy is mediated by activation of clonotypic T cells in the targeted 

GD2-expressing tumor and the subsequent migration of these T cells to the GD2- 

negative, wild type tumor.
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Experimental Procedures

Animals

C57BL/6J mice were obtained from Jackson Laboratory at the age of 6 weeks. These 

animals were housed under specific pathogen-free conditions and all experiments 

were performed according to National Institute of Health guidelines for care and use 
of laboratory animals.

Cell lines, antibodies and fusion proteins

The murine melanoma cell lines, B16 G.3.12 and B78-D14, have been described74,96. 

B78-D14 was derived from B16 melanoma cells by transfection with genes coding for 

y-1,4-N-acetylgalactosaminyltransferase and y-2,8-sialyltransferase inducing a 

constitutive expression of the gangliosides GD2 and GD3. B16 melanoma cells were 

maintained as monolayers in RPMJ 1640 medium supplemented with 10% fetal calf 

serum and 2 mM L-glutamine. The culture medium for B78-D14 cells was further 

supplemented with 400 pg G418 and 50 pg Hygromycin B per ml.

Mouse/human chimeric antibodies directed against GD2 (chl4.18) were constructed 

by joining the cDNA for the variable region of the murine antibodies with the 

constant regions of the yl heavy chain and the k- light chain as previously 

described71. The antibody-IL2 fusion protein chl4.18-IL2, was constructed by fusion 

of a synthetic sequence coding for human IL2 to the carboxyl end of the human Cyl 

gene as described68,76. The fused genes were inserted into the vector pdHL2, which 

encodes for the dihydrofolate reductase gene. The resulting expression plasmids were 

introduced into Sp2/0-Agl4 cells and selected in Dulbecco's modified Eagle's 

medium supplemented with 10% fetal bovine serum and 100 nM methotrexate. The 

fusion proteins were purified over a protein A-Sepharose affinity column. All other 

antibodies used are commercially available and have been described in detail by the 

manufacturer (Pharmingen, La Jolla, CA).

Subcutaneous tumors

Tumors were induced by s.c. injection of 5 x 106 B78-D14 or 105 B16 G.3.12 tumor 

cells in RPM I1640 resulting in tumors of approximately 40 pi volumes within 10 d.
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Immunohistology

Frozen sections were fixed in cold acetone for 10 minutes followed by removal of 

endogenous peroxidase with 0.03% H2O2, and blocking of collagenous elements with 

10% species specific serum in 1% BSA/PBS. The antibodies were then overlayed 

onto serial sections, at predetermined dilutions (usually 20 pg/ml), and the slides were 

incubated in a humid chamber for 30 minutes. With PBS washes between every step, 

a biotinylated link antibody was applied for 10 minutes followed by a streptavidin- 

linked enzyme, i.e. either peroxidase or alkaline phosphatase, for 10 minutes. After 

another wash, the substrate was added and the slides were incubated in the dark for 20 

minutes. After a wash in PBS, the slides were counter stained, mounted and viewed 

using an Olympus BH2 microscope with photographic capabilities.

RNA extraction and RT-PCR

RNA was extracted using the Purescript Isolation Kit (Gentra Systems Inc. NC). 

Synthesis of cDNA was done with 1-3 pg of total RNA using oligo-dT and 

Superscript II reverse transcriptase (Gibco-BRL, Life Technologies Inc., 

Gaithersburg, MD, USA) in a total volume of 50 pi IX buffer (Gibco-BRL, Life 

Technologies Inc., Gaithersburg, MD, USA) containing 10 mM DTT. Incubations 

were performed at 42°C for 50 min, 72°C for 5 min. Primers used for the quantitative 

analysis of murine TCR BV regions include 18 primers specific for BV families 1-18 

and a constant region primer, BC as described 110. Prior to analysis, the total amount 

of TCR cDNA was quantitated by amplification of the constant part of the TCRB- 

chain, in order to normalize the amount of TCR cDNA. Amplifications were 

performed in duplicates by 30 cycles in a Perkin Elmer GeneAmp PCR System 9600 

(Perkin Elmer Cetus Corporation, U.S.A.) using previously described conditions. 

Negative controls were samples without cDNA. For quantitative PCR analyses the 

constant region primer (BC) was end-labeled 33P. Ten-microliter aliquots of PCR 

products were electrophoresed in a 2% NuSieve 3:1 agarose gel (FMC BioProducts, 

Rockland, ME) which was subsequently dried under vacuum and exposed to a 

Molecular Dynamics Storage Phosphor Screen (Molecular Dynamics, Sunnyvale, 

CA). Quantitation was accomplished using the Imagequant software.
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TCR clonotype mapping

DGGE analyses for clonotype mapping of the BV regions BV5, BV8 and BVI 2 have 

been described110. In the present study we additionally evaluated the amplification 

products for the remaining BV regions by use of the computer program MELT87 

which predicts the melting of a double stranded DNA molecule on the basis of its 

base composition94. These calculations indicated that the DNA molecules amplified 

by these primers were suited for denaturing gradient gel analysis without 

modifications. Exceptions were the primers BVI 1, BV16 and BVI 7 for which reason 

new primers were selected for the amplification of these regions (BV11A; 5 -GCC 

CAA TCA GTC GCA CTC AAC-3', BV16A; 5'-CTC TGA AAA TCC AAC CCA 

CAG C-3', BV17A; 5'-ATT CTC AGC TAA GTG TTC CTC GA-3 ). The 

attachment of a 50 bp GC-rich sequence (GC-clamp) to the 5 -end of the constant 

region primer (BC1; 5 -TGG AGT CAC ATT TCT CAG ATC-3') altered the melting 

profile of all tested sequences to generate the desired two-domain profile97. DGGE 

analysis was done in 6% polyacrylamide gels containing a gradient of urea and 

formamide from 20% to 80% 95. Electrophoresis was performed at 160 V for 4.5 

hours in Ix TAE buffer at a constant temperature of 54°C. After electrophoresis, the 

gels were stained with ethidium bromide and photographed under UV 

transillumination. In order to validate the resolving power of the method, 

amplification products were cloned using the TA-cloning kit following the 

manufacturer’s suggestions (Invitrogen, San Diego, CA, USA). Positive bacterial 

clones were PCR amplified for 35 cycles with the specific BV-primer together with 

the “GC-clamped” BC primer and 10 pi aliquots were analyzed by DGGE.

Sequencing reaction

PCR products were subjected to sequence analysis using the Thermo Sequenase cycle 

sequencing kit (Amersham, Life Science, Cleveland, USA) following the 

manufacturer’s instructions. Briefly, bands were excised from the denaturing gradient 

gel, and DNA was eluted in H2O and reamplified. An aliquot (0.2 pi) of the PCR 

product was used as template in a 40-cycle sequencing reaction the BC primer labeled 

with 33P as sequencing primer. Gels were dried under vacuum and exposed to a 

Phosphor Screen.
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Results

Therapeutic Efficacy of the Antibody-IL2 Fusion protein

One major obstacle of antibody-based immunotherapy is the heterogeneity of target 

antigen expression. We previously demonstrated that successful treatment with 

antibody-IL2 fusion proteins is associated with the induction of a long-lived and 

transferable immunity78; thus, enabling this form of therapy to overcome 

heterogeneous expression of the target antigen within the tumor. However, the 

experimental design of these earlier studies could not rule out the possibility that this 

anti-tumor activity was due to a bystander effect since GDI-negative and GDI- 

positive tumor cells were located close to each other.

F igure 10. T herapeutic  efficacy  o f  ch l4 .1 8 -IL 2  on the grow th o f  target-antigen  negative tum ors.
Two groups consisting each of 8 animals were treated. In the first group only one tumor was induced 
by s.c. injection of 5 x 105 wtB16 melanoma cells resulting in a GD2-negative tumor (open diamonds; 
insert, A). In the second group of animals two different tumors were simultaneously induced: one by 
s.c. inoccultation of 5 x 105 wtB16 melanoma on the left flank of the animal (open triangle; insert, C), 
the second by s.c. injection of 5 x 106 B78-D14 melanoma cells on the right flank (closed circles, 
insert, B). The latter resulting in a GD2-expressing tumor. Initiation of treatment with 8pg chl4.18-IL2 
at day 10 is indicated by an arrow; it was maintained for 7 days. The insert depicts a representative 
example of animals innoculated with (A) wtB16 tumor cells alone or (B) B78-D14 and (C) wtB16 
tumor cells in the same animal as it was observed on day 35 after tumor cell inocculation.

