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ABSTRACT

This thesis outlines the development and evolution of a method for the analysis of biological 

fluids for acylcamitines. These compounds are of interest due to their role in the metabolism 

of fatty acids and their use as indicators of metabolic defects, which have been associated 

with SIDS (Sudden Infant Death Syndrome).

These compounds are zwitterionic and thermally labile in nature and would not traditionally 

lend themselves to gas chromatographic -  mass spectrometric (GC-MS) analysis. Described 

in this thesis is a method whereby lactonisation of the acylcamitine facilitates the volatility 

required for GC analysis while retaining the side chain identifier to the original acylcamitine 

for mass spectrometric identification. Using this method it has been possible to characterize 

acylcamitines which are metabolic indicators, distinguish isomeric acylcamitines 

chromatographically and show diagnosis of a number of diseases from clinical samples.

Sample analysis has been demonstrated for both blood and urine. In the case of urine 

samples an example has been provided to illustrate the advances in analytical techniques 

available for these analyses, to show the stability of these compounds in the matrix and the 

wealth of diagnostic information which can be obtained for an individual sample. The 

development of a method for the analysis of acylcamitines from blood spots has been 

detailed. The application of this methodology to a number of disorders of fatty acid 

metabolism has been illustrated. The extension of the technique to the analysis of 

dicarboxylic acylcamitines has also been investigated.

Finally with advances in modem technology the area of eléctrospray mass spectrometry has 

been evaluated for the analysis of samples without lactonisation. Results from this 

investigation are presented.
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CHAPTER 1

INTRODUCTION.



’’The sudden death of an infant or young child, which is unexpected by history, 

and which a thorough post-mortem examination fails to demonstrate an adequate 

cause of death.” J P.Beckwith (1973) [1],

The quotation above is the accepted working definition of sudden infant death syndrome 

(SIDS) and was agreed at the Second International Conference on causes of Sudden Death 

in Infants held in Seattle in 1969. SIDS, colloquially known as "cot death", was found to 

occur with varying intensities within different communities but the accepted figure was of 

one to four for every thousand live births [2 ] and is the single largest cause of death in 

infants from one week to one year in age.

Evidence from epidemiological studies of SIDS demonstrates a higher occurrence in lower 

socio-economic groups with a higher incidence in the winter months. SIDS has also 

become more associated with premature infants, those of low birth-weights and those bom 

to single mothers. Regarding the mother the risk can be increased in the case of smokers, 

opiate/barbiturate users, those suffering from infections during pregnancy and those with 

high parity and short inter-pregnancy intervals [2, 3, 4], It has been suggested that SIDS, 

rather than a single disorder, is the end point of a complex group of inter-related factors 

[5, 6 , 7] and there has been a number of distinct disorders linked with it.

Factors linked with SIDS include respiratory disorders, as in the case of the apnoea 

hypothesis [8 ]. These are cases where there is an abnormal disturbance in the breathing 

pattern, which, in the case of SIDS patients, is fatal. Though some studies seemed to 

provide evidence for this theory [6 , 9], contradictory evidence has also been presented 

which leads to unclear definitions of normal breathing patterns [10, 11]. Most SIDS
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victims are not known to have suffered apnoeic episodes, although evidence suggests that 

defects in the respiratory mechanism are responsible for a number of cases of sudden and 

unexpected deaths in infants. Further studies are required to determine the percentage of 

SIDS infants dying of respiratory causes and to elucidate the underlying defect [2].

Neuropathological hypotheses have also been proposed and these are defined as brain-stern 

dysfunction during sleep leading to cardiorespiratory instability [7]. The incidence of 

SIDS peaks around the first 2 - 4  months of life and these hypotheses relate this age group 

with changes in the neural control of respiratory and cardiac functions and the wake/sleep 

patterns of infants [5]. As in the previous apnoeic hypothesis there has been a range of 

conflicting neurological findings [5, 6 ]. Research has also linked neuropathological 

disorders to apnoea through chemoreceptor dysfunction^ though again there are conflicting 

ideas on this link [5, 6 , 12, 13] with the latter two groups [12, 13] proposing carotid body 

defects or changes as a possible cause of SIDS.

Debate has also taken place in the literature as to whether a factor known as a gastro- 

oesophageal reflux (GER) has a role in SIDS. In these cases the acidic stomach contents 

are expelled into the oesophagus instigating an apnoeic episode [14, 15]. Results in this 

area have not proved reproducible though there does seem to be a link with SIDS [14, 15, 

and 16]. Other proposals for the mechanism of SIDS include inherited disorders of the 

cardiac conducting system with death due to arrhythmia [17], infections from a wide range 

of sources including bacterial toxins [18,19], and varied immunological disorders at local 

and general levels [20]. Sleeping position, with a lower incidence of SIDS when a babies 

sleep in a supine position [21], and avoidance of smoky atmosphere and overheating for 

infants have also been advised recently. This advice has let to a considerable reduction in 

the incidence of SIDS among die population of a number of countries (typically quoted at
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about 50%). However, the reduction has not been universal [22] but there is little doubt 

that advice on sleeping position and wrapping has had a marked beneficial impact.

There has been a great deal of speculation in UK television programmes about the potential 

role o f toxic gases emanating from soiled mattresses. However, three substantial review 

bodies have failed to demonstrate a definite link between cot death and the condition and 

type o f mattresses. Most experts agree that the current largest risk factor concerns 

smoking (during pregnancy and in the baby’s presence).

Inborn errors of metabolism have also been proposed as a factor in SIDS though, as with 

some of the other examples above, these can be identified at the stage of post-mortem in 

many cases and so the term Sudden Unexpected Death (SUDS) has been adopted to cover 

these deaths. Steatosis is a recognised as a finding that occurs in a percentage o f infants 

who die of SIDS/SUDS and though this is suggestive of an underlying metabolic disorder 

it is only in recent years that specific biochemical defects have been identified. A clue to 

the role of these disorders in the death of an infant is the identification of a fatty liver at 

post-mortem [23]. Some of these disorders can be assigned through the identification of 

metabolites (e.g. organic acids) in biological fluids and it is this area of study which is 

investigated in this presentation. One particular disorder associated with SUDS is known 

as Medium-chain Acyl-CoA Dehydrogenase Deficiency (MCADD) and results from a 

build-up of medium-chain fatty acid metabolites which have a toxic effect. Metabolism 

identification has proved vital in determining the pathways involved in this defect. This, 

along with a number of other metabolic disorders of fatty acid metabolism, will be 

discussed at length in this presentation.

This thesis will outline the development of analytical methods for the identification of 

trace metabolites of fatty acid oxidation, acylcamitines, from urine and dried blood 
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samples as a means of diagnosing infants at risk from SUDS. Before describing the 

method development it is necessary to have an outline of the history and metabolic role of 

this group of compounds and also to investigate other methods available for the analysis 

of carnitine and its O-acyl esters from a variety of sources.

Carnitine, 1, (3-hydroxy-4-aminobutyrobetaine) and its O-acyl esters, 2, (illustrated in 

Figure 1.1, opposite) are key substances in the metabolism of fatty acids. Their detection 

in biological fluids can be used for the diagnosis of a number of metabolic disorders. It is 

this latter feature which has in recent years led to a rise in interest in detection and 

characterization of carnitine and its esters, using a wide variety of methods and 

instrumentation. The aim of many of these investigations is to determine the presence of 

abnormal metabolites in the biological fluids, which may be indicative of specific enzyme 

defects.

1.1 HISTORY AND BIOSYNTHESIS OF CARNITINE.

In 1904 Franz Knoops first proposed that the metabolism of fatty acids involved oxidation 

at the P-carbon position. This early work concentrated on the use of chemical labelling to 

trace metabolic pathways. However, it was not until the 1950s, with the discovery of co­

enzyme A, the isolation of fatty acids and the elucidation of the mechanisms involved that 

Knoops work was confirmed [24]. Much of the mechanism of carnitine's interactions 

within the p-oxidation pathway is now understood. In 1905 [25], the empirical formula 

(C7H 15NO3) was assigned to a compound discovered in meat extract. It took a further 

twenty-two years for the structural formula to be proven as L- 3 -hydroxy-4-N- 

trimethylaminobutanoic acid [26]. The later discovery of carnitine in insects was of great 

interest as previously carnitine had only been identified from vertebrate muscle. In 1951

Carter et al. [27] established carnitine as Vitamin Bp with the first assay being carried out
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on the mealworm, Tenebrio molitor, as Vitamin B j was considered essential for its 

growth. Their assay for the presence of carnitine. The Tenebrio Test, was then applied to 

a range of biological materials.

In 1953 Fraenkel [28] was the instigator of the first carnitine assay applied to human urine 

and blood. This assay was then widely used for the analysis of biological samples and 

carnitine was found to be distributed, with a few exceptions, throughout nature. Carnitine 

levels in mammalian tissue were found to vary between 0.1 and a few millimoles per litre 

[29], with the highest levels recorded in heart and skeletal muscle. In 1957 Fraenkel and 

Friedman [30] proposed that if a compound was so universally common, and appeared so 

functionally important to the organism, it should have been identified earlier if it was not 

synthesized by the organism. Thereafter work began on discovering the endogenous 

biosynthetic pathway in mammals.

Elucidation of the biosynthetic pathway of carnitine in mammals began in 1961 [31] 

when studies revealed that the methyl groups of the quaternary ammonium functionality 

were derived from methionine. The precursors for this part of the carnitine molecule, 

however, remained unknown with work continuing in this area for the next decade. In 

1962 the conversion of y-butyrobetaine to carnitine was described [32], as was the later 

discovery of lysine as a precursor of butyrobetaine [33].

In 1973 a biosynthetic pathway of carnitine was elucidated. In animals, protein-bound 

lysine (stored mainly in muscle tissues) becomes available as peptide residues and is 

methylated by S'-adenosylmethionine and a protein methylase before proteolysis liberates 

e-V-trimethyllysine (TML). Oxidation through a further three enzyme-dependent steps 

converts TML to y-butyrobutaine aldehyde [34]. Cytosolic hydroxylase then mediates in
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the final hydroxylation step to carnitine. This takes place in the liver, brain and human 

kidney tissue [35], though the liver is the primary site for carnitine synthesis in humans. 

Tissues lacking the cytosolic hydroxylase enzyme can use the blood circulation to export 

the y-butyrobutaine precursor to the hydroxylating tissue, but rely on newly synthesized 

product or dietary intake for their supply of carnitine. Four other micronutrients are 

required as co-factors by the enzymes involved in the biosynthesis; these are vitamin C, 

niacin, vitamin Bg and iron. [36]. Deficiencies of these micronutrients as well as of 

methionine have been shown to reduce carnitine levels in plasma and/or tissue [37].

More recent work, on rat liver mitochondria [38], led to the hypothesis that the inner 

mitochondrial membrane, being impermeable to CoA and acetyl CoA, required carnitine 

to transport the acetyl groups in the form of acetylcamitine across the mitochondrial 

membrane. Carnitine was also shown to stimulate the oxidation of long-chain fatty acids 

(palmitate) which led to the theory that carnitine played a role in the transport of other 

acyl groups [39]. This transport was shown to take place through carnitine translocating 

activated long-chain fatty acids into the mitochondrial matrix for P-oxidation.

1.2 THE BIOCHEMICAL ROLE OF CARNITINE AND CARNITINE ESTERS.

Carnitine is found in an omnivorous diet but a biosynthetic pathway is also available 

through méthylation by methionine of a lysine-derived carbon chain. The role of 

carnitine is to act in the transport and metabolism of fatty acids, to maintain a balance 

between free and esterified CoA, and to remove any excess acyl groups (RCO) from 

mitochondria. An accumulation of acyl groups is potentially toxic, causing inhibition of 

enzymes, so carnitine is essential because it is involved in their removal from the 

mitochondria via acylcamitines 2, Figure 1.1 opposite page 22 [40].
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The process of p-oxidation operates to varying degrees in almost every tissue in the body 

and acts as the major source of energy production during fasting. The process of 

p-oxidation is illustrated in Figure 1.2. Long-chain fatty acids are mobilized from the 

adipose tissue and circulated to the liver and other tissues bound primarily to albumin. 

This uptake is a concentration-dependent mechanism, which though poorly understood at 

the moment, may include both saturable carrier-mediated uptake and non-saturable 

diffusion [41]. These fatty acid substances are then activated to form highly polar fatty 

acyl-CoA esters in the cytoplasm through the action of the cytoplasmic enzyme acyl-CoA 

synthetase, in an acylation reaction that is dependent on ATP (adenosine 5'-triphosphate). 

However, a long-chain fatty acyl-CoA cannot cross the inner mitochondrial membrane 

directly. Long-chain fatty acyl-CoA esters are carried across the mitochondrial 

membrane through the sequential action of two carnitine palmitoyl transferase enzymes, 

CPTI and II, on the outer and inner walls of the inner mitochondrial membrane, and 

conjugation with carnitine. Medium and short-chain fatty acids can traverse the 

mitochondrial membrane as free acids and are activated to form acyl-CoA esters within 

the mitochondrial matrix [42]. Conjugation of long-chain fatty acyl groups with carnitine 

is brought about by CPT I and the acylcamitines generated enter the mitochondria where 

the CPT II enzymes facilitate the regeneration of carnitine and acyl-CoA. Activity of 

CPT I in the rat was demonstrated as increasing five fold during the initial 24 hours of 

life, peaking at 2 - 3 days [43] and this activation process has also been observed in the 

case of humans on a similar time scale. This time scale of activation of the carnitine 

transport system coincides with the change from the high carbohydrate diet of the foetus 

to one high in fatty post-partum [44].

The carrier system into and out of the mitochondrion is thought to be identical and the 

enzymes involved in the carrier system have overlapping chain-length specificities [45]. 

Carrier enzymes exist for the transport of specific chain-length acylcamitines, with 
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equimolar amounts of each transferase being found in the mitochondrial membrane [46]. 

Acylcamitine translocatase, a transmembrane protein, is responsible for the passage of the 

carnitine O-acyl esters through the inner mitochondrial membrane [45,47].

Under normal circumstances, once inside the cell transestérification occurs yielding the 

starting compounds - carnitine and acyl-CoA. The latter is dismembered, two carbons at a 

time, by undergoing p-oxidation, eventually producing acetyl-CoA [48, 49]. The 

breakdown of the fatty acyl chains is governed by a number of enzymes and co-factors and 

takes place through the closely coupled enzyme system of p-oxidation. Each spiral of the 

pathway of p-oxidation requires the action of three enzyme types. The first are the group 

of acyl-CoA dehydrogenase enzymes. These enzymes [50, 51] are chain-length specific 

acting in long-, medium- and short-chain forms. The role of the acyl-CoA dehydrogenase 

enzymes is in the insertion of a double bond between the a  and the p carbons of the acyl- 

CoA moiety forming an enoyl-CoA. They also transport the electrons from 

dehydrogenation to the electron transfer fiavoproteins (ETF) [52]. Disorders, which 

manifest themselves through inhibition of these dehydrogenases, cause a build-up of a 

specific chain-length acyl-CoA that can have toxic effects. Carnitine acts through 

conjugation with these acyl moieties to form acylcamitines which can be identified in 

biological fluids at abnormally high levels and the chain length of the acylcamitine will be 

indicative of a particular enzymic disorder. The second enzyme step is the action of enoyl- 

CoA hydratase (crotonase) on enoyl-CoA producing L-3-hydroxy-CoA and this is 

followed by the catalysis of the L-3-hydroxy-CoA to a keto group in an NAD+ dependent 

reaction mediated by 3-hydroxy-CoA dehydrogenase [42]. The final cleavage of the ot,p 

bond in the presence of reduced CoA is catalysed by 3-ketoacyl-CoA thiolase. Evidence 

for chain-length specificity has been proposed for enoyl-CoA hydratase and 3-hydroxy- 

CoA dehydrogenase in mammalian tissues [53, 54, 55, 56] though this specificity has not
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yet been characterised in humans. Acetyl-CoA produced from the spiral of P-oxidation is 

then used within the tricarboxylic acid cycle (TCA) to produce energy in the form of ATP 

and also CO2 and H2O. To a smaller extent, the kidneys also utilize acetyl-CoA in the 

formation of ketone bodies, p-hydroxybutyrate and acetoacetate via the 

hydroxymethylglutaryl-CoA pathway (HMG-CoA). These products are then exported for 

final oxidation to other tissues e.g. the brain.

Endogenous synthesis of carnitine is not possible for foetuses and neonates due to low 

activity of butyrobetaine hydroxylase [57, 58]. Even at the age of three months this 

enzyme's activity, in the liver, has been recorded as 12% of that of adults [58]. Adult 

carnitines levels are achieved by seven months of age due to increased synthesis and 

dietary intake [59] Initially therefore infants must he supplied with the carnitine that they 

require. Sources of this carnitine include a dependence on the maternal carnitine status in 

the foetus [57, 59], with placental transfer of the carnitine [60]. This maternal 

dependence continues in the case of breast fed infants but can be added to or replaced 

with formula or other dietary supplementation [44].

Other factors which can affect the activation of the carnitine transport system are the

presence of certain hormones or the mitochondrial membrane microenvironment [44].

There are characteristic hormone profiles present at birth and these are thought to be

specific for the activation of vital metabolic systems post-partum. t hese include

catecholamine release, insulin, glucagon, thyroxine and growth and sex hormones. They

are thought to modify protein subunits thus affecting carnitine acyl-transferase and

translocate activity. Hormones are also thought to indirectly affect membrane fluidity

[44]. Factors such as membrane fluidity, permeability and electro-chemical charge

gradients require careful maintenance for the optimal activity of membrane associated

proteins [61] such as those involved in the carnitine transport system.
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The presence of acylcamitines in the blood and urine of neonates can characterise a 

number of inherited metabolic diseases. In patients with metabolic disorders the amount 

of acyl-CoA being transported is greatly increased and the elevation in acylcamitines is 

significant. Di Mauro et al in 1976 [62] reported the first of these disorders. If change in 

the profile of acylcamitines can be recognised it may then be possible to identify at which 

stage of the p-oxidation pathway the breakdown has occurred and thus the disease 

involved. Most disorders are characterised by recurrent episodes of fasting, coma and 

hypoglycaemia and in some cases chronic muscle wasting and cardiomyopathy. At the 

time of acute illness the risk of mortality is high but once the diagnosis is made the 

prognosis for the patient is excellent. In up to 25% of cases of medium-chain acyl-CoA 

dehydrogenase deficiency (MCADD) the first episode will prove fatal [42] though some 

patients may remain undiagnosed until another member of the family is affected and 

further tests carried out. In the defects, which involve p-oxidation, a secondary carnitine 

deficiency is presented as a reduction in the total carnitine level in plasma and there is an 

increase in the fraction of esterified carnitine [63].

A number of reviews on the analysis of biological samples for acylcamitines have been 

published [64 - 69].

1.3 ANALYSIS OF FREE AND TOTAL CARNITINE.

Carnitine is frequently measured in biochemical, clinical or nutritional studies.

Estimation of total acylcamitines usually involves hydrolysis of all acylcamitines to 

carnitine followed detection and measurement by a number of methods. There are a 

number of review articles covering this area of study [70 - 73].
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In humans, plasma concentrations of carnitine are relatively stable at 46 ± 10 pmol/L of 

which about 15% are in the form of acylcamitines, mostly acetylcamitine [45]. Reports 

of normal concentrations of total carnitine and free carnitine in the serum of healthy men 

were 62.2 ± 4.4 and 55.9 ± 4.0 pmol/L, respectively, and that of healthy women was 55.9 

± 6.3 and 46.6 ±7.1 junol/L respectively [74]. Whole blood is recorded as containing 

50% more carnitine than occurs in plasma [75]. The levels of free carnitine in plasma are 

thought to reflect the carnitine tissue levels and are considered abnormally low i f  they fall 

to less than 20 pmol/L. Studies have indicated that although carnitine is found in  all 

particulate blood components, higher concentrations are detected in white blood cells.

Red blood cells and plasma have the same concentrations of free carnitine though in the 

former short-chain acylcamitine is enriched with its ratio to free carnitine up to 1.0 [76]. 

Deficiency of carnitine can cause a number of clinical symptoms including myopathy, 

hypotonia and hypoglycaemia [77].

Enzymes techniques have perhaps been most widely utilized in the detection of carnitine 

and acylcamitines in biological fluids, tissues, pharmaceuticals and a variety of foods. A 

widely used enzyme for assaying these compounds is carnitine acetyl transferase (CAT). 

Reactions coupled with the CAT enzyme are common and there are a number o f  means of 

detection including UV, radiolabelled detection or a combination with high-performance 

liquid chromatography (HPLC). The latter provides enantiomeric arid structural 

specificity and, when coupled with radiolabelling, highly sensitive assays [78].

Carnitine can be assayed in a number of ways. One of the more common is radioenzymic 

exchange assay (REA) which uses radiolabelled acetyl-CoA ( 1 -14C-acety 1-CoA) as the 

reaction substrate for the CAT enzyme and measures the 1 -14C-acetylcarnitine produced 

[79, 80]. This method has been used and modified to assay the carnitine concentration in 
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rat bile [81], urine, plasma and/or tissue and human skeletal muscle from needle biopsies 

[82]. Radioenzymic methods have been used for the measurement of carnitine, short- 

chain acylcamitines and long-chain acylcamitines in plasma and tissue with between- and 

within-batch precision of 10.4 and 7%, respectively [83].

A method has also been used based on the reaction of the CoA liberated with 

5,5'-dithiobis-2-nitrobenzoic acid (DTNB) [84, 85, 8 6 ]; a scheme of this method is 

presented in Figure 1.3. Hydrolysis of acylcamitines to free carnitine is the initial step in 

this process, as described, then in the presence of acetyl-CoA and carnitine 

acetyltransferase; the carnitine is converted to acetylcamitine, producing CoA. The CoA 

reduces added DTNB to the yellow 5 -thio-2-nitrobenzoate anion in proportion to the 

amount of L-camitine. The ion is measured at 412 nm [74]. The method has been 

applied to the analysis of the carnitine content of serum, cerebrospinal and seminal fluids 

[87] and human tissues. Plasma carnitine levels have also been determined by column 

chromatography [8 8 ] combined with DTNB detection [89].

Conversion of carnitine to resorufin, involving the use of immobilized dehydrogenase and 

diaphorase enzymes, has been used with fluorometric monitoring [90]. The coupling of 

the CAT reaction to iV-[p-(2-benzimidazolyl) phenyl] maleimide (BIPM) allows the 

detection of the fluorescent CoA-BIPM which is present proportionately to carnitine [91, 

92]. Tissue labelled with [ l-14C]palmitate has been treated with a phospholipase 

allowing the 2-dimensional TLC (acidic then basic solvent) detection of 14C-labelled 

long-chain acylcamitines. These are then hydrolysed freeing carnitine for enzymic assay 

[93, 94].

Enzymic methods have also been applied to the assay of carnitine and acylcamitines in 

foodstuffs including milk and milk products [95]. Raw, pasteurised and skimmed milk,

30



yoghurt, butter and cheese are among the dairy products analysed in this manner [95]. A 

reversed-phase HPLC technique to separate carnitine and acylcamitines from a biological 

matrix utilises a step gradient to provide baseline resolution of acylcamitines 

(individually or by class) and allows quantification by using a sensitive radioenzymic 

assay [96].

The enzymic techniques described above have also been used in conjunction with 

centrifugal analysis. This technique provides a spectrophotometric assay of free and total 

carnitine in plasma ultrafiltrates and may be suitable for routine application in many 

hospital laboratories [74, 97, and 98]. Analysis has been carried out on serum 

L-camitine, with recovery of carnitine from spiked serum reported as 93% [97]. Analysis 

using DTNB has also been applied to measure free and total carnitine in human tissue 

[99]. The CAT enzyme reaction above has also been followed by reaction of CoA with

2-oxoglutarate to produce succinoyl-CoA. Catalysed by 2-oxoglutarate dehydrogenase, 

this product reduces niconamide adenine dinucleotide (NAD), which is then monitored 

spectrophotometrically [100].

Both gas chromatography (GC) and liquid chromatography (particularly HPLC) have 

been used for the determination of carnitine in a variety of matrices. For HPLC, the 

chromophoric properties must be enhanced for successful analysis. For analysis by 

HPLC once the compounds of interest are extracted and dried conversion to 

4-bromophenacyl ester derivatives is a primary derivatization choice [101]. The same 

derivative has also been used with reversed-phase HPLC for urine analysis [102]. 

Alternatively, derivatization has also been achieved through formation of a fluorescent 

ester, through a pre-column reaction with 9-anthryldiazomethane [103] followed by 

HPLC. Stoichiometric conversion to CoA by carnitine acetyltransferase and analysis of
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the formed CoA by HPLC on Cg reversed-phase columns [104,105] has also been 

reported.

For GC, derivatization prior to separation is required to volatilize the molecules. The 

involatility of carnitine for GC analysis can be overcome by conversion to 

4-butyrolactone by reduction with sodium borohydride under basic conditions [106, 107, 

108]. Packed-column GC and flame ionization detection (FID) were used to evaluate 

carnitine levels in mature rat epididymis samples [108] and milk [107]. Following 

solvent extraction, work-up and derivatization, GC was also used to determine carnitine 

in rabbit tissue [106].

Mass spectrometry, and its linking with techniques such as those described above, opened 

the area for more specific determination of detected acylcamitines. Pyrolysis is an 

important process in mass spectrometric analysis of acylcamitines [109]. Carnitine and 

acylcamitines undergo two major competing pyrolytic reactions under electron ionization 

conditions. Elimination of water from carnitine, or of the carboxylic acid from an 

acylcamitine, precedes intramolecular displacement of trimethylamine and formation of 

2(5T/)-furanone. Secondly, the same intramolecular displacement can occur with 

formation of an acyloxy-substituted y-lactone and trimethylamine [109].

In the case of isotope dilution assay analyte which has been labelled with a stable isotope 

is used as an internal standard. This technique serves to reducing variation found within 

an assay. Different known amounts of analyte are diluted with a constant amount of the 

internal standard to generate a calibration curve against which samples containing 

unknown quantities of analyte and fixed internal standard can be back-calculated. This 

technique coupled with fast atom bombardment (FAB) ionization in the positive-ion 

mode with tandem mass spectrometry (MS/MS) has been used to evaluate total and free- 

32



carnitine levels in urine and plasma [110]. The behaviour of carnitine in the solid and 

solution phases has been investigated through bombardment with atoms or ions followed 

by negative-ion or positive-ion mass spectrometry [111,112]. Gas-phase chemistry of 

carnitine was also studied by MS/MS.

Carnitine in human and rat fluids has been measured using a carnitine-specific mutant o f 

the enteric yeast Torulopsis bovina which has a response threshold to carnitine of 100 

pg/ml. A turbidimeter is used to measure growth, as absorbance units, and the method 

can be used to measure acid-soluble and total (acid- and alkali-soluble) carnitine [113]. 

Lipid-bound carnitine was assayed after precipitation with CI3CCO2H. The average 

recovery of free carnitine was 95% and that of lipid-bound carnitine was in the range of 

76-95%  [114].

1.4 METHODS OF ANALYSIS FOR ACYLCARNITINES.

A wide variety o f techniques have been utilised in the analysis o f carnitine esters. These 

include enzymic methods similar to those described above for the characterization of free 

and total acylcamitines. A number of separation techniques have been used for these 

analyses including thin-layer chromatography (TLC), HPLC, GC and other separation 

techniques, operated independently or coupled with single or multiple mass spectrometric 

detectors.

In the experimental work discussed in this thesis the main technique addressed is the 

analysis of acylcamitines by gas chromatography either operated independently or 

coupled with a mass spectrometer. The involatile nature of the zwitterionic carnitine and 

acylcamitines makes their GC analysis impossible without derivatization, thus making it 

necessary for their conversion to more volatile compounds. Conditions necessary to 
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increase the volatility of acylcamitines have been investigated by a number of groups. It 

has been reported that carnitine can be converted into a y-butyrolactone prior to GC 

analysis [106,107, 108]. This intramolecular displacement of trimethylamine and 

formation of an acyloxy-substituted y-lactone occurs when carnitine and the higher 

acylcamitines are subjected to electron ionization mass spectrometry [109]. Cyclization 

through heating is the method, which has been advanced in this thesis for gas 

chromatographic examination of a wide range of acylcamitines [115].

The first procedure illustrated in Figure 1.4 is the hydrolysis of carnitine esters to yield 

carboxylic acids, which are then subjected to GC analysis [67, 116]. Identification of 

nanomolar amounts of short-chain acyl residues in this way has several drawbacks. With 

the necessary extensive work-up, it is time-consuming. There may also be some 

ambiguity in the result because the memory of the carnitine origin of the acyl groups is 

not retained once hydrolysis has taken place. In this way contaminating carboxylic acids 

would give misleading data; hence the need for exhaustive isolation procedures. 

Modifications to this method are required before it can be applied to longer chain 

acylcamitines [117]. Even so, the method has been applied successfully to the 

quantification of water-soluble acylcamitines in rat tissue [118] and to the identification 

of aliphatic short-chain acylcamitines in beef heart [119]. In mammalian tissues, acetyl-, 

propanoyl-, 2 -methylpropanoyl-, butanoyl-, 2 -methylbutanoyl-, 3-methylbutanoy 1- 

(isovaleryl-), 2-methylbut-2-enoyl- (tiglyl-) and hexanoyl- carnitines were found. Other 

acylcamitines were also identified or tentatively identified in these studies.

More effective approaches are illustrated in Figure 1.4(b)- (c), shown opposite. In both 

of these derivatization schemes, the end product retains a memory of its origin inasmuch 

as a diagnostic portion of the carnitine structure occurs in the derivative. Hence, the 

carnitine origin of the acyl residue is unambiguous in the subsequent analysis. The 
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application of the TV-demethylation [120] and lactonization approaches [115, 121] are 

discussed later.

A problem for any gas chromatographic method of analysing for acylcamitines is the lack 

of structural information in the resulting chromatogram. Complex chromatograms 

produced by analyses of this nature mean that in many cases there cannot be total 

confidence in structural assignments based solely on retention times. Coupling of the gas 

chromatograph with a mass spectrometer can overcome this shortfall, if necessary. 

Despite the potential difficulties of gas chromatography alone, an assay for urinary 

mcdium-chain acylcamitines has been developed which produces readily interpretable 

and uncomplicated chromatograms that are said to circumvent the requirement for mass 

spectrometry [122]. In this study, GC was used directly for assay of urinary medium- 

chain fatty acylcamitines; that is, the method does not require a separate derivatization 

step. Rather, the acylcamitines are allowed to decompose thermally in the hot injection

zone of the GC system. At 280 °C, each acylcamitine appears to undergo an ester 

pyrolysis reaction, giving the carboxylic acid corresponding to each acyl group. It is 

these acids that elute through a GC column coated with the polar, stationary phase, PEGA. 