To investigate whether antibody-IL2 fusion protein treatment might overcome antigen 

heterogeneity at distant metastatic sites, subcutaneous tumors were induced which 

either displayed or lacked expression of the target antigen of the chl4.18-IL2 fusion

volume
1000 I

day
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protein, i.e., the ganglioside GD2 (Figures 10 and 11). Treatment with 8 pg chl4.18- 

IL2 administered intravenously was initiated after 10 d when tumors reached a 

volume of approximately 40 pi and was maintained for 7 d. This manipulation 

resulted in a dramatic reduction in size of both GD2-positive and -negative tumors if 

present in the same animal (Figure 10). In contrast, no therapeutic effect of chl4.18- 

IL2 was observed when administered to mice bearing only GD2-negative B16 

melanoma. These tumors lacked any infiltration by lymphocytes following this 

treatment; whereas, the therapeutic effect of the fusion protein was associated with a 

marked infiltration by CD8+ T cells of both B78-D14 and wtB16 tumors if present in 

the same mouse (Figure 11).

B78-D14 wt B16

G D 2

CD3

CDS

BV11

:>3#5S

m

I ft *5

F igure 11. In situ IL2-therapy targeted to GD2-positive tumors induces T-cell infiltration in target- 
antigen negative tumors. Immunohistochemical characterization of B78-D14 and wtB16 tumors present 
in the same animal subsequent to 7 day therapy with 8 pg chl4.18-IL2 using antibodies with the 
indicated specificities, i.e., GD2, CD3, CD8 or TCR BVI 1. Representative examples for all mice (n=4) 
are given for GD2, CD3 and CD8. The lower panel depicts sections obtained from animal #4 subjected 
to immunostaining with an antibody specific for TCR BVI 1.
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Quantitative RT-PCR of TCR BY regions

The eradication of w tBlô tumors is likely to be executed by redistribution of 

therapeutic T-cell clones that were expanded in the B78-D14 tumor due to the 

targeting of IL2 to this tumor. It is therefore likely that such expansions of identical T- 

cell clonotypes in both tumors would be detected by a semi-quantitative analysis of 

the BV regions in both tumors. Quantitative analyses of TCR BV regions in PBL and 

normal skin from 4 individual animals were used as baseline for the selection of 

highly expressed TCR BV regions for further analysis ll°. The relative expressions of 

the TCR BV regions 1-18 in GD2-positive and -negative tumors are given in Table 4. 

Individual BV regions were expressed at high levels compared to baseline, and some 

of these were expressed at elevated levels in both tumors from the same animal 

(Animal #1; B V I5, Animal #4; BV11). In animal 4, this observation was 

subsequently confirmed using monoclonal antibodies against these highly expressed 

BV regions (Figure 11). Conversely, some regions were expressed at very different 

levels in the same animal (i.e. B V I2 animal #3).
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Table 4. Expression of TCRBV-regions and presence of T-cell clonotypes in wtB16 and B78-D14 
tumors in four animals.Relative expression of the TCRBV families 1-18 in the individual tumors 
(wtB 16 and B78-D14) in four animals. The expression of each TCRBV family is given as the mean 
percentage (+/- SD) of the total TCRBV signal detected in the gel. The number of T-cell clonotypes 
determined by TCR clonotype mapping is given in a separate column for each tumor.

TCR clonotype mapping

To thoroughly examine the T-cell infiltrates of wtB16 and B78-D14 tumors for the 

presence of clonotypic T cells, we adopted a "TCR clonotype mapping strategy
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based on RT-PCR coupled with DGGE. This method physically separates and 

visually displays clonotypic TCR transcripts in complex T-cell infiltrates32. We have 

previously utilized a TCR clonotype mapping assay to establish the profile and extent 

of T-cell clonality in the TCR infiltrates of human melanoma111. To establish an assay 

for the murine system, all 18 BV regions were rendered amenable to DGGE analysis 

by computer modeling of DNA melting and appropriate "GC-clamping"94. 

Subsequent to this theoretical validation, the resolving power of the method was 

tested using cloned PCR products. In all cases clonal PCR products were resolved as 

distinct bands in the gel, whereas analysis of polyclonal PCR products for the same 

BV regions revealed a smear. At least 8 different clonotypic transcripts were analyzed 

for each of the BV regions and in all cases the products resolved at different positions 

in the gel. Furthermore, we analyzed PBL, skin and spleen of healthy animals and 

found that each individual BV region only rarely is represented by a clonotype, and 

that PBL, skin, and spleen in normal mice comprise from 0 - 5  T-cell clonotypes.

Following this validation, we tested for the presence of clonotypic T cells in the tumor 

samples. This analysis revealed that clonotypic transcripts for several BV regions 

were present in all tumors. A representative result is depicted in Figure 12 showing 

the TCR clonotype map of the GD2-expressing tumor from animal #2. The numbers 

of clonotypic transcripts in each tumor ranged from 9 to more than 30 (Table 4). 

Notably, clonotypic transcripts were detected in most BV regions, irrespective of the 

level of expression. Even regions expressed at a level below 1% contained clonotypic 

TCR transcripts. Conversely, clonotypic TCR transcripts were absent in some BV 

regions expressed at high levels, demonstrating that a high level of expression does 

not necessarily imply the presence of clonally expanded T-cells.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 12. TCR clonotype mapping of the T-cell infiltrate B78-D14 from animal #2, covering the BV 
families 1-18. PCR products were loaded onto a 20% - 80% denaturing gradient gel and run for 4.5 
hours at 160 Volts at a constant temperature of 54°C. DNA was stained with ethidium bromide and 
photographed under UV light.

53



Comparative DGGE

In some cases T-cell clonotypes expressing identical BV regions were detected in 

both tumors from the same animal. To resolve whether these clonotypes were 

identical, RT-PCR was repeated and samples were loaded onto a denaturing gradient 

gel in adjacent lanes. Since DGGE separates DNA molecules on the basis of their 

melting properties, identical DNA sequences will resolve at the same position in the 

gel. Initially, B V I5 from animal #1 and BV11 from animal #4 were compared as 

these regions were highly expressed in both tumors of the respective animals. This 

analysis demonstrated the identity of clonotypic transcripts in GDI-positive and GDI- 

negative tumors (Figure 13).

BV15 BV11
Animal #1 Animal #4

Figure 13. Identity of T cell clonotypes among overexpressed TCR BV fannies present in GDI- 
positive and GDI-negative tumors. Comparative TCR BV region analysis of selected T-cell clonotypes 
present in both tumor variants of animals #1 and #4. Sequence analysis was subsequently used to verify 
identity.

The presence of identical T-cell clonotypes in wtB16 and B78-D14 tumors strongly 

suggests that these T cells contributed to the translocation of the therapeutic antitumor 

effect. However, the migration of a single T-cell clone from B78-D14 to the wtB16 

tumor as detected in animals #1 and #4, would possibly be insufficient to mediate the 

regression of a fast growing tumor. We therefore found it of interest to investigate 

whether the presence of identical T-cell clonotypes in both GDI-positive and GD2- 

negative tumors from the same animal is a phenomenon confined to single T-cell clones 

present at high numbers or may also occur for less pronounced clonotypes. Accordingly, 

a complete comparison of all T-cell clonotypes (BVI, BV3, BVI 1, BV12, BV15, and 

B V I6) in the tumors from animal #4 was conducted. Data from this analysis 

demonstrated that half o f the transcripts (BV11, B V I5, and B V I6) were identical
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whereas the remaining were not (Figure 14). The finding that some of them were 

expressed at intermediate levels suggests that the redistribution of T cells is not 

dependent on high cell numbers.

H V12 BV 15 B V I 6

Figure 14. Identity of T cell clonotypes among TCR BV fannies expressed at low levels present in 
GDI-positive and GD2-negative tumors. Comparative TCRBV region analysis of the clonotypes 
detected in both tumors of animal #4. Subsequent sequence analysis revealed identity of the clonotypes 
belonging to the BVI 1, BVI5, and BVI6 families.

Sequencing

PCR products corresponding to potentially identical T-cell clonotypes were 

sequenced to verify identity. In all cases sequence identity was confirmed. The 

nucleotide sequences o f the CDR3 region for the BVI 5 T-cell clone of animal #1, and 

the BV11, B V I5 and B V I6 T-cell clones detected in both tumors from animal #4, are 

given in Table 5.

Animal #1
T C R B V 1 5 S 1  < -  ->  CDR3 C o n s t a n t  r e g i o nJ o i n i n g  2 . 7

c acc a g g  e t c  a c g  gtfc t t a  g a g  g a t  c t g  a g a  aaa c a g  t a c  t

Animal #4
C o n s t a n t  r e g i o nJ o i n i n g  2 . 4T C R B V 11

C o n s t a n t  r e g i o nJ o i n i n g  2 . 5CDR3

C o n s t a n t  r e g i o nJ o i n i n g  2 . 5T C R B V 1 6 S 1

e r  s e

Table 5. TCR/CDR3 nucleotide sequence and deduced amino acid sequence of T-cell clonotypes 
detected in both wtB16 tumors and B78-D14 tumors from animal #1 and #4.
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Discussion

The induction of a persistent tumor-specific immunity by antibody-targeted IL2 therapy, 

which is mediated by circulating CD8+ T cells, explains its high therapeutic efficacy 

against disseminated métastasés displaying a substantial heterogeneity of antigen 

expression, notably, the target antigen. We have previously shown the capability of the 

therapy to eradicate tumors consisting of a mixed population of wtB16 and B78-D14 

cells77. In the present study, B78-D14 and wtB16 tumors were induced by separate 

s.c. injection of tumor cells on the left and the right side of the animal resulting in 

individual tumors either expressing or lacking the GD2-target antigen of the fusion 

protein. Our data demonstrate that boosting the immune response by targeting IL2 to 

one localized tumor is sufficient to promote a powerful response against non-targeted 

tumors. The experimental design of this study definitely excludes that the curative 

response against the wtB16 tumor is a bystander effect of the response against the 

B78-D14 cells. This finding is highly significant for future clinical trials since 

heterogeneity of gene expression is a characteristic of many tumors and their 

subsequent métastasés. In fact, loss of antigen was suggested to be a major 

mechanism of immune escape in melanoma112. The achieved eradication of tumor 

masses despite the lack of targeting due to lack of the GD2 antigen expression 

strongly emphasizes the curative potential of this therapy in a clinical setting.

T cells are the main effector cells induced by antibody-IL2 fusion proteins in our animal 

model. The eradication of distant wtB16 tumors strongly indicates a systemic 

involvement of this T-cell response, i.e., that T cells activated in the targeted GD2- 

positive B78-D14 tumor entered the periphery and migrated to the GD2-negative wtB16 

tumor. Such a scenario is reflected by the high expression of identical BV regions in 

both tumors in the same animals. Quantitative analyses demonstrated high expression of 

BV5 and BV8 in all tumors. However, BV8 is over-expressed not only in tumors but 

also in PBL and skin from healthy mice suggesting that its over-expression be neither 

related to the tumor nor the treatment110. Nevertheless, the restricted over-expression of 

BV5 in TIL, but not in skin or blood, indicates that these T cells are indeed involved in 
the anti-tumor response. Since BV5 was found to be over-expressed in both B78-D14 

and wtB16 tumors following therapy with chl4.18-IL2, this high expression of BV5 in 

the GD2 negative tumor seems to be a result of chl4.18-IL2 therapy targeted to the GD2 

positive tumor. Likewise, the regions BVI5 in animal #1, and BVI 1 in animal #4 were
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both expressed at equally high levels in TIL from both tumors. However, such 

conclusions are only presumptive unless they are based on identification of the same 

clonotypes in the different tumor lesions. Therefore, we extended our studies by using 

DGGE based TCR clonotype mapping which is capable of detecting T-cell clonotypes in 

a polyclonal background32. The detailed analysis of the T-cell infiltrate demonstrated the 

presence of 9 to 36 T-cell clonotypes in each tumor. This is in corroboration with a 

recent analysis of human melanoma revealing that T-cell responses comprise an even 

higher number of clonotypes, ranging from 40 to more than 60111. The gradual difference 

between humans and mice could be related to the fact that murine cells express only a 

single MHC Class I molecule. Focusing initially on highly expressed, i.e., BVI5 and 

BV11, and subsequently on the remaining TCRBV regions, we demonstrated the 

presence of identical T cell clonotypes in both tumors in the same animal.

An important issue relates to the characterization of the target structures recognized 

by these T cells. With the present data it cannot formally be excluded that some of the 

T-cell clones in the B78-D14 tumor recognize antigens derived from the GD2 

molecule. Our data do however indicate that the therapeutic T-cell clones recognize 

identical antigens on B78-D14 and wtB16 melanoma cells; hence, although the 

antigens recognized by these T cells in situ are not known, it is unlikely that they are 

derived from or related to the GD2 molecule. As further proof of this notion we have 

previously shown that protection against B16 does not induce protection against the 

syngeneic GD2+ EL-4 thymoma cells78. Antigens that are possibly recognized by T 

cells on murine melanoma tumors have recently been identified. These include the 

murine homologues of MARTI, gplOO, and tyrosinase-related protein 2 (TRP-2) 

104,105. Interestingly, the TRP-2i8i-i88 peptide has been identified as a tumor rejection 

antigen for B16 melanoma105, and recently, a CTL line expressing exclusively BV11 

which recognizes the TRP-2i8i-i88 was reported to exert anti-tumor reactivity113. In 

half of our animals TIL of both tumors comprised clonotypic BV11 TCR transcripts, 

indicating the involvement of BV11 in the recognition of melanoma associated 

epitopes, possibly the TRP-2i8M88 peptide.

Studies of the T-cell response against human melanoma have suggested that a 

functional dissociation exist between local and systemic immune responses114. 

Recently, we provided evidence that the in situ T-cell response against human 

melanoma is mainly comprised by localized T-cell clonotypes which neither enter the
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periphery nor home to other metastatic sites. Although similar studies have not been 

conducted in untreated, tumor bearing mice, it leads to the hypothesis that IL2 based 

immunotherapy with antibody-IL2 fusion proteins induces a migrating capacity in 
T cells.

In conclusion we demonstrate that administration of an antibody-IL2 fusion protein 

induces a specific T-cell response in B57BL/6 mice, which results in eradication, not 

only of targeted tumors but also distant, antigen-negative wtB16 tumors. Furthermore, 

the presence of identical T-cell clonotypes in targeted and non-targeted tumors from 

the same animal strongly indicates that the activation of tumor specific T cells in 

targeted tumors, and the subsequent migration of these T cells to non-targeted tumor 

lesions accomplish tumor eradication. The present data not only emphasize the 

curative potential in a clinical setting, but also stress the relevance of re-circulation of 

tumor specific T cells, one of the axioms of immunosurveillance.
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Tar g etin g  o f  Lym photoxin-cc to  the Tu m o r  

M icro enviro nm ent  Elicits  an  Efficient  Im m une  

Respo nse  by  Inductio n  o f  a  Peripheral  Lym phoid-L ike 

Tissue

Summary

A recombinant antibody-lymphotoxin-a fusion protein induced an adaptive immune 

response protecting mice from melanoma. Importantly, this fusion protein elicited the 

formation of a lymphoid-like tissue in the tumor microenvironment containing L- 

selectin"1" T cells, MHC class ET antigen presenting cells and lymph node-like T- and 

B-cell areas. Furthermore, PNAd+/TCA4+ high endothelial venules were observed 

within the tumor, suggesting entry channels for naive T-cell infiltrates. Over the 

course of therapy, a marked clonal expansion of certain TCR specificities occurred 

among tumor infiltrating lymphocytes which displayed reactivity against melanoma 

cells and the TRP-2i8o-i88 peptide. Consequently, naive T cells may have been 

recruited to as well as primed and expanded in the lymphoid-like tissue induced by 

the lymphotoxin-a fusion protein at the tumor site.
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Introduction

A variety of tumors have proven to be immunogenic and for melanoma, several 

tumor-associated antigens have been identified, some of which are recognized by 

specific T cells. However, in most cases despite detectable anti-tumor responses, these 

do not control established tumor growth. Therefore, many anti-tumor therapy 

strategies aim at enhancing these existing T-cell based immune responses47,115. In this 

regard, earlier studies have shown that the genetic fusion of a tumor-specific antibody 

with a cytokine is a powerful tool to enrich the cytokine in the tumor environment, 

thus taking the paracrine working mechanism of cytokines into account116. We 

previously demonstrated that antibody-mediated targeting of IL2 to the tumor 

microenvironment mounts an effective cellular response against murine 

melanoma76,110.

However, detailed studies revealed that, although antibody-IL2 fusion proteins were 

able to boost a pre-existing T-cell response, the induction of additional tumor-specific 

T cells was not achieved110. Since it has been reported that tumor-antigen-specific T 

cells can be rendered anergic by the tumor117, priming of additional T cells may be 

particularly critical for the initiation of a successful anti-tumor immune response. 

Therefore, we wanted to test the efficacy of targeting cytokines to the tumor site that 

are likely to promote the induction of new tumor-specific T cells. We chose 

lymphptoxin-a (LTa) because it is a potent mediator of proinflammatory and 

tumoricidal activities as well as lymphoid genesis118-121.

LTa exists either as a soluble or membrane-bound molecule. The soluble form is a 

homotrimer and binds to the receptors TNFRI and TNFRII122, for which TNFa is also 

a ligand, whereas the membrane-bound form of LTa is a heterotrimer complexed with 

the transmembrane protein lymphotoxin-P (LTP)123. The LTa/p complex 

(LTai/LTpa) can not bind to either of the TNF-receptors, but instead serves as a 

ligand for the LTp-receptor (LTpR)124.