Given that fatty acids are the actual substances detected, it is important that free acids do 

not contaminate the urine extracts containing acylcamitines. In the method described

[12 2 ], carboxylic acids are extracted from the urine with chloroform prior to extraction of 

acylcamitines into butan-l-ol. However, it is reported that only about 60% of the acids 

are so removed and it has also been proposed that some of the acylcamitines will dissolve 

in chloroform [123] thus giving rise to poor sensitivity. Despite the inherent weaknesses, 

the method enabled detection of octanoylcamitine in a symptomatic individual w ith. 

medium-chain CoA dehydrogenase deficiency and in two asymptomatic siblings 

following administration of carnitine.
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The coupled technique (GC/MS) usually provides lower limits of detection and greater 

structurally specificity compared with GC alone. GC/MS can now be carried out 

routinely on any one of a number of inexpensive and simple-to-use benchtop systems, 

thus opening the technique for biochemical and neonatal screening laboratories to obtain 

acylcamitine profiles in biological matrices.

Acylcamitines can be derivatised in a number of ways to render them suitable for analysis 

by GC/MS. One involves direct estérification using propyl chloroformate in aqueous 

propan-l-ol in the presence of pyridine and requires only 5 minutes at room temperature. 

After addition of potassium iodide, the resulting acylcamitine propyl ester iodides are 

extracted into chloroform and their subsequent /V-demethylation can be brought about

conveniently in the hot injector port of the GC/MS system (260°C), causing the formation 

of volatile derivatives 3 shown in Figure 1.4 (b), opposite 34. These /V-demethylated 

acylcamitine propyl esters are well separated on a gas chromatographic stationary phase 

of DB-1 and are readily detected and identified by their methane chemical ionization

mass spectra which are characterized by abundant [M + H]+ ions and several diagnostic 

fragment ions. The detection limits of medium-chain acylcamitine standards (C4  - C 12 

side-chains) were demonstrated to be below 1 ng of starting material when using selected 

ion monitoring of [M + H]+ ions and a common fragment ion. By this method, seven 

acylcamitines (with C&o to Cio:i side-chains) have been characterized in the urine of a 

patient suffering from medium-chain acyl-CoA dehydrogenase deficiency [120]. The 

same GC/MS method also revealed that octanoylcamitine, not valproylcamitine, was the 

most abundant medium-chain carnitine ester excreted by a patient treated with valproic 

acid [125]. This latter result is pertinent to findings in this thesis (Section 3.3).
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Alternatively, acylcamitines can be extracted from urine either by ion-exchange 

chromatography [115, 121] or by solvent extraction [125] and heated in acetonitrile for 

about 30 min at 125°C in the presence of M Af-diisopropylethylamine to effect cyclization 

to a lactone 4 (Figure 1.4 (c ) , opposite page 34). Such acyloxylactones elute readily on a 

DB5 GC column and can be identified by their chemical ionization and/or electron 

ionization mass spectra. Using this method it was found that monocarboxylic 

acylcamitines from acetylcamitine (C2 acyl chain) to octadecanoylcamitine (Cig acyl 

chain) can be isolated from urine with recoveries of over 80%. To obtain such recoveries, 

different methods of extraction had to be used for different ranges of acylcamitines. For 

shorter chain acylcamitines (C2 to Cg side-chains) an ion-exchange procedure was 

recommended. Acylcamitines with acyl chain length Cg to C12 were reported to be 

isolated most effectively from urine by solvent extraction with butan-l-ol as long as the 

urine had been acidified to about pH 2. For long-chain acylcamitines (C10 to Cig acyl 

chains) solvent extraction of unacidified urine with hexan-2 -ol was particularly simple 

and effective [125]. These results may have implications for any method of acylcamitine 

analysis that requires prior purification.

The lactonization and GC/MS approach has been applied to several disorders o f organic 

acid metabolism associated with abnormalities in the levels of urinary acylcamitines, such 

as medium-chain acyl-CoA dehydrogenase deficiency [115, 121], propionic acidemia, 

isovaleric acidemia, multiple acyl-CoA dehydrogenation deficiency [121] and long-chain 

acyl-CoA dehydrogenase deficiency [125]. It has also been used to detect metabolites of 

exogenous compounds, as with 3 -phenyIpropanoyIcamitine in babies who had received a

3-phenyIpropanoic acid load, and an ester thought to be 2-propyl-3-oxovalerylcamitine in 

the urine of an infant undergoing valproic acid (2 -propylvaleric acid) therapy [115, 126,
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the work described in this thesis to identify diagnostic 

acyloxylactones



127]. A more thorough analysis of valproate metabolism is considered later in this thesis 

(Section 3.3.1)

It has been found in the course of this work that, at the derivatization stage, more 

prolonged heating or higher temperatures cause some decomposition to fatty acids, and

that the use of heated GC injectors at over 230°C facilitates ester pyrolysis as observed by

others [122]. Cold on-column injectors or split/splitless injectors at 230°C were preferred 

[115]. However, another worker has found that, high injection temperatures i.e. in the

region of 280°C, a degree of ester pyrolysis occurs, resulting in peaks for carboxylic 

acids but that the major reaction is lactonization as in Figure 1.4 (c), opposite page 34

[123]. This on-column version of the cyclization approach promises to be a fast and 

convenient method for GC/MS of acylcamitines hut does not allow much control over the 

cyclization conditions. In addition, efficiency of cyclization may vary with the conditions 

and the type of injector. The injection system most widely regarded as providing the best 

quantitative results (cold on-column injection) is not compatible with on-line cyclization 

as high temperatures are required.

The electron ionization (El) mass spectra of the acyloxylactones are not ideal for 

identification purposes because the molecular ions are of low abundance and often absent, 

particularly when dealing with trace amounts from biological samples [115, 12 1 ]. 

However, the fragment ions are characteristic of structure (Figure 1.5). Identification of 

an unknown acylcamitine derivative was based on its GC retention time and matching of 

its El mass spectrum against a library of standard spectra generated from synthesized 

acyloxylactones.
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Figure 1.6 Formation of ehromophorie 4-bromophenacyl esters of acylcamitines 

(X = Br or OSO2CF3) prior to HPLC analysis on a silica column, in a 

mixed partition and ion exchange mode.



A high-resolution liquid chromatographic technique is available for acylcamitines in the 

shape of HPLC. A key problem for this technique is the limit of detection of 

acylcamitines as naturally occurring acylcamitines are only weakly chromophoric (A,max 

is about 210 nm) and are neither electrophone nor fluorophoric to any useful degree. It is 

therefore necessary to enhance this property to increase the detection of eluting 

acylcamitines. Derivatization, radiochemical detection or coupling the system to a mass 

spectrometric detector have been used to increase sensitivity structural specificity.

A simple and effective method for separating carnitine and acylcamitines from a 

biological matrix (rat liver tissue) prior to quantification by radioenzymic assay is 

reversed-phase step-gradient HPLC. The chromatographic method, with spectrometric 

detection at 2 1 0  nm, also permits resolution of long-chain acylcamitines in the presence 

of large excesses of carnitine and short-chain acylcamitines [96].

The commonest derivatization strategy for the HPLC analysis of carnitine and its esters 

involves the formation of chromophoric 4-bromophenacyl esters (Figure 1.6). Other 

methods include derivatization with 4-bromophenacyl trifluoromethanesulphonate (4- 

bromophenacyl triflate) in acetonitrile containing N,Af-diisopropylethylamine. This is 

followed by separation by reversed-phase ion-pair HPLC [128,129,130], and the 

determination of total carnitine in human urine by base hydrolysis, ion-exchange 

purification of carnitine, derivatization, chromatography on Radial-Pak Cig of 10 nm 

particle diameter, and spectrophotometric detection at 254 nm [131].

Reaction o f acylcamitines with 4-bromophenacyl triflate in the presence of magnesium

oxide as base also produces the same derivatives. The ester derivatives produced have

been separated by HPLC on a silica column, in a mixed partition and ion-exchange mode.

Using this method, carnitine and acylcamitines in biological media can be measured in 
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100 ni samples, with a detection limit below 1 nmol/1 [101]. Isolation of urinary carnitine 

and acylcamitines using ion-exchange columns followed by derivatization to the 4- 

bromophenacyl derivatives by reaction with 4-bromophenacyl bromide in the presence of 

a crown ether and potassium ions under carefully controlled conditions has been reported 

[127]. The derivatives were then subjected to reversed-phase HPLC (25 x 0.5 cm i.d. 

packed with 5 pm Spherisorb Octyl) with a mobile phase of 7% 0.25 M, pH 5.8 

trimethylamine phosphate buffer in a water: acetonitrile gradient. Detection was by UV 

absorption at 254 nm and urinary propanoylcamitine was observed, as expected, in a 

neonate with propionic academia. Similar methodology has been employed to study the 

effects of long-chain fat loads on two asymptomatic patients with medium-chain acyl- 

CoA dehydrogenase deficiency with octanoylcamitine, hexanoylcamitine and 

acetylcamitine detected at 260 nm [133].

Carboxylic acid analysers, comprising reversed-phase HPLC with post-column 

derivatization, have been investigated for studying inherited metabolic disorders by 

measuring urinary acylcamitines [134,135,136]. The derivatization carried out on-line 

involves the reaction between the carboxylic acid group in the acylcamitine and 2 - 

nitrophenylhydrazine in the presence of 1 -ethyl-3 -(3 -dimethylaminopropyl)carbodiimide 

hydrochloride. This is then followed by colorimetric detection. Anion-exchange 

chromatography is required to remove interfering carboxylic acids from urine before the 

HPLC analysis can proceed. Linear calibration curves over the range 30 - 1000 nmol/ml 

were obtained for carnitine, acetylcamitine, glutarylcamitine and propanoylcamitine, as 

appropriate for urinary levels [135, 136].

A method for detecting and quantifying acylcamitines by HPLC using a strategy based on

radioisotopic exchange has been widely described [67,125,137,138, 139]. Briefly, high

specific activity L-[3H]- or L-[14C]carnitine is incorporated into the acylcamitine pool in 
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a sample by enzymic exchange. The acylçamitines must be substrates for the carnitine 

acyltransferase(s) used and the enzyme(s) must be totally free of acyl-CoA and 

acylcamitine hydrolytic activity. Under these conditions picomolar levels of individual 

acylcamitines were detected after isotopic equilibrium is established by subjecting the 

radioactive acylcamitines to either HPLC or thin-layer chromatography. After separation, 

the amounts of radioactivity in the acylcamitines are measured and the quantity of 

individual acylcamitines can be calculated, for example, from the specific activity of the 

initial total carnitine pool.

The sensitivity and specificity of the radioisotopic exchange/HPLC method for detecting 

urinary medium-chain acylcamitines has been found to be sufficient for the diagnosis of 

medium-chain acyl-CoA deficiency. Over one hundred urine specimens from 75 controls 

and children with metabolic diseases (in the asymptomatic state without carnitine loading) 

were analysed in a blind experiment. All 47 patients with MCADD were correctly 

diagnosed using the criterion that the peak areas of octanoylcamitine or hexanoylcamitine 

are larger than those of other medium-chain acylcamitines. However, patients receiving 

valproic acid or a diet enriched in medium-chain triglycerides can also test positive for 

MCADD by this criterion, so successful application of the method requires a knowledge 

of medium-chain triglyceride or valproic acid administration [125].

On-line radiochemical detection for reversed phase HPLC also provides a means of 

detecting acylcamitines that are metabolic products of radiolabelled precursors in tracer

studies. For example, oxidation of [^cjhexadecanoate by normal human fibroblast 

mitochondria [140] and by rat skeletal muscle mitochondria [141], and metabolism of

[ 14C]ketoisoleucine by rat liver mitochondria [142] have been studied in this way. In

normal human fibroblast mitochondria, only saturated acylcamitine esters were detected,

supporting the concept that the acyl-CoA dehydrogenase step is rate-limiting in 
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mitochondrial p-oxidation. Incubation of fibroblast mitochondria from patients with 

defects of p-oxidation show different profiles of intermediates, while mitochondria from 

patients with defects in electron transfer flavoprotein and electron transfer flavoprotein: 

ubiquinone oxido-reductase are associated with slow flux through p-oxidation and 

accumulations of long-chain acyl-CoA esters and acylcamitines. As expected, elevated 

levels of saturated medium-chain acylcamitines were found in the incubations of 

mitochondria from medium-chain acyl-CoA dehydrogenase deficient patients. The 

authors rightly state that radio-HPLC of intermediates of mitochondrial fatty acid 

oxidation is an important new technique to study the control, organisation and defects of 

the enzymes of p-oxidation [140].

In an entirely different approach, urinary carnitine esters can be converted enzymically 

into CoA esters with carnitine acetyltransferase. This is followed by separation of the 

resulting CoA esters on a radially compressed cartridge of Radial-Pak Cg with a mobile

phase containing 0.025 M tetraethylammonium phosphate in a linear gradient of 1 % - 

50% methanol [143]. Spectrophotometric detection at 254 nm was utilized for 

quantitative investigations of propionic, methylmalonic and isovaleric acidemias. The 

enzymic conversion approaches quantitative yields for acetyl and propanoyl esters as long 

as large amounts of carnitine are not present. This potential problem is not usually 

serious because acidemia patients produce little free carnitine in their urine [143]. A 

mixed chromatographic matrix of calcium phosphate supported on macroporous silica 

microparticles, which has similar selectivity and chemical inertness to hydroxyapatite and 

mechanical resistance to the pressures generally used in HPLC, has been used to separate 

biomolecules such as carnitine derivatives and sugars [144]. Finally in this discussion of 

HPLC, a new method for the determination of acetyl-D-camitine in the L-enantiomer by 

enzymic reaction has been reported [145]. The D-isomer was converted stereoselectively

42



by electric eel acetylcholinesterase into D-camitine and then separated and determined by 

ion-pair reversed-phase HPLC.

The techniques covered in this section share with gas chromatography two key 

disadvantages. The chromatographic process is inherently sluggish and hence does not 

lend itself to population screening, and neither GC nor HPLC provides structural 

information on the eluting analytes. The latter deficiency can be addressed, as with gas 

chromatography, by coupling with mass spectrometry. In addition, the application of 

LC/MS obviates the need for derivatization with a chromophoric group.

Perhaps the most well developed method to date, which addresses some of the problems 

of alternative methods, is one consisting of a combination of FAB with either single or 

tandem mass spectrometers [146]. FABMS is a method whereby a beam of atoms or ions 

of high translational energy is directed at the surface of a solution of the sample in a 

suitable liquid matrix [65]. Glycerol has been used as the liquid matrix, for experiments 

described in this thesis, to provide sensitivity and stability to the FAB ionisation stage. In 

the case of free carnitine and acylcamitines the presence of the ammonium functional 

group accounts for the sensitivity of FABMS [147]. Recently, electrospray coupled with 

single or tandem MS has superseded FAB in this approach and this methodology will be 

discussed in detail in Chapter 6 .

Tandem mass spectrometry (MSMS) when coupled with FAB and estérification of the 

carboxylic acid functionality of acylcamitines [148,149] increases both selectivity and 

sensitivity, FABMSMS monitors a controlled fragmentation giving rise to a fragment at 

m/z 9 9  from acylcamitine methyl esters (C2 - C^g-i) and looks to a mass range (m/z 2 0 0  - 

500) for compounds which have given rise to this particular fragmentation, this is termed 

a precursor ion scan. Using this technique it is reported that fifteen specific disorders of 
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branched-chain amino acid catabolism can be diagnosed via acylcamitine analysis [65]. 

Although this method has many advantages in terms of samples throughput, analysis of 

urine, blood spots and plasma and its simplicity, isolation of isomers which depends on 

partition rather than just mass differentiation requires further confmnational analysis 

using other techniques and as with other methods the need for derivatization is not 

avoided. The instrumentation required to carry out the type of analyses discussed here is 

much more complex than a bench-top system and due to its high initial financial outlay is 

not widespread in hospitals.

Thin-layer chromatography has been used in two significantly different ways. The first is 

as a fractionating technique prior to application of an analytical measurement [150, 151] 

and the second as a method of directly analysing carnitine and its esters [152]. Picomole 

limits of detection have been reported for short-chain acylcamitines with quantification 

by radioisotopic-exchange using high-performance liquid or thin-layer chromatography 

[132]. Two-dimensional TLC has also been applied to the analysis of acylcamitines 

[153] as has a planar-layer version of HPLC known as overpressured-layer 

chromatography. The latter technique combines advantages of high-performance TLC 

and HPLC [154, 155, 156] with carnitine levels determined to 3pg. Evaluation of short- 

chain acylcamitines (C2 - C5 acyl groups) using combinations of paper chromatography 

(butan-l-ol:acetic acid: water - 8 :1 :1) followed by hydrolysis and enzymic assay have 

allowed detection of this group of acylcamitines at nanomolar levels [157]. Although 

analysis using TLC coupled to a mass spectrometer has been reported [158], applications 

of this technique are not widespread. While allowing the detection of acylcamitines such 

methods are cumbersome and provide only limited structural information and resolution 

when compared to other available methods.
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Nuclear magnetic resonance spectrometry has also been used for the analysis of 

acylcamitines. When using the technique of NMR spectroscopy for the analysis of 

acylcamitines a high-field instrument must be used to override inherently poor sensitivity. 

In this way NMR can be a fast, powerful technique for monitoring metabolic disorders in 

neonates, [159, 160] with millimolar level accumulation of substances monitored by 

iR NMR spectroscopy. One problem posed by this method is that while it can be applied 

to detection of major urinary acylcamitines, trace levels of these molecules in a more 

complex matrix would not be detected.

iR NMR spectroscopy using a new Karplus equation for the observed vicinal coupling 

constants has provided an insight into the conformations of acylcamitines in an aqueous 

matrix during interaction with the CAT enzyme. The relative energies of conformers 

suggest that carnitine and acetylcamitine adopt a folded form for binding to the enzyme 

[161]. lR NMR spectroscopy has also been used to measure the enantiomeric excess of 

carnitine both directly [162] and indirectly [163].

1.5 AIM OF TfflS PROJECT

This thesis will outline the development of methodology towards the analysis of 

acylcamitines from a number of biological matrices. Its aim is to improve the detection of 

acylcamitines from biological fluids making the analysis suitable for use on 

instrumentation available in the hospital laboratory. The application of a number of 

analytical and mass spectrometric techniques, including GC, GC/MS and electrospray 

mass spectrometry (ESI/MS), in the analysis of acylcamitines, gives a snapshot of 

metabolism at the time the sample is acquired and a hope that their future use could aid in 

the diagnosis of SUDS and the detection of neonatal disorders ôf fatty acid oxidation.
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CHAPTER 2

A BRIEF SURVEY OF THE MAIN ANALYTICAL TECHNIQUES

USED IN THIS PROJECT
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2.1 GAS CHROMATOGRAPHY

Gas chromatography was the main analytical technique used in the project for separating 

mixtures of acylcamitines at trace level from biological matrices. In the case of GC, the 

sample is transported in a gaseous phase through a SGE BP5 fused silica capillary column.

The columns used were 12 - 25m long with 0*2 - 0*3 mm internal diameter (ID).

Separation depends on the differing partition coefficients of the components of the sample 

(i.e. the distribution of analytes between the gas and stationary phase). The carrier gas in 

the work described was helium and was used at a constant flow rate.

A Carlo Erba 5300 Mega series gas chromatograph with flame ionization detection was 

used with an SGE BP5 fused-silica capillary column, 24.5 m x 0.33 mm I.D. and 0.5 pm 

film thickness. Helium, 35 cm/s linear velocity, was used as the carrier gas. The hydrogen 

and air inlet pressures were 70 and 120 kPa respectively. The temperature of the detector 

was maintained at 280 °C. For each analysis, the temperature program for the oven was 

87 °C (on injection) to 250 °C at a rate of 10 °C/min. On reaching 250 °C the oven was 

maintained at this temperature for 15 min. Cold on-column injections (Grob type injector) 

were performed with a 5 pi Hamilton syringe.

2.2 COLD ON-COLUMN INJECTOR.

When using an on-column injector the column is extended into the inlet and the sample is 

injected directly onto the column head. The subsequent heating of the column and the flow 

of the carrier gas facilitate the vaporisation of the analyte. The column is extended into a 

heated rotary valve, with an open and shut lever. A very fine syringe needle passes 

through the valve and the sample is injected onto the top 2  cm of the column, The top of 

the column is cooled (nitrogen gas) for 30 seconds prior to the injection. Direct application



of the sample means that the on-column injection is very suitable for trace analysis, with 

the amount of analyte applied to the column maximised. When used to analyse biological 

samples, the top few centimetres of the column must be removed occasionally to prevent 

accumulation of contamination.

Figure 2.1 Schematic of an on-column injebtor 

2 3  MASS SPECTROMETRIC DETECTORS.

In this project where gas chromatographic analysis was followed by mass spectrometric 

detection, two forms of mass spectrometer were used: quadrupole and ion trap systems. 

The first mass spectrometer used was a VG20-250 quadrupole mass spectrometer coupled 

to a Hewlett Packard GC. The quadrupole device (as illustrated in Figure 2.2 ) consists of 

molybdenum rods (4x12  mm) precisely aligned by two ceramic discs and screws. 

Electrical power of up to 12 kV peak to peak was applied to the rods and a radio-frequency 

potential is superimposed. Ions are repelled from the ion source into the quadrupole 

analyser with a small accelerating voltage. From the application of these fields oscillations 

of ions occur, some leading to stable trajectories when the ions will be transmitted to the 

detector. Those with unstable trajectories eventually collide with the rods and do not enter 

the detector. The ion detector in the case of these analyses was a Galileo 4771 series

Cai

Injector 
/  vent

Valve lever

Injector heater

Capillary column
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photomultiplier. The multiplier has a conversion dynode operating at 0 volts in the 

positive mode and +5 kV in the negative ion mode. The upper limit of the source pressure 

is about 1.05 x 10"5 Pa and for the quadrupole and the detector is approximately 1.05 x 

10-6 Pa.

The EI/CI ion source of the quadrupole mass spectrometer consists of a gas-tight ion 

chamber, which has alternative ion exit apertures, selected from outside the source 

housing. The larger is used when El spectra are acquired, the smaller allows a higher 

chamber pressure for Cl. Large mass filters and pre-filters allow detection of ions up to 

2 0 0 0  mu.

Detector

Quadrupole rods

if voltage 
supply

dc voltage 
supply

Ion source

Figure 2.2 Schematic of a quadrupole mass spectrometer

In the second case an ion trap mass spectrometer was employed (Finnigan MAT ITD 

800A). Ion Trap mass spectrometers work on the principle of the ions being trapped in an 

evacuated cavity, through the application of appropriate electric fields. The trapped ions 

are then expelled from the trapping cavity selectively by mass. When represented 

schematically, the trap can be compared to a two dimensional slice through a quadrupole,
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with electrodes top and bottom (end caps) of the cavity and a central ring electrode, this 

structure is illustrated in Figure 2.3.

The end electrodes are in this case earthed, though they can be either of ac or dc bias, while 

the ring electrode has a sinusoidal radiofrequency potential applied to it. Application of 

differing potentials or earthing of these end caps can be utilised to alter the mode of the ion 

trap to include the formation of a burst of ions by passing a pulse of electrons into the trap. 

Other modes include the trapping of all created ions and by changing the Rf potential, thus 

creating unstable motions, and sequentially ejecting according to m/z values (smaller m/z 

values first).

Ions are therefore trapped within the chosen electrical field and those with stable 

trajectories in this oscillating field will remain in the cavity while others will be ejected. 

Ions in the trap must acquire unstable motion before they can be released from the trap.

On ejection from the cavity many ions leave through the lower end cap and strike the 

detector and are recorded. This very rapid cycle is then repeated on another batch of ions, 

thus building up mass spectra. Chemical ionisation with isobutane is also possible and was 

used within this project. Ion traps are operated with approximately 0.13 Pa of trapped 

helium. This has the effect of improving both the resolution and the sensitivity of the 

instrument.

Collisions of the reagent ions with helium tend to calm the amplitude and velocity of their 

movement forming a more central and tighter bunch of ions for release. This improvement 

can be seen in the corresponding increase in peak heights and their narrowing.
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Figure 2.3 Schematic of the ion trap detector

The different systems used for the analyses outlined in this thesis were:

(i) A VG 20-250 quadrupole system coupled to a Hewlett-Packard 5890 fused-silica 

capillary column, 25 m x 0.22 mm I.D. and 0.25 pm film thickness, and an SGE OCI-3 on- 

column injector. Helium (35 cm/s linear velocity) was used as the carrier gas. On-column 

injections were made at an initial column temperature of 50 °C. The temperature was 

immediately ramped at 30 0C/min to 80 °C and then increased to 250 °C at 10 0C/min and 

held for 15 min. The direct line interface was maintained at 250 °C and a source 

temperature of 200 °C was used. El was effected with an electron beam energy of 70 V 

and emission current of 100 pA.

(ii) A Finnigan MAT bench-top ion trap detector, Model 800A, coupled with a Varian 

series 3400 gas chromatograph fitted with the same column as in (i). The GC conditions 

were as above except that splitless injection at 230 °C was used and the initial column
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temperature was 90 °C. The open-split interface was maintained at 240 °C. The electron 

beam energy of 70 eV and emission current of 5 pA. The ion source temperatures were 

220 °C (for El) and 180 °C (for Cl). Chemical ionization mass spectra were recorded 

using isobutane as a reactant gas.

In both GC/MS systems mass spectra were recorded repetitively every second.

2.4 INFRARED SPECTROSCOPY (IR).

The infrared region is on the lower frequency side of the visible region of an 

electromagnetic spectrum, where energy level separations are smaller. In IR spectroscopy 

the sample is irradiated in the infrared frequency range and individual functional groups 

absorb at different frequencies within this range. Downward bands typical of a particular 

functionality can then yield useful structural information about a compound of interest.

2.5 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (NMR) .

In this technique a magnetic field is applied to the sample of interest which causes the 

nuclear spin states to align with or against the force of the applied field. Nuclei such as 

hydrogen and carbon thirteen (13C, the isotope of normal 12C) then absorb in the 

radiowave region of the electromagnetic spectrum. A number of nuclei can be observed 

through the use of magnetic fields to provide information not only about themselves but 

also about their interactions with neighbouring nuclei. With the combined information of 

iff and « C  spectra much structural information has been gained during the course of this 

work.
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NMR spectra were obtained on a 90 MHz Jeol FX90Q multinuclear spectrometer and a 

400 MHz Briicker JNM-EX400 instrument.

2.6 FAST ATOM BOMBARDMENT/MASS SPECTROMETRY (FAB/MS).

Fast atom bombardment spectra were obtained on the VG 20-250 quadrupole system used 

for GC/MS described above (2.3 [i]) The gas used to generate the fast atoms was xenon at 

a cylinder pressure of 6.895 x 104 Pa. This pressure is adjusted to give a gun current of 1 

mA at about 8 kV. The atom beam emerging from the source is largely concentrated about 

an axis 2 mm in diameter. Glycerol (2-5 pi), the matrix solvent, was placed on the 

stainless steel tip to which the samples, in solid form, were added and dissolved. Spectra 

were obtained every second, alternating between the positive and negative ion modes of 

acquisition.

2.7 ELECTROSPRAY MASS SPECTROMETRY (ESI/MS).

Electrospray mass spectrometric analyses of samples of biological origin were performed 

on two systems: (i) A VG Trio-2000 operating with a cone voltage of about 30 V. The 

carrier solution was water/acetonitrile (50:50) containing 1 % formic acid at a flow rate of 

5 pl/min. A 10 pi injection loop was used for sample introduction, (ii) A VG Platform, 

bench-top, single quadrupole mass spectrometer (Fisons Instruments/VG BioTech). Loop 

injections were performed using a Rheodyne 8125 injector with a 5 pi loop. Injection 

volume was 5 pi from the sample residue in 50 pi acetonitrile/water. The carrier solution 

and flow rate was as in (i). This technique will be discussed further in Chapter 6  of this 

thesis. The electrospray work completed for this thesis was carried out at VG biotech (now 

Micromass), Altringham, Cheshire, UK.
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2.8 LIQUID CHROMATOGRAPHY-ELECTROSPRAY MASS 

SPECTROMETRY (LC-ESI/MS).

LC/MS was performed using two columns: (i) an Applied Biosystems, Aquapore 

RP-30,100 x 1.0 mm column. Gradient elution at 40 pl/min was performed using a linear 

gradient from 95% 0.01M ammonium acetate, 5% methanol to 100% methanol over 20 

min with the eluant introduced directly to the electrospray source. Analyses were also 

carried out using (ii) a Phase Separation 1 mm x 25 cm C8 column with acylcamitines 

isocratically eluted with 100% 0.01M ammonium acetate for 5 min followed by a ramp to 

100% methanol, with introduction into the source as above. This technique will be 

discussed further in Chapter 6  of this thesis.
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CHAPTERS

THE ANALYSIS OF CLINICAL URINE SAMPLES.



3.1 INTRODUCTION.

A study of acylcamitines in a manner similar to that described in this thesis has been in 

progress at the Open University for three years prior to the initiation of this project. The 

initial developmental work was carried out towards the analysis of mono-carboxylic 

acylcamitines from spiked and clinical urine samples and was successful in the diagnosis 

of a small number of inherited metabolic diseases from their acylcamitine profile by GC 

and/or GC/EIMS.

The initial investigation into the viability of GC/MS for the analysis of acylcamitines led 

also to the development of a work-up which was carried out on 0.5 ml urine samples prior 

to analysis (see Section 3.4.2) [1]. This work-up has been modified, giving rise to a second 

method of sample preparation which, being a  more simple solvent extraction [2 ], can now 

be used in place of the former. This modification was developed due to evidence of 

inefficient extraction of long-chain acylcamitines from urine prepared via the former ion- 

exchange procedure. The poor recovery via ion exchange chromatography was thought to 

be due to irreversible binding of the long-chain acylcamitines to the resin. The modified 

method involves an alcohol extraction using the guideline of like-dissolves-like (i.e. long- 

chain alcohols extract long-chain acylcamitines more efficiently) followed by 

centrifugation to breakdown any emulsion formed, removal of the supernatant and drying 

of the solvent layer. Both solvent extraction and ion-exchange chromatography leave a 

residue, which contains acylcamitines in a form that is sufficiently pure for subsequent 

chromatographic analysis.

Acylcamitines themselves are not suitable for gas chromatography, due to their 

zwitterionic non-volatile nature. Sample volatility is a requirement of the technique. To
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Figure 3.1 Cyclization of acylcamitines to form lactones



overcome this problem, chemical derivatization through a cyclization method was . 

developed (see Figure 3.1). This procedure involves heating the extracted acylcamitines in 

acetonitrile in the presence of a small amount of base for about 35 minutes as described in 

Section 3.5.3. Under these conditions the carboxylate functionality intramolecularly 

attacks the quaternary ammonium group. Nucleophilic attack displaces trimethylamine 

yielding a lactone. This lactone ring derivative is volatile in nature and suitable for 

analysis by gas chromatography. An added advantage of this derivatization is that the 

lactone ring retains a clear memory of the acylcamitine from which it was formed, unlike 

any degradative procedure that converts the acyl groups into the corresponding carboxylic 

acid (as illustrated in Figure 3.1).