Several studies revealed the important function of lymphotoxin in lymph node 

genesis. Notably, LTa/p-LTpR interactions seem to be most relevant, as disruption of 

either the LTp or LTpR genes led to the absence of Peyer's patches and most lymph
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nodes125,126. In comparison, in mice treated with antibodies against LTpR and TNFRI 

as well as in LToc knock-out mice no lymph nodes were observed at all118,127, 

implying that LTa-TNFRI interactions rescued some of the lymph node genesis in 

LTp knock-out mice. Furthermore, it has been shown that expression of LTa under 

the control of a rat insulin promoter induced a lymphoid-like tissue at the site of 

expression in transgenic mice, designated a tertiary lymphoid organ128. This lymphoid 

neogenesis was mediated by LTa through induction of several adhesion molecules as 

well as chemokines in endothelial cells129.

Initial studies of a tumor-specific antibody-LTa fusion protein were performed in a 

xenograft melanoma model where this treatment was effective in eliminating 

pulmonary métastasés130. Additional experiments in mice with different immune 

defects demonstrated a dependence of the therapeutic effect on B lymphocytes and 

NK cells. These results encouraged us to examine the effect of the antibody-LTa 

fusion protein in an autologous murine melanoma model and thereby to scrutinize the 

working mechanisms of directed LTa therapy.

We demonstrate that antibody-LTa fusion protein therapy is an effective treatment 

resulting in the eradication of established pulmonary métastasés and subcutaneous 

tumors. Furthermore, our results suggest an improved T-cell immune response, which 

is most likely evoked by the induction of peripheral lymphoid tissue at the tumor site. 

In fact, the functional significance of this tertiary lymphoid tissue at tumor sites was 

confirmed by immunohistologic and electron microscopic analysis of 

endothelial/lymphocyte interactions as well as TCR clonotype mapping providing 

evidence for the induction of new T-cell clones among TIL, which were shown to 

specifically lyse melanoma cells and to produce IFNy in response to a TRP-2 derived 

peptide.

Experimental Procedures

Animals.

C57BL/6J mice were obtained from Charles River Laboratories (Sulzfeld, Germany) 

at the age of 6 weeks. These animals were housed under specific pathogen-free
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conditions and all experiments were performed according to National Institute of 

Health guidelines for care and use of laboratory animals.

Cell line, antibodies and fusion proteins

The murine melanoma cell line B78-D14 has been described previously74. B78-D14 

was derived from B16 melanoma by transfection with genes coding for (3-1,4-N- 

acetylgalactosaminyltransferase and a-2,8-sialyltransferase inducing a constitutive 

expression of the disialogangliosides GD2 and GD3. B78-D14 melanoma cells were 

maintained as monolayers in RPMI 1640 medium supplemented with 10% fetal calf 

serum, 2mM L-glutamine, 400 pg/ml G418 and 50 pg/ml Hygromycin B. Cells were 

passaged when sub-confluent.

The mouse/human chimeric antibody directed against GD2 (chl4.18) was constructed 

by joining the cDNA for the variable region of the murine 14.18 antibody with the 

constant regions of the human yl heavy chain and the k  light chain. From this, the 

chl4.18-LTa fusion protein was constructed by fusion of a synthetic sequence coding 

for human LTa - lacking the leader peptide - to the carboxyl end of the human Cyl 

gene67. The fused genes were inserted into the vector pdHL2 that encodes for the 

dihydrofolate reductase gene. The resulting expression plasmids were introduced into 

Sp2/0-Agl4 cells and selected in Dulbecco's modified Eagle's medium supplemented 

with 10% fetal bovine serum and 100 nM methotrexate. The fusion proteins were 

purified over a protein A-Sepharose affinity column.

All other antibodies used (anti-CD4, clone RM4-5; anti-CD8, clone 53-6.7; anti- 

CD45R/B220, clone RA3-6B2; anti CD62L, clone MEL-14; anti-PNAd, clone 

MECA-79 [Pharmingen, San Diego, CA]; anti-MHC-class II, clone M5/114 [ATCC, 

Rockville, MD] and anti-TCA-4; AF457 [R&D Systems, Wiesbaden, Germany]) are 

commercially available and have been described in detail by the manufacturer.

Experimental lung métastasés

Single cell suspensions of 2.5 x 106 B78-D14 cells were injected into the lateral tail 

vein. To prevent pulmonary embolism caused by injection of tumor cells, mice were 

anaesthetized by halothane inhalation; tumor cells were suspended in 500 pi PBS 

containing 0.1% BSA and administered i.v. over a period of 60 s. After 7 days 

micrometastases were disseminated throughout the lungs invading the pulmonary
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alveoli. At day 28, grossly visible métastasés were present on the surface of the organ. 

At day 35 lungs were fixed in Bouin fixative and examined under a low magnification 

microscope for tumor foci on their surface. Sections from the lungs were stained with 

hematoxylin/eosin and examined histologically.

Subcutaneous tumors

Tumors were induced by s.c. injection of 2.5 x 106 B78-D14 melanoma cells in RPMI 

1640, which resulted in tumors of approximately 40 pi volume within 14 days.

Treatment schedule

Soluble LTa or the chl4.18-LTa fusion protein were administered daily either by i.p. 

injections for pulmonary métastasés or by i.v. injections for subcutaneous tumors. For 

pulmonary métastasés therapy was maintained for 5, for subcutaneous tumors for 7 

days. The applied dose is specified for each individual experiment in the result 

section. Murine anti-human antibodies directed against the chimeric fusion protein do 

occur but are likely to have only an impact on additional cycles of therapy.

Immunohistology

Frozen sections were fixed in cold acetone for 10 minutes followed by removal of 

endogenous peroxidase with 0.03% H2O2, and blocking of collagenous elements with 

10% species-specific serum in 1% BSA/PBS. The biotinylated antibodies were then 

overlaid onto serial sections at predetermined dilutions (usually 20 pg/ml). Slides 

were incubated in a humid chamber for 30 minutes. The streptavidin-peroxidase 

complex (DAKO, Hamburg, Germany) was applied for 30 minutes after a wash with 

PBS. Following another wash, the substrate was added and the slides were incubated 

in the dark for 20 minutes. After a wash in PBS, the slides were counter stained, 

mounted and viewed using a Zeiss Axiophot microscope with photographic 

capabilities.

Electron microscopy

Tumors were dissected in 0.1 M of cold sodium cacodylate buffer (pH 7.2) containing 

3% glutaraldehyde and 1.7 mM CaClz. After washing in the same buffer 

supplemented with 3% sucrose, the tissue was postfixed for 1 h on ice with 2% 

osmium tetroxide and 1% potassium ferrocyanide in sodium cacodylate buffer. 

Subsequently the tissue was washed first with cacodylate buffer, and then with 200
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mM of sodium acetate buffer (pH 5.2). After staining for 1 h with 1% uranyl acetate 

in sodium acetate buffer, the sample was dehydrated in ethanol, after which it was 

infiltrated with and embedded in EMBED 812 (EM Sciences, Gibbstown, NJ). Thin 

sections were examined with a Leo 906 electron microscope (Leo Electron 

Microscopy Ltd, Oberkochen, Germany).

TCR clonotype mapping by denaturing gradient gel electrophoresis (DGGE)

DGGE analysis for clonotype mapping of the murine TCR BV regions 1-16 has been 

described110. Briefly, RNÂ was extracted using the Purescript Isolation Kit (Centra 

Systems Inc. NC) and synthesis of cDNA was carried out using 1-3 pg of total RNA, 

oligo-dT and Superscript II reverse transcriptase (Gibco-BRL, Gaithersburg, MD). 

cDNA was amplified using primers specific for BV families 1-16 and a constant 

region primer. Amplified sequences were evaluated using the computer program 

MELT&7 that predicts the melting of a double stranded DNA molecule on the basis of 

its base composition94. These calculations indicated that the DNA molecules 

amplified were suited for denaturing gradient gel analysis by the attachment of a 50 

bp GC-rich sequence to the 5 '-end of the constant region primer. Amplifications were 

performed in a GeneAmp PCR System 9700 (Applied Biosystems, Weiterstadt, 

Germany) using previously described conditions. DGGE analysis was done in 6% 

polyacrylamide gels containing a gradient of urea and formamide from 20% to 80%. 

Electrophoresis was performed at 160 V for 4.5 hours in Ix TAE buffer at a constant 
temperature of 54°C.

ELISPOT assay

The ELISPOT assay described by Taguchi et a l was modified to detect TRP2i8o-i88 

specific CD8 T cells 131. First, 96-well filtration plates (Millipore) were coated with 

rat anti-mouse IFNy antibody (clone R4-6A2, Pharmingen). Peptide-pulsed target 

cells were generated by incubating RMA-S cells, a TAP-deficient T cell lymphoma 

line derived from C57BL/6J mice (B6, H-2b), with the appropriate concentration of 

peptide for 45 min at room temperature. CDS"1* T cells were isolated from PBL or TIL 

as described76, kept in culture for 5 days in complete medium supplemented with 

10 units/well of recombinant human IL2 (Chiron, Ratingen, Germany) before being 

added at indicated numbers to 5 x ÎO4 target cells. After 24 hr, the plates were washed 

followed by incubation with biotinylated anti-mouse IFNy antibody (clone XMG 1.2,
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Pharmingen). Spots were developed using freshly prepared substrate buffer (0.3 

mg/ml amino-9-ethyl-carbazole and 0.015% H2O2 in 0.1 M sodium acetate [pH 5]).