The work described in this chapter includes the isolation and analysis of a number of 

clinical urine samples for the presence of diagnostic acylcamitines. In the cases illustrated, 

acylcamitines were isolated from urine using the established ion-exchange method of 

Lowes and Rose (1990) [1]. Both urine samples presented were worked-up and 

derivatized approximately two years before the following set of analyses were carried out, 

which is a testament to the stability of the lactone structures formed from acylcamitines 

extracted from biological fluids. These examples demonstrate (i) the variety of 

acylcamitines which can be extracted, derivatized and detected via this method, (ii) studies 

of both endogenous and exogenous origin, (iii) application of an ion trap detector for the 

first time and (iv) the development and advantages of chemical ionisation.
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3.2 DIAGNOSIS OF AN INHERITED METABOLIC DISEASE.

3.2.1 INTRODUCTION TO THE CLINICAL PROBLEM.

A urine sample was presented from the patient, a neonate, diagnosed as suffering from the 

inherited metabolic disease medium chain acyl CoA dehydrogenase deficiency (MCADD).

The sample was prepared (Section 3.5.2 - 3) and analysis was carried out by GC/MS using 

a VG 20-250 mass spectrometer with a Hewlett Packard GC (for analysis conditions see 

Section 2.3(i)). The data obtained did not fully agree with the proposed diagnosis of 

MCADD. These results were such that the diagnosis, which at the time had become a 

cause of concern to the clinicians involved, was refined to multiple acyl-CoA 

dehydrogenation deficiency (MADD), also known as glutaric acidemia type III (GA III). 

This change in diagnosis has been confirmed by independent medical analysis.

This male patient was bom in 1984 and from the age of one year had suffered episodes of 

hypoketotic seizures, hypoglycaemia (when fasting for >15 hrs) and moderate muscle 

weakness. In 1988 the patient presented with Reye-like symptoms including hepatic 

dysfunction, hyperammonemia, hypoglycaemia (without ketosis) and moderate metabolic 

acidosis. Urine analysis showed massive dicarboxylic aciduria and increased levels of 

organic acids and elevated levels of organic acids. Elevated levels of medium-chain fatty 

acids (including cis-4-decanoic acid) were found in plasma.

However, the sensitivity of the original analysis was very poor and only the two major 

disease specific acylcamitines were identified. The sample was examined again with an 

ion trap detector and chemical ionization also applied. Before the analysis is discussed, an 

introduction to the disease in question will be outlined.
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Figure 3.2 Metabolic system and enzymes causing the disorder MADD. This 

disorder encompasses a complex group of co-factors powering the 

enzyme system of dehydrogenation and characterized by multiple 

acylcamitines, and other indicators, in biological fluids.



The MADD disease is different in nature from metabolic defects usually identified and 

those described elsewhere in this thesis. It is a disorder encompassing a complex group of 

co-factors (i.e. ATP, ETF) which power the enzyme system of dehydrogenation. It is 

characterised by disturbances to the mitochondrial flavin-containing acyl-CoA 

dehydrogenase enzymes as noted above. These enzymes are mitochondrial 

dehydrogenases, which require flavin adenine dinucleotide (FAD), as a co-factor [3] and 

oscillate between oxidised, two-electron-reduced, and one-electron-reduced states [4]. 

Inherited metabolic diseases of P-oxidation are usually characterized by a deficiency or 

. abnormality o f a specific chuindcngth acyl CoA dehydrogenase within p oxidation. While 

showing these characteristics, MADD also presents itself as disorders of branched-chain 

amino acid catabolism with specific reference to isovaleryl-CoA and a-methylbutyryl CoA 

dehydrogenases, the enzymes glutaryl-CoA and oarcosinc-CoA dehydrogenases are also 

affected [5]. The enzyme systems affected by the metabolic disorder MADD are outlined 

in Figure 3.2

Patients with MADD fall into a number of distinct groups. The autosomally recessive 

nature of the disorder means that each type is consistently found within a family. In one 

family however, X-linked inheritance has been proposed with the disease manifesting itself 

in neonates [6 ].

Three types of MADD have been described (i) neonatal onset without congenital

anomalies, (ii) neonatal onset with congenital anomalies and (iii) mild or later onset.

Lethargy, hypotonia. Severe acidosis and hypoglycaemia usually characterise the first and

second forms. Infants without congenital anomalies present symptoms within the first

twenty four hours and seldom survive the first week of life, this is referred to as the Type 1

disease. In the second neonatal form (MADD Type 2) a lack or absence of riboflavin may 
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be responsible for dysmorphic characteristics observed [7, 8 , 9, and 10]. Neonatal patients 

with congenital anomalies are often premature and present with symptoms, as described 

above. Also, an odour similar to that present in isovaleric acidemia, due to an 

accumulation of volatile short-chain organic acids, occurs within the first few days of life. 

The third MADD type, the milder, late on-set form of the disease is manifested in similar 

clinical symptoms as the former but the patient will probably only suffer intermittent 

illness [11]. Patients with this type of MADD have very variable characteristics and times 

of presentation. Some patients have been symptom-free during childhood, presenting with 

symptoms only in adult life [12]. In these cases the disorder may be treated with 

riboflavin administration [13, 14]. Patients who only later present with MADD symptoms 

may develop a Reye Syndrome-like illness and these patients survive longer [15, 16,17,

18]. Studies at the protein level in MADD have suggested a deficiency in the electron 

transfer flavo-proteins (ETF) or electron transfer fiavd-protein ubiquinone: oxido-reductase 

(ETF-DH) as potential factors in this disorder [19, 20, and 21].

Urinary organic acids have been reported as abnormally high in many cases of MADD 

indicating the presence of short-chain volatile acids and a wide range of other acid types. 

The excretion of compounds of this chain-length is due to a defect in or an absence of the 

enzyme medium-chain acyl-CoA dehydrogenase within p-oxidation, preventing oxidation 

beyond this point. MCADD can be incorrectly diagnosed as Reye's syndrome or sudden 

infant death syndrome (SIDS). MCADD is triggered by excessive fasting (>12 hr) and in 

some cases is only identified when a sibling is identified as having suffered from the 

disorder, post mortem. Also characteristic of this disorder is a secondary carnitine 

deficiency and dicarboxylic aciduria, with the excretion of Cg - C jq dicarboxylic acids,

when stressed from fasting. Organic acids are also reported as elevated in serum and 

cerebrospinal fluids.
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The acylcamitines detected in urine samples of MADD would also be expected to 

encompass a wide range of acyl groups though those in plasma may be of lower 

concentration [22]. The diversity of acylcamitines expected in the case of MADD 

however, allows its unique diagnosis and this variety will be clearly illustrated with results 

from two clinical urine samples analysed. The analytical data obtained are discussed in 

this thesis chapter.

3.2.2 INITIAL SAMPLE ANALYSIS

Prior to the work presented in this thesis the urine sample, prepared as in Section 3.4.2, and 

described above was analysed by GC/EIMS using a VG 20-250 mass spectrometer 

(Chapter 2, Section 2.3). The results obtained indicated the presence of only two 

diagnostic acylcamitines, at levels close to the detection limit of the instrument, and the 

internal standard [25]. The internal standard used in this study was 4- 

phenylbutanoylcamitine which whilst mimicking the actions of acylcamitine is a synthetic 

rather than a naturally occurring acylcamitine. El and Cl spectra for the internal standard 

are shown in Appendix (i).

The two urinary acylcamitines were identified and confirmed as their corresponding 

lactones through their gas chromatographic retention times and mass spectral information, 

as compared with those from synthetic standard lactones of octanoylcamitine and 

isovalerylcamitine. The presence of these two metabolites in a clinical urine sample was 

the evidence that gave rise to the diagnosis of MADD as isovalerylcamitine would not be 

expected in a simple case of MCADD, As described above (Section 3 .2 ,1) these two 

metabolites in a single urine sample would be indicative of a defect within p-oxidation and 

of isovaleryl-CoA dehydrogenase, which is involved in leucine catabolism.
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The detection of octanoylcamitine lactone is indicative of the disease MCADD, 

characterised by the presence of medium chain acylcamitines (C^ - C jq) in biological

fluids. The mechanism for secondary carnitine deficiency in MCADD is unknown but is 

possibly due to the high levels of excreted octanoylcamitine [48].

The presence of the isovalerylcamitine lactone on its own would be evidence for the 

disease isovaleric acidemia. Isovaleric acidemia is a defect of short, branched-chain fatty 

acid oxidation, which was the fust disorder of fatty acid metabolism identified by OC/MS, 

in 1966 [23]. At that time the enzyme involved in this defect, isovaleryl-CoA 

dehydrogenase, had not been discovered [24]. This acidemia is characterised by the 

presence of isovaleric acid in the blood., plasma or the urine and often presents itself in the 

form of recurrent episodes of lethargy and vomiting. An infection and/or large intake of 

protein often trigger this, with treatment in these cases by glucose infusion. An odour of 

sweaty feet is also characteristic of this disorder, caused by an excess of isovaleric acid. 

Plasma analysis by GC for these short-chain fatty acids during an acute episode shows a 

level of isovaleric acid which is several hundred times above the level in controls, even at a 

basal level in patients the acid level is several times higher than that of controls. Small 

amounts of hyperammonia and hypoglycaemia are indicative of this disorder as is 

secondary carnitine deficiency [24].

3.2.3 RESULTS AND DISCUSSION. •

Further work has now been carried out on the urine sample described above, after 

approximately two years of storage at about 0° C, in a Teflon sealed sample tube. These 

results were obtained using a Varian GC with a DB5 column connected to a Finnigan 

MAT ITD 800A iôn trap system. The sample was run over a temperature programme (for 

analysis conditions see Section 2.3). Table 3.1 provides a listing of acylcamitines 
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identified from the urine sample, and confirmed by retention times, mass spectra and 

library matches with synthesised or commercially obtained standards. Given that the mass 

spectra were acquired every second with no interscan delay, the scan number corresponds 

to the retention time in seconds. All of the lactones with butanoyl or larger acyl groups 

exhibit ions at m/z 85 (7) and 144 (6 ), and lower homologues yield ions at m/z 84 (5). The 

process of fragmentation of acylcamitines to yield these very characteristic fragments is 

illustrated in Figure 1.5, Chapter 1, opposite page 38.

Identification of acetylcamitine lactone was made in the El mode through the occurrence 

of the protonated molecule, m/z 145 (20%) which is indicative of some self-chemical 

ionization in the ion trap when large amounts of a compound are present. Such self­

chemical ionization is common in an ion trap when high concentrations o f acylcamitine 

elute. The base peak in the El spectrum of acetylcamitine at m/z 84 (100%) is due 

elimination of acetic acid, giving the unsaturated lactone ring fragment (5). In the larger 

homologues the fragmentation to give the response at m/z 144 is a McLafferty 

rearrangement of the ring and the beginning of the side-chain (6 ). The rearrangement is 

characteristic of acylcamitines beginning at butanoylcamitine. Fragmentation of all 

acylcamitines produces m/z 85, which is derived from the lactone ring (7) and is often the 

base peak with El analysis.

Chemical ionization of lactones, using isobutane, is characterized by three particular m/z 

values. All acylcamitines produce m/z 85, which is again derived from the lactone ring (7), 

and m/z 125 which has not been structurally identified. The third (and usually base) peak 

identified in spectra of these compounds is the protonated molecule, at an m/z value one 

greater than the relative molecular mass of the acylcamitine in question.
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Figure 3.3 illustrates a typical GC/CIMS total ion chromatogram for a MADD urine 

sample, which has been prepared for analysis in the manner described in this chapter. As 

can be seen there are a number o f significant peaks, which may prove diagnostic (these 

acyloxylactones are listed in order o f chromatographic retention time in Table 3.1). A 

selection o f mass spectra used to identify acylcamitines from the MADD sample and 

compile Table 3.1 are presented in Appendix A 1-9.

TABLE 3.1. Comparison o f GC retention times: standard lactones vs. scan number o f 

peaks as shown in Figure 3.3.

COMPOUND NAME SCAN
NO./STANDARD

SCAN
NO./SAM PLE

(a) Acetylcamitine lactone 329 331
(b) Propanoylcarnitine lactone 400 401
(c) Isobutanoylcarnitine lactone 431 430
(d) Butanoylcamitine lactone 472 471
(e) 2-Methylbutanoylcarnitine lactone 501 503
(f) Isovalerylcamitine lactone 509 511
(g) Hexanoylcarnitine lactone 624 626
(h) An octenoylcarnitine lactone - 745
(i) An octenoylcarnitine lactone - 748
(j) Trans-Oct-3-enoylcarnitine lactone 766 -
(k) An octenoylcarnitine lactone - 770
(1) Octanoylcamitine lactone 772 773
(m) A decenoylcarnitine lactone 887 887
(n) Decanoylcarnitine lactone 908 913
(o) 4-Phenylbutanoylcarnitine (IS) 969 973

Acetylcamitine lactone (Figure 3.3 scan 331 and Appendix A1 ) was clearly shown to be 

present in the urine sample which has been diagnosed as that o f a patient suffering from the 

disorder, multiple acylcamitine dehydrogenation deficiency. 1 his compound is the end 

product o f P-oxidation (and has a number of other sources). This ambiguous source o f 

acetylcamitine means that the presence o f this compound is not diagnostic.
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The second acylcamitine identified from the gas chromatogram was propanoylcarnitine 

lactone, the C3 side-chain acylcamitine (Figure 3.3 scan 401 and Appendix A2). The

presence of this acylcamitine is in itself indicative of a number of inherited disorders of 

fatty acid or amino acid metabolism, these are discussed further in Chapter 4 of this thesis. 

Propanoylcarnitine lactone was identified with acetylcamitine initially by the presence of 

the characteristic fragment in the El mode at m/z 84 (30%), in this case the fragmentation 

yielding m/z 57 (100%) is also significant, probably resulting from CHgCE^CO"1". A 

protonated molecule resulting from self-chemical ionization in the El mode is seen here at 

m/z 159 (5%). In the Cl spectrum the base peak is m/z 85 with the characteristic m/z 125 

(5%) also present. With a relative molecular mass of 158 the compound is detected with

an [M + H]+ ion at m/z 159 (30%).

Separation of isomeric acylcamitines has also been shown in a number of cases from this 

MADD urine sample. Isobutanoylcamitine (Figure 3.3 scan 430 and Appendix A3) and 

butanoylcamitine (Figure 3.3 scan 471) lactones both have a relative molecular mass of 

172 and these two compounds are separated by approximately forty seconds. The El mass 

spectrum of isobutanoylcamitine lactone indicates the expected fragmentation to yield m/z 

84 (80%). The base peak at m/z 71 is probably the side-chain ion, C3H7CO+. Again self­

chemical ionization of this compound is apparent with the detection of a peak at m/z 173 

(10%). In the Cl spectrum the fragmentation pattern is now familiar with responses at m/z 

values of 85 (100%), 125 (5%) and the protonated molecule at m/z 173 (65%). The mass 

spectrum of butanoylcamitine lactone was as expected very similar to that of its isomer but 

with a larger peak at m/z 144.

The next pair of peaks in the chromatogram from this MADD urine sample are also 

isomers. 2 Mcthylbutanoylcomitine lactone (Figure 3.3 scan 504 and Appendix A4) and
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isovalerylcamitine lactone (3-methylbutanoylcamitine lactone, as shown in Figure 3.3 scan 

511 and Appendix A5) are separated by eight seconds in retention time. While this is not 

as significant as the previous separation it can be seen that the peaks are resolved. The El 

spectra are very similar though the relative abundance of individual fragment ions, such as 

m/z 144, is higher in the case of isovalerylcamitine lactone. The corresponding Cl spectra 

are also similar, with base peaks at m/z 187 for [M + H]+ ions, with differences only in 

abundance and presence or absence of smaller fragments.

Those acylcamitines described above are all short-chain acylcamitines and are from 

various sources within the metabolic system. A second chain-length group of 

acylcamitines was also detected, these are medium-chain acylcamitines (C^-Cjq). The 

first of these is hexanoylcarnitine lactone (Figure 3.3 scan 626, Appendix A6 ), the six 

carbon side-chain acyloxylactone. The El spectrum of hexanoylcarnitine lactone shows a 

response at m/z 201  (2 %) indicating some self-chemical ionization of the sample and the 

target fragments of m/z 85 (100%) and 144 (20%) are also significant. In the Cl mode the 

mass spectrum the base peak corresponds to the lactone ring fragmentation and m/z 125 

can also be detected with a relative ion abundance of about 5% that of the base peak. The 

protonated molecule of hexanoylcarnitine at m/z 201 (50%) is also significant.

Unsaturated Cg acylcamitines were also detected in this sample. Four potential 

octenoylcamitines are featured in Table 3.1, an example of this group is presented as 

Figure 3.3 scan 745, Appendix A7). Although these only differ in the position of the 

double bond, all having a relative molecular mass of 226, their separation is significant 

enough to determine their presence using mass chromatograms for the m/z 85 fragment or 

the protonated molecule m/z 227 in the Cl mode. In both the El and Cl modes the 

characteristic fragments described above for the saturated acylcamitines are also present.
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The saturated Cg acylcamitine, octanoylcamitine lactone (Figure 3.3 scan 773, Appendix 

A8), was also detected in this sample. In the El mass spectrum octanoylcamitine lactone 

illustrates typical acylcamitine fragmentation, m/z 85 (100%), 144 (15%) and some self­

chemical ionization to yield an [M + H]+ at m/z 229 (1%). The Cl spectrum is also as 

expected with m/z 85 (100%), 125 (5%) and 229 (65%). In the case of the Cjq 

acylcamitines an unsaturated, decenoylcarnitine lactone (Figure 3.3 scan 887), was 

identified and the saturated decanoylcarnitine lactone (Figure 3.3 scan 913) was also 

identified. The internal standard used in this extraction is also included as Figure 3 scan 

973, Appendix A9.

In the cases of all the acylcamitine lactones described, identification was based on both 

retention time and mass spectral information. From Table 3.1 it can be seen that the 

retention times of the acylcamitine lactones detected in this urine sample correspond very 

closely (within 4 seconds) to those of the standards and this was found to be the case both 

for within-day and between day analyses.

The ion trap spectra of standard acylcamitine lactones were used in the form of a 

computerised library and sample acylcamitine lactones matched well with their equivalent 

standard spectra. In general the retention times for acylcamitines have proved very 

reproducible, both on a day-to-day basis and in the longer term. This reproducibility was 

such (as illustrated in Table 3.1) that a comment on the presence or absence of a particular 

acylcamitine lactone might be made on the basis of retention time prior to any mass 

spectral information.

There is no indication in this sample of the presence of any long-chain acylcamitine 

lactones though this could be due to a number of factors including solubility and extraction
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method. As this sample was prepared using ion-exchange columns it is likely that any 

long-chain acylcamitines bound irreversibly to the cationic resin and would not be found in 

the final sample. This is one reason why the alcohol extraction method developed by 

Morrow and Rose might now be favoured [2],

The original GC/MS analysis of the same sample by Lowes [25] showed only two 

diagnostic acylcamitines. The current detection of this wide range of acylcamitines is due 

to improved sensitivity in the ion trap with respect to the quadrupole system. It might be 

considered that adoption of another extraction procedure could allow the detection of the 

long -chain acylcamitinec indicative of a long chain Acyl CoA dehydrogenase deficiency 

(LCADD) which would also be expected in the case of MADD. However, it should be 

noted that there was variability in response presented for a number of metabolites in 

recorded literature [11].

3.3. ANALYSIS OF BIOLOGICAL SAMPLES FOR DRUG METABOLITES.

3.3.1 THE METABOLISM OF SODIUM VALPROATE.'

Valproic acid (VPA, 2-n-propylpentanoic acid) is an important anti-epileptic drug and is 

used for control of a range of epileptic seizures. Its pharmacological properties were first 

discovered in 1963 by Meunier et al [26]. Valproic acid is rapidly released in man in the 

form of the unchanged drug and there have also been a large number of metabolites 

reported in human and animal studies. The drug is a branched-chain fatty-acid and the 

identified metabolites indicate the use of a number of metabolic pathways as might be 

expected [27]. VP A can be conjugated with glucuronic acid to yield VPA-glucuronide, 

metabolized via p-oxidation, transformed by ©i-oxidation and metabolized by ©2 -
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oxidation (the products of these metabolic routes and their approximate plasma 

concentrations are shown in Table 3.2).

The presence o f 4-keto-VPA has also been proposed as a product of valproate metabolism 

from human serum and urine extracts and its structure confirmed by GC/MS with synthetic 

reference compounds and the use of deuterium pHs) labelled VP A [30]. VP A itself has 

been reported at 30-230 pg/ml in plasma and is probably responsible for at least 80% of 

the anticonvulsant effect of VPA during chronic therapy in man [29].

Table 3.2. Known metabolites of the drug, valproic acid. [28, 29].

p-oxidation 3-keto-VPA (1.5-14 jig/ml), with 2-en-VPA 
(4-18 pg/ml) and 3-hydroxy-VP A 

(0.3-7 pg/ml) as intermediates in this pathway.
co i-oxidation 2 -n-propylglutaric acid (> 2  pg/ml), with 

4-en-VPA (> 2 pg/ml) and 5-hydroxy-VP A 
(> 2  pg/ml) as intermediates.

co2 -oxidation 3-en-VP A (> 2 pg/ml) and 4-hydroxy-VPA 
(> 2  pg/ml)

In treatment of patients with valproic acid the onset of the therapeutic effect of the drug is 

often longer than expected when compared with the short half-life of the drug [31, 32]. 

One possible explanation of this effect may be the slow accumulation of a valproate 

metabolite, which is then responsible for the pharmacological effect [28]. Carry-over 

effects o f regular VPA treatment has been demonstrated in humans and patients up to two 

weeks after the drug was withdrawn, and VPA levels were below the detection limit in 

plasma [31]. No metabolite has been shown to be as active as VPA itself and observed 

metabolite concentrations in plasma suggest the anticonvulsant effect of the metabolites to
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(a) Neonatal patient, sodium valproate therapy, 
Total ion chromatogram.
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(b) Neonatal patient, sodium valproate therapy,
Mass chromatogram, m/z 85.
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Figure 3.4 (a) TIC illustrating the acyloxylactones extracted from the urine
sample of a neonatal patient undergoing Sodium Valproate therapy, 
(b) Mass chromatogram, m/z 85, from the TIC above

Peak assignment - A 2 -methylpropanoylcamitine lactone, B 2-methylbutanoyl 
carnitine lactone, C valproylcamitine lactone, D octanoylcamitine lactone, peak E  is 
discussed further in text and its El and Cl mass spectra are shown as Figure 3.5.



be 2-20% that of VPA with prolonged treatment in man thus questioning their therapeutic 

role [29 ].

Schàfer et al (1980) verified that, after the glucuronide of valproic acid, 3-keto VPA is the 

main metabolite during long-term medication with valproic acid [33]. Losher (1981) [28] 

demonstrated that the metabolic products of p-oxidation (including intermediates, see 

Table 3.2) were the main VPA metabolites in plasma

Valproic acid and its metabolites have also been shown to transfer across the placenta.

Cord serum content of VPA was higher than in maternal serum with 3-keto-VPA and 2-en- 

VPA the main metabolites in both [34, 35]. VPA is thought to act, at least in part, via the 

G ABA system in the brain with 4-en-VPA initially demonstrating potency similar to that 

of VPA in increasing brain GAB A concentrations [29].

3.3.2 A CLINICAL STUDY

A urine sample from a patient treated with an anti-epileptic drug, sodium valproate, was 

prepared through the use of ion exchange column (Section 3.4.2) as a clean-up procedure, 

followed by derivatization [1]. Initial analysis using a VG 20-250 mass spectrometer with 

a Hewlett Packard GC indicated the presence of a number of compounds which were 

potential metabolites of this drug [25], though these were not confirmed. The stability of 

these acylcamitines was demonstrated when two years after the initial data were obtained 

the sample was again analysed using a Varian GC with a DB5 column connected to a 

Finnigan MAT ITD 800A ion trap system. The sample was subjected to a temperature 

programme (see Chapter 2, Section 2 .1 -3  for GC and MS conditions).
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(a) Neonatal patient, VPA treatment, El mass spectrum 
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(b) Neonatal patient, VPA treatment. Cl mass spectrum.
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Figure 3.5 El and Cl mass spectra for peak E, from Figure 3.4.

These spectra were used to add weight to the proposed assignment of peak E as the 
lactone of 3-ketovalproylcamitine, the proposed fragmentation o f which is illustrated 
in Figure 3.6.



Focusing initially on the retention time window where one would expect to detect Cg 

acylcamitine lactones there are three peaks of interest in Figure 3.4, shown opposite the 

previous page. The first is consistent in retention time and fragmentation to the standard 

lactone derivative of valproylcamitine (c) being dominated by [M+ H]+ ions at m/z 229 in 

the Cl mode whilst in El mode matching, within experimental error, the spectrum o f 

standard material. The presence of a small amount of octanoylcamitine lactone (d) was 

also detected and assigned by retention time and fragmentation pattern including a small 

response at m/z 229 in the Cl spectrum. As can be seen from the mass chromatogram of 

the base peak, m/z 85, (Figure 3.4 (b)) the peak assigned to the isomers valproylcamitine 

and octanoylcamitine lactones, both having relative molecular weights of 228 to the 

nearest integer, are clearly separated. In Figure 3.4 there, however, is a third peak (e) in 

the retention time window of interest.

On the page opposite figure 3.5 shows the El (a) and Cl (b) mass spectra for the peak (e). 

The El spectrum of this compound did not match that of any of the El spectra present 

within our computer library of acylcamitine lactones which includes most biologically 

active significant acylcamitine lactones. The Cl spectrum (b) is dominated by m/z 243 

lending weight to an assignment of 242 as the relative molecular mass from the 

fragmentation pattern as described above. The presence of m/z 85 in both the El and Cl 

spectra is consistent with the base fragment of acyloxylactones as is the presence o f m/z 

125 in the Cl spectrum. Referring again to the El spectrum and looking at a pattern of 

fragmentation (Figure 3.6 overleaf) relevant to the Cl assignment of 242 for the relative 

molecular mass a small peak at m/z 227 would be expected for [M - CHs’]*. The peak 

present at m/z 243 might correspond to a small contribution o f self-CI commonly giving 

rise to [M + H]+ ions in the ion trap mass spectrometer. In the literature the main 

metabolite of valproic acid in man is reported to be the 2-propyl-3-keto ester of VPA 

(3-oxo-VP A) reported as 3 - 60% of the observed VPA metabolites as shown by mass 
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Figure 3 .6  Structure and fragmentation of peak (E), proposed as
the lactone derivative of 3 -ketovalproylcamitine. The El and Cl mass 
spectra of which are shown in Figure 3.5.



spectrometry and isotope labelling [36] in plasma [37, 38] and urine [39, 40, 41]. The El 

mass spectrum of the methyl ester of 3 -keto-valproylcamitine has previously been reported 

[30]. The methyl ester showed three fragments in common with Figure 3.5 (a): loss of 

CH3O' to give m/z 141 (3%), formation of CHgCHzCO^ at m/z 57 (100%), and a 

McLafferty rearrangement (as depicted in Figure 3.6) leading to m/z 171. These data add 

some weight to the Cl interpretation of 242 as the relative molecular mass and the 

assignment of (e) as the lactone of 3-ketovalproylcamitine. Confirmation of this 

assignment awaits synthesis of the proposed acylcamitine. However, this is not a 

straightforward preparation as COCH2COOH compounds decarboxylate very readily.

Propionic acid in urine of patients has been detected with its structure confirmed by mass 

spectrometry and chromatographic identity with synthetic reference compounds [37,42] 

and valeric acid has been detected in rat urine [43]. In patients treated with VPA, 

equivalent acylcamitines to these free acids might from the evidence above accumulate. 

The GC/CIMS chromatogram, as described above, was therefore studied for the presence 

of these short-chain acylcamitines. A peak can be assigned to 2-methylpropanoylcamitine 

lactone on the basis of its retention time compared to synthetic standards, its fragmentation 

showing m/z 85 and the protonated molecule ([M + H]+) at m/z 159. This is labelled A in 

Figure 3.4 (opposite page 80). The presence of another acylcamitine is also proposed, 

based on retention time compared to synthetic standards, fragmentation showing m/z 85 

and 125 and the protonated molecule. This substance, marked as peak B, is ascribed to 

2-methylbutanoylcamitine lactone ([M + H]+ at m/z 187) which is in agreement with 

previous findings [44].
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3.4 CONCLUSIONS

What the data presented in this Chapter have clearly shown is that as the strength and 

sophistication of mass spectrometers increases so does the ability to use the 

instrumentation available to diagnose with greater accuracy and confidence.

The initial El analysis of the first sample provided sufficient information to question the 

diagnosis of MCADD and to propose a diagnosis of MADD. The present application of a 

more sensitive analysis and Cl in particular allowed a much more complete data set. 

Characteristic fragments have been illustrated and used to identify acylcamitines from the 

TIC and to provide El and/or Cl mass spectra for representative acylcamitine lactones as 

presented in Appendix A. Through the use of El and Cl we have been able to provide a 

range of data to allow the proposition of 3-ketovalproylcamitine as a metabolite present 

from a patient being treated with valproic acid. For a set of compounds that provided few 

M4" ions by El, the confirmation of relative molecular mass via abundant [M+H] 1 ions in 

the Cl mode facilitates structural assignment enormously.

Using the technique of lactonisation and with chromatographic sample analysis we have 

also been able to separate and therefore identify isomers. This is a huge advantage over 

techniques such as FAB/MS where the mode of sample ionisation precludes separation. 

Although this problem may be overcome with LC-ESI-MS/MS, as discussed in Chapter 6 , 

some of the time saving advances in sample throughput would have to be sacrificed to 

ensure chromatographic separation prior to analysis.

Urine has provided an excellent medium for the analysis of acylcamitines. It has been 

demonstrated here that samples are stable for long periods of time (2 years at 2°C) and 

provides a snapshot of the metabolic profile of an individual at the time of sampling. The
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extension of this method to the analysis of dicarboxylic acylcamitines (Chapter 4) and the 

analysis of acylcamitine from blood spots (Chapter 5) will add greatly to the scope of these 

analyses and the ease of obtaining samples from neonates.
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3.5 EXPERIMENTAL.

3.5.1 MATERIALS.

The authentic acylcamitines used to compile Table 3.1, standard valproylcamitine and 4- 

phenylbutanoylcamitine (internai standard) were synthesised as reported earlier [1, 45] or, 

where commercial reagents were available, obtained from Sigma (St. Louis, USA). N,N- 

diisopropylethylamine was purchased from Aldrich (Gillingham, UK), ethyl acetate (distol 

grade) and acetonitrile (distol grade) from Tisons (Loughborough, UK), Analar water from 

BDH Merck (Poole, UK). Reacti-vials (1 ml) from Pierce (Chester, UK), analytical grade 

ion-exchange resins form Bio-Rad (Hemel Hempstead, UK) and isobutane (99.995% pure) 

from gas products (Finchamstead, UK).

3.5.2 EXTRACTION OF ACYLCARNITINES FROM URINE SAMPLES (ION 

EXCHANGE METHOD)

The method for the extraction of acylcamitines from urine was based on the work of 

Norwood et al (1988) [46,47]. A 1 cm diameter column was packed with formate ion- 

exchange resin (2 cm3) , 100 - 200 mesh (Bio-Rad AG1-X8). This was converted to 

chloride form through elution of 1 M HC1 (10 ml) and the column was equilibrated with 

distilled water. The urine sample (0.5 ml) was added to the head of the column. 

Acylcamitines and neutral and cationic material were eluted with distilled water (2 ml) and 

the eluant acidified with 100 ml of 1 M HC1.

Hydrogen form cation-exchange resin was then used to further purify the eluant from 

above. The cation-exchange resin, 100 - 200 mesh, Bio-Rad AG50W-8X (2 cm3) was 

packed into a 1 cm diameter column and the eluant was applied to the column.
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HC1 (0.01 M, 5 ml) and distilled water (5 ml) were used to elute neutral and loosely bound 

cationic species. The acylcamitines were then eluted using 2 M NH4OH in 20% aqueous 

ethanol. The first millilitre was discarded and the remaining eluant collected and freeze- 

dried. The resulting residue was dissolved in 0.5 ml of distilled water, transferred to a 

Reacti-vial and freeze-dried. The standard cyclization procedure was then carried out to 

produce acylcamitine lactones for GC analysis [1].

3.5.3 STANDARD CYCLIZATION PROCEDURE.

PhenylbuUmuyluamilinc (200 pi, 500 mg/1 solution), the internal standard, was added to 

the extracted residue containing acylcamitines and this was then dried under a stream of 

nitrogen. Acetonitrile (400 pi) and 80 pi DP A solution (TV, /V-diisopropylethy lamine, 25 

mg/ml) were added to the residue in a Pierce Reacti-vial and the vial was shaken for about 

30 seconds. The mixture was then heated at 125°C for 35 minutes. The sample was then 

cooled to room temperature and dried under a stream of nitrogen. The resultant residue 

was taken up in 2 0 0  pi of ethyl acetate and filtered using a 2  pm filter and a glass syringe. 

The solution was stored in the freezer until analysed. A schematic of acylcamitine 

cyclization is shown in Figure 3.1, which can be found opposite page 67.
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CHAPTER 4.

ANALYSIS OF DICARBOXYLIC ACYLCARNITINES.



OCO(CH2)nCH3

Me3N+CH2CHCH2COO-

Monocarbo^Bc acylcamitines

O
II

OCOCCH^COH

Me3N+CH2CHCH2COO-

DicarboxyBc acylcamitines

Figure 4.1 A structural comparison of monocarboxylic and dicarboxylic

acylcamitines both if which can be used in the diagnosis of neonatal 

metabolic disorders.



4.1 INTRODUCTION.

It has been possible to characterise a number of inherited metabolic diseases due to the 

presence of acylcamitines derived from monocarboxylic acids at elevated levels in 

biological fluids and tissues of neonatal patients. In addition to the excretion of 

monocarboxylic acylcamitines many disorders can be diagnosed by the identification of 

dicarboxylic acylcamitines [1,2, 3]. A structural comparison of monocarboxylic and 

dicarboxylic acylcamitines is shown opposite in Figure 4.1. Disorders, which can be 

recognised from the dicarboxylic acylcamitine profile from biological fluids, include the 

metabolic state of diabetic ketosis [4], riboflavin deficiency [5, 6 ] and prolonged fasting 

[7] and disorders of P-oxidation. This latter group of diseases will be addressed here. The 

production of dicarboxylic acylcamitines in fatty oxidation defects is outlined in Figure 4.2 

overleaf.

Dicarboxylic acylcamitines have been analysed using a number of analytical techniques 

including high-performance liquid chromatography (HPLC) [8 , 9]. In most HPLC 

methods acyl-CoA esters formed from enzymatic conversion of acylcamitines are analysed 

[10] or the chromatographic properties of the acylcamitines are enhanced through 

formation o f their 4-nitrophenyl derivatives [11] (as described Chapter 1) . Gas 

chromatography (GC) [12] and gas chromatography mass spectrometry (GC/MS) [13] 

have also been used for this analysis although the detected compounds are usually the acids 

released on hydrolysis of acylcamitines. Direct analysis has been carried out using fast 

atom bombardment mass spectrometry (FAB/MS) [11, 14, 15], liquid chromatography 

mass spectrometry (LC-MS) [16], paper and thin layer chromatography, nuclear magnetic 

resonance (NMR) spectrometry [17] and a number of enzymatic and radioenzymic 

techniques (see Chapter 1).

The excretion of dicarboxylic acylcamitines has been highlighted due to a significant 

increase in adipic- (Cg), suberic- (Cg) and sebacic- (C jq) dicarboxylic acid levels under a

variety of conditions. It was demonstrated that medium-chain dicarboxylic acids are
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Figure 4.2 A schematic illustrating the production o f  dicarboxylic acids (DCA) 

and carnitine and glycine esters in fatty acid oxidation defects.



formed by cytochrome p450 mediated co-oxidation of medium-chain monocarboxylic acids 

in the cytosol o f the cell. Higher levels o f activity were associated with C |0 and C p  

monocarboxylic acids than with C 6 and C8 acids [18]. Patients with metabolic disorders, 

associated dicarboxylic acid excretion generally show a higher level of adipic (C6)

secretion than the longer chain lengths which would be predicted [19]. It has therefore 

been widely assumed [18, 19] that co-oxidation is responsible for the formation o f  C |0 and 

C 12 dicarboxylic acids at elevated levels. These acids are then chain-shortened by 13- 

oxidation to produce the and C 8 dicarboxylic acid profiles observed. Microsomal co- 

and co i-oxidation under normal conditions are responsible for 4-5% o f  fatty acid

metabolism. In an earlier study, Kolvraa (1979) [20] demonstrated that in rats the 

dicarboxylic acids, C p -C jg , from homogenated liver, when incubated, were even-

numbered lower-chain length dicarboxylic acids. It has been shown that both purified 

mitochondria and peroxisomes use identical systems for the transport, activation and [3- 

oxidation o f mono- and dicarboxylic acids.

Table 4.1 Dicarboxylic acids that are characteristic o f metabolic defects ( 19J.

D EFEC T D E N A R Y  O R G A N IC  A C ID S
L C A D D A d ip ic, suberic, sebacic and C p - ,C p -  d icarboxylic  acids

M C A D D A d ip ic, suberic, sebacic (saturated and unsaturated). H exanoyl-, suberyl-, 3- 
phenylpropanoylglycine, octanoylcarnitine, 

5-hydroxyhexanoic and 7-hydroxyoctanoic acid.

SC A D D E thylm alonic, m ethylsuccinic, butyrylglycine, butyrylcarnitine.

TC H A D A d ip ic, suberic, sebacic  (saturated and unsaturated), 3-hydroxy C 8 , C p ,  C p ,  C p

dicarboxylic acids.
M A D D , G A  II Sam e as SC A D , M C A D , LCAD plus glutaric, 2-hydroxyglutaric, isovalerylglycine, 

isobutrylglycine, isovalerylcarnitine, glutarylcarnitine.

Excretion o f dicarboxylic acids is indicative o f a number o f metabolic disorders (Table 4.1 ) 

[19] and can therefore be utilized as a tool for the identification o f disease (as with the 

mono-carboxylic acids). Since the same transport system is used as that studied for 

monocarboxylic acids, one can assume that dicarboxylic acids are present in the urine o f 

patients with these disorders, and this has been demonstrated by a number o f groups [14j. 

We aim to extend the analysis already available for simple acylcamitines to dicarboxylic 

acylcamitines. This would be a major advance, allowing some ill-defined dicarboxylic
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Synthesis of standard dicarboxylic acylcamitine lactones. These 

standard dicarboxylic acylcamitine lactones were used to gain 

spectrophotometric and chromatographic information as to the 

characteristics of these compounds.



acidurias to be investigated. A moderate generalized dicarboxylic aciduria (DCA) has 

been shown in 25% of 700 SIDS, siblings and controls [21]. The nature of the 

dicarboxylic acylcamitines is likely to reflect the DCA, so that any progress towards a 

simple analytical procedure in this area will allow these unclear findings to be readily 

investigated.

4.2 RESULTS AND DISCUSSION.

The aim of the experiments discussed here was to obtain a lactone derivative of a 

dicarboxylic acylcamitine, from a clinical urine sample, that was amenable to analysis by 

GC and GC/MS. The primary stage towards achieving this goal was the synthesis of a 

model acylcamitine lactone from which chromatographic and mass spectral information 

could be obtained. With such data, successful later extraction and derivatization of 

dicarboxylic acylcamitines could be assessed and confirmed.

The formation of these standard compounds involved the synthesis of a lactone ring, fi- 

hydroxylactone, in the first instance and its reaction with the relevant diacid dichlorides to 

produce the required authentic compounds (Figure 4.3).

The synthesis o f the fi-hydroxylactone (Section. 4.3.2) was a key element of this part o f  the 

work [22, 23]. A scheme of this synthesis is shown as Figure 4.4, overleaf. The standard 

dicarboxylic lactones were required to obtain further information as to the expected 

products o f the extraction and derivatization o f dicarboxylic acylcamitines from biological 

fluids. In this way diagnostic structural information via the spectrometric techniques o f IR 

and NMR and that available from GC and GC/MS would be available.

The initial step in this synthesis was the formation of the cyclic anhydride (Figure 4.4 (a)). 

This was formed as described with a high yield (91%) and its presence confirmed through 

IR and NMR spectroscopy as well as its melting point. All analytical data were compared 

to those recorded by Lowes [23] for confirmation. The next stage of the synthesis involved
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Figure 4.4 Schematic illustrating the synthesis of the p-hydroxy lactone. The 

experimental procedure involved in this synthesis is outlined in 

Experiment 4.3.2 (1 - 3)



the production of a diester acid compound (Figure 4.4 (b)). This synthesis was also 

successful, with a satisfactory yield of 65%, and was validated in the same manner as the 

cyclic anhydride. The final stage of the reaction was the reduction of the diester-acid 

compound to the required hydroxy lactone (Figure 4.4 (c)). This stage of the synthesis 

presented a number of problems.

It was found that this reaction required scrupulously dry conditions to be successful. In 

particular if  the ^BuOH solvent was wet, the reducing agent was ineffective and starting 

materials were recovered. The detrimental effect of water was minimised by drying and 

redistillation of the tertiary butanol (b.p. 82°C), taking care to discard the first distillate 

which results from an azeotropic mixture with water (b.p. 79°C). The distillate was stored 

for not more than 24 hours, over molecular sieve. With the measures described here, 

synthesis of the hydroxy lactone was achieved. Though the yield of the final product was 

low (25%) it was similar to that reported previously [24] and the final product was shown 

analytically to require no further purification.

Due to the problems associated with the final stage synthesis of the hydroxylactone and its 

poor yield, it was decided to develop a method for the subsequent reaction with a diacid 

dichloride on a more readily available alcohol, in place of the hydroxylactone. In this way 

any necessary modifications to the procedure, for the synthesis of model acylcamitine 

lactones could be made and assessed without expending the hydroxylactone.

The alcohols chosen were propan-2-ol and cyclopentanol. The former was selected 

because it is a simple, secondary alcohol and the latter chosen because it is secondary and 

cyclic, in common with the hydroxylactone. Both alcohols were used in the reaction as 

described in Experiment 4.3.3 with the required products illustrated in Figure 4.5 overleaf. 

Analysis was carried out on a VG 20-250 quadmpole instrument with a direct insertion 

probe in the electron ionization (El) mode. A response at m/z 161 in the case of propan-2- 

ol was assigned to the [M + H]+ of the required product (its actual relative molecular mass 

is 160). The protonated molecule can be explained by self-chemical ionization of the
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Figure 4.5 The required products from the reaction of succinyl dichloride 

with either (a) isopropanol or (b) cyclopentanol.

These compounds when synthesised were used to develop a method for the 

later synthesis of model dicarboxylic acylcamitine lactones



sample as can occur when too much sample is present on the probe. A peak at m/z 203 can 

also be clearly seen above that of the noise level. This may be assigned to the [M + H]+ 

ion of a by-product in the form of the diester of the required product. In the reaction 

utilizing cyclopentanol similar results were obtained. The mass spectrum obtained again 

demonstrated evidence of self-chemical ionization (m/z 187) of the product and also self- 

chemical ionization (m/z 255) of the equivalent diester, at a probe temperature of 100°C.

On completion of these test reactions it was predicted that three products would result from 

the analogous reactions of a diacid dichloride with the hydroxylactone. These are depicted 

overleaf in Figure 4.6. The ratios of each would depend on the reaction conditions utilized. 

They were the required lactone (4.6.a) and two contaminants: the diester (4.6.b) mentioned 

above and the parent diacid (4.6.c), because the diacid derived from the diacid dichloride 

was present in excess in the reaction mixture. Minimization of the diester was achieved 

through the order of addition of reactants in the test reactions. Addition of the alcohol to 

the diacid dichloride ensured that at no stage in the synthesis was there an excess of 

alcohol present thus minimizing the potential for attack at both ends of the diacid 

dichloride. For the same reason the molar ratio of acid chloride groups to alcohol was also 

greater than unity resulting in a high level of the diacid in the product after work-up. The 

presence of the diacid was confirmed by Thin Layer Chromatography and NMR 

spectroscopy. In the case of TLC a smeared spot of material over a wide Rf range 

characterised the presence of diacid over a wide Rf range. In the case of the NMR 

spectroscopy the presence of extra carbonyl group carbon atoms in the 13C NMR was 

indicative of this excess.

A base wash of the product mixture was introduced in order to remove this diacid 

contamination. In this case the diacid remains in the aqueous layer as a carboxylate ion 

while the required lactone, being less hydrophilic was extracted into the organic, 

dichloromethane layer. The reaction was then applied to the synthesis of a number of 

standard dicarboxylic acyloxylactones with reaction conditions that were identical to those 

of the model compounds. Infrared analysis was carried out in the 4000-600 cm-1 range

95



o o
Il II

H0C(CH2)nC - 0 >

O O

(a) Required product

?\ ?\ 
p —ccch^ c - o

O O o o

(b) Unwanted diester compound

î ï
HOC(CH2)nCOH

(c) Diacid (from excess of acid chloride)

Figure 4.6 Three potential products from the synthesis of dicarboxylic

acylcamitine lactones. These were determined from experiments into 

the reaction of diacid dichloride with the model alcohols illustrated in 

Figure 4.5.



and the spectrum obtained proved very diagnostic (as detailed in the figure legend to 

Figure 4.7) of the test reaction products and of the synthesised acyloxylactones. It was 

also possible to monitor the hydrolysis of the side-chain acid chloride to the carboxylate 

group by this method (Figure 4.7).

Analysis of the standard acyloxylactones was also carried out using the technique of Fast 

Atom Bombardment (FAB). In this technique a small amount of the analyte is placed on 

the metal coated tip of a probe and dissolved in a drop of a matrix solvent that is polar and 

fairly involatile (e.g. glycerol). The probe is then inserted in a low pressure source. A 

beam of atoms is produced through the ionizaton of a gas, usually xenon, argon or helium. 

These ions are accelerated through an electrical field arid the resulting fast ions are focused 

through a gas chamber where the process of charge exchange occurs to yield fast atoms 

[24]. This process is illustrated, below.

The production o f Fast Atoms in FAB 

Xe+ * (fast) + Xe (thermal) —> Xe (fast) + Xe+ ' (thermal)

These fast atoms are then used to bombard the probe tip and hence the sample. The large 

kinetic energy of the atoms is used to ionize or volatilize the sample. Through variation of 

the electric gradient over the probe it is possible to select positive or negative ions for 

analysis. FAB has been shown as a valuable method for the analysis of polar involatile, 

and thermally unstable compounds. The lactones prepared are stable but they were 

considered sufficiently polar to provide FAB mass spectra.

The FAB spectrum obtained from the bombardment of suberyl lactone in a glycerol matrix 

resulted in detection a protonated molecule [M + H]+, at m/z 259. Glycerol fragments and 

adducts can also be seen in this spectrum as can glycerol/sample or glycerol/fragment 

adduct ions. In the NMR spectrum of succinyl lactone (as Figure 4.8, page 97). Both 

solvent and diacid contamination are present and the required product is also detected. 

These contaminants are annotated in the spectrum of Figure 4.8 and the ppm assignments 

for
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Figure 4.7

(a) Initial IR with very little broadening in the acid (3500-2500 cm'^) stretch region. There is a strong 

chloride (C ~ 0 ,1800 cm 'i) carbonyl peak present and die ester carbonyl (1740 cm'^) is also visible.

(b) Slight hydrolysis has occurred showing a broadening of the acid stretch region, the chloride peak has 

diminished and an acid (1700 cm 'l) carbonyl peak beginning to show and the ester peak more clearly 

defined.

(c) Hydrolysed product. A lactone (1790 cm"*) carbonyl has now become visible in the region where die 

chloride had absorbed, and the chloride peak has gone completely. The ester is not much changed with 

respect to (b) and die acid carbonyl is now the dominant peak in die region. The broadening of the 3700- 

2300 cm 'l acid OH stretch region confirms die presence of carboxylic acid.
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Compound
name Structure Retention

time

C4
Succinyl lactone

OII
0 — C ( C H 2)2C O O H 11.45 min

C6
Adipyl lactone

0IIo—C(CH2)4COOH

A> 14.56 in in

C8
Suberyl lactone

oII
o — C ( C H 2) 6C O O H

/ J

17.21 min

Figure 4.9 Retention times (GC, BP5 column), and structural information for the 

three dicarboxylic acylcamitine lactones (as TMS derivatives)



succinylcamitine lactone are also annotated and illustrated. On completion of the base 

wash, analysis of the product was performed by GC and GC/MS with successful 

identification of the required product.

If one considers the structure of the compound for GC analysis, the effect of the free acid 

capping the hydrocarbon side-chain will have a detrimental effect on the quality of the 

chromatography obtained. This is due to polar interactions with the stationary phase in the 

silica capillary which causes zonal spreading over a wider area and the compound is 

detected as a broad, tailing peak. To overcome this problem of poor peak shape a 

derivatization was performed on the molecule by means of trimethylsilylation (TMS) of 

the terminal free acid. This derivatization, using BSTFA, improved the peak shape 

significantly.

In the same way chromatographic and mass spectral information was generated by 

GC/EIMS and GC for the TMS derivatives of succcinyl- (C4), adipyl- (C6) and suberyl- 

(C8) lactones synthesised via the B-hydroxy-lactone. The structures and retention times for 

these compounds are illustrated in Figure 4.9, opposite.

With these data generated the next step was to synthesise standard dicarboxylic carnitines 

(Experiment 4.3.5) which could then be cyclised via the standard lactone preparation. The 

synthesis was carried out using adipyl dichloride as likely to be typical of the range of 

compounds of interest and to react in a manner, which could be considered normal for this 

group. The synthesis (Figure 4.10, overleaf) produced the required acylcamitine but with

very low yields though analysis by FAB showed an [M + H]+ ion was present at m/z 290. 

NMR ( 13C) spectroscopy was also,used to confirm the formation of the acylcamitine. The 

carbonyl (C=0) region in a 13C spectrum is approximately 160-200 ppm and in the case of 

analysis of the required adipylcamitine one would expect to observe three peaks. The first 

corresponds to the terminal carboxyl group on the carnitine backbone of the molecule, the
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second to the side-chain free acid and the third to the side-chain ester carbonyl group. In 

the unpurified material there were at least four peaks identified in the carbonyl region. On 

purification comprising of a reprecipitation from propan-2 -ol these extra peaks were no 

longer detected and three carbonyl peaks can be clearly defined in this area (Figure 4.11. 

page 1 0 0 ).

It was noted during work on the lactone reaction that a large tailing peak was seen in the 

area o f 7.5 min (GC) which on TMS derivatization sharpened its shape and proved to have 

half the area of the internal standard peak. GC/MS analysis showed that adipic acid was 

not the source of this peak. Phenylbutanoic acid was then tested in a similar manner and 

this proved to be the unknown peak. On analysis of the original phenylbutanoyleamitine 

(synthesised 1988) it was found to be contaminated with a large amount of its parent acid 

which indicated the breakdown of the phenylbutanoyleamitine over approximately three 

years.

Attempts to cyclize the synthesised adipylcamitine proved unsuccessful. It had been 

shown in the work of Lowes (unpublished) that the success of the lactonization was 

sensitive to the purity of the acylcamitine and its concentration, with higher concentrations 

producing lower cyclization yields than smaller concentrations. It was suggested that, at 

high concentrations, intermolecular reactions leading to polymerization might predominate 

over the required intramolecular reaction. It was considered that the purity of the 

acylcamitine could also be a factor in the results observed here and therefore an alternative 

synthesis pathway for the dicarboxylic acylcamitine, which has been reported at high yield 

and reasonable purity, was proposed. Experiments (Experiment 4.3.6) were carried out in 

order to produce a dicarboxylic acylcamitine (adipylcamitine) in a purer form and in larger 

amounts than had previously been achieved, as shown in Figure 4.12, opposite page 101.

This purer sample of adipylcamitine was subjected to the cyclization procedure followed 

by production of the TMS derivative. This sample was analysed after overnight storage in 

the freezer. The resulting mass chromatogram consisted of one peak with a retention time 

of 8.3 minutes, identified as the TMS derivative of adipic acid. This identification was 

99



.L
Y

.n
o.

. 
.0

20
..

. 
10

.J
UL

Y.
 1

99
1

Figure 4.11 The I3C NMR spectrum used to confirm the synthesis o f 

Adipylacmitine

C4
i(

»o
n



made on the basis of the characteristic loss of 15 mass units from the molecular ion, m/z 

275, and also using a library search. Analysis using GC alone gave rise to a chromatogram 

with two peaks. The peak corresponding to adipic acid and a later eluting peak with a 

retention time of approximately 14 minutes. The GC/MS analysis was carried out with a 

number of samples of the adipylcamitine with a response detected at a retention time of 

approximately 15 minutes. This corresponds to the retention time window for 

adipylcamitine lactone as detailed in Figure 4.9, opposite page 98. This was a very low 

response identified by producing mass chromatograms of predicted fragments.

The above experiment was later repeated with one change, that is, analysis of the TMS 

derivative was carried out immediately rather than after the sample had been stored in the 

freezer, with substantially different results. There was only one major peak in the resultant 

chromatogram, rather than that of the diacid TMS, and this was detected in the 15 minute 

region where the adipylcamitine lactone would be expected. There was also a peak in the 

region where the diacid TMS was expected but this was very small compared to the peak 

described. After airtight storage for 24 hours in the freezer, GC analysis showed that the 

peak of interest, 14.7 minutes had approximately halved in size. Accompanying this 

breakdown, a peak had appeared at 8.5 min, which proved to be the diacid TMS; it was 

also noted that there was a peak at a retention time o f 17.2 min, which had not been present 

in the initial chromatogram.

Analysis by GC/MS was not possible at this stage and when the sample was analysed, by 

GC 48 hours later, it was found that the peak at 17.2 min had disappeared almost entirely. 

However, the peak for the diacid and the peak at 14.7 min had halved size in intensity and 

a number of smaller peaks had appeared. At this point the sample was not considered 

viable for GC/MS. It was proposed that the large peak may have been due to the required 

compound but some decomposition of the product had obviously occurred in the solution 

containing excess derivatizing agent.
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From these experiments it was clear that a problem existed either in the cyclization stage of 

this procedure or in the stability of the lactones formed. Where analytical data have 

suggested that the required acylcamitine is present and that the sample has little other 

contamination, GC and GC/MS studies have failed to give definitive identification of 

lactones from the cyclization. This led to the possibility that the nature of the molecule 

itself was in some way preventing the cyclization from occurring efficiently, if at all. In a 

comparison of the structures of mono- and dicarboxylic acylcamitines the obvious 

difference was the presence of an extra acid group in the side-chain o f the latter. To 

ascertain the effect of the free carboxylic acid group, the synthesis of a model intermediate 

molecule was proposed (Figure 4.13, overleaf).

The model molecule, instead of having a free terminal acid group, has a methyl ester group 

but maintains the extra bulk of the dicarboxylic acid side chain. Thus with the terminal 

acid capped in this way it would be possible to assess the role of the free acid group in 

hindering the cyclization, if  any. The compound chosen for synthesis was adipylcamitine 

mono-methyl ester as this was the equivalent intermediate to the adipylcamitine 

(dicarboxylic acylcamitine) on which most of the previous work has been carried out,

Three methods, FAB, NMR (both proton and carbon thirteen) and GC (after cyclization) 

were used to obtain analytical information on the required product for this experiment.

The relative molecular mass of the methyl ester is 303. In analysis by FAB this would 

appear in the FAB'1' spectrum as an [M + H]+ ion at m/z 304. The peak at m/z 304 is large 

in this spectrum which reflects to some extent the purity of the product. The main peaks in 

the mass spectrum are those at the m/z values of 58, 85, 100, 111, 144, and 162; possible 

structures for these m/z values are indicated below. The base peak in this spectrum occurs 

at m/z 162 which corresponds to the [M + H]+ of carnitine (possibly derived from some 

unreacted carnitine hydrochloride) and to a potential fragment ion. The peaks at m/z 85 

and 144 are usually present in the electron impact mass spectra of acylcamitine lactones 

representing fragmentations to yield the lactone ring {m/z 85) and a McLafferty 

rearrangement of the ring and the beginning of the side chain to give m/z 144. Peaks at
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Figure 4.13 Three structures for comparison, (a) Monocarboxylic acylcamitine,

(b) The model methyl ester compound, (c) Dicarboxylic acylcamitine



m/z 85 and 144 in the FAB spectra of acylcamitines themselves are proposed to have 

different structures as shown in Figure 4.14, overleaf. The other fragments are equivalent 

to those seen in the spectra of authentic acylcamitines, hence confirming the identity o f the 

prepared substance.

The %H NMR spectrum of the methyl ester contained the expected resonances from the 

required product though there were extra peaks present which, may be assigned to 

unreacted carnitine. It was possible from the integrals to estimate the approximate purity 

of the methyl ester (60%). This assignment was aided by the I3C NMR spectrum, which, 

also indicated a lack of by-product contamination. The 13C NMR spectrum of the product 

clearly demonstrated the presence of three carbonyl groups, though these have not been 

individually assigned. The carbonyl groups were in the region of 165 - 175 ppm.

It was proposed to study the effect the presence of free acid would have on the cyclization 

of the methyl ester (intermediate compound) (Experiment 4.3.8.1, samples prepared as in 

Table 4.2), as mimicking that capping the end of the dicarboxylic side chain. To do this 

the cyclization step was carried out in the presence o f an ammonium acetate solution. 

Approximately equimolar solutions of each reagent was used, in the case of the acetate this 

was carried out to mimic the molar quantities of the terminal free acid usually present. All 

the samples were initially analysed by GC and the resultant chromatograms were used to 

monitor the efficiency of the cyclization of the methyl ester relative to that of the added 

octanoylcamitine. Octanoylcamitine may be considered the internal standard in these 

experiments as its cyclization has been more extensively studied.

Following GC and GC/MS analysis of the resulting solutions the lactone of the synthesised 

methyl ester was found to have a retention time of 13.3 min. It was however detected with 

a lower peak height than was expected from the previously studied monocarboxylic acids; 

this at least demonstrates that the derivatization has been successfully achieved. The other 

peak in the chromatogram (5.44 min) was, after GC analysis of the initial reactants in the 

synthesis o f the methyl ester, shown to coincide with the retention time of adipyl

102



m/z 58

m/z 85

m/z 144

m/z 162

[M+H]+

H3Cn
n += c h 2

h 3c

HOOC—C+H —C H = C H 2

Me3N+CH2CH=CHCOOH

OH

Me3N+CH2CHCH2COOH

OCO(CH2)nCOCH3

Me3N+CH2CHCH2COO-

Figure 4.14 Key fragments from FAB+ analysis of the Methyl Ester intermediate 

(m/z 304)



monomethyl ester. The presence of this compound would indicate that the initial reaction 

did not go to completion and this would partly explain the lower peak height recorded. A 

second sample containing all three of the compounds being studied (the methyl ester, 

octanoylcamitine, ammonium acetate) was subject to the usual cyclization conditions. In 

the resulting chromatogram the octanoylcamitine lactone peak was of the expected peak 

height and shape. The ratio of the methyl ester to octanoylcamitine lactones was shown 

(by peak height) to be approximately 1:6 . This result could be explained through 

contamination or poor yield of the methyl ester, though as described earlier the lH and 13C 

data suggest that the synthesized methyl ester was approximately 60% pure. Therefore this 

result suggests that the cyclization of the model methyl ester appears to be hindered. This 

low efficiency of cyclization of the methyl ester was alsu recorded in a third sample. It 

was also found that the presence or absence of ammonium acetate did not affect the 

efficiency of production of methyl ester lactone. The free acetate ion also had had little or 

no effect on the cyclization of octanoylcamitine alone.

Experiments replicated the results of the original samples in that the reagents (methyl ester: 

octanoylcamitine), which are approximately equimolar in concentration, gave peak areas in 

a ratio of approximately 1:6 .

To assess the effect of the free acid on already cyclized lactones, ammonium acetate was 

added after cyclization was complete. Its effect (if any) was then monitored to assess the 

stability of the lactones to free acid groups in solution. This demonstrated that ammonium 

acetate had no noticeable effect on the already cyclized octanoylcamitine lactone, with 

analysis by GC.

In a study to assess the effect of acylcamitine concentration on the efficiency of 

lactonization (Experiment 4.3.8.2, samples prepared as in Table 4.3), the conditions from 

experiments containing all three reagents from above were replicated, but using 

concentrations ten times lower, This was effected because the acylcamitine concentrations 

were higher than those normally used in the cyclization reaction. From the most
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concentrated sample, the chromatogram demonstrated the methyl ester to octanoyl 

carnitine ratio as 1:6 by peak area, as seen earlier. The peaks were detected at the retention 

times of 11.8 min (octanoylcamitine lactone) and 13.94 min (the lactone of the methyl 

ester). The other samples with lesser concentrations in the study also demonstrated these 

ratio and retention times. This therefore suggests that the concentration of the reagents in a 

sample for cyclization (at the levels shown in these experiments) does not affect the 

efficiency of cyclization.

In summary, the analysis carried out in this experiment suggests that the dicarboxylic 

acylcamitines would be expected to cyclize far less efficiently than their equivalent 

monocarboxylic acids, under the standard conditions employed. Though the free acid 

group may contribute in some way to their slow rate of cyclization external COO" has no 

effect. The main problem seems to be the effect of an additional polar functional group in 

the acyl side-chain. This group may constrain the acylcamitine to a configuration that 

cannot readily undergo the cyclization, i.e. unfavourable association may occur between 

the acid group in the side-chain and the ammonium group.