Results

Therapeutic effect of antibody-LTa fusion proteins on pulmonary métastasés

Initially, we confirmed that the chl4.18-LTa fusion protein exerts direct cytotoxic 

effects against a number of tumor cell-lines in vitro as well as its antigen-specific 

binding to the disialoganglioside GD2. Additionally, we established that the specific 

activity of the chl4.18-LTa fusion protein was three logs less than soluble LTa 

(sLTa) as measured by killing of L929 cells.

In subsequent series of experiments, we tested the in vivo anti-tumor effect of this 

fusion protein upon experimental pulmonary métastasés of B16 melanoma cells, 

genetically engineered to express GD2, in syngeneic C57BL/6J mice. The results of 

these experiments are summarized in Table 6. Initially, the effect of different doses of 

chl4.18-LTa fusion protein was established. Treatment was initiated on day 3 after 

tumor cell injection and maintained for 5 consecutive days. The lungs of control mice 

revealed a heavy metastatic burden when exposed to either lOng of sLTa - which 

corresponds to more than 10 times the lytic activity of chl4.18-LTa - ,  to 32pg of the 

parental antibody chl4.18, or to 32pg of an antibody-LTa fusion protein directed to 

an irrelevant antigen, i.e., ch225-LTa recognizing the human EGF-receptor (Figures 

15A, 15B and Table 6). In contrast, mice receiving 16pg of chl4.18-LTa fusion 

protein already showed a reduction in size and number of the metastatic foci indicated 

by lower lung weights. Moreover, at higher doses, i.e., 32pg, almost all animals (14 of 

16) exhibited lungs completely free of métastasés (Figure 15C), a finding which was 

confirmed by hematoxylin/eosin stained sections (Figure 15D). An increase in the 

dose of chl4.18-LTa to 64pg did not further improve the therapeutic effect. After 

establishing 32pg as the amount of chi4.18 LTa necessary for successful treatment 

of pulmonary métastasés, we performed kinetic studies to investigate the effect of 

ch14.18-LTa at various stages of tumor progression. These experiments revealed that 

treatment with chl4.18-LTa could be delayed up to one week after induction of
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pulmonary métastasés, whilst still achieving a complete inhibition of tumor growth in 

75% of the animals. However, the number of cured animals was reduced to 25% when 

therapy was started on day 10 and no therapeutic effect was observed at this dose 

level when therapy began on day 14. These observations indicate that either changes 

in the microenvironment of tumors, established for more than 10 days, or the mere 

size of the tumor burden at that stage of disease counteracted the effects induced by 

chl4.18-LTa.

"  : 1
Ilf

F igure 15. M acroscop ic, h isto logical and im m unohistological characterization  o f  tum or  
specim ens. Pulmonary métastasés (A-D) were induced by i.v., subcutaneous tumors (E-M and O) by 
s.c. injection of 2.5 x 106 B78-D14 cells. For pulmonary métastasés treatment was administrated from 
day 3 through 7, consisting of lOng sLTa (A and B) or 32pg chl4.18-LTa (C and D). For 
subcutaneous tumors, treatment was provided from day 14 through 21 with either lOng of sLTa (E and 
G) or 64pg chl4.18-LTa (F, H, I-M and O). On day 35, lungs were removed, their macroscopic 
appearance documented (A and C) and sections subsequently subjected to hematoxylin/eosin staining 
(B and D). Subcutaneous tumors were excised on day 21 (E-I, K-M, and O) or day 28 (J) after tumor 
induction. In addition lymph nodes of normal mice (N and P) were obtained. Sections were subjected 
to staining with antibodies directed against CD4 (E and F), CD8 (G and H), CD45R/B220 (I), CD62L 
(J and K), MHC class II (L), PNAd (M and N) and TCA-4 (O and P). In (I) the B cell areas are 
indicated by closed arrowheads, the tumor by arrows. Scalebars: 25 pm (K), 100pm (G-I, and P), 200 
pm (D), 400 pm (B) or 50 pm (all others).
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In order to test whether the chl4.18-LT<x fusion protein exerted its anti-tumor effect 

either directly or indirectly via the immune system, we examined the effect of 

chl4.18-LTa on pulmonary métastasés in immune deficient C57BL/6J scid/scid mice 

lacking mature B and T lymphocytes. Treatment of these animals even at doses as 

high as 128pg had no therapeutic benefit (Table 6).

Tr ea tm en t L ung

M ice 1 I n i t i a t io n  [d]0 DOSEc No. o f Focid W eig ht  [g]
C57BL/6J scid/scide 3 10 ngsLTa 72, >200, >200, >200 0.58 ±0.11

32 pgchl4.18-LTa 91, >200, >200, >200 0.62 ±0.16
64 pg chl4.18-LTct 52, >200, >200, >200 0.55 ±0.15
128 pg chl4.18-LTa 65,112, >200, >200 0.59 ±0.13

C57BL/6Jf 3 10 ngsLTa 79,101, >200, >200, 0.60 ±0.13
>200, >200, >200, >200

3 32 pg chl4.18 86,134,142, >200 0.54 ±0.11
>200, >200, >200, >200

32 pg ch225-LT 49,71,102,148, 0.48 ±0.14
>200, >200, >200, >200

16 pg chl4.18-LTa 0,74, 89, >200, 0.42 ±0.11
>200, >200, >200, >200

32 pg chl4.18-LTa 0,0,0,0, 0.22 ± 0.04
0,0,0, 8

64 pg chl4.18-LTa 0,0,0,0, 0.29 ± 0.08
0,0,0,43

3 32 pg chl4.18-LTa 0,0,0,0, 0.30 ± 0.09
0,0,0,13

7 0,0,0,0,
0,0,16,34

0.37 ±0.10

10 0,0,16,37,
52,102, >200, >200

0.53 ±0.17

14 87,101,113, >200, 
>200, >200, >200, >200

0.66 ± 0.10

Table 6; Effect of the chl4.18-LTa fusion protein on experimental lung métastasés depending on 
immune status of mice, dose and time of initiation of therapy. ‘Experimental pulmonary métastasés 
were induced in C57BIV6J scid/scid or normal mice by i.v. injection of 2.5 x 106 B78-D14 cells. 
’Treatment was initiated at the indicated days after tumor cell inoculation. The therapy was 
adm inistered by daily i.p. injections for 5 consecutive days. dAnimals were sacrificed and the 
metastatic score evaluated 35 days after tumor induction. ‘Each group consisted of 4 animals. fEach 
group consisted of 8 anim als

Eradication of subcutaneous tumors

The second series of experiments evaluated the effect of chl4.18-LTa therapy on 

subcutaneous tumors. Macroscopic examination on day 28 revealed that treatment of 

animals with 64pg chl4.18-LT<x from day 14 through 20 after tumor cell inoculation 

resulted in flattened and necrotic tumors (Figure 16A). Such an effect on 

subcutaneous tumors was never observed in control animals receiving comparable 

amounts of sLTa. This finding was confirmed by measurements of mean tumor 

volume over the course of the experiment where 3 groups of 8 mice each either
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received lOng sLTa, or 32|ig and 64^ig antibody-LTa, respectively. The mean tumor 

volume of the control group constantly increased over the time course of therapy 

(Figure 16B). In contrast, tumor growth in chl4.18-LTa treated animals leveled off 

after a few days of therapy. On day 21 the mean subcutaneous tumor volume of the 

chl4.18-LTa treated groups started to decrease and on day 28 the reduction in tumor 

volume between treated and control groups was significant (p < 0.017) at a dose of 

64pg chl4.18-LTa as compared to lOng sLTa. As was observed for pulmonary 

métastasés, the effect of chl4.18-LTa on subcutaneous tumors was dose dependent.

It should be noted that the mean tumor volume started to increase again 9 days after 

therapy was stopped. Analysis of the individual tumor volumes, however, provided a 

more detailed picture. In fact, in 5 of 8 mice treated with 64pg ch!4.18-LTa the 

tumor regressed completely in response to ch!4.18-LTa administration and did not 

reoccur within the observation period of the experiment. The remaining 3 animals 

revealed tumor regressions persisting for several days before the tumor started to 

grow again (Figure 16C).

F igure 16. E ffect o f  c h l4 .1 8 -L T a  therapy on subcutaneous tum ors. C57BL/6J mice were injected 
s.c. with 2.5 x 106 B78-D14 melanoma cells. Therapy with either 32pg or 64pg chl4.18-LTa for 7 
consecutive days was started at day 14 after tumor cell inoculation. Control animals received lOng 
sLToc. Macroscopic appearance of the tumor on day 28 in an animal treated with lOng sLTct (left) or 
64|ig chl4.18-LTa (right) (A). Mean tumor volumes of animals (n=8) receiving 10 ng sLTa (open 
circles), 32pg (closed triangles) a nd 64pg (closed squares) chl4.18-LTa, respectively (B). Individual 
tumor volumes of all animals treated with 64pg chl4.18-LTa are given separately (C).