Given that the dicarboxylic acylcamitines and monocarboxylic acylcamitines are unlikely 

to be cyclize efficiently under the same set of conditions, this line of research was given a 

lower priority than the development of the standard procedure for analysing dried blood 

spots.
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4.3 EXPERIMENTAL.

4.3.1 MATERIALS.

Malic acid, acetonitrile (distol grade) and ethyl acetate (distol grade) were obtained from 

Tisons (Loughborough, UK). Acetyl chloride, dioxane, sodium borohydride, thionyl 

chloride, toluene, M Af-diisopropylethylamine, adipyl mono-chloride and trichloroacetic 

acid were purchased from Aldrich (Gillingham, UK). Methanol and chloroform were 

acquired from BDH Merck (Poole, UK) also acetone (Analar), ammonium acetate, sodium 

carbonate and sodium hydrogencarbonate. The diacid dichlorides of succinic, adipic and 

suberic acids and the corresponding parent dicarboxylic acids, were obtained from Aldrich, 

as were the alcohols propan-2 -ol, cyclopentanol, tertiary butanol and the derivatization 

agent BSTFA. Reacti-vials (1 ml) were purchased from Pierce (Chester, UK), acrodisc 

filters (0.2 pm) from Gelman (Northampton, UK) and glass syringes from Weber 

Scientific (Teddington, UK). Hydrochloric acid, dichloromethane and diethyl ether were 

obtained from Khone-Poluence (Manchester, UK). Phenylbutanoylcamitine was 

synthesised via phenylbutanoic acid (Aldrich) and dl-camitine hydrochloride (Aldrich) 

using previously reported methods [25,26]. Octanoylcamitine was purchased from Sigma 

(St. Louis, USA).

4.3.2. SYNTHESIS OF THE P-HYDROXY LACTONE

The synthesis was carried out in three steps. The preparation of a cyclic anhydride, its 

conversion to a diester acid compound and its reduction to the hydroxylactone were carried 

out by a modification to a literature method (Figure 4.4) [22].

4.3.2.1 CYCLIC ANHYDRIDE SYNTHESIS.

Malic acid (13,4g, *H NMR Appendix B l) was dissolved in redistilled acetyl chloride (1 2 0  

ml) and stirred overnight at 50°C. The solution was then cooled, gravity filtered and rotary
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evaporated. The resultant yellow solid was then washed with ethanol-free chloroform and 

dried to yield an off-white solid. Melting point 80-83°C, yield 13.2g, (91%).

Infrared data: 1700 cm"1 (ester), 1820 cm"1, 1760 cm-1(C=0, anhydride), 

m  NMR, CDClg, 90MHz. 5 2.2 ppm (s, 3H, CH3 COO), 3^0 ppm (dd, 1H, H-2b), 3.4 ppm

(dd, 1H, H-2b), 5.5 ppm (dd, 1H, H-3) - Appendix Bl.

4.3.2.2 DIESTER-ACID COMPOUND SYNTHESIS.

The cyclic anhydride (12.46g, !H NMR Appendix B2) was dissolved in methanol (160 ml) 

and stirred at room temperatuie, overnight. The solution was then rotary evaporated, 

washed with toluene and dried to yield a white solid. Melting point 56-58°C, yield 11.03g, 

(62.5%).

IR: 3400 - 2900 cm-1 (OH stretching), 1700 cm"1 (acid, COOH), 1720 cm-1 (ester

stretching, C=0), 1230 cm-1 (ester stretching, C-O).

NMR, CDCI3 , 90MHz. Ô 2.1 ppm (s, 3H, CH3 COO), 2.9 ppm (d, 2H, CH2), 3.7 ppm

(s, 3H, CH3 OCO), 5.5 ppm (t, 1H, CH), 10.3 ppm (s, 1H, COOH). .

4.3.2.3 HYDROXY-LACTONE SYNTHESIS.

Sodium borohydride (3.35g) was added to freshly distilled tertiary butanol (^BuOH, 50ml) 

and this was then heated to reflux. The diester compound (4.2g) was dissolved in a 

mixture of fBuOHrmethanol (18:3.5 ml). This solution was then added to the sodium 

borohydrideABuOH and kept under reflux for 20 hours yielding a viscous liquid. The 

reaction was quenched by the addition of 7.8 ml of redistilled acetyl chloride in 110 ml of 

ethyl acetate and filtered. The filtrate was then neutralised with NaHC03, filtered and then

rotary evaporated which left a clear product which on freezing (for storage) formed 

crystals (1.12g, 25%).
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IR: (Appendix B l) 3700-3000 cm-1 (OH stretch), 3000-2900 cm-1 (C-H stretch),

1780 cm-1 (lactone, C=0 stretch) -  Appendix B3.

lH NMR, 90 MHz, CDClg. Ô 2.3-3 ppm (m, 2H, H-a/b), 3.9 ppm (d, 1H, OH), 4.2-4.5 

ppm (m, 2H, H4 a/b), 4.7 ppm (m, H, H-3). The 13C spectrum of the p-hydroxy lactone is 

included as Appendix B4.

GC retention time for the synthesised hydroxy lactone was recorded at approximately 3 

minutes. The GC conditions for this analysis were as follows: a cold-on-column was used 

with a temperature program of an initial temperature 87°C, which was ramped to 260°C at 

10°C per minute. This upper temperature was then maintained for 5 minutes.

The GC, IR and NMR data suggested that the final product was reasonably pure.

4.3.3 SYNTHESIS OF MODEL ESTERS BY REACTION OF VARIOUS 

ALCOHOLS W ITH DI (ACID CHLORIDES).

4.3.3.1 GENERAL PROCEDURE.

Diacid dichloride (2 mmols) was added to diethyl ether (30 ml) and the relevant alcohol (2 

mmols) was added to this solution. The mixture was stirred at room temperature overnight 

and then refluxed for 2.5 hours. When cooled the mixture was rotary evaporated and 

hydrolysed by standing open to air overnight.

The experimental procedure given here was applied to the secondary alcohols, propan-2 -ol 

and cyclopentanol, which were taken as models for the hydroxylactone.

ClCO(CH2)nCOCl + ROH -» ROCO(CH2)nCOCl -» ROCO(CH2)nCOOH
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433.2 ANALYSIS OF PRODUCTS.

(A) REACTION WITH PROPAN-2-OL.

IR: 2700-3500 cm' 1 (COOH str), 3000-2900 cm' 1 (C-H stretch),

1740 cm-1 ( ester, C=0), 1790 cm-1 (chloride, C=0 stretch) the latter due to incomplete 

hydrolysis of the product -  Appendix B6 .

GC/EIMS: m/z 161 (35%, [M + H]+), m/z 143 (22%, [M + H]+- H20), m/z 119 (50%, 

[COOH(CH2)2COOH2]+), m/z 101 (1 0 0%, m/z 119 - H20), m/z 203 

([M + H]+ diester) -  Appendix B5.

(B) REACTION WITH CYCLOPENTANOL.

IR: 2500-3500 cm' 1 (COOH str), 3000-2900 cm' 1 (C-H stretch),

1740 cm-1 ( ester, C=0), 1790 cm-1 (chloride , C=0 stretch). The latter due to incomplete 

hydrolysis of the product -  Appendix B7.

4.3.4 SYNTHESIS OF STANDARD DICARBOXYLIC ACYLOXYLACTONES 

(VIA 4.3.2).

The appropriate diacid dichloride (5 mmol) was stirred with diethyl ether (30 ml, sodium 

dried). The prepared fi-hydroxylactone (0.510 g) was added to the resulting solution. The 

mixture was left stirring overnight at room temperature and the resulting clear liquid 

heated to reflux for 2-3 hours. When cooled the mixture was rotary evaporated and the 

oily residue hydrolysed by standing open to air, overnight. Washing then purified the 

hydrolysed product, as follows.

The hydrolysed product was dissolved in approximately 15 ml of distilled water to which 

1 g of NaHCOg had been added. This was washed with diethyl ether (2x10 ml). The 

aqueous layer was acidified, using 1M HC1, and extracted with dichloromethane (3x10  

ml). The organic layer was dried (MgSO^), filtered and rotary evaporated.

108



The method as described was applied to the synthesis of (a) succinyl (Cg), (b) adipyl (Cg) 

and (c) suberyl (Cjq) lactones.

(A) SUCCINYL LACTONE

IR: 2400-3000 cm-1 (acid OH stretch); 1600-1800 cm-1 (C=0) contained 1790 cm-1 

(lactone), 1730 cm-1 (ester), 1690 cm-1 (acid) -  Appendix B8 .

‘H NMR, 90 MHz, CD3OH: ô 2.3 - 3 ppm (dd, H &,b), 2.6 ppm (2 x t, CH^CH^), 4.4 ppm 

(dd, H c>(j), 5 ppm (m, lactone ring, CH), 5.5 or > (s, COOH, a broad signal)

- Appendix B9.

FAB, glycerol: m/z 203 (13%, [M + H]+), m/z 185 (28%,

[C4H50 2]0 C0 CH2 CH2 CO+), m/z 129 (15%, [C ^O JO C O + X  m/z 101 (47%), 

HOOCCH2 CH2CO+, m/z 85 [C4H50 2]+, m/z 287 ([M + H]+ diester) -  Appendix B10.

GC retention time (temperature program (1.5.1), Carlo Erba, BP5) 11.45 min.

(B) ADIPYL LACTONE

IR: 3800-2300 cm ' (acid OH stretch), carbonyl region (C=0, 1800-1700 cm ') contains

lactone (1790 cm’1), ester (1740 cm '), acid (1700 cm ') -  Appendix B l 1.

’H NMR, 90 MHz, CD3OD (Appendix B6 ): Ô 0.8 -1.5 ppm (t, CH2 b-e), 2.3 - 3 ppm (dd,

H ^b), 2.3 ppm (2 x t, CH2 ^f), 4.4 ppm (dd, 2 x H), 5 ppm (m, lactone ring), 5.5 or >

(s, COOH) Appendix B12 this appendix also includes the 13C NMR spectrum.

GC retention time (temperature program (1.5.1), Carlo Erba, BP5) of the major peak 17.21 

min.

(C) SUBERYL LACTONE

IR: 3800-2300 cm-1 (acid OH stretch), carbonyl region (C = 0 ,1800-1700 cm-1) contains 

lactone (1790 cm-1), ester (1740 cm-1), acid (1700 cm-1).

FAB+, glycerol: m/z 259 (19%, (M + H]+), m/z 241 (22%, [M + H]+ - H20), m/z 175 

(20%, HOOC(CH2)6COOH2+), m/z 157 (42%, HOOC(CH2)6CO+), m/z 343 ([M + H]+

diester), glycerol adducts of diacid, lactone, m/z 267, 351.

FAB", glycerol: m/z 173 (100%, [M - H]" suberic acid), m/z 257 (5%,
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[M - H]'. Both FAB Spectra are included as Appendix B13

4.3.5 SYNTHESIS OF DICARBOXYLIC ACYLCARNITEVES (METHOD 1).

Recrystallized trichloroacetic acid (9.6g) was heated to 60°C. The relevant diacid 

dichloride (1 0  mmol) and Ig of dl-camitine hydrochloride were added and the mixture was 

heated to 80°C for 3 - 4 hours. When cooled diethyl ether (75 ml) was added, dropwise 

until precipitation began. The solid was then filtered, and the precipitate, a white sticky 

solid, was washed with diethyl ether and dried.

The product, from above, was then dissolved in hot propan-2 -ol (15 ml) and gravity 

filtered. The filtrate was then added dropwise to diethyl ether (100 ml) and the precipitate, 

which formed immediately, recovered by filtration and dried.

The above method was applied to the synthesis of succinyl-, adipyl- and suberylcamitines 

and spectra included in Appendix B are 13C NMR of Succinylcamitine (Appendix B14), 

the positive in FAB spectrum of Suberylcamitine (Appendix B15) and the 'H NMR 

spectrum (Appendix Bib) of Adipylcamitine.

4.3.5.1 STANDARD LACTONIZATION REACTION.

The synthesised acylcamitine (100 mg/1, 200 ml) in acetonitrile was added to 200 pi of 

phenylbutanoylcamitine solution (500 mg/1), the internal standard, and dried under a 

stream of nitrogen. Acetonitrile (400 pi) and 80 pi DP A solution (A(/V-diisopropyl- 

ethylamine, 25 pg/ml) were added to the residue in a Pierce Reacti-yial and the vial was 

shaken for about 30 seconds. The mixture was heated at 125°C for 35 minutes. The 

sample was cooled to room temperature and dried under a stream of nitrogen. The 

resultant residue was taken up in 2 0 0  pi of ethyl acetate and filtered using a 2  pm filter and 

a glass syringe. The solution was stored in the freezer until analysed.
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4.3.5.2 TMS DERIVATIZATION OF DIACID LACTONE COMPOUNDS.

The diacid lactone (200 |il, 200 mg/1), prepared via either method, was dried under 

nitrogen. Acetonitrile (200 pi) and BSTFA (bis(trimethyl silyl) trifluoroacetamide, 200 pi) 

were added to this and the Reacti-vial (Pierce) was shaken for 30 seconds. This was 

heated for 15 minutes at 70°C. The solution was dried under nitrogen, though not 

completely evaporated, ethyl acetate (2 0 0  pi) was then added and the solution filtered 

ready for GC and GC/MS analysis.

4.3.6 SYNTHESIS OF DICARBOXYLIC ACYLCARNITINES (METHOD 2).

4.3.6.1 SYNTHESIS OF THE DIACID MONO-CHLORIDE.

Thionyl chloride (10 mmol) and adipic acid (10 mmol) were added to freshly purified 

dioxane (20 ml) and refluxed for 5 hours at 80°C, over an oil bath. The resultant clear 

liquid was then rotary evaporated to yield a white sticky solid. The yield was 

approximately Ig, 61%.

4.3.6.2 REACTION OF CARNITINE WITH DIACID MONOCHLORIDES.

Carnitine (dl-, 2 mmols) and the diacid mono-chloride (2 mmols) were added to 

trifluoroacetic acid (2 ml) and heated overnight (16 hours) at 55°C. When cooled to room 

temperature 10 ml of Analar acetone was added to the camitine/mono-chloride and this 

was cooled further to 0°C for 5 hours. This mixture was then added to dry diethyl ether 

(1 0 0  ml) and the white precipitate which formed was filtered, washed with diethyl ether 

and dried. The yield was 0.1 Og, 16.2%.

The precipitate was taken up in distilled water (0.5 ml) and washed (3 x 0.5 ml) with 

diethyl ether. The ether layer was discarded and the aqueous layer freeze dried. The

111



resultant residue was dissolved in Analar acetone (5 ml) and this was then cooled at 0°C 

for a further 2.5 hours. The product at this stage was a waxy coating on the sides of the 

round bottomed flask and was taken up in acetonitrile (500 pi). The standard cyclization 

procedure was then carried out on the product.

4.3.7. SYNTHESIS OF METHYL ADIPYLCARNITINE.

The mono methyl ester of adipic acid (10 mmol) and thionyl chloride (8002,1.19 g, 0.73 

ml, 10 mmol) were heated to 80°C for 5 hours, in sodium-dried dioxane. This solution was 

rotary evaporated and the acid chloride of methyl adipate was weighed.

The product from above (2 mmol) was then heated with dl-camitine.HCl (0.395 g,

2 mmol) in a few millilitres of trifluoroacetic acid (TFA) for a further 16 hours at 55°C. 

Analar acetone (10 ml) was added to this when cooled and was stirred at 0°C for 5 hours. 

The acetone mixture was then added to dried diethyl ether (100 ml), the resultant 

precipitate being filtered and weighed.

4.3.8 INVESTIGATION INTO FACTORS EFFECTING CYCLIZATION.

4.3.8.1 EFFECT OF A FREE ACID GROUP.

A number of combinations of the solutions octanoylcamitine, ammonium acetate and the 

synthesised methyl ester were used to produce both control and reaction samples (Table 

4.2). Using 200 pi of each of the reagents, the samples were cyclized in the usual manner 

and where the volume of the reagents was more than 200 pi the sample was dried under 

nitrogen and the residue re dissolved in 200 pi of dry acetonitrile before cyclization. 

Analysis of the products of the cyclization step was by GC and GC/MS.
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TABLE 4.2. Samples prepared to investigate the effect of a free acid group on 

cyclization.

■■IHH mitlÊKÊÈÊÈÊÊmêkmMMÈMWà H U
Methyl Ester

■*■■1 Methyl Ester, Ammonium Acetate, Octanoylcamitine
Methyl Ester, Ammonium Acetate

Octanoylcamitine, Ammonium Acetate
Octanoylcamitine

Octanoylcamitine, Methyl Ester

4.3 8.2 EFFECT OF SAMPLE CONCENTRATION.

The concentrations of reagents in this experiment were approximately equimolar (25 mg/1) 

and 200 pi of each reagent was used when preparing the samples. In this experiment the 

largest volume used was 600 pi, (Table 4.3) this was chosen as no great change in the ratio 

of peak areas in the samples with a total volumes of 600 pi were seen in experiment.

TABLE 4.3. Samples prepared to investigate the effect of sample concentration on 

cyclization.

mm S M IU S Ê Ê tÊ M M M B S B U S Ë
Methyl ester, Octanoyl carnitine. 500 mg/1 200 pi
Methyl ester, Octanoyl carnitine 500 mg/1 100 pi
Methyl ester, Octanoyl carnitine. 500 mg/1 50 pi

4.3.9 SYNTHESIS OF THE INTERNAL STANDARD 

(4-PHENYLBUTANOYLCARNITTNE).

4-Phenylbutanoic acid (5 g) and freshly redistilled thionyl chloride (0.367 ml), were heated 

to 80°C for 3 hours. Carnitine hydrochloride (0.5 g) was dissolved in trichloroacetic acid 

(2.5 g) and added dropwise through the condenser to the thionyl chloride/phenylbutanoic 

acid mixture. This was then heated for a further 3.5 hours at 80°C. When the mixture was



cooled diethyl ether (100 ml) was added. The precipitate that formed was filtered, washed 

with diethyl ether, and dried.

The product, from above, was dissolved in propan-2-ol (approximately 15 ml) and was 

then filtered. Diethyl ether (50 ml) was added to the filtrate, dropwise. This was then left 

overnight and the resultant white precipitate was filtered, washed with diethyl ether and 

dried.
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CHAPTER 5

EXTRACTION AND ANALYSIS OF ACYLCARNITINES 

FROM DRIED BLOOD SPOTS.



5.1 INTRODUCTION

The aim of the work described in this chapter was to determine if the method of Lowes and 

Rose [1] for the cyclization and detection of acylcamitines from urine samples could also 

be applied to the cyclization and detection of acylcamitines extracted from dried blood 

spots. The medium of blood was considered to be very important due to a number of 

factors. Firstly it was reported that the range of concentrations of acylcamitines in blood is 

more limited and stable than those in urine [2, 3] and thus would provide a more suitable 

method of obtaining a snapshot of the metabolic state at the time of sampling. Also, in the 

form of Guthrie cards (filter paper cards), blood spots are collected from most babies in the 

developed world and are therefore more easily obtained than other biological fluids, 

including urine. Blood spots are collected from a heel prick during the first weeks of life, 

these spots are then routinely used in hospitals for a range of tests on the new-born 

including phenylketouria (PKU), organic acid and amino acid analyses. A number of these 

blood spots are collected, usually four, and therefore the method which will be described 

has a number of advantages over conventional forms of blood and blood products.

Samples are readily available and the Guthrie cards can be stored for a number of years at 

room temperature. This store of samples means that the method can be evaluated using 

pre-diagnosed samples thus demonstrating its application prior to the analysis of blind 

clinical samples. In our laboratory sample viability has been demonstrated through the use 

of blood spots spiked with acylcamitines up to sixteen months after preparation and 

elsewhere the use of dried blood spots has been reported after more than three years [4]. 

The appearance of the blood spots changed on drying from the bright red expected of fresh 

blood to brown but was not visibly altered once the drying of the Guthrie spot was 

completed. The colour of the blood spots when dry was the same as that of clinical blood 

spots obtained from hospitals.
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5.2 RESULTS AND DISCUSSION

The first objective of the work discussed in this chapter was to determine if  acylcamitines 

could be extracted from blood spots. The blood spots used in the experiments described 

are prepared from whole blood and stored in dried form on Guthrie cards. As with the 

analysis of urine samples a second objective was to ensure that the method developed 

could be set up in a hospital laboratory with equipment which was already available or at a 

lower cost than the instrumentation presently used for such analyses. Analysis of 

acylcamitines extracted from dried Guthrie blood spots was carried out by gas 

chromatography alone (Carlo Erba -Section 2.1) or GC/MS using an ion trap (Finnigan 

MAT ITD 800A -  Section 2.3) or quadrupole systems (VG 20-250). Analysis was carried 

out on spiked standards and, later, the clinical applications of the method were explored.

In developing this methodology there were a number of areas of potential problem to 

consider. The first was the matrix itself, which by its very nature is a complex system. A 

second was the selectivity both in terms of the extraction of acylcamitines and later of their 

detection. The former would be assessed during the method development and from the 

experience gained in the analysis of acylcamitines from other biological matrices. The 

latter would also rely on experience in a detailed study of the fragmentation patterns of 

acylcamitines and their lactones. Whilst this method should be considered qualitative due 

to the low levels of acylcamitines reported in blood [4] this factor also necessitate a low 

limit of detection for acylcamitine lactones.

The first stage in the development of this analytical method was to establish that the 

extraction of acylcamitines from dried spiked blood spots was possible. Fresh blood was 

spiked with octanoylcamitine (Experiment 5.11.2). Octanoylcamitine was chosen as it had 

been used in earlier studies both as a standard as in this case and it has also been identified 
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from clinical urine samples. From these earlier studies the chromatographic retention time 

of this compound was well established as was the mass spectral information. Also, it is the 

key compound in the diagnosis ofMCADD.

There were a number of possible methods of extraction with the literature suggesting 

sonication as the most reliable and widely used [5]. The cyclization procedure, which the 

acylcamitines undergo has been shown to be sensitive to a number of factors including the 

concentration of acylcamitine present and the presence o f non-acylcamitine contamination. 

Though the primary aim of the extraction was to obtain the highest yield of acylcamitines 

from any given blood spot, it was also necessary to consider other co-extracted material 

which might interfere with the process of cyclization. It had been shown that co-extracted 

components in the cyclization mixture or a high concentration of acylcamitines, as in the 

case o f inappropriately made-up standards, can inhibit the reaction. Where high 

concentrations of acylcamitines were present polymer formation might result (Lowes, 

unpublished work) though this would be of greater concern during method development 

than in the case o f analysis of samples where biological levels are much lower.

In order to establish the most suitable method for later cyclization and GC analysis, 

separate dried blood samples were shaken by hand, sonicated and vortexed in methanol to 

ascertain the efficiency of each extraction procedure (Experiment 5.11.3). Methanol was 

solvent chosen for the extraction of acylcamitines from dried blood spots, prior to analysis 

using fast atom bombardment coupled with mass spectrometry, as it had been cited as an 

appropriate extraction solvent in reviewed literature [5]. Analyses were carried out on 

spiked blood spots made up with solutions of octanoylcamitine. Aliquots (0.5ml) of whole 

blood obtained from a healthy male adult were spiked with a known concentration of 

octanoylcamitine solution (Experiment 5.11.3, Table 5.1) and this blood mixture was 

spotted onto Guthrie paper. Fully dry areas (6 mm) were punched from the card and 

120



Figure 5.1 The FAB+ spectrum of octanoylcamitine after extraction (methanol)

from a dried blood spot.
• Sr



extracted twice into methanol (Experiment 5.11.3). The aliquots of methanol were then 

combined and dried. The result was a brown residue, which should contain 

octanoylcamitine but, due to its pigmentation, clearly contained co-extracted material (i.e. 

haemoglobin).

TABLE 5.1. -  Spiking and preparation of standard blood spots

.(emm (̂ xusgtisKin-,
■ -  ,  ■

5.0

5.0
5.0

5.0

5.0 

0.5 

0.5 

0.5 

0.5

blank

200 nl 

100 ill 

75 [il 

50 pi 

25 pi 

100 ill 

50 pi 

20 pi 
2 111

125
62.5 

46.9 

31.2

15.6

6.25 

3.12

1.25 

0.125

To ensure that the required acylcamitine was present in the residue FAB/MS analysis was 

carried out on the residue. A small amount of the residue, from the extracted spiked blood 

spot, was removed and added to a few microlitres of glycerol (the solvent matrix for FAB 

analysis) on the tip of the FAB probe. FAB analysis was carried out as described in 

Chapter 2, Section 2.6 on the VG 20-250 mass spectrometer. Figure 5.1 is the FAB 

spectrum acquired in positive mode. The presence of octanoylcamitine was demonstrated 

with very few non-matrix contamination peaks. In the FAB+/MS spectrum of the 

extraction residue the [M + H]+ peak at m/z 288, corresponding to the relative molecular 

mass of octanoylcamitine, is one peaks recorded. The small peak at m/z 162 may be 

attributed to carnitine (due to some carnitine in the original commercial octanoylcamitine) 

and some fragmentation of octanoylcamitine. The other usual fragments at m/z 85 and
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144, which are common to this group of compounds are not visible due to the low response 

and presence of a large number of matrix peaks. Given that the sample appeared impure 

analysis by FAB did not give information as to their origin, possibly due to poor 

ionization. Further work was carried out on this sample as the impurities present might 

have a negative effect on the cyclization and subsequent analysis. These experiments are 

detailed later in this Experiment 5.11.6 of this Chapter.

Once it was established that extraction using sonication, shaking or vortex mixing was 

effective, as shown in the FAB identification of acylcamitines, the cyclization procedure 

was carried out on the residues. The result on GC/MS analysis was a peak corresponding 

to octanoylcamitine lactone; identified by its chromatographic retention time, mass 

spectrum and an in-house library match. The peak areas recorded suggested sonication as 

the most efficient means of extracting acylcamitines from dried blood spots. The peak 

area recorded for octanoylcamitine lactone from sonicated, spiked blood spot samples was 

approximately twice the intensity of the shaken or vortexed samples.

The duration of sonication was investigated (Experiment 5.11.3 ii) in order that it might 

also be optimized. Dried, spiked blood spots were extracted, with isovalerylcamitine 

added to the extraction solvent as an internal standard, and the sonication time of the 

samples were varied from 2 - 3 0  min for each millilitre of solvent (as Table 5.2). The peak 

area of octanoylcamitine lactone relative to the internal standard recorded in the case of 2 x 

10 min sonication was significantly greater than at the other sonication times. A gradual 

increase in the peak area ratio was observed over the initial increments in sonication time 

to reach this maximum. After this point the ratio decreases probably due to an increase in 

co-extracted material hindering the cyclization process. This led to the use of a ten minute 

sonication for the extraction of acylcamitines from the blood spots.
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Table 5.2 -  Extraction conditions versus peak area ratio (octanoylcamitine/IS) during 

method optimization. The experiment was carried out in triplicate and the 

mean values are reported

n^leBnn iti nBKfS#
Blood spot (15.6ug/blood spot), sonicated 2 x 2min. 0.83
Blood spot (15.6ug/blood spot), sonicated 2 x 5  min. 1.04

Blood spot (15.6ug/blood spot), sonicated 2 x 10 min. 1.43
Blood spot (15.6ug/blood spot), sonicated 2 x 15 min. 0.79
Blood spot (15.6ug/blood spot), sonicated 2 x 20 min. 0.13
Blood spot (15.6ug/blood spot), sonicated 2 x 30 min. ND

ND -  Nil detected

As carnitine and acylcamitines are found in the cytosol and the mitochondria of in vivo 

samples, it was necessary to determine the efficiency of spiking and preparation of blood 

spots in mimicking the natural situation. Work was carried out to determine if any 

chromatographic effect was observed when applying the blood to the paper (Experiment 

5.11.4). It was considered that, similar to TLC, a concentrated area of acylcamitine might 

occur at the point where the blood was initially spotted or diffusion might occur, 

concentrating the spike at some distance from the origin. To determine if this effect 

prevented an even distribution of octanoylcamitine, a blood spot with a diameter of 6 mm 

was punched from the within a printed area designating a complete spot. The remaining 

spot, outside the punched area, which had approximately the same surface area was also 

removed. Both the inner and the outer areas were worked-up separately using the 

sonicated methanol extraction. The standard cyclization procedure was then applied to 

both samples and GC/MS analysis carried out. Peaks were recorded from both the inner 

and outer blood spot samples. These peaks occurred at a retention time window consistent 

with octanoylcamitine in its lactone form, at approximately 11.7 min, using a BP5 GC 

column and under the conditions described in Chapter 2, Section 2.1. In the El mode the 

presence of octanoylcamitine lactone was further confirmed by the fragments at m/z 85 

(100%), 144 (10%) which have been described previously as characteristic for 

acylcamitines: In the Cl mode, with isobutane, the protonated molecule was the base peak
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o f  the spectrum  at m/z 229 and fragm ents at m /z 85 (72% ) and 125 (15%) w hich are again 

characteristic for this group o f  com pounds were also detected. No significant differences 

were recorded in the chrom atographic peak areas betw een the inner and outer areas o f  the 

punched spot.

A queous octanoylcam itine solution was added directly to Guthrie paper in order to 

establish i f  w ithout the blood m atrix, any chrom atography occurred. A reas o f  Guthrie 

cards were then prepared, w ith the inner and outer areas o f  card approxim ately the same 

area, and the paper analysed as above. The process o f  chrom atography had evidently  taken 

place in this experim ent, w ith alm ost four tim es m ore octanoylcam itine lactone detected 

from  the outer section o f  the printed spot, leading to the hypothesis that it is the m atrix o f  

the blood w hich binds the octanoylcam itine preventing chrom atographic separation o f  the 

octanoylcam itine com ponent. It is therefore assum ed from  this point that acylcam itines 

w ould be evenly dispersed through both clinical and spiked blood spots.

It has therefore been dem onstrated that the preparation and spiking o f  blood spots used in 

the experim ents outlined in this thesis does m im ic the situation in vivo and that sonication 

o f  these sam ples for 2 x 10 m in is the m ost effective extraction m ethod. Sam ples derived 

from  dried blood spots, described in this thesis, are prepared in the m anner described 

(E xperim ent 5.11.2), extracted via sonication (Experim ent 5.11.3), and cyclized unless 

otherw ise stated.

The sam ple w ork-up procedure was then perform ed on blood spots spiked w ith 

octanoylcam itine in the same concentrations as used in previous experim ents (Table 5.1). 

These sam ples produced very low responses for octanoylcam itine lactone, on analysis by 

GC and GC/ITD  in the El m ode. Identification o f  the acylcam itine w as through its 

retention tim e (approxim ately 11.7 m in) and trace levels o f key fragm ents at m/z 85 and 
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144. Even from  blood spots spiked w ith very high concentrations o f  octanoylcam itine 

(125 pg, 62.5 pg) the peak areas observed were lower than expected, when com pared to 

results from  the analysis o f  aqueous standards, leading to the proposal that m ethanol alone 

m ight not be the m ost suitable solvent for extraction. It was therefore necessary to 

determ ine the factor(s) contributing to this low yield. There were two areas where 

potential problem s could exist. The first was the solvent extraction phase o f  the w ork-up 

and the second the cyclization o f  the sample. Initially the latter was investigated.

A  num ber o f  Guthrie spots spiked w ith octanoylcam itine solution (as Table 5.1) were 

subjected to sonicated m ethanol extraction and the resulting residues containing the 

acylcam itine and any other co-extracted m aterials were sent to D r.S.Low es (VG Bio Tech, 

A ltrincham , UK.), Experim ent 5.11.5. It was hoped to determ ine if  m ass spectrom etry by 

electro spray ionization (ESI/M S) was a viable analytical technique for the analysis o f  

acylcam itines from  this m edium  (see Chapter 6). This technique w ould be an exciting 

avenue o f  exploration tow ards the detection o f acylcam itines as derivatization w ould not 

be necessary. The initial analysis o f  a loop injection o f  the extraction residue dissolved in 

100 pi o f  a chloroform /m ethanol m ixture was carried out to determ ine if  the residue 

provided contained acylcam itine at levels suitable for analysis or if  the extraction process 

facilitated the extraction o f other m olecules which w ould interfere with this process. It 

w as also hoped to quantify the levels o f  octanoylcam itine obtained.

On analysis o f  the extraction residue by electrospray m ass spectrom etry it was show n that 

there w as considerable protein contam ination o f  the sam ples with the detection o f  a 

num ber o f  high relative m olecular m ass m olecules carrying the m ultiple charges 

characteristic o f  this analytical technique. W ith this m ethod o f  analysis a spray o f  analyte 

and solvent from  a probe is dispersed into a highly charged field, sam ple m olecules can 

then take up charges thus lowering its m ass to charge ratio and rendering larger m olecules 
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such as proteins w ithin the range o f  the detector. E lectrospray has been optim ized for the 

detection o f  proteins and in the sam ples from the extraction o f  spiked blood, proteins were 

detected. H aem oglobin was the m ajor constituent as predicted from  the colour o f  the 

residue. O ctanoylcam itine could not be detected am ong this considerable chem ical 

background.

The presence o f  h igh levels o f  protein could have a num ber o f  effects on the analysis o f  

acylcam itines by GC, v ia the m ethod proposed. The reaction to form the lactone ring 

system  from  an acylcam itine w ould be affected by the high level o f  proteins observed due 

to the sensitivity o f  the cyclization to contam ination as described earlier. These 

com pounds w ould not pass through the colum n o f the GC and therefore a second problem  

would be contam ination o f  the injector area from the analysis o f  a large num ber o f  sam ples 

o f  this nature, thus inhibiting routine application o f  this m ethod.

Continuous flow  fast atom  bom bardm ent (FAB) has been successfully used in the field o f  

large scale clinical acylcam itine analysis [6]. W ith this technique analytes take on a single 

extra charge so large protein m olecules like haem oglobin are beyond the detected m ass 

range. This w ould explain the lack o f  reports o f  protein contam ination w hen sam ples are 

prepared using this m ethod for analysis by FA B/M S. I f  proteins were extracted into all 

sam ples previously prepared, the susceptibility o f  the lactonization reaction to im purities 

w ould suggest interference w ith the cyclization o f  the acylcam itines. therefore accounting 

for the low  yields observed.

In sum m ary, the m ethanol m ay extract acylcam itines very efficiently from blood spots but 

co-extracted m aterials inhibit further analysis by cyclization and GC/M S. and by 

electro spray m ass spectrom etry. The selectivity o f  the extraction solvent needed to be 

addressed.
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A series o f  experim ents (Experim ent 5.1 E6) were designed to determ ine if  an alternative 

solvent, or m ixture o f  solvents, could be found w hich facilitated the extraction o f 

octanoylcam itine, w ithout that o f  proteins and/or other com pounds, which appear to inhibit 

the cyclization and analysis.

A num ber o f  single solvent system s were used in an attem pt to im prove the yield o f  

lactones for analysis (Table 5.5). Pentan-2-ol, bu tan -l-o l and hexan-2-ol were used for the 

extraction o f  acylcam itines as they had already been proven successful at varying pH 

values in the extraction differing chain-length acylcam itines from  urine sam ples [7]. On 

analysis by GC/EIM S using an ion-trap, the use o f  these solvents provided recoveries that 

were sim ilar to, or w orse than, that obtained follow ing extraction w ith m ethanol and 

cyclization o f  spiked blood spots. H exan-2-ol dem onstrated a greater chrom atographic 

signal-to-noise ratio than had been detected on analysis o f  m ethanol extracted blood spots, 

w ith pentan-2-ol providing the poorest detection o f  octanoylcam itine lactone. Pentan-2-ol 

and hexan-2-ol extracts on freeze-drying were the least haem -coloured in appearance, w ith 

the b u tan -l-o l sam ple having an increased coloration but not to the level recorded w ith 

m ethanol. This lack o f  colour in the extracted residues, com bined with the poor detection 

levels in these particular sam ples w ould suggest that the disruption o f  the cells, w hich 

causes the release o f  the haem oglobin (and possibly other protein and m aterial) and the 

freeze-dried  residue pigm entation, is also responsible for the release o f  the acylcam itines 

from  the blood spot. The results o f this experim ent m ay also indicate that the m ethod used 

to prepare the spiked blood spot was effective in m ixing o f the octanoylcam itine intim ately 

w ith the blood com ponents.

Literature review s including a paper by M asaru et al [8] suggested that the protein could be 

im m obilised  on the Guthrie card but the acylcam itine content still extracted by using a 
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m ixed solvent system . M ethanol w ould facilitate the extraction and a second solvent 

know n to precipitate proteins could be included thus rem oving or reducing protein 

interference w ithin the later lactonization. The suggested second solvents were acetone, 

ethanol or chloroform , all o f  w hich were used in conjunction with m ethanol. M ixed 

solvent system s were used with varying volum es o f  m ethanol as one com ponent and the 

solvents suggested to im m obilise the proteins as the second (Table 5.6). B lood spots w ith 

octanoylcam itine (6.25 pg) spiked at a constant level were used for these extractions. In 

all cases the required acylcam itine was detected and characterized by the retention tim e, 

w hich w as very reproducible, and the presence o f  characteristic fragm ents, w ith m/z 85 

usually  as the base peak and m/z 144 w ith a relative intensity o f  betw een 5 and 15%.

Peaks corresponding to the m olecular ion {m/z 228) or the protonated m olecule {m/z 229) 

due to self-chem ical ionization, as seen in sam ples at higher concentrations were not 

detected w ith any o f  the solvent system s at this low er concentration.

TA B LE 5.3 -  (a) O ptim isation o f  extraction solvent w hile (b) represents a graphical 

review  o f  this data.

(a)
M ethanol /  A ceto n e  /  Ethanol (% )

*
9 0 /1 0 /0

2 1 7 6 7

15725

17068

18187

317 3

17.44

7 5 /2 5 /0

9 6 9 4 7

8 7 8 7 5

10164

9 8 3 2 9

1209
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175241

199795
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15613

8 09

5 0 /5 0 /0

8 2 0 4 8

149396

192614

174686

2 2 5 3 0

12.90

0/0/100

4 7 0 5 0

SL

3 7 6 0 7
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•  Peak areas - lev e ls  o f  oc ta n o y lca m itin e  lacton e/sam p le  on an a lysis o f  a standard v o lu m e  by G C /IT D .

•  A ll sa m p les w ere  prepared in trip licate.

•  SL  -  sam p le  lost during sam ple preparation, tw o  sa m p les o n ly  therefore no statistics inclu ded .
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(b)

O ptim ization  o f  m eth anol/acetone ratio in the b lood  
spot extraction so lven t
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The use o f  varying concentrations o f  A nalar acetone or ethanol in m ethanol as extraction 

solvents gave residue pigm entation with an appearance and intensity like that observed 

with m ethanol. A nalysis by GC/ITD clearly showed that both solvent m ixture system s 

produced a significantly greater yield o f  the octanoylcam itine lactone than the pure 

m ethanol system. An attem pt was then considered to optim ize the solvent ratio for the 

extraction procedure. As m ethanol ( 100%) had not proved successful it was decided to 

begin at the other end o f  the scale and concentrations from 100% acetone (i.e. 2 x 1ml) to 

10%:90% m ethanol:acetone.

The peak area was considered to be the m ost reliable quantitative indication o f  the level o f  

octanoylcam itine lactone form ed in the samples. The results from analysis o f  five sam ples 

extracted and analysed in triplicate o f  varying concentrations o f  m ethanol and acetone are 

shown above (Table 5.3a). The data for the analysis o f  the pure m ethanol extraction was 

also recorded and was significantly lower than the m axim um  obtained with the m ixed 

solvent (acetone/ m ethanol). The results o f  this set o f  experim ents are illustrated 

graphically above (5.3b) and clearly show the optim um  m ethanol content o f  the extraction 

solvent system  as 65%. A com parison was then carried out betw een this preferred
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Figure 5.2 M ass chrom aogram  o f  m/z 85 for blood spot spiked w ith

(a) butanoylcarnitine, (b) isovalerylcam itine, (c) octanoylcam itine 

and (d) dodecanoylcarnitine. This illustrates the extension o f  the 

ex traction  and lactonisation m ethod to acylcam itines o f  differing chain 

lengths and configurations.



acetone/m ethanol system  and a solvent system  o f  chloroform /m ethanol in a 2:1 ratio, as 

used [8] for the analysis o f  acylcam itines from urine. This solvent m ixture was used as it 

had been show n using electrospray that there were a num ber o f  co-extracted proteins 

w hich m ight have hindered the cyclization process. The presence o f  chloroform  in this 

m ixture to im m obilize proteins [8] and its more effective in the extraction o f 

octanoylcam itine from  the prepared dried blood spots m ade this the extraction solvent m ix 

o f  choice. A  solvent m ixture o f  chloroform  and m ethanol in a two to one ratio was used in 

the preparation o f  any further extracted samples w ith each spot sonicated ( 2 x 1 0  m in/m l).

A lthough octanoylcam itine is quite representative o f  the m edium -chain acylcam itines that 

one w ould expect to detect from  a clinical blood spot o f  a patient w ith M CA D D  or 

M A D D , acylcam itines in nature occur w ith a w ide variety o f  chain lengths and 

configurations. To determ ine i f  the m ethod described here was applicable to short and 

long as well as the m edium -chain lengths and also those o f  branched chain configurations, 

fresh blood was spiked w ith equim olar quantities o f  a num ber o f  acylcam itines (equivalent 

to those for octanoylcam itine in Table 5.1). These acylcam itines w ere butanoylcarnitine , 

dl-hexanoylcarnitine chloride, dl-octanoylcarnitine chloride and dl-dodecanoylcarnitine 

chloride, the form er synthesised for these experim ents [1 ,9 ] and the other three 

com m ercially obtained (Experim ent 5.11.9). A second m ix w as prepared containing 

butanoylcarnitine, isovalerylcam itine, octanoylcam itine and dodecanoylcarnitine lactones, 

as show n in Figure 5.2.

In these sam ples the peaks corresponding to the acylcam itine lactones o f  all four 

com pounds were detected in sam ples o f  high spiked concentration. Figure 5.2 depicts a 

m ass chrom atogram  o f  m/z 85 for one o f  these samples. The peaks listed as (a) -(d) could 

be detected in the total ion chrom atogram  at higher concentrations although (a) w as close 

to the detection limit. A ll lactones were detected using the m ass chrom atogram  o f  m/z 85
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w hich is assigned to fragm entation to the lactone ring (the base peak in m ost o f  the spectra 

obtained) and m/z 144 (2 - 20% ) a second diagnostic fragm ent for acylcam itines. The

m olecular ions o f  the acylcam itine lactones, M +‘ at m /z 172 (butanoylcarnitine lactone),

186 (isovalerylcam itine lactone), 228 (octanoylcam itine lactone) and 284 

(dodecanoylcarnitine lactone) were not detected, although some self-C l o f  the 

acyloxylactones was observed at higher concentrations. In sam ples o f  low er acylcam itine 

concentrations, butanoylcarnitine lactone was not observed because it fell below  the lim it 

o f  detection. This fact and the relative peak areas o f  the lactones in Figure 5.2 w ould 

suggest that w hereas the solvent system  (chloroform /m ethanol, 2:1) had been optim ized for 

the extraction o f  m edium  to long-chain acylcam itines, further m odifications w ould be 

necessary to extract short-chain acylcam itines efficiently. A m ore polar system  m ight be 

m ore suitable for the extraction o f  the shorter or branched-chain acylcam itines.

T hough the m ethod developed for the extraction and analysis o f  acylcam itine from  dried 

blood spots has been show n as effective, m odifications have been considered to establish if  

the tim e required to w ork-up the sam ples could be shortened. Any preparation tow ards the 

analysis o f  both spiked and clinical blood spots should be as straight-forw ard as possible 

and therefore ideally the use o f  a single solvent w ould be preferred to a solvent m ixture. 

A cetonitrile was an obvious choice for the solvent extraction o f  acylcam itines allow ing the 

extraction to run sm oothly into the cyclization w ith m inim al disturbance or transfer o f  the 

reagents since the reaction is also effected in acetonitrile. Extraction o f  acylcam itines 

using acetonitrile alone w as therefore considered. Blood spots spiked with the m edium - 

chain acylcam itine, octanoylcam itine, were sonicated ( 2 x 1 0  min) in acetonitrile and the 

solvent aliquots pooled and dried. The residue was lactonized in the usual m anner and GC 

analysis perform ed. N o acylcam itines were detected via this procedure either by detection 

using the total ion chrom atogram  or selected ion retrieval at m/z 85, w hich w ould be the 

expected base peak from  the Cg acyloxylactone and therefore give the optim um  response.



Further studies were undertaken to investigate the potential for cyclization o f 

acylcam itines from  dried blood spots w ithout any prior extraction. To achieve th is end a 

blood spot containing 6.25 pg o f  octanoylcam itine was added directly to a R eacti-vial 

containing the cyclization reagents, acetonitrile (200 pi) and 7V,yV-diisopropylethylamine 

80 pi, 25 pl/m l solution) and these were lactonized as norm al at 125°C. This initial sam ple 

suggested that the direct cyclization was effective. O ctanoylcam itine lactone was detected 

and characterized w ith a retention tim e in the expected region and the fam iliar m ass 

spectral pattern. Sam ples were then prepared from  standard blood spots (as Table 5.1) and 

they dem onstrated that acylcam itines could be extracted and cyclized in a single step w ith 

yields o f  lactones sim ilar to those w ith conventional solvent extraction w ith m ethanol: 

chloroform . These experim ents show  that acylcam itines are extracted from  dried blood 

spots into hot acetonitrile (but not into cold acetonitrile), or that acylcam itines are cyclized 

in the blood m atrix and the lactone products dissolved in the solvent. Further studies o f  

clinical sam ples have not dem onstrated an im provem ent on analysis. A quantitative 

com parison o f  the extraction and direct cyclization m ethods is presented w ith in  Section 5.5 

o f  th is thesis.

A  num ber o f  sam ples w ere prepared to test the feasibility o f  shortening the cyclization step 

in the w ork up o f  acylcam itines from  biological fluids, prim arily blood spots. A study was 

undertaken to determ ine the effects o f  m icrow aves to allow  the reaction tim e to be cut to 

m inutes or even seconds (Experim ent 5.11.7). N orm al reaction heating conditions for the 

cyclization step were thirty-five m inutes at 125°C in a heating block w ith acetonitrile as 

the solvent and DPEA  solution present.
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In this study a know n concentration o f octanoylcam itine w as cyclized in the norm al 

m anner as a control sam ple. Sam ples o f  identical oc tanoy lcam itine  concentration w ere 

prepared and these  w ere subjected to a variety o f  m icrow ave intensities and durations 

(Table 5.7, E xperim ent 5.11.7, page 159). The lactonization  reagents used w ere the 

standard volum es and concentrations. There was little or no sign o f  any cyclization in the 

earlier sam ples (Table 5.7, 1-5, Experim ent 5.11.7 i, page 159) w ith all sam ples analysed 

by GC alone and m onitored using retention tim e relative to  standard octanoylcam itine 

lactone and peak  areas. In later sam ples a peak w as detected  corresponding to the reten tion  

tim e o f  the lactone from  octanoylcam itine (11.7 m in) though  these w ere o f  low er peak 

areas than  w ould  be expected using the conventional heating  m ethod. The extent o f  

cyclization  recorded is likely to reflect the heat generated during the m icrow ave procedure 

ra ther than a d irec t effect o f  the m icrowaves, as the R eacti-v ials w hen rem oved from  the 

oven  w ere hot to  touch. N orm ally , the cyclization is brought about by the application o f  

heat so som e lactonization  w ould be anticipated as the m icrow aves w arm  the solution. 

W hen the reaction  had reached tim e two m inutes (Sam ple 10, Table 5.7, page 159) it w as 

estim ated  that the  upper lim it o f  m icrowave effect w as being  reached and that tem perature 

w as now  the m ajor factor in  any cyclization recorded.

N o further w ork has been carried  out into the effect o f  m icrow aves on the cyclization o f  

acy lcam itines as the levels o f  detection o f  the octanoylcam itine lactone were 

approxim ately  5 tim es low er than that norm ally achieved. It is unlikely that the tim e saved 

by im plem entation  o f  either o f  a m icrowave m ethod w ould  m erit the decrease in peak area 

observed  for the octanoylcam itine lactone.
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5.3 SAMPLE CONTAMINATION - AN INVESTIGATION

It has been established that using a BP5 GC capillary colum n and w ith  the tem perature 

program  (as described in Section 2.1) octanoylcam itine, in its derivatized lactone form , 

w ould  elute w ith a retention tim e o f  ju s t  under 12 m in and could be characterised  th rough  

the detection  o f  key fragm ent ions (F igure 5.3).

A num ber o f  spiked blood spots o f  vary ing  concentrations (Table 5.1) w ere prepared by 

m ethanol extraction and analysed using gas chrom atography w ithout coupling to a m ass 

spectrom eter. This set o f  analyses gave rise not to the expected single peak, in the 

reten tion  tim e w indow  o f  interest, but to  two very closely eluting peaks. The full 

chrom atogram  contained four m ajor peaks at retention tim es o f  3.73 m in, 11.73 m in, 11.81 

m in and 13.91 min. The first o f  these peaks (3.73 m in) has been assigned to octanoic acid, 

w h ich  has a  relative m olecular m ass o f  174, follow ing analysis o f  a  com m ercially  obtained 

sam ple o f  this acid. There are a  num ber o f  possible sources o f  this com pound and these 

include its presence in the original purchased  octanoylcam itine or som e breakdow n o f  the 

acy lcam itine  either during cyclization  o r analysis. The later peak at 13.9 m inutes has been 

identified  as a phthalate p lasticiser due to its sharp peak shape and the presence o f  a base 

peak  fragm ent at m/z 149 w hich  is characteristic o f  this group o f  com pounds. The 

reten tion  tim e o f  octanoylcam itine lactone was previously recorded at approxim ately  11.7 

m in. The largest peak in the first recorded chrom atogram  was that o f  11.73 m inutes and 

w as tentatively  assigned to octanoy lcam itine lactone on the basis o f  the retention tim e, 

w hich  had been shown as very reproducible, and its variation in peak area relative to the 

11.91 m in as the levels o f octanoy lcam itine in the spiked blood spots altered.

The chrom atogram s in Figure 5.4, overleaf, later obtained by GC/M S (Fim iigan M AT ITD 

800A ), illustrate peak areas o f  interest in a ratio o f  approxim ately 4:1 (Fig 5.4 (a)),
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Figure 5.4 O ctanoylcam itine lactone at two concentrations (a) 125ug/blood spot 

(b) 15 .bug/blood spot. B oth are illustrated relative to the contam inant peak.



octanoylcam itine lactone (11.73 min): contam inant (11.81 m in). This chrom atogram  was 

from  a blood spot spiked w ith a high concentration o f  octanoylcam itine. The variation in 

relative peak areas can be clearly seen in the second chrom atogram  (Fig 5.4 (b)), from  a 

blood spot w ith low er concentration o f  spiked octanoylcam itine, w here it can be seen that 

a reversal o f  the observed ratio has taken place. The form er chrom atogram  was obtained 

from  a blood spot spiked w ith approxim ately 125 pg o f  octanoylcam itine w hile the latter 

had approxim ately 15.6 pg o f  octanoylcam itine. This variation over a range o f 

octanoylcam itine spiked blood spots added strength to the assignm ent o f octanoylcam itine 

lactone (11.73 m in) w ith little variation in the peak area o f  the second com ponent. The 

retention tim es discussed in the text refer to the initial sam ple GC tim es rather than those 

recorded using the ITD in this example.

In an attem pt to identify the additional peak in the chrom atographic region o f  interest the 

sam ple w as analysed by GC/M S (VG 20-250) with conditions as described in Section 2.3. 

The chrom atographic resolution was very poor even for sam ples that were heavily spiked 

w ith ocatanoylcarnitine although two peaks could be detected. The m ass spectrum  o f  the 

contam inating peak w as obtained but there was no spectral m atch in the com puterised 

library. This w as due both to lim itations in the outdated library available and the poor 

quality  m ass spectrum  presented. In order to identify the peak o f  interest the E ight Peak 

Index (RSC) [10] was used to obtain a m atch m anually via com parison o f  m ass spectral 

data. The index allow s com parison based on the abundance o f  the apparent m olecular ion 

o f  the com pound o f  interest, together w ith the relative ion abundance o f  the eight largest 

peaks in the El mode. Using these criteria it was possible to propose that the contam inant 

w as 7V-butylbenzene sulphonam ide. The fragm entation o f  the sulphonam ide in the El 

m ode w ith a base peak o f  m/z 11 and significant fragm ents at m/z 141 (82% ), 170 (73% ), 

51 (45% ), 78 (10% ), 158 (12% ) and 171 (5%) together with some self-Cl to give a 

protonated m olecule ion at m/z 214 (5%). GCCI/M S, using the ITD 800A. was used to 
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lend further w eight to the designation o f  213 as the relative m olecular m ass o f the 

com pound, w ith the presence o f  an [M + H]+ protonated m olecule in the Cl mode 

(isobutane) at an m/z value o f  214 (100% ) with very few fragm ents present. The 

contam inant was also confirm ed as /V-butylbenzene sulphonam ide after further analysis by 

G C EI/M S using an ion-trap, w hich gave good resolution and a successful library m atch 

w ith a new er com puterised library. The other peak in the region was confirm ed by GC/M S 

as being the required octanoylcam itine lactone.

W ith the contam inating peak identified, as the second o f  the two peaks in the retention 

tim e w indow  o f  interest, attem pts to rem ove the /V-butylbenzene sulphonam ide from  the 

sam ple w ere undertaken.

It w as considered that the filter paper onto which the blood was spotted m ight be the 

source o f  the contam ination (Experim ent 5.11.11 .ii). Guthrie cards used in these 

experim ents w ere obtained from  two different sources (M ilton K eynes Hospital, A rm y 

M edical College). On extraction o f  blank areas o f  paper w ith m ethanol, both w ere found 

to be contam inated w ith a peak o f  a retention tim e ( 1 2  m in) corresponding to the 

sulphonam ide and to have on GC/EIM S analysis the predicted m ass spectral fragm entation 

pattern as listed in Table 5.4 and depicted in Figure 5.5. In an attem pt to rem ove any 

contam inants from  the paper prior to acylcam itine extraction, a hexane pre-w ash o f  the 

spots w as added to the work-up. Though a slight reduction in the levels o f  contam ination 

w as recorded it w as not significant enough to be incorporated into the standard m ethod or 

to alleviate the presence o f  the sulphonam ide. Diethyl ether and ethyl acetate w ere also 

used as w ashes for the paper prior to extraction but as in the case o f  hexane no significant 

changes in the peak area o f  the contam inating peak were observed (Table 5.9).



A study w as also carried  out to determ ine if  the contam ination appeared at a particular 

point during the extraction/cyclization w ork-up o f  the sam ples. Gas chrom atographic 

analysis o f  the sam ples w as carried out after the ex traction  step o f  the procedure and at the 

end point o f  the w ork-up , after cyclization. This set o f  analyses clearly illustrated that 

contam ination w as p resen t from  the initial extraction step  in the preparation o f  the d ried  

blood spots.

The nature o f  su lphonam ides as detergents gave rise to the  possib ility  o f  personal 

(Experim ent 5.11.11 iv) or glassware (Experim ent 5.11.11 v) contam ination. A num ber o f  

experim ents w ere carried  out in order to elim inate these possibilities. To determ ine if  

personal con tam ination  o f  the blood spots had occurred two areas ( 6  m m ) o f  filter paper, 

from the sam e G uthrie  card w ere punched out. One o f  the  spots was then handled both  

with and w ithou t g loves to m axim ize the potential for outside and personal contam ination. 

The second spot w as not handled but was placed d irectly  in a clean test tube. These tw o 

samples w ere son ica ted  in m ethanol and, w hen finally analysed by capillary gas 

chrom atography coup led  w ith m ass spectrom etry, show n to contain sim ilar unreduced 

levels o f  the su lphonam ide. Identification o f  the sulphonam ide w as again by 

chrom atographic re ten tion  tim e and m ass spectral data. To elim inate the possib ility  o f  

glassw are con tam ination , the stoppered pyrex test-tubes used for the sonication and freeze- 

drying o f  ex traction  so lvents were washed in turn w ith the extraction solvent itself, as the 

contam inant w as obv iously  soluble in m ethanol. This w ould  have rem oved any 

sulphonam ide from  th e  g lassw ear prior to extraction. T  est tubes w ere also sonicated in the 

detergent D econ 90 o r w ashed with concentrated nitric acid (Table 5.10). Sam ples were 

also v igorously  shaken  w ith  m ethanol, w hen stoppered, to determ ine if  the stopper was the 

source. In all o f  the cases described no significant decrease or increase was recorded in the 

levels o f  A -buty lbenzene sulphonam ide observed w hen analysed using the ion-trap
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Figure 5.5 The m ass spectrum  o f  the sample contam inant w hich was m atched 

w ith  library spectra and entries in the e igh t peak index (Table 5.4, 

below ), and w as thus identified and 7V-butyIbenzene sulphonam ide.

Table 5.4 Inform ation from  entry in the eight peak index  com pared with the 

acquired spectra.

TV-butylbenzene sulphonam ide 
(m/z values. E ight Peak Index)

Relative ion abundance 
(%) (Eight Peak Index)

Relative ion abundance (%) 
(Sample contam inant)

77 1 0 0 1 0 0

141 97-74 82

170 99-79 73

51 20-26 45

41 2 0 - 1 0 not scanned

78 16-10 1 0

158 1 0 1 2

171 9-10 5

214 - 5 ([M  + H]+ , self-CI)



instrum ent w ith retention tim e approxim ately that depicted in Figure 5.5 and the key 

fragm ents listed in Table 5.4.

From  the results discussed above it was considered that the only com ponent that the 

experim ents had in com m on was the presence o f  m ethanol as the extraction solvent. A 

prelim inary GC experim ent had suggested that m ethanol was not the source o f 

contam ination but, in case that result had been erroneous, it was deem ed necessary to 

reanalyse the m ethanol. This tim e GC/M S was utilized rather than GC alone. A small 

volum e ( 2  m l) o f  the solvent was evaporated to dryness and any rem aining m aterial 

d issolved in ethyl acetate and analysed using GC/M S. In this case lactonization was 

unnecessary as it had already been show n that the contam ination was present from  the 

earliest stages o f  the work-up. The chrom atogram  from  this analysis contained the peak 

corresponding by retention tim e and m ass spectrom etry to vV-butylbenzene sulphonam ide. 

It w as deduced that the original chrom atogram s for m ethanol analysis that suggested that 

the solvent was free o f  contam ination were recorded w hile the FID detector or the GC 

system  w as not operating correctly.

The rem aining m ethanol, w hich had been used for sam ple extraction up to his point, was 

redistilled  and used for the standard extraction and this brought about a large reduction in 

the levels o f  contam ination observed. A small am ount o f  HPLC grade m ethanol (2 ml) 

w as dried and analysed and the resulting chrom atogram  w as show n to be free o f  the 

contam inant. A spiked blood sam ple was then extracted using HPLC grade m ethanol. In 

this case TV-butylbenzene sulphonam ide was not detected. It was show n therefore that the 

source o f  contam ination was the batch o f  m ethanol for these experim ents.

In th is case it has been possible to identify positively the contam inant as vV-butylbenzene 

sulphonam ide and for the purpose o f  this w ork to elim inate it as a concern to the analysis.



It has not how ever been possible to pinpoint the overall source o f the problem . The results 

from  the experim ents outlined above have been presented at a num ber o f m eetings. The 

interest in these findings has been w idespread from  fellow  research w orkers w ho have 

encountered the contam inant from  sources sim ilar to those detailed here and a num ber o f 

groups w orking on various projects in the field o f  m ass spectrom etry have now  identified 

this com pound and it appears to be widespread. A m ajor m ass spectrom eter m anufacturer 

has tuned electrospray m ass spectrom etric instrum ents on m/z 214 as it is alw ays present in 

water: m ethanol m ixtures and analysts in the w ater industry have reported detection o f  

A -butylbenzene sulphonam ide w ater sources from  bore w ater to the purest o f  treated 

waters [Elga].

5.4 SEM ANALYSIS OF BLOOD SPOTS.

Experim ents w ere carried out in order to dem onstrate any visible changes in the nature o f  

the blood spots due to the various procedures used in their preparation and w ork-up. These 

include the effect o f  the solid carbon dioxide, w hich is used to keep the sam ples cold 

enough to prevent or at least reduce clotting o f  the fresh blood during transport. The effect 

o f  tim e w hen Guthrie spots are stored at room  tem perature and the effect o f  sonication as 

an extraction m ethod. Five sam ples were view ed by scanning electron m icroscopy and 

there w ere approxim ately six m onths betw een the preparation o f  the older and the fresh 

sam ples. Sam ples were not dried using the technique o f  critically point drying as the air 

drying w ould have already caused the desiccating and disruption o f  the cells. In the case 

o f  fresh blood this m ethod w ould allow  the fixing o f the cells w ithout dam age.

The results o f  this analysis have show n that keeping the blood cold during transport (at 

approxim ately  -40"C w ith solid C 0 2) did not cause any visible dam age to the blood cells

other than  that found in the case (A ppendix E l)  o f  the untreated fresh blood, and any 
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changes can be attributed to the effect o f  drying causing desiccating o f  the cells.

Sonication o f  the cells was how ever shown to cause a com plete breakdow n o f  the 

rem aining cells and the d isruption o f  the layer o f  serum -like m aterial w hich coats the 

surface o f  each blood spot (A ppendix E2). In the case o f  non-sonicated  sam ples both  red  

(1-2 pm ) (A ppendix E4) and w hite  blood cells (20-30 pm ) (A ppendix  E3) were observed. 

These w ere identified  as blood, and  not bacterial cells, as on increase o f  the probe curren t 

over the sm all area the single m em brane o f  the bacterium  w ould be expected  to rupture, 

w hereas the m ore robust nature o f  the cell m em branes prevents this.