750 -
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Antibody-LT a  fusion protein treatment prolongs survival

Survival studies were performed to determine whether the observed anti-tumor effect 

of the antibody-LTa fusion protein would translate into a prolonged survival, as 

previously shown for the antibody-IL2 fusion protein76. Each experimental group 

consisted of 6 animals. The control group was treated with lOng sLTa, whereas the 

therapy group received 32pg chl4.18-LTa. Treatment was started 3 days after the 

induction of pulmonary métastasés and was administered for 5 consecutive days. In 

the control group, death started to occur at day 47. In contrast, at day 62 when the last 

mouse of the control group had died, all of the ch!4.18-LTa treated mice still 

remained alive. In fact, only one animal in the chl4.18-LTa treated group had died 

(day 85), prior to termination of the experiment on day 112 (Figure 17).
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Figure 17. Kaplan-Meier plot demonstrating the effect of chl4.18-LTa fusion protein on the life span 
of C57BL/6J mice bearing pulmonary métastasés. Each group consisted of six animals. The control 
group received lOng of sLTa (solid line), the therapy group 32pg chl4.18-LTa fusion protein (dashed 
line) from days 3 through 7 after tumor inoculation. The experiment was terminated on day 112.

Infiltration of naive T cells into chl4.18-LTa treated tumors

Several experiments were performed to delineate the mechanisms involved in the 

observed anti-tumor effect of the antibody-LTa fusion protein. Knowing that 

ehl4.18-LTa did not exert any anti-tumor effects in SCID mice, we started to 

characterize the TIL by immunohistology with an emphasis on T cells. When tumor 

sections were stained with antibodies against CD4 and CD8, few if any positive cells 

were observed in tumors obtained from control animals (Figures 15E and 15G). In 

contrast, chl4.18-LTa treated mice revealed a marked infiltration of CD4+ T cells
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throughout the tumor whereas CD8+ T cells accumulated at the tumor periphery 

(Figures 15F and 15H). We performed flow cytometry to quantitate the difference in 

inflammatory infiltrates between control animals and chl4.18-LTa treated mice. To 

this end, in addition to the larger magnitude of inflammatory infiltrate, we found a 

much higher percentage of both CD4+ and CD8+ T cells in TIL from chl4.18-LT<x 

treated mice, whereas in control animals the infiltrate was dominated by NK cells. 

Detection of B cells by immunohistochemistry with the CD45R/B220 monoclonal 

antibody revealed their presence in the tumor starting on day 21. Notably, 7 days 

later, B cells were compartmentalized in a lymphoid like pattern adjacent to the tumor 

in the majority of analyzed samples (Figure 151). To determine whether the infiltrate 

resembled the cellular composition of a lymphoid tissue, we stained sections of the 

tumor with an antibody directed against MHC class II to identify antigen presenting 

cells. MHC class IT1" cells were found dispersed throughout the tumor and many 

displayed dendritic cell-like morphology (Figure 15L). We further stained for L- 

selectin since this molecule is expressed on a subset of lymphocytes’ composed of 

mainly naive T cells for which it serves as a homing receptor to lymph nodes. Indeed, 

L-selectin+ cells were found throughout the tumor (Figure 15J). Furthermore, at 

higher magnification, L-selectin+ cells were detected in close contact with endothelial 

cells (Figure 15K), suggesting expression of L-selectin ligands on tumor vessels 

subsequent to chl4.18-LTa therapy. Tissues of control animals stained essentially 

negative for the antibodies tested.

HEV characteristics of blood vessels of chl4.18-LT<x treated tumors

Migration of L-selectin+ cells into tissue occurs through specialized blood vessels, the 

high endothelial venules (HEV), which normally are limited to lymph nodes and 

Peyer's patches. As described above, we obtained evidence that naive T cells may 

adhere and migrate through tumor blood vessels after therapy with chl4.18-LTot. 

Therefore, we stained for PNAd, an adhesion molecule restricted to HEV, which 

serves as ligand for L-selectin. About 30% of the vessels in tumors of chl4.18-LTa 

treated mice (Figure 15M) were stained in a similar pattern as HEV in lymph nodes 

(Figure 15N), the signal covering the internal surface of the vessel. A further 

mandatory step for migration of naive T cells through HEV is the activation of the 

lymphocytes via chemokine receptor CCR7 mediated by TCA-4 (Exodus-2, SLC,
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6Ckine) present in the glycocalyx of HEV. Indeed, anti-TCA-4 antibodies revealed 

identical staining patterns for blood vessels in tumors of chl4.18-LTa treated mice 

and HEV in lymph nodes of normal mice (Figures 150 and 15P).

To confirm that some of the blood vessels penetrating the tumor were HEV, we 

performed electron microscopy studies. Blood vessels in all untreated tumors 

possessed the phenotype of peripheral capillaries with flat endothelia (Figure ISA). In 

contrast, tumors treated with antibody-LTa fusion protein harbored vessels with HEV 

morphology, i.e., endothelial cells of cuboidal shape (Figure 18B). In addition, we 

observed lymphocytes transmigrating out of the vessel lumen through the junctions 

between high endothelial cells (Figure 18C). At higher magnification, interactions 

between high endothelial venules and lymphocytes were observed to take place via 

microvilli (Figure 18D).

F igure 18. Electron microscopy of tumor blood vessels. Subcutaneous tumors were induced by s.c. 
injection of 2.5 x 106 B78-D14 cells in C57BL/6J mice. After 14 days animals received either lOng of 
sLTa (A) or 64pg chl4.18-LTa (B-D) for 7 consecutive days. Endothelial cells in tumors of control 
animals appear flat (A, x3000), while those of the therapy group display a cuboidal shape (B, x3000). 
At higher magnification lymphocytes migrating through the vessel wall (C, x 12000) and lymphocyte- 
endothelial interaction mediated by microvilli (D, x24000) are depicted.
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Clonotype mapping reveals an increase in the number of T-cell clones during the 

course of therapy

Since we detected lymphoid like tissue, HEVs and the infiltration of CD62L+ T cells 

in tumors subsequent to chi4.18-LTa administration, we tested the hypothesis that 

this treatment indeed alters the T-cell response against the tumor by priming, and 

subsequently expanding newly recruited cells. Such a change should translate into 

differences in the TCR repertoire among TIL. Consequently, we analyzed the relative 

expression of all TCR BV regions prior to and after therapy. This was done by semi- 

quantitative PCR with specific primers for each murine TCRBV family which 

demonstrated that treatment with chl4.18-LTa induced a relative over-expression of 

some TCR BV families differing between animals (data not shown). In addition to 

these differences in the relative over-expression we also observed a major increase in 

the magnitude of the inflammatory infiltrate in general, and in the number of 

infiltrating T cells, in particular (Figure 15F and 15H). However, since we observed 

previously that clonal expansion of T cells is not restricted to over-expressed TCR BV 

families, but also occurs in non over-expressed regions111, we established the 

clonotype maps of BV regions 1-16 within the same tumor over the course of the 

experiment. The variable regions BV 17 and 18 were excluded since previous work 

indicated that these families comprise less than 0.5% each of the total TCR 

transcripts110. For these experiments, treatment was started 8 days after tumor cell 

inoculation for 7 consecutive days and biopsies of the same tumor were obtained on 

days 7, 14 and 21. Figure 19A depicts as an example the TCR clonotype map of BV 

regions 1-16, generated by RT-PCR/DGGE analysis of one chi4.18-LTa treated 

animal at day 21. Each distinct band represents an individual T-cell clone. In some 

BV regions, such as BV 5, only one or two clones were detected, whereas in others 

there were up to 7, e.g., BV 8. Comparative analysis of serial tumor biopsies 

demonstrated the dynamics in the TCR repertoire of TIL (Figure 19B). In fact, not 

only the persistence and the induction of T cell clonotypes over the course of the 

experiment was observed, but also the disappearance of clonotypes present in TIL 

prior to therapy. To illustrate the changes in the occurrence of clones, we provide the 

ratios of the number of clones on day 14 and day 21 compared to day 7 (Figures 190C 

and 19D). For chl4.18-LTa treated animals TCR clonotype mapping revealed an 

increase in the number of T-cell clones among TIL. These clones covered the majority
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of BV regions. However, the increase in the number of T-cell clones varied between 

the BV regions, ranging from 1 (BV 2) to up to 7 (BV 15). In contrast, although the 

occurrence of T-cell clones in control animals was also diverse, there was no general 

increase in the number of T-cell clonotypes.
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F igure 19. TCR repertoire changes of TIL over the course of therapy. Subcutaneous tumors were 
induced by s.c. injection of 2.5 x 106 B78-D14 cells in C57BL/6J mice. Treatment was administered 
from day 8-14 in form of 64pg chl4.18-LTa (A-C) or lOng of sLTa (D). Biopsies of tumors were 
taken 7, 14 and 21 days after tumor cell inoculation and analyzed by TCR clonotype mapping. 
Example of a TCR clonotype map of TIL on day 21 of a chi4.18-LTa treated tumor covering BV 
regions 1-16 (A). Comparative TCR analysis for BV families 2 and 15. Samples were obtained from 
the same tumor localized on the right flank on day 7 (lane 1), day 14 (lane 2) and day 21 (lane 3) as 
well as by excision of the inguinal lymph nodes on day 21 (left and right, lanes 4 and 5, respectively) 
(B). The variation in number of T-cell clones for BV regions 1-16 is given as the ratio of the number of 
clones on day 14 (gray) or 21 (black) to the number of clones on day 7 for chM.l 8-LTa (C) and sLTa 
(D) treated animals.
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In addition to tumor biopsies, the draining lymph nodes were also analyzed at day 21. 