SEM  prints are show n in A ppendix  E to illustrate these findings.

Investigation into the effect o f  tim e  on the condition o f  the blood spots did not identify  any 

significant changes over the tim e span involved (six m onths). This w ou ld  suggest that the 

blood spot w ould  be in a  condition  for analysis without any storage specifications after this 

tim e (A ppendix  E5). Changes to  the nature o f  the acylcam itines has no t been studied, 

though acylcam itines have been shown to be stable over long periods o f  tim e [4 and 

Section 5.1 o f  th is thesis].

5.5 QUANTITATIVE EVALUATION OF THE METHOD

It has been show n that a  variety o f  acylcam itines can be extracted, derivatized and 

characterized, th rough the use o f  capillary gas chrom atography coupled w ith m ass 

spectrom etry, from  spiked dried blood spots on conventionally available G uthrie cards. 

A lthough the analysis o f  sam ples o f  this nature m ainly requires a qualitative rather than a 

quantitative answ er, an investigation to estim ate the quantitative recovery from the 

extraction (chloroform /m ethanol, 2 : 1 ) o f  blood spots relative to that o f  directly cyclized 

octanoylcam itine w as undertaken. The latter provides a m easure o f the optim um  yield (80 

- 100%) w hich w ould  ideally be achieved also with blood spots. The direct lactonization 
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o f  octanoylcam itine from dried blood spots (i.e. lactonization directly from Guthrie paper 

in hot acetonitrile without extraction) was also being assessed. Peak areas were recorded 

for both octanoylcam itine and isovalerylcam itine lactones using the m ass chrom atogram  at 

m/i 85. The acylcam itine lactones in this case w ere identified by retention time, 

isovalerylcam itine lactone as internal standard at scan num ber 505-509 and

Comparison of mean peak area ratios for standards vs extracts
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Cone, octanoylcamitine per blood spot (ug/ml)

octanoylcam itine lactone at scan num ber 766-770 and their fragm entation pattern. 

Concentrations o f  octanoylcam itine, peak areas for both acylcam itine lactones and the 

peak area ratios are presented graphically in Figure 5.6. Identical levels o f  

isovalerylcam itine (6.25 pg) w ere added to each sample.
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D ata used in the generation o f  Figure 5.6

Cone. 
O ct cam / 

blood spot

Peak area ratio from  standards Standard
deviation

........

M ean peak  .
area ratio

0 0 0 0 0 0

0.125 0 0.005 0 0.002887 0.001667
1.25 0.195 0 . 0 1 2 0.056 0.09564 0.087567
3.12 0.638 0.298 0.490 0.17066 0.475033
6.25 1.168 1.519 1.733 0.285255 1.473333
15.60 2.900 3.485 3.521 0.348607 3.302
31.20 5.600 8.365 6.562 1.403635 6.8424
46.90 7.249 11.883 10.364 2.362374 9.832033
62.50 11.421 13.254 11.566 1.019008 12.08033
125.00 13.776 20.548 15.435 3.529821 16.56862

Cone. 
O ct cam / 

blood spot

Peak area ratio from extracts Standard
deviation

M ean peak  
area ratio

0 0 . 0 1 2 0 0 0.0069282 0.004
0.125 0 0 0 0

1.25 0.194 0.080 0 0.0974953 0.091
3.12 0.172 0.070 0.07212489 0 . 1 2 1

6.25 0 . 1 2 2 0.251 0.192 0.06457812 0.188
15.60 0.533 0.533
31.20 0.524 0.736 0.413 0.16411073 0.558
46.90 0.812 0.996 0.715 0.14272701 0.841
62.50 1.140 1.255 1.561 0.21760132 1.319
125.00 2.393 3.309 3.546 0.60891078 3.083

Figures 5.6 A graphical com parison o f  the peak area ratios for standard

octanoylcarnitine solutions versus extracted  blood spots and the data  sets 

used to com pile it.

A num ber o f  sam ples w ere prepared in triplicate in o rder to provide some quantitative 

insight into the extraction and cyclization o f  acylcarnitines. There were three differing 

approaches. The first (a) w as to obtain the peak area ratio  (octanoylcarnitine/ 

isovalery lcam itine) from  the cyclization o f standard octanoylcarnitine solutions. The 

second w as to generate the sam e data from extracted blood spots to allow a direct 

com parison. The third was to directly cyclize the acylcarnitines from blood spots as
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described  in Experim ent 5.11.7. In the first case extraction is not a factor and w e are 

assessing cyclization presum ing a 100% extraction efficiency. Over the range (0 — 125 

/spot) the  graph o f  peak area ratios the cyclised standards are show n as the first an d  upper 

set o f  data. The second series shown above is the peak area ratio from  spiked b lood  spots, 

extracted and cyclized, over the same range. A com parison o f  m axim um  m ean p e a k  area 

ratios (a= 16.59 , b=3.08) w ould suggest an extraction efficiency o f  approxim ately  18% 

w ith p o o r quantitation from blood spots a t lower concentrations. In the th ird  case  sam ples 

were cyclized  directly  and the recovery w as lower (approxim ately 5%). The g raph  in 

F igure 5 .6  allow s a visual com parison o f  the  first two sets o f  data. W hilst recovery  o f  

about 18%  is d isappointing for the extracted blood spots, it w as decided to try to analyse 

clinical sam ples to determ ine i f  this recovery is sufficient for diagnosis o f  d isease states.

5.6 APPLICATION TO CLINICAL SAMLES

A ll c lin ica l sam ples discussed here originate from patients w ho had been d iagnosed  as 

au thentic  cases o f  the disorders in question by m eans other than  the m ethod described  here. 

W hen dealing  w ith  inherited m etabolic disorders, sam ples to test a new  m ethod a re  not 

easy to  o b ta in  but are very necessary to establish the effectiveness o f  a m ethod p rio r  to its 

use in  th e  diagnosis o f  unknow n clinical disorders. In th is section three exam ples are 

p resen ted  to dem onstrate the applicability  o f  this sim ple gas chrom atographic m ethod  to 

the d iagnosis  o f  such diseases in neonatal patients. In norm al blood sam ples (i.e. from  

people n o t suffering from  any know n m etabolic disorder) it has not been possib le  to detect 

the trace levels o f  acylcarnitines present. Their concentrations fall below  the lim it o f 

de tec tion . In all the clinical cases described here therefore a positive result is the detection 

o f  any acylcarn itines after extraction o f  the blood spot and this is considered an elevated 

response . This situation is clearly not ideal but a significant increase in the ex traction  yield
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w ould be necessary to record  norm al acylcarnitine levels, i f  indeed th is detection w as 

possible by GC/M S.

All clinical samples d iscussed  in th is  section were prepared and analysed in the sam e 

m anner. Bloods spots, obtained from  a num ber o f  hospitals, were extracted using the 

m ixed solvent system  o f  chloroform /m ethanol (2:1) v ia sonication ( 2 x 1 0  m in). The 

solvent aliquots were then  dried, and  the derivatization reagents added. The cyclized 

sam ples were then analysed by G C /C IM S with isobutane on the F innigan M A T ITD  800A. 

For the analysis o f  acylcarnitines using  the ion-trap it w as considered th a t chem ical 

ionisation was the m ost effective m ode o f  ionization. The resulting spectra usually  consist 

o f  the protonated m olecule as the base  peak and little fragm entation o ther than peaks a t m/z 

85 as in E l. The peak at m/z 125 has not yet been characterized but, due to it is p resen t in 

m ost acylcarnitine lactone C l spectra, m ay be due to a C 3 H 4  adduct o f  the lactone ring  ion 

at m/z 85.

5.7 MEDIUM-CHAIN ACYL CoA DEHYDROGENASE DEFICIENCY 

(MCADD).

M C A D D  is a  disorder o f  one o f  th ree  m itochondrial m atrix  acyl-CoA dehydrogenases

w hich carry out the initial dehydrogenation  step in the 6 -oxidation o f straight chain fatty

acids. This enzym e is responsible fo r the breakdow n o f  Cg-Cjo carbon length fatty acids

and i f  this enzym e were dam aged o r  absent m itochondrial oxidation o f  endogenous and

dietary fatty acids, w ould be affected  [11]. This disorder, m edium -chain acyl-C oA

dehydrogenase deficiency (M C A D D ) has been incorrectly diagnosed as Reye's syndrom e

or SIDS (Sudden infant death  syndrom e). M CA DD is triggered by excessive fasting (> 12

hr) and in some cases is only identified  when a sibling is identified as suffering from  the

disorder. Characteristic o f  this d isorder is a secondary carnitine deficiency and 
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dicarboxylic ac idu ria  w hen stressed from fasting. T he m echanism  for secondary  carn itine  

deficiency in M C A D D  is unknow n but is possibly due  to the high levels o f  excreted  

octanoylcarnitine [12]. The organic acid profile in th is  disorder clearly show s the p resence  

o f  elevated levels o f  C ^-C jq dicarboxylic acids.
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Figure 5.7 (a) E xtracted  ion chrom atogram , m /z 229, and  (b) the resu lting  b a c k g ro u n d

subtracted  C l m ass spectrum  from  an M C A D D  sam ple p ro v id ed  b y  th e  

Q ueen  Elizabeth H ospital, London.

Cbranatogra* A:69(5) 
omen6: MCADD, $ 5  LC 
can Range: 700 -  799 
80%

708 720 748
11:41 12:01 12:21

Average of: 765 to  769 Minus: 778 to 782

760
12:41

181 195



Figure 5.8 (a) Extracted ion chromatogram, m/z 229, and (b) the resulting background

sub trac ted  C l m ass spectrum  from  an M C A D D  sam p le  provided  by th e  

Q ueen E lizab e th  Hospital, London.

Chromatogram fl:59(ll)CI Acquired: Hay-86-1993 16:11:13
Comment: MCADD BLOOD SPOT, mSAP
Scan Range: 608 - 899 Scan: 688 In t = 17754 8 18:81 188% = 517
108%
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Figure 5.9 (a) Extracted ion chromatogram, m/z 229, and (b) the resulting background

subtracted Cl mass spectrum from an MCADD sample provided by the 

Queen Elizabeth Hospital, London.

Cowent: LC §E6 (MCADD) 
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In acute patients elevated levels of urea and ammonia suggest that proteolysis is 

accelerated but is unable to meet the demand for substrate needed for gluconeogenesis. 

Accelerated tissue catabolism and ATP depletion may account for the increase in uric acid 

levels found at the time of illness [13].

Chromatograms from the analysis of three MCADD clinical blood spot samples are shown 

in Figures 5.7- 5.9, pages 146-148. GC/MS analysis was carried out in the chemical 

ionisation mode using isobutane as described in Section 2.3 with particular emphasis on 

the 700-800 scan number region. Extracted ion chromatograms were obtained for m/z 229 

([M+H]+) and a spectrum of the peak in the specific region of scan numbers 765-770, that 

characterised for the octanoylcarnitine lactone, is shown for each of the blood spot 

samples.

These samples clearly show that, although at very low levels, the octanoylcarnitine lactone 

was clearly discernible in the area of interest and the spectra generated from the peaks in 

this region have m/z 229 as their base peak. It has therefore been clearly shown here that 

using octanoylcarnitine lactone MCADD can be diagnosed from blood spots.

5.8 PROPIONYL ACIDEMIA.

Propanoic acid and other volatile fatty acids are found in high concentrations in ruminants. 

Non-ruminants however have a low blood concentration of these acids. Other sources of 

propanoate include the ^-oxidation of odd-chain number long-chain fatty acids, the 

catabolism of amino acids (isoleucine, valine, threonine and methonine) [14] and from 

thymine. It is the only fatty acid, which in the liver and the kidneys can be converted to 

glucose [15]. Propanoate is activated to its CoA ester inside the mitochondrial matrix [16] 

and is further conjugated with carnitine to facilitate reversible transport across the 
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mitochondrial membrane. The enzyme carnitine acetyl transferase (CAT) is responsible 

for this conjugation. If the transport of propanoyl-CoA from the membrane is inhibited 

this produces a toxic effect and the excretion of accumulated CoA esters as their carnitine 

esters as discussed earlier. Propanoyl-CoA also has the effect of allosterically hindering 

the action of succinate-CoA ligase, which is responsible for the conversion of succinyl- 

CoA to succinate [17]. This can cause a decrease in the production o f GTP (guanine tri­

phosphate) at the substrate level thus reducing ATP-dependent mitochondrial fatty-acid 

oxidation [18]. Further to conjugation with carnitine, propanoyl-CoA undergoes a 

carboxylation, mediated by propanoyl-CoA carboxylase [19], in the mitochondrial matrix 

to produce D-methylmalonyl-CoA. This is then racemized to the L- isomer, via 

methylmalonyl racemase, which in the presence of methylmalonyl-CoA mutase yields 

succinyl-CoA for entry into the energy-generating citric acid cycle [20]. It is abnormal or 

low activity of the biotin dependent enzyme propanoyl-CoA carboxylase, which gives rise 

to the diagnosis of propionyl acidemia [19]. The incidence of propionyl acidemia has been 

reported as 1 in 350,00 birth in one screening program [21].

In the disease propionyl acidemia the major urinary metabolite is reported as 

2-methylcitrate [20, 22, 23] with the disease characterized by severe metabolic 

decompensation with metabolic acidosis and hyperammonaemia. Propionyl acidemia is 

one of the most severe acidemias, which occur in infancy, with acidotic attacks being fatal 

in up to 40% of patients [24]. Treatment with d,l-camitine in the oral form has been shown 

to increase the free carnitine level in plasma to near normal levels and an increase in 

muscle tone in patients was observed without any adverse effects [22]. Analysis by 

alkaline hydrolysis paper/chromatography has demonstrated that approximately 90% of the 

content of acylcarnitines present in a urine sample was propanoylcarnitine coupled with a 

marked decrease in the levels of methylcitrate [25].



Figure 5.10 (a) Extracted ion chromatogram, m/z 159, and (b) the resulting background

subtracted Cl mass spectrum from a Propionic Acidemia sample provided 

by the Temple Street Hospital, Dublin.
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Propionyl-L-camitine has also been studied in relation to cardiovascular drug therapy with 

its effect being proposed as biphasic. Penetration of the cytosolic endothelial cells and 

cardiomyocytes by propanoylcarnitine can improve energy supply. This occurs through 

the conversion o f propanoate to succinate to oxaloacetate [26] which can lower a high 

acyl-CoA/CoA ratio which can occur in the case of depletion o f mitochondrial 

dicarboxylic acids, slowing down the citric acid cycle and thus reducing ATP generation.

It may also give some protection to plasma membranes during ischemia and other 

associated acidosis [27]

Accumulation o f propanoylcarnitine was directly identified first by Millington et al using 

FAB-MS/MS in 1984 [28].

In the work presented here, propanoylcarnitine lactone readily detected in a blood spot 

from a neonatal patient who had been diagnosed as suffering from propionic acidemia.

The data presented in Figure 5.10 show propanoylcarnitine lactone detected at scan 

number 400 in the Cl mass chromatogram of m/z 159 (a), the protonated molecule of 

propanoylcarnitine lactone. The only other peak present in the mass chromatogram is 

attributed to nonanoic acid. Organic acids of varying chain length have been detected both 

in the cases of normal and clinical dried blood spots on analysis by gas chromatography. 

The mass spectrum of propanoylcarnitine from (a) is shown below (b). The base peak in 

this spectrum is the protonated molecular ion, m/z 159, diagnostic fragments at m/z 85 

(73%) and 125 (8%) also present. The peak assigned in this case to propanoylcarnitine 

matches, both in chromatographic retention time and the mass spectrum generated, that of 

commercially obtained standard material.



Figure 5.11 (a) Extracted ion chromatogram, m/z 159, and (b) the resulting background

subtracted Cl mass spectrum from a Methylmalonic Aciduria sample 

provided by the Temple Street Hospital, Dublin.
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5.9 METHYLMALONIC ACIDURIA.

M ethylm alonic acidem ia has been shown to  be caused by the absence/deficiency o f  

m ethylm alonyl-C oA  m utase or by abnorm alities o f  intra-m itochondrial cobalam in 

m etabolism  [29] w ith its incidence reported as 1 in 48,000 [30]. Its diagnosis can be  m ade 

through c lin ical m anifestations such as attacks o f ketoacidosis and hyperam m onem ia. 

A ttacks can  occur in situations such as heavy protein feeding [31] or infections [32, 33, 

and 34].

In a  blood spot, like the exam ple opposite, propanoylcarnitine lactone w as readily  de tec ted  

from  a neonatal patient who had been diagnosed as suffering from  m ethylm alonic 

acidem ia. T he data presented in Figure 5.11 again show  propanoylcarnitine lactone 

detected  at scan num ber 400 in the Cl m ass chrom atogram  o f  m/z 159 (a), the p ro tona ted  

m olecule o f  propanoylcarnitine lactone. T he only other peak present in the m ass 

chrom atogram  is attributed again to nonanoic acid. The m ass spectrum  o f  

propanoylcarn itine  from  (a) is show n below  (b). The base peak in this spectrum  is the  

p ro tonated  m olecule, m/z 159, diagnostic fragm ents at m /z 85 (73% ) and 125 (5% ) w ere  

also present. A  second acylcarnitine, w hich  m ight be extracted from  the blood o f  pa tien ts  

w ith  m ethylm alonic  acidem ia, is m ethylm alonyl carnitine, w hich was not detected  in  th is 

sam ple e ither in  the total ion chrom atogram  or on selective ion m onitoring o f  po ten tia l key 

fragm ents. M ethylm alonylcarnitine may no t be extracted efficiently because o f  its 

different po larity  and solubility or, as show n in C hapter 4, it m ay not be cyclised 

efficiently  under standard lactonization conditions.
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5.10 CONCLUSION

In conclusion a m ethod is evolv ing  w hich allows the analysis o f  dried b lood  spots on 

G uthrie cards. The application o f  th is m ethod to a range o f  acylcarnitines in spiked b lood  

spots has also been described. A  technique has been presented therefore w hich m eets th e  

aim  o f  providing a relatively sim ple analytical technique, w ith the poten tial for use w ith in  

existing hospital laboratories, using existing or relatively inexpensive instrum entation . The 

application o f  this technique to  a num ber o f  clinical sam ples has also been  illustrated  w ith  

G C /C IM S providing easily in terpreted  chrom atogram s and m ass spectra. The poten tia ls 

for developing this m ethod fu rther are easy to see: a  significant increase in the ex traction  

yield  is the m ajor requirem ent. In th is way one w ould hope to m onitor trace as well as 

m ajor acylcarnitine com ponents, and norm al as well as elevated levels thus providing a  

m ore com prehensive d iagnostic  service. Considering the com plexity o f  the b lood m atrix  

even the total ion chrom atogram s have relatively low  noise levels and few  other sign ificant 

peaks.
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5.11 EXPERIMENTAL

5.11.1 R E A G EN TS A N D  M ATERIALS.

Guthrie cards w ere donated  by M ilton Keynes H ospital and the  Royal A rm y M edical 

College, L ondon and w ere  produced by W hatm an (M aidstone, UK). A cylcarnitines w ere 

synthesised using p reviously  reported m ethods [1, 9] or purchased  from Sigm a (St. L ouis, 

UK) as w as the h e x a n -l-o l. vV,7V-diisopropylethylamine, hexane, pentan-2-ol and butan-1- 

ol w ere purchased  from  A ldrich  (Gillingham , UK). M ethanol, chloroform , acetone 

(A nalar) and N itric  acid w ere  acquired from BDH M erck (Poole, UK) w hile H PLC  grade 

m ethanol w as obtained from  Rathburn (W alkerburn, Scotland). R eacti-vials (1 m l) w ere 

purchased from  Pierce (C hester, UK), acrodisc filters (0.2 pm ) from  G elm an 

(N ortham pton, U K ), g lass syringes from W eber Scientific (Teddington, U K ) and stoppered 

Pyrex test-tubes (10 m l) from  BDH M erck. Diethyl ether w as obtained from  R hone- 

Poulenc (M anchester, U K ). Glycerol used as the FA B m atrix  solvent w as purchased  from  

BD H  M erck. For SEM  studies Cam bridge stubs w ere obtained  from  B io-R ad /F isons (E. 

Sussex, U K ) and these w ere  coated by an EM  SC 500 spu tter coater w ith a  gold target also 

available from  Bio-Rad. Freeze-drying was carried out using  a G enevac (Ipsw ich, U K ) 

SF50 spin  freezer, freeze  dryer and centrifugal evaporator w ith  a CV P 100 M K 4 vapour 

vacuum  pum p.

5.11.2 PR E PA R A T IO N  OF BLOOD SPOTS.

W hole b lood (10 m l) ob tained  from a healthy m ale volunteer was stored in a flask o f  solid 

carbon dioxide for 5 - 10 m in after donation. This w as then m ixed for 10 m inutes at room  

tem perature to ensure hom ogenous defrosting. The 10 ml sam ple then divided into 0.5 ml 

aliquots.
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Each aliquo t was then spiked w ith an appropriate vo lum e o f octanoylcarnitine so lu tio n  as 

detailed in  Table 5.1. Sam ple aliquots w ere then vigorously  shaken for ten  m inu tes a n d  

each w as used to produce four blood spots onto G uthrie  paper. These papers w ere th e n  

stored at room  tem perature and were left for at least 2-3 days prior to analysis in o rder to  

ensure the  drying o f  the blood spot and to m im ic the  preparation conditions for later 

analysis o f  clinical sam ples.

5.11.3 D E V E L O PM E N T  OF EX TR A C TIO N  PR O C E D U R E

(i) PR E L IM IN A R Y  SO LV EN T E V A L U A T IO N

B lood spo ts w ere prepared as detailed above (5.11.2). A n area 6  mm in d iam eter w as 

punched for the blood spot and this w as further cu t into a  num ber o f  segm ents tha t w ere  

p laced in  a  stoppered test tube.

O ctanoylcarn itine was extracted by vigorously  shaking  the dissected G uthrie spot tw ice  in 

m ethanol (2 x 1 ml). The com bined extracts were then freeze dried and the residue 

d isso lved  in  200 pi o f  acetonitrile. FA B /M S was carried  out on the residue to d e te rm ine  i f  

the analy te  w as successfully  extracted.

The standard  lactonization procedure w as then carried  out on the extracted acy lcarn itine  to 

produce the  volatile octanoylcarnitine lactone. G C /M S analysis o f the sam ples w as th en  

carried  ou t to confirm  the presence o f  octanoylcarnitine lactone.
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(ii) EVALUATION OF PHYSICAL EXTRACTION

A card o f  four blood spots was prepared as detailed in the previous experim ent (5.11.3 (i)). 

Three areas 6  m m  in diam eter were punched from the card and dissected into sm aller 

segm ents. These segm ents were placed in test tubes and 1ml o f  m ethanol w as added to 

each tube. The sam ples were then treated in differing m anners as follows;

(i) Sam ple was shaken for 10 m in

(ii) Sam ple was sonicated for 10 m in

(iii) Sam ple was vortex m ixed for 10 min.

Each o f  these processes w as repeated w ith a further 1 ml o f  m ethanol. The com bined 

extracts w ere freeze dried and the resulting residue dissolved in 2 0 0  pi o f  acetonitrile.

The standard lactonization procedure was then carried out on the extracted acylcarnitine to 

produce the volatile octanoylcarnitine lactone. Follow ed by GC/M S analysis.

(iv) D U R A TIO N  OF PH Y SICA L EX TRA CTIO N

Dried, spiked blood spots were prepared and extracted in the norm al m anner. 

Isovalerylcam itine was added to the extraction solvent prior to sonication as an external 

standard. The sonication tim e o f  the sam ples was varied from  2 - 3 0  m in for each m illilitre 

o f  solvent (as Table 5.2)
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5.11.4 SPIKING EFFICIENCY

A standard section ( 6  m m  diam eter) was excised from  a spiked Guthrie blood spot and the 

acylcarnitines were extracted and cyclized. The rem aining area o f  blood spot w as then 

treated  in the sam e m anner. The calculated areas o f  these two portions o f  blood spot were 

approxim ately the same.

A blank G uthrie paper was spiked w ith the same concentration o f  octanoylcarnitine as 

above. Inner and outer areas o f  Guthrie spot were the prepared as for the blood spot.

A ll four segm ents o f  paper were extracted in the same m anner and the resulting residues 

cyclized. The sam ples were then analysed by G C/M S (Table 5.8).

5.11.5 ELE C TR O SPR A Y  A N ALY SIS OF EX TRA CTIO N  RESID U E

G uthrie spots spiked w ith octanoylcarnitine solution (as Table 5.1) extracted w ith m ethanol 

and the resulting residues containing the acylcarnitine and any other co-extracted m aterials 

were analysed by electrospray ionization (ESI/M S); see C hapter 6  for further details o f  this 

analytical technique.

The extraction residue w as reconstituted in 100 pi o f  a chloroform /m ethanol m ixture and 

analysis w as by loop injection. Varied injection volum es were used to determ ine i f  the 

residue contained acylcarnitine at levels suitable for analysis or other co-extracted m aterial.
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5.11.6 EXTRACTION OPTIMIZATION

A series o f  experim ents w as designed to determ ine if  an alternative solvent, or m ixture o f  

solvents, could be found w hich facilitated the extraction o f  octanoylcarnitine, w ithout that 

o f  proteins and/or other com pounds, w hich may inhibit cyclization

(i) SING LE SO LV EN T SYSTEM S

A num ber o f  single solvent system s were used in an attem pt to im prove the yield o f  

lactones for analysis (Table 5.3). Pentan-2-ol, 1-butanol and 2-hexanol w ere used in place 

o f  m ethanol. Sam ple analysis was by GC/EIM S using an ion-trap

TA B LE 5.5 -  Evaluation o f  individual extraction solvents

S o lv en t M ean peak  area  

octanoylcarnitine 
lactone (N=2)

A P en tan-2-o l 16998

H ex a n -2 -o l 2 2 1 1 4

C B u ta n -l-o l (H PL C  G rade) 14772

(ii) M IX ED  SO LV EN T SYSTEM S

Solvent m ixtures were evaluated to determ ine i f  one solvent could facilitate protein 

im m obilization while extraction was the role o f  the second.

B lood spots were prepared w ith 6.25 pg o f  octanoylcarnitine/blood spot. A cetone and 

ethanol w ere com bined w ith varying volum es o f  m ethanol for extraction (Table 5.4). The 

m ethod o f  extraction was otherw ise unchanged from  Experim ent 5.11.3.
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A com parison was then carried out betw een this preferred acetone/m ethanol system  and a 

solvent system  o f  chloroform /m ethanol in a 2 : 1  ratio (as used for the analysis o f  

acylcarnitines from  urine [8 ]).

TA B LE 5.6 - Evaluation o f  m ixed extraction solvents (Table 5.3, page 133 show s results 

from  this experim ent).

M eth a n o l (% ) A c e to n e  (% ) E th a n o l (% )

90 10 0
R 75 25 0

V 65 35 0
rx 50 50 0

0 100 0

F 0 0 100

5.11.7 M O D IFIC A TIO N  OF EX TRA CTIO N  TIM E

A series o f  experim ents were designed to determ ine (i) if  the use o f  m icrow aves w ould 

allow  the cyclization tim e to be cut to m inutes or even seconds (ii) i f  direct cyclization o f  

sam ples w as viable.

(i) U SE OF M ICRO W A V ES

Spiked blood spots were prepared (5.11.2) and extracted (5.11.3) in the norm al m anner 

w ith m ethanol. One set o f  blood spots spiked with a know n concentration o f 

octanoylcarnitine were cyclized in the norm al m anner as a control sample.

Sam ples o f  identical octanoylcarnitine concentration were prepared and these were 

subjected to a variety o f  m icrow ave intensities and durations (Table 5.7). Sam ples were 

then analysed by G C/M S to com pare the levels o f  octanoylcarnitine lactone generated.
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Table 5.7 -  M icrow ave intensities and duration

Sample Microwave
Settings

Capping Time/
mins

Mean peak area 
octanoylcarnitne lactone

(N=3)
1 Low /w ater sink Loose 0.5 ND
2 Low Loose 0.5 ND
3 M edium Tight 0.5 ND
4 Low Tight 1.0 7364
5 M edium Tight 1.0 9451
6 Low Tight 1.0 8521
7 M edium Tight 1.0 13213
8 Low Tight 2.0 15135
9 M edium Tight 1.5 19111
10 M edium Tight 2.0 35131

(ii) D IR EC T EX TRA CTIO N  AN D CY CLIZA TIO N  OF BLO O D  SPOTS.

A spiked blood spot (6 m m ) was added to a Reacti-vial containing 200pl acetonitrile and 

80 pi D PEA  solution, this m ixture was then cyclized in the norm al m anner (125°C/ 35 

m in). The G uthrie paper was then rem oved and the solvent dried under a stream  o f  

nitrogen. The resulting residue was then dissolved in 50 pi o f  ethyl acetate and analysed 

by GC/M S. The resulting peaks were com pared w ith the control sam ple from (5.11.7 (i)).

5.11.8 A N A LY TE REC O V ER Y

A n investigation was undertaken to estim ate the quantitative recovery from  the 

extraction/cyclization o f  octanoylcarnitine blood spots and to com pare this to that o f  

directly cyclized octanoylcarnitine. Isovalerylcam itine (6.25 pg) has again been used as an 

external standard being added to the extraction solvent in the case o f  the extracted/cyclized 

sam ples and to the Reacti-vial for cyclization in the case o f  the directly cyclized sam ples.



Peak areas were recorded for both octanoylcarnitine and isovalerylcam itine lactones using 

the m ass chrom atogram  at m/z 85. The acylcarnitine lactones in this case w ere identified by 

retention tim e, isovalerylcam itine lactone as internal standard at scan num ber 505-509 and 

octanoylcarnitine lactone at scan num ber 766-770 and their fragm entation pattern

The efficiency o f  the extraction stage was investigated by carrying out the experim ents 

described in Table 5.8.

TA B LE 5.8 -  Experim ents designed to evaluate spiking and extraction efficiency

Sample Mean peak area  
octanoylcarnitine 

lactone (N=4)

1 B lood  (co n c . 15 .6 u g /m l), m eth an o l/aceton e  e x tr a c t , 
and cy cliza tio n .

3 5 8 8

2 O ctan oylcarn itin e (6 .3  m l o f  50 0  m g /m l) so ln ., 
cycliza tio n .

3 6 2 5 2

3 Pre-prepared spot +  octanoylcarn itine as 2 , 
M eO H /A ceto n e , cy c liza tio n .

3 0 3 2

4 E x c ised  paper spot +  octanoylcarn itine as 2 , 
M eO H /A ceto n e , cyc liza tio n .

1426

5 R em ain ing  G uthrie paper from  4 (ou tsid e). 6 2 4 8

" "  6 R em ain ing  b lood  spot from  1 (ou tsid e). 4 5 2 0

5.11.9 EX TR A C TIO N  OF A C Y LC A R N ITIN E M IXTURES.

Solutions o f  a num ber o f  acylcarnitines were prepared.; butanoyl- (synthesized), hexanoyl-, 

octanoyl- and dodecanoylcarnitine all at 5 mg/m l. A num ber o f  blood spots were then 

prepared (as detailed for the five highest concentrations in Table 5.1). These spots 

contained all four acylcarnitines.

B lood spots were prepared in the following m anner. For exam ple at the highest 

concentration, 200ul aliquots o f  each 5 m g/m l solution were com bined in a sam ple vessel



and the m ixture freeze dried. The resulting acylcarnitine residue was dissolved in 0.5 ml o f  

b lood and m ixed well was used to spike four o f  Guthrie blood spots giving 125 ug o f  each 

acylcarnitine per blood spot. For aliquot volum es at other concentrations see Table 5.1).

A second set o f  blood spots containing an acylcarnitine m ixture was prepared using 

butanoyl-, isovaleryl-, octanoyl- and dodecanoyl-carnitines. The blood spots were 

prepared in the same m anner as detailed above.

5.11.10 A PPLIC A TIO N  TO CLIN ICAL SA M PLES.

All clinical sam ples discussed originate from  patients who had been diagnosed as authentic 

cases o f the disorders in question by m eans other than the m ethod described here.

Bloods spots, obtained from  a num ber o f  hospitals, were extracted using the m ixed solvent 

system  o f  chloroform /m ethanol (2:1) via sonication ( 2 x 1 0  min). The solvent aliquots 

were then dried, and the residue cyclized.

Sam ples were analysed by GC/CIM S with isobutane on the Finnigan M A T ITD 800A 

under conditions given in Section 2.3 (ii).

5.11.11 SA M PLE C O N TA M IN A TIO N  - AN IN V ESTIG A TIO N

(i) SO LV EN T IN V ESTIG A TIO N .

A 2 ml sam ple o f  m ethanol taken through the extraction procedure for acylcarnitines. The

residue after freeze drying w as lactonized. Glassw are and solvent w ere those w hich had

been used in previous experim ents.
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This procedure was repeated using HPLC grade m ethanol.

(ii) TESTIN G  OF G U TH R IE PA PER

N on-spiked Guthrie paper was initially extracted with 2 ml m ethanol and the resulting 

residue lactonized in the usual manner.

Solvent pre-w ashes o f  the paper were also carried out w ith the solvents listed below  (Table 

5.9) any reduction in levels o f  contam ination. All sam ples were prepared in the glassw are 

that had previously been used and cleaned as normal.

T A B L E  5.9 -  Solvents for Guthrie paper pre-w ash

Solvent Volume Solvent
2 X  1 m l H exane

2 X  1 ml D iethy l ether '

2 X  1 ml Ethyl acetate

(iii) EN V IR O N M EN TA L C O N TA M IN A TIO N  EV A LU A TIO N

G uthrie spots were excised from  cards w ithout contact by hand, through the use o f  a hole 

punch or scissors. A lternatively the spots were heavily handled to ensure the occurrence o f  

any personal contam ination that m ight norm ally occur. The w ork-up and analysis were 

carried out in the norm al way.

(iv) D ETER G EN T C O N TA M IN A TIO N
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The glassw are used in all the experim ents involving blood spots was identical and 

consisted o f  10 ml Pyrex stoppered test tubes and sample tubes (1 ml). Sam ple tubes were 

discarded after use.

TABLE 5.10 -  G lassw are -  pre-extraction procedure

Sample Pre-extraction procedure

1 Untreated

2 M ethanol (soak  10 m l /10 m in)

3 D eco n  9 0  (son ica tion  x 2 0  m in .)

4 N itric  acid  (soak  10 m l/3 0  m in)

G lassw are was treated as detailed in Table 5.10 prior to extraction and analysis o f  resulting 

sam ples by GC to ensure that the contam ination source was not the test tube stoppers. Test 

tubes were either left standing, after addition o f  each m illilitre o f  solvent ( 2  x 1 m l), to 

prevent contact w ith the stopper or the solvent aliquots were vigorously shaken to ensure 

m axim um  contact w ith the tube stopper. The norm al w ork-up and analysis follow ed both 

procedures.

5.11.12 SC A N N IN G  ELECTRO N  M IC RO SCO PY  (SEM ) OF BLO O D  SPOTS.

(i) SA M PLE PREPA RA TIO N .

Spiked G uthrie spot sam ples were prepared in the usual m anner (Experim ent 5.11.2).

Sam ple A  (Table 5.11) fresh blood was spotted onto a Guthrie card (w ithout spiking). 

Sam ples B and C spiked blood spots were prepared as norm al and extracted using 

m ethanol (2 x 1 ml). This extraction was brought about through vigorous shaking.

Sam ples D and E were treated as the previous two sam ples but extraction w as by 

sonication. The spots, w hen dry, were analysed by SEM.
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(ii) SCA N N IN G  ELECTRO N  M IC RO SCO PE (SEM ) A N A LY SIS.

Each excised blood spot was halved and then quartered w ith the opposite sides o f  two 

quarters m ounted upw ard on a standard Cam bridge stub w ith carbon tab. This w as then 

coated w ith  an even layer o f gold, using a sputter coated with a gold target ( 2 0  m v for 60 

seconds). The stub was then transferred to the SEM  (LICA 360 Stereo scan SEM ) and 

exam ined at an accelerating voltage o f  12 KeV, w hich is considered a low  voltage.

Sam ples C and D were prepared six m onths prior to SEM  analysis.

TA BLE 5.11 -  Sam ple preparation for SEM

SAM PLE PREPARATION METHOD

A Fresh b lo o d / untreated.

Solid  C O ] (1 0  m in), octan oy lcarn itin e  sp ik e

A s B.
n
u A s B, and sp ot son icated  in m ethanol ( 2 x 1 0  m in).

E A s D.
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CHAPTER 6.

ANALYSIS OF ACYLCARNITINES BY ELECTROSPRAY MASS

SPECTROMETRY.
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6.1 INTRODUCTION.

M ethods available for the analysis o f  carnitine and acylcarnitines have been discussed in 

C hapter 1 but in the area o f  analytical science the developm ent o f  new  instrum entation is 

on going and this chapter contains a discussion o f  w ork carried out in collaboration w ith 

V G  B ioTech (Fisons Instrum ents, A ltrincham , UK.) tow ard the developm ent o f  a novel 

m ethod for the analysis o f  acylcarnitines. M ost approaches to the analysis o f 

acylcarnitines involve the derivatization o f  the zw itterionic m olecules to enhance som e 

aspect, be it the volatility o f  the acylcarnitines for GC analysis or their chrom ophoric 

properties as is often the case for HPLC. Ideally though analysis w ould be carried out on 

underivatized acylcarnitines and the m ethod o f  electrospray m ass spectrom etry [ESI-M S] 

has now  been investigated towards this end [ 1 ] w ith its routine nature offering an 

affordable and attractive method.

A lthough electro spray is a relative new com er to the analytical field the theory on w hich the 

technique is based originated in the early part o f  this century, with the w ork o f  Zeleny [2 ]. 

This involved the concept that fine sprays o f  charged droplets can give rise to a strong 

electrostatic field. It was dem onstrated that if  an analyte solution was passed, v ia  a small 

tube, into a  n itrogen atm osphere and at atm ospheric pressure this spray could be achieved. 

This w ork w as later reborn and investigated in the context o f  m ass spectrom etry [3, 4]

Dole et a l proposed a m odel for electrospray, which is know n as the Charged Residue 

M odel [3,4]. In this case it was postulated that w ith desolvation o f  the analyte droplets 

there was an increase in the surface-charge density. W hen this loss o f  solvent caused the 

surface-charge density  to reach its critical point (Rayleigh Lim it, when the Coulom bic 

repulsion and surface tension are com parable) [5] the instability created causes eruption 
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(C oulom bic Explosions) o f  the parent droplet to produce offspring. This continues for a 

num ber o f  generations until one is left w ith a droplet so small that it will contain only one 

analyte m olecule. This single m olecule, due to the retention o f  the droplet charge during 

desolvation, becom es an ion [6 ],

Iribarne and Thom son [7,8,9] proposed a second m odel with sim ilar origins in 1976. This 

A tm ospheric Pressure Ion Evaporation M odel argues that in the series o f  coulom bic 

explosions the droplet offspring that are produced eventually reach a point w here the radii 

are so reduced and the charge density so elevated that an electrostatic field is produced at 

the drop lets’ surface. This field then has sufficient intensity to raise the analyte ions into a 

surrounding am bient gas or vapour w ithout requiring the one analyte per droplet stage o f  

Dole. This m ethod o f  sam ple nebulization is often referred to as aerospray (AS) due the 

pneum atic generation o f  droplets.

This w ork was not how ever im m ediately utilized. It was Vestal et al. (1980) [10,11] who 

evolved the technique as therm o spray ionization. In this case a sam ple was passed through 

a narrow  tube w ith  heated walls to facilitate vaporization o f  the carrier solvent. 

N ebulization is then brought about by the acceleration and expansion o f  the vapour, w hich 

em erges as a je t  at the end o f  the tube. Though the link w ith the earlier w ork o f  Dole, 

Iribarne and Thom son was not initially m ade, therm ospray ion form ation was later 

attributed to the form ation o f  charged droplets during nebulization. It has also been 

proposed that the therm o spray ions are form ed in the process o f  collisions betw een solute 

and ions o f  the volatile buffer solvent o f  liquid chrom atography (EC) in the case o f  

EC /therm o spray m ass spectrom etry [6 ].

E lectro spray involves the addition o f  the analyte to a carrier solution (often 

w ater/acetonitrile) through sam ple injection. A high voltage at the injection point allow s 
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dispersion o f  the em erging liquid into a fine spray. A flow  o f  high velocity  gas around the 

needle can aid in the stabilization o f  the spray and can allow  the use o f  increased flow  

rates. U nder these conditions the spray drops are desolvated in a stream  o f  dry gas until all 

the carrier solution is rem oved releasing the com pounds o f  interest into the atm ospheric 

pressure source for analysis. Droplets produced in electrospray are form ed by electrostatic 

forces, as in the case o f  Dole and can be expected to have higher m ass-to-charge ratios 

than the other techniques described. H igher analytical sensitivity can thus be produced [6 ].

A lthough the m echanism  o f  droplet form ation and analysis utilized in the techniques 

described is as yet unconfirm ed the m ost likely explanation is thought to be that o f  Iribarne 

and Thom son [ 6  ]. There are those how ever who rem ain faithful to the Dole charged 

residue m odel [12]. In the carrier solution acylcarnitines will exist as protonated m olecules 

(cations). These cationic m olecules being singly charged will give one significant peak in 

the positive-ion m ode o f  electrospray as they do not possess a strong basic site w ith in  their 

structure w here further protonation m ay have otherw ise occurred.

Early coupling o f  electrospray to m ass spectrom eters [13, 14] opened the w ay for an 

explosion in the growth o f  m any varied o f  m ass spectrom etric application [15]. The m ost 

notable application being the analysis o f  large biopolym ers through efficient ionization and 

its m ultiple-charging properties together w ith coupling w ith a num ber o f  established 

analytical techniques. M olecules in excess o f  200kD a have been analysed [16] and 

electrospray techniques have been widely used for estim ating relative m olecular m asses in 

a num ber o f  proteins (for a review  o f  ES analysis o f  h igh-m olecular-w eight com pounds, 

see Sm ith 1991) [17].
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Figure 6 .1 Schem atic o f  the electrospray interface for the Platform  instrum ent used for the 

biological analyses detailed in this Chapter.

The technique o f  electro spray can be used to determ ine the relative m olecular m asses o f  

large analytes, including polym ers and small proteins as in the work of Fenn et al. [13, 15, 

18, 19] who have dem onstrated ionization m olecules with high relative m olecular m asses 

and detection lim its in the fem tom ole range. These analyses are facilitated due to the fact 

that in the form ation o f  the electro spray m any charges are attached to large m olecules, thus 

generating m ultiply-charged species. In this way a polypeptide that has a m ass o f  60,000 

daltons w hen carrying 30-60 positive charges will be detected as having a m ass-to-charge 

ratio o f  1 ,0 0 0 -2 ,0 0 0 , and is then w ithin the range o f  the m odem  m ass spectrom eter [2 0 ]. 

The analysis o f small m olecules such as trace natural and drug m etabolites has also been 

dem onstrated [21] including the carnitine esters described here. Figure 6.1 shows a 

schem atic o f  the electrospray interface used for the analyses described in this chapter.

It was Sim ons et a l  who first investigated the coupling o f  the techniques o f  electrospray 

w ith liquid chrom atography (LC-ES/M S) [22]. The interface betw een the LC and ES
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system s is such that a liquid flow, typ ically  at a flow rate o f  1-40 jal/m in en te rs  a needle  

interface w hich is at high voltage (usually  approxim ately 6  kV). The liqu id  leaves this 

needle in the form  o f  the nebulized gas th a t is desolvated in a n itrogen  gas a tm osphere , to 

release the charged ions [20 ]. The ions are then draw n through a lens and th rough  a cone 

(skim m er) section and into the region o f  reduced pressure inside the m ass analyser (see 

F igure 6.1). The nitrogen gas is also responsible for the reduction o f  ion /so lven t clusters 

form ed through hydrogen bonds [23, 24].

6.2 RESULTS AND DISCUSSION.

6.2.1 A N A L Y SIS OF STA N D A RD  A C Y LC A R N ITIN ES.

A n initial study w as carried out to determ ine i f  analysis o f acy lcarn itines w as possible 

using  the technique o f  electrospray m ass spectrom etry (ES/M S). T his in itia l w ork has 

been  published  [25]. A nalysis carried o u t under the conditions described  (E xperim ental 

6 .5 .1) and presen ted  the prelim inary application  o f  positive ion e lec tro sp ray  to 

underivatized  m edium  and long chain acylcarnitines, as their HC1 salts, c learly  

dem onstrating  that a num ber o f  acylcarnitines o f varying chain-length  co u ld  be analysed. 

In th is case the acylcarnitines investigated  included octanoylcarnitine (Cg), the key 

m edium -chain  acylcam itine in the d iagnosis o f  M CAD, and palm itoy lcarn itine  ( C ^ )  a 

sign ificant m etabolite  in the diagnosis o f  LCAD these are show n as F igure 6.2 a and c. In 

add ition  to these carnitine esters 4-phenylbutanoylcarnitine was also analysed . This 

com pound  is not naturally occurring and this fact and its nature as an acy lcam itine  have 

led to its use as an internal standard in the  early work on analysis o f  acy lcarn itines from 

urine [26, 27].
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F igure 6 .2 Shows the spectra o f  standard carnitine esters demonstrating a  single strong

signal corresponding to the protonated molecule. These are (a)

octanoylcarnitine, (b) 4-phenyl butanoylcamitine and (c) palmitoylcarnitine
288
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Each o f  the acylcam itine can be clearly seen to produce a single strong signal, w hich can 

be identified by m ass spectral inform ation. This is facilitated through the presence o f  1 % 

form ic acid in the acetonitrile/w ater carrier solution allow ing the zw itterionic 

acylcarnitines to exist as cations. In the m ass spectra o f  these com pounds the protonated 

m olecule clearly provides the base peak. The electrospray m ass spectrum  o f  

octanoylcarnitine (Figure 6.2a) consists o f the protonated m olecule at m/z 288 and a sm all 

num ber o f  background ions. The m ass spectrum  o f  the internal standard, 4- 

phenylbutanoylcarnitine (Figure 6.2b) consists o f  a peak from  the [M+1T]+ ions at m/z 308. 

The spectrum  in Figure 6.2c from analysis o f  palm itoylcarnitine has the protonated 

m olecule at m/z 400 while the other peaks in this spectrum  m ay be assigned to im purities 

in the com m ercial sam ple including m/z 204, acetylcarnitine. The am ount o f  fragm entation 

seen using this instrum entation is very small and therefore structural inform ation o f  any 

unknow n com pounds could not initially be obtained. It is how ever possible to induce 

fragm entation, thus yielding further inform ation, by increasing in the cone voltage or by 

collisional activation in a tandem  m ass spectrom etry (M S/M S) experim ent.

6.2.2 A N A LY SIS OF BIO LO G ICA L STA N D A RD  A C Y LC A R N ITIN ES.

This electrospray study was then extended to the analysis o f  spiked blood spots from  a 

healthy adult. These sam ples were prepared as described (Experim ents 6.4.2-3) and 

analysed directly by ES/M S using a 5 pi loop injection (Experim ent 6.4.4). The data 

obtained from  this analysis, clearly dem onstrated the presence o f  octanoylcarnitine. It was 

the observation o f  a peak at m/z 288, equivalent to the expected [M + H ]+ o f  

octanoylcarnitine w hich led to this peak assignm ent. A nalysis o f  sam ples derived from  

dried blood spots also repeatedly indicated a second m ass peak at m/z 301 at greater 

intensity than that attributed to octanoylcarnitine (Figure 6.3). The reconstructed ion
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Figure 6.3 E lec tro sp ray  m ass spectrum  o b ta in ed  b y  loop injection o f  an e x tra c te d  

s p ik e d  blood spot sample. In d ica ting  t h e  presence o f  o c tan o y lca rn itin e  a t  

m /z  288 and a non-acylcarnitine c o n ta m in a n t at m/z 301.
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Figure 6.4 E lectrospray m ass spectrum  generated after LC -E S /M S an a ly sis  o f  a 

sp iked  blood spot sam ple. The base peak is now  the [M +  H ]+ o f  

octanoylcarnitine, m/z 288
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current o f  th is sam ple w as generated and the profiles clearly  indicated that the source o f  

both m/z 288 an d  301 w as the same.

The fact that the contam inating peak had an odd m/z value indicated that it w as not an 

acylcam itine but cou ld  be derived from  the blood m atrix as its profile indicated its source 

as the in jected  sam ple. It was considered that the addition o f  a separating technique p rio r 

to ES/M S m igh t rem ove this unidentified contam inating com pound. L iquid 

chrom atography w as the technique chosen as this is easily coupled w ith the e lectrospray  

instrum entation  as  described above and the flow  rates allow ing carrier solvents and 

analytes to en ter the source directly w ithout any splitting  or m anipulation being necessary . 

The carrier so lven t o f  acetonitrile/w ater m eant an identical sam ple could be use as for the  

initial loop in jec ted  sam ples.

The ch rom atograph ic  properties o f  standard non-biological octanoylcarnitine w ere first 

investigated  fo llow ed  by analysis o f  spiked blood spot using LC -ES/M S. The liquid 

chrom atography separation was accom plished using an A pplied B iosystem s, A quapore 

RP-30 co lum n an d  the elu ted  carrier solvent and analyte was then fed to the electrospray  

source d irectly , as  outlined  in experim ent 6.4.4. T he retention tim es for both the standard  

and the ex trac ted  octanoylcarnitine w ere identical and reproducible, at approxim ately  18.5 

min. T he use o f  the separation procedure was also successful in elim inating the 

contam inant peak  from  the m ass spectrum  o f  octanoylcarnitine from  spiked blood spots 

(F igure 6.4), tho u g h  the com pound giving rise to the m/z 301 was not identified by LC- 

ES/M S. There w as how ever a peak that eluted approxim ately 2.5 m in after the 

octanoy lcarn itine  in  all extracted sam ples and has been attributed to a non-acylcarnitine 

com ponent o f  b lood . The m ass spectrum  o f  this unknow n peak suggests a relative 

m olecular m ass o f  278 as its [M + H ]+ ion is recorded at m/z 279.
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Figure 6.5 Spectrum resulting from the ESI/MS analysis of an MCAD sample



6.3 APPLICATION TO CLINICAL SAMPLES.

Blood spots on Guthrie cards were obtained from a num ber o f  patients all o f  w hom  had 

been diagnosed as suffering from  inherited m etabolic disorders. M ost o f  these sam ples are 

duplicates o f  sam ples previously described in Chapter 5 and therefore only a b rie f 

introduction to each w ill be outlined here. A nalysis was carried out in all cases by both 

ES/M S loop injections and w ith addition o f  a separation stage in the form o f  LC -ES/M S.

6.3.1 M ED IU M -C H A IN  A C Y L-C oA  D EH Y D RO G EN A SE D E FIC IE N C Y  (M CA D D ).

M edium -chain acyl-CoA  dehydrogenase (M CAD ) is one o f  a three m itochondrial m atrix 

acyl-C oA  dehydrogenases w hich carry out the initial dehydrogenation step in the 

6 -oxidation o f  straight chain fatty acids. Its role in disease is discussed in Section 5.7 

C hapter 5 o f  this thesis.

The diagnostic com pound for M CA D D  was the m edium -chain acylcam itine, 

octanoylcarnitine, as investigated above. Initially a direct ES/M S analysis was carried  out 

on this sam ple by loop injection the results o f  which are show n in Figure 6.5. This 

indicated the presence o f  octanoylcarnitine w ithin the residue m ixture, due to the observed 

ion at m/z 288 at a significant relative intensity, but as w ith spiked sam ples described 

above incorporation o f  a separation step was necessary in order to generate a clearer 

electrospray m ass spectrum . A pplying the procedure o f  liquid chrom atography the 

retention tim e o f standard octanoylcarnitine was found to be reproducible, approxim ately 

18.5 m in. A nalysis was perform ed using an Aquapore RP-30 and the conditions 

(Experim ent 6.4.4) included gradient elution at 40 pl/m in using a linear gradient from  95%  

0 .0 1M am m onium  acetate, 5% m ethanol to 100% m ethanol over 20 min w ith the eluant 

introduced directly to the electrospray source. A fter injection o f  an analytical blank, an
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identical analysis was carried out o n  an M CA D D  sample. O ctanoylcarnitine was 

determ ined  to be present through chrom atographic and m ass spectral inform ation. The 

reten tion  tim e was again approxim ately  18.5 m in and a significant response at m/z 288 w as 

ev ident, thus confirm ing the d iagnosis o f  m edium -chain acyl-CoA  dehydrogenase 

deficiency  on the basis o f  increased  excretion o f  octanoylcarnitine. F rom  the m ass 

spectrum  and a reconstructed ion curren t, it is proposed that the additional com ponent, 

p roducing  the base peak at m/z 235 , co-elutes w ith octanoylcarnitine as it has an identical 

profile  in the chrom atogram  produced . A t present the com pound responsib le  for th is c o ­

elu ting  peak  rem ains unidentified.

It has therefore been clearly show n  that octanoyl carnitine, a d iagnostic  m arker for 

M C A D D  w as present in this sam ple. A lthough a loop injection w as sufficient to identify  

octanoylcarn itine the chrom atographic  step prior to detection allow s greater confidence in 

its identification. The analysis o f  a  standard follow ed by a blank an d  then the clinical 

sam ple excludes any w ith in  day variab ility  in the assay and also the poten tial for the 

p roduction  o f  a false positive resu lt due to carry-over.

T herefore  w e have shown that E SI-M S can be used to characterise an  M CA D D  sam ple 

from  the presence o f  octanoylcarn itine in neonatal blood spots.

6 .3 .2  PR O PIO N IC  A C ID EM IA

In the disease propionic acidem ia (PA ) the m ajor urinary m etabolite is reported as 

2-m ethylcitrate  [28, 29, 30] w ith  the  disease characterized by severe m etabolic 

decom pensation  w ith m etabolic acidosis and hyperam m onaem ia. T he role o f propionic 

acid  in this disease is discussed in Section 5.7 Chapter 5 o f  this thesis.
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Figure 6.6

Propinoyl carnitine.
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In the ES-M S and LC/ES-M S study o f  a patient diagnosed as suffering from  the d isorder 

propionic acidem ia the aim  was the detection o f  propanoylcarnitine (m/z 218), the sam ple 

was prepared as described in Experim ent 6 .4.2-3. The result from  analysis o f  a standard is 

show n in Figure 6 .6 . The initial analysis was carried out via a loop injection o f  5 pi 

directly by ES-M S. The results obtained in this way clearly dem onstrated the presence o f  

the required protonated m olecule, at approxim ately 50%  relative abundance, w ith in  the 

residue m ixture. W ithin this m atrix it is also proposed that the protonated m olecules o f 

free carnitine (m/z 162) and acetylcarnitine (m/z 204) were present as w ould be expected 

from  this m edium .

LC -ESI/M S was carried out as described (Experim ent 6.4.4) using a Phase Separation 1 

m m  x 25 cm  C 8  colum n. The change o f  colum n was due to the fact that the A quapore RP- 

30 used in the M CA D D  study (Experim ent 6.4.4) is considered m ore suitable for the 

analysis o f  proteins and large m olecular w eight m olecules w hereas the colum n used here 

was considered m ore suitable for the sm aller acylcarnitines and would therefore potentially  

im prove peak resolution. A n initial study w as carried out to determ ine the retention tim e 

o f  propanoylcarnitine and also that o f  acetylcarnitine w hich also dem onstrated that they 

eluted close together w ith retention tim es o f  6.10 and 5.97 m inutes respectively, as show n 

in Figure 6.7. The clinical sam ple diagnosed as propionic acidem ia (PPA) w as then 

analysed via this m ethod.
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Figure 6.7 Propionic acidemia clinical sample
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The resulting total ion chrom atogram  (TIC) indicated the presence o f  both acetyl and 

propanoylcarnitine as seen from  the loop injection. Though it was necessary to reconstruct 

the profiles o f  the protonated m olecules o f  interest to determ ine if  either was significant 

from  the noise level. Both were significant though with poor peak shape in the expected 

retention tim e w indow  though again w ith sim ilar retention tim es (acetylcarnitine 5.97 min, 

propanoylcarnitine 6.10 min). A single ion recording (SIR) was also carried out w hich 

served to confirm  the identity o f  the com pounds and the reproducibility o f  the separation.

6.3.3 M ETH Y LM A LO N IC  ACID EM IA .

M ethylm alonic acidem ia has been show n to be caused by the absence or deficiency o f  

m ethylm alonyl-C oA  m utase or by abnorm alities o f  intram itochondrial cobalam in 

m etabolism  [31]. Its incidence has been reported as 1 in 48,000 births in one screening 

program  [32].

Preparation and analysis o f  the dried blood spot from  a patient w ith diagnosed 

m ethylm alonic acidem ia was carried out in an identical fashion to that o f  the PA sam ple 

described above (Section 6.3.2). In the case o f  this disorder one o f  the im portant 

diagnostic peaks is from  the detection o f  propanoylcarnitine as in the case o f  PA. There is 

how ever a second m etabolite w hich m ay be detected in this disorder, 

m ethylm alonylcarnitine {m/z 262), a m edium  branched-chain acylcam itine derived from  

the acid o f  the sam e nam e. It is detection o f  this second m etabolite that w ould allow  

unam biguous determ ination o f  this disorder, avoiding confusion with PA.

W ith the chrom atographic and m ass spectral nature o f  propanoylcarnitine established from  

above (Section 6.3.2), detection in the case o f  the m ethylm alonic acidem ia sam ple was 
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carried out in an identical m anner w ith the positive identification o f  the m etabolite 

propanoylcarnitine. Though the sample was also analysed for the presence o f 

m ethylm alonylcarnitine the expected response at m/z 262 was not detected.

In sum m ary, a diagnosis o f  a disorder o f  fatty acid m etabolism  could be made from  the 

above analysis and a proposal o f  propinoyl or m ethylm alonic acidem ia made. 

U nfortunately, the inability to detect the m ethylm alonylcarnitine that w ould confirm  the 

latter disorder w ould m ean that further characterisation o f  this sam ple w ould be necessary.

In conclusion, the experim ents outlined in this chapter are a small insight into w hat w ill no 

doubt becom e an im portant area in the diagnosis o f  m etabolic disorders. W e have show n 

the potential o f  this technique for the identification o f  acylcarnitines with very little sam ple 

w ork-up prior to analysis. Though the LC separation is at present a tim e consum ing step 

prior to detection it provides a vital sam ple clean-up and w hile it should not be excluded 

there is the potential for shortening the run tim es while m aintaining separation w here m ore 

than one acylcam itine is being detected. The use o f  M S/M S m ay aid the shortening o f  this 

run tim e by affording greater selectivity and thus reducing the necessity for 

chrom atographic separation o f  analytes and this should be investigated further particularly  

in the light o f  m ore recent w ork (see Chapter 7).
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6.4 EXPERIMENTAL.

6.4.1 PR EPA R A TIO N  OF STA ND ARDS.

The acylcarnitines, as hydrochloride salts, were either obtained from the Sigm a Chem ical 

C om pany, UK  (dl-octanoylcarnitine. HC1) or prepared by an established m ethod [36]. 

E lectrospray m ass spectrom etry o f  non-biological standards was carried out on a VG Trio- 

2000 operating w ith a cone voltage o f  about 30 V. The carrier solution was 

acetonitrile/w ater (50:50) containing 1% form ic acid and its flow rate was 5 pl/m in.

6.4.2 PR EPA R A TIO N  OF BIO LO G ICA L STA ND ARDS.

Fresh blood (10 m l) was stored in a flask o f  solid carbon dioxide for the shortest tim e 

possible (5-10 m in). Spiking o f  the blood was carried out by the addition o f  varying 

concentrations o f  octanoylcarnitine solution (as Chapter 5, Table 5.1 ) to 0.5 ml aliquots o f  

fresh blood. The sam ples were then shaken and spotted onto Guthrie paper and stored at 

room  tem perature.

6.4.3 EX TR A C TIO N  OF A C Y LC A R N ITIN ES FRO M  DRIED  BLO O D  SPOTS.

A cylcarnitines w ere recovered from  dried blood spots by sonicating with a solvent. A 

circular spot o f  6  m m  diam eter was punched out and extracted tw ice w ith a 

chloroform /m ethanol m ixture (2:1, 2 x 1 ml), sonicating each tim e for 10 min. Spiked 

spots contained dow n to 200 pm ol o f  the octanoylcarnitine. The com bined extracts were 

then dried and the residue dissolved in 50 pi acetonitrile/w ater for electrospray analysis.



6.4.4 INSTRUMENTATION AND ANALYSIS CONDITIONS FOR BIOLOGICAL

SA M PLES.

Electrospray m ass spectrom etric analyses o f  sam ples o f  biological origin w ere perform ed 

on a VG Platform , benchtop, single quadrupole m ass spectrom eter (Fisons Instrum ents/V G  

BioTech).

Loop injections w ere perform ed using a Rheodyne 8125 injector with a 5 pi loop.

Injection volum e was 5 pi from  the sam ple residue in 50 pi acetonitrile/w ater. EC /M S was 

carried out using an A pplied Biosystem s, A quapore RP-30, 100 x 1.0 mm colum n.

G radient elution at 40 pl/m in was perform ed using a linear gradient from  95%  0 .0 1M 

am m onium  acetate, 5% m ethanol to 100% m ethanol over 20 min with the eluant 

in troduced directly to the electrospray source. Some EC/M S analyses were perform ed 

using a Phase Separation 1 m m  x 25 cm  C 8  colum n w ith acylcarnitines isocratically  eluted 

at 100% 0 .0 1M am m onium  acetate for 5 m in followed by a ram p to 100% m