Even when all TCR BV regions were taken into account in these lymph nodes, RT- 

PCR/DGGE clonotype mapping showed at most a few faint bands (Figure 19B). This 

finding implies that the T-cell population in the lymph nodes is either largely 

polyclonal or that the clonal expansion is below the detection level of the applied 

method. RT-PCR/DGGE clonotype mapping, however, is generally able to detect a T- 

cell clone in a mixed population at a fraction of 0.1%32. Besides, in rare cases where 

T-cell clones were present, these never matched with those clonotypes found in the 

tumor.

Induction of a specific T-cell response by ch!4.18-LTa therapy

The immunological changes induced by ch!4.18-LTa therapy, including an altered 

inflammatory infiltrate, infiltration of CD62L"1" T cells into tumors as well as the 

clonal expansion of certain TCRBV specialties subsequent to chM.l 8-LTa therapy, 

prompted us to examine if these would indeed translate into a functional active and 

specific T cell response. This was done by cytotoxicity and ELISPOT assays. The 

cytotoxicity assays revealed that PBL or TIL obtained from chM.l 8-LTa treated 

mice after therapy were at least twice as efficient in killing B78-D14 melanoma cells 

compared to lymphocytes derived from control animals (Figures 20A and 20B). The 

specific killing of B78-D14 was MHC class I restricted as it could be inhibited by the 

presence of a surplus of C3H antibody directed against the MHC I molecules 

H2-Kband H2-Db.

Thereafter we analyzed the ability of the CDS* T cells among PBL and TIL to react 

against a defined tumor-associated antigen, i.e., TRP-2, a melanocyte differentiation 

antigen. This reactivity was measured in the ELISPOT assay by the production of 

IFN-y induced in response to RMA-S cells pulsed with the TRP-21 go-188 epitope. ' 

Reactivity against this TRP-2 peptide epitope was present in both, control animals and 

mice treated with chl4.18-LTa. This observation indicates that the presence of B78- 

D14 melanoma alone induces a detectable cellular immune response, a notion 

substantiated by the presence of clonally expanded T cells in untreated tumors I32. The 

amount of reactive T cells, however, was more than three times higher among 

samples derived from animals treated with chl4.18-LTa than those of control animals 

receiving lOng sLTa. In PBL from ch!4.18-LTa treated mice we detected an average
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of 208 TRP-2 peptide specific spots per 105 CD8+ cells. In contrast, for sLTa treated 

control animals this number was only 36 (Figure 20C). The specific reactivity of 

CD8+ cells obtained from TIL was more than one log higher than those from PBL. 

Thus, the ELIPOT assay performed with only 104 CD8+ T cells revealed 293 

TRP-2i80-i88 peptide specific spots for chM .l 8-LTa treated and 91 for control animals 

(Figure 20D). The background reactivity against unpulsed RMA-S cells in the assays 

performed with TIL was rather high and is most likely due to remaining T cell 

epitopes derived from contaminating tumor cells in the T-cell preparation.
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Figure 20. Presence of specific cytotoxic and IFN-y-producing T cells in PBL and TIL. The percentage 
of lysed B78-D14 melanoma cells by PBL (A) or TIL (B) was measured at different effector to target 
ratios in a 51Cr release assay as previously described76. Effector cells were obtained subsequent to 
treatment with either lOng sLToc (open diamonds) or 64pg chi4.18-LTa (closed squares). For cells 
obtained from chl4.18-LTa treated animals the assay was also performed in the presence of the anti- 
H2-Kb/H2-Db monoclonal antibody C3H (closed triangles). In the ELISPOT assay either 105 CD8+ T 
cells isolated from PBL (C) or 104 CD8+ cells from TIL (D) obtained after treatment with either lOng 
sLTa (1) or 64 pg chM.l 8-LTa (2) were analyzed after 5 days of in vitro culture for their reactivity 
against the TRP-2180-i88 epitope. Each spot represents an IFN-y-producing cell. Graphs depict the 
quantification of reactive cells; gray columns represent the average number of IFN-y-producing cells in 
the absence of peptide, white bars in the presence of the TRP-218o-i88 peptide.
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Discussion

We previously reported the therapeutic effect of a tumor-specific antibody-LTa 

fusion protein in a xenograft tumor model130. Here, we demonstrate the efficacy of 

this immunocytokine against B16 melanoma, leading to the eradication of both 

pulmonary métastasés and subcutaneous tumors in a syngeneic tumor model. In the 

xenograft model the effect of the antibody-LTa fusion protein was found to be 

dependent on B and NK cells. However, in xenograft tumor models multiple 

confounding factors may obscure the actual working mechanism of 

immunomodulatory agents133. Thus, a syngeneic model was required to delineate such 

mechanisms in more detail. To this end, we observed a marked infiltrate of T 

lymphocytes subsequent to therapy with chi4.18-LTa in the syngeneic model. 

Additional lines of evidence indicating that T cells are the principal effector cells 

induced by targeted-LTa therapy included (i) the lack of any therapeutic effect of the 

chM.l 8-LTa fusion protein in SCID mice, (ii) the presence of MHC class I restricted 

B78-D14 specific cytotoxic T cells, as well as (iii) the detection of TRP-2i8o-i88 

reactive IFN-y-producing cells in PBL and TIL. The latter observation is of particular 

interest since it rules out the possibility that the induced T-cell response is only 

directed against the target antigen of the chM.l 8-LTa fusion protein, i.e., the 

disialoganglioside GD2. The difference in recruitment of effector cells in the 

xenograft and syngeneic tumor models are likely due to a xenogeneic response in the 
former134.

Immunohistological staining did not only reveal a marked T-cell infiltrate, but also 

indicated the arrangement of T and B cells in a lymphoid like pattern adjacent to and 

within the tumor. This observation prompted us to test the hypothesis that targeted 

LTa therapy may induce the neogenesis of lymphoid tissue at the tumor site allowing 

the recruitment of naive T cells. In this regard, L-selectin can be used as a marker for 

naive T cells which serves them as a homing receptor to HEV in secondary lymphoid 

organs via its interaction with the adhesion molecule PNAd135. Subsequent to 

chM.l 8-LTa treatment, L-selectin+ cells were found dispersed all over the tumor as 

well as being in direct contact with endothelial cells. In addition, many of the vessels
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within the tumor expressed PNAd which is normally restricted to HEV. Moreover, the 

lumen of the vessels was covered with TCA-4 (Exodus-2, SLC, 6Ckine), another 

molecule largely confined to HEV. TCA-4 reacts with the CCR7 chemokine receptor 

on T cells and upregulates LFA-1136; this activation is mandatory for the firm arrest of 

T cells after their initial rolling during the process of extravasation of naive T cells 

from the blood stream into lymphoid tissues136,137. Further evidence was provided by 

electron microscopy studies which clearly confirmed the HEV morphology of -30% 

of blood vessels in the tumor. Taken together, these findings imply that naive T cells 

migrated from blood into the tumor microenvironment subsequent to chl4.18-LTa 

therapy. These observations are consistent with a report by Kratz et al. stating that the 

basis of the chronic inflammation caused by lymphotoxin is lymphoid neogenesis128. 

These investigators demonstrated that the structures generated by the transgenic 

expression of LTa under the control of a rat insulin promoter resembled lymph nodes 

with regard to cellular composition, delineated T- and B-cell areas, primary and 

secondary follicles, and characteristic morphologic as well as antigenic features of 

HEV. Thus, it appears likely that treatment with the antibody-LTa fusion protein 

induces a lymphoid-like tissue at the site of LTa accumulation in the tumor. It has 

previously been shown that the presence of inflammation induced by transgenic 

expression of LTa is not dependent on LTp expression, although its cellular 

composition is influenced by this cytokine121,138. Since sLTa can be generated by the 

cleavage of a plasmin site in the chl4.18-LTa fusion protein, LTaip2 complexes may 

form at the tumor site subsequent to chl4.18-LTa therapy. Therefore, future 

experiments in LTp knock-out mice are planned to address the question whether 

LTaip2 complexes are involved in the therapeutic effect of chl4.18-LTa.

Lymphoid tissue is the prime environment for initiating T-cell responses139, as naive 

T cells are only able to encounter antigen in such tissues140. Hence, the question 

whether the lymphoid tissue induced by antibody-LTa fusion protein therapy would 

promote the clonal expansion of infiltrating T cells was of pertinent importance. To 

this end, analysis of the T-cell clonality by RT PCR/DGGE clonotype mapping 

revealed an increase in the number of clones over the course of treatment. This was 

not observed in control animals. Comparative clonotype analysis demonstrated that 

this increase in the number of clonally expanded T cells is due to both the persistence 

as well as the occurrence of new clones. It should be noted, that the clonotypic
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composition of TIL in untreated tumors was not static either, but neither quantitative 

nor qualitative analysis could divulge a significant change during the course of the 

experiment. It is not possible to establish with certainty whether clones emerging 

during the course of treatment are truly "new" or represent the amplification of pre­

existing clones which were previously below the level of detection. However, large 

numbers of polyclonal transcripts hamper the detection of a T-cell clonotype leaving a 

clone more likely to be left undetected in treated tumors which were characterized by 

a brisk infiltration of T cells. Conversely, even minor expansions are readily detected 

in untreated tumors showing a limited infiltration of polyclonal T cells132. 

Furthermore, T-cell clones detected in lymph nodes draining the tumor were never 

detected recurrently in the tumor. This observation together with the 

immunohistological and electron microscopical evidence for the occurrence of HEV 

and interaction of lymphocytes with the endothelia provides strong presumptive 

evidence that the therapy-induced tertiary lymphoid organ is functional and allows for 

priming of naive lymphocytes at the tumor site. Thus, the effects of antibody-LTa 

therapy differ substantially from the effects induced by the antibody-IL2 fusion 

protein therapy which only boosted a pre-existing T-cell response110. Nevertheless, for 

both therapies the eradication of B78-D14 tumors is mediated via clonally expanded 

tumor-specific T cells rather than a polyclonal, non-specific T-cell population. As in 

the case of antibody-IL2 treatment, targeted-LTa therapy is closely linked to tumor 

regression, raising the question whether the emergence of new clones is directly 

related to the treatment or a secondary phenomenon reflecting the immunological 

rejection. However, separate analysis of regressive and progressive parts of human 

melanoma lesions did not reveal differences in the numbers of clonotypic T cells 

indicating that immunological rejection is not coupled to the presence of higher 

numbers of clonotypic T cells42. Moreover the last tumor samples for TCR clonotype 

mapping were obtained at day 21, a lime when the progressive growth of the tumor 

just started to level off; thus, the presence of clonally expanded T cells is at least not 

caused by tumor necrosis but rather is a therapy-induced immune response.

The finding that almost no clones were discovered in the draining lymph nodes 

further suggests that priming occurred in the tumor and not in the lymph node. 

Furthermore, even when we were able to detect an occasional clonal expansion within 

these lymph nodes, none of these were identical to those present in the tumor (Figure
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19B). Our results agree with those of a recent report by Shrikant and Mescher who 

demonstrated that transferred, transgenic cytotoxic T lymphocytes only expand at the 

site of antigen141. This holds also true for viral infections where virus-specific CD8+ T 

cells are only predominating the T-cell pool at sites of viral replication142. In humans, 

we were able to detect identical T-cell clonotypes in the primary tumor and in the 

sentinel lymph node (unpublished results) whereas in the present murine model this 

was not possible. While most human melanoma tumor cells have the capacity to 

disseminate and to cause métastasés, the B78-D14 cell line used in the present murine 

model was derived from a B16 subline which does not spontaneously metastasize 143. 

Therefore, melanoma cells present in the sentinel lymph node of patients may cause 

primed T cells to expand, whereas in our mouse model no tumor cells were found in 

the lymph node.

The induction of lymphoid tissues at the tumor site should provide the means to 

overcome two of the major obstacles to prolonged immune responses to weakly 

immunogenic tumors, i.e., clonal anergy and clonal exhaustion144. It may avoid T cell 

anergy by provision of a suitable cytokine and cellular environment together with a 

high antigen load. Clonal exhaustion may be prevented as new, naive T cells can be 

continuously primed. The function and specificity of the resulting T-cell response was 

conclusively shown. Nevertheless, the recurrent observation that even high doses of 

chM.l 8-LTa fusion protein did not cure all animals, may be due to differences in the 

quality and/or quantity of clonal T-cell responses. The magnitude of a T-cell response 

is at least theoretically dependent on the frequency of suitable T-cell precursors145. 

Animals which can not be cured may possess a lower frequency of T-cell precursors 

or the induced T-cell response may be characterized by insufficient antigen binding 

specificity. In addition, other immune escape mechanisms have to be taken into 

consideration146.

Antibody-LTa dependent lymphoid neogenesis may improve anti-tumor responses in 

several ways. The possibility that naive T cells can be primed next to the tumor by a 

tertiary lymphoid organ should lead to (i) a larger number of primed tumor-specific T 

cells since tumor-specific antigens predominate142, (ii) a reduction in the time between 

priming and expansion as well as the risk of primed T cells not reaching the tumor 

and (iii) ongoing T-cell responses that react more readily and quickly to changes in 

the antigen expression profile of the tumor. In addition, it may stop lymphocytes from
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leaving the tumor microenvironment which is beneficial, since it has been suggested 

that effective immunotherapy depends more on sustaining an immune response at the 

appropriate location than on its initiation**1. Thus, the effectiveness of tumor-targeted 

LTa therapy appears to be due to direct clonal expansion of tumor-specific T cells 

through the formation of peritumoral lymphoid tissue.
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Concluding Remarks and Perspectives

By RT-PCR/DGGE based in situ TCR clonotypic mapping the T cell responses to 

melanoma was scrutinized by analyzing metastatic lesions obtained from mice 

receiving different forms of targeted immunotherapy for the presence of clonotypic T 

cells. The first revelation from this study was the presence of multiple (from 40 to 

more than 60) clonotypic T cells in all lesions which were derived from T-cell 

receptor P-variable regions expressed both at high and low levels. Secondly, 

comparison of T-cell clonotypes present in the different lesions from the same animal 

demonstrated that, in general, individual clonotypes were exclusively detected in only 

one lesion. Hence, anti-melanoma T-cell responses are much more heterogeneous 

than previously appraised and accommodate a predominance of strictly localized T- 

cell clonotypes. In addition, the overexpression of certain TCR p-variable regions, as 

well as the clonal expansion of individual T-cells among tumor infiltrating 

lymphocytes subsequent to targeted-IL2 administration was demonstrated. However, 

clonally expanded T-cells were also detectable prior to therapy, suggesting that IL2 

acts as a modulator rather than an inducer of an anti-tumor T-cell responses. Further 

studies in the same tumor model indicated IL2 enables the redistribution of clonally 
expanded therapeutic T cells.

The second cytokine analyzed for its in situ immune modulating capacities was 

LT-a. The eradication of established melanoma métastasés caused by LT-ct was 

accompanied by neogenesis of a lymphoid-like tissue at the tumor site containing L- 

selectin+ T cells, MHC class n +-APCs and lymph node-like B and T cell areas. This 

peritumoral-lymphoid tissue showed a marked clonal expansion of certain TCR 

specificities over the course of LT-a therapy, suggesting that naïve T cells were 

recruited, as well as primed and expanded at the tumor site. This observation is 

significant, since the induction of lymphoid tissues at the tumor site provides the 

means to overcome two of the major obstacles of prolonged immune responses to 

weakly immunogenic tumors, namely clonal anergy and clonal exhaustion of T cells. 

Thus, antibody-LT-a-dependent lymphoid neogenesis may improve anti-tumor 

responses by i) a greater number of tumor-specific T cells; ii) reducing the time 

interval between priming and expansion and the risk of primed T cells not reaching
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the tumor; and iii) facilitating ongoing T cell responses to react more quickly to 

changes in antigen expression by the tumor.

In conclusion, in situ analysis of cellular immune responses to solid tumors has 

proven to be a valuable tool to monitor immune modulating therapies. This value 

becomes particular obvious in several clinical reports demonstrating a lack of correlation 

between T-cell reactivity measured in peripheral blood and the course of neoplastic disease. 

These findings emphasize the need to analyze not only the peripheral blood but also the tumor 

site as well as secondary and tertiary lymphatic tissues for the presence and activation status 

of tumor-reactive T cells in order to obtain more adequate insights into immune responses to 

solid tumors (Figure 21).

Figure 21. In situ detection of tumor-reactive CTL in a sentinel lymphnode from a stage III melanoma 
patient. Confocal laser scanning microscopy was used to detect CTL reacting with an Cy3-conjugated 
anti-CD8 antibody (red chanel) and/or an FITC-conjugated multimeric MHC/peptide construct.
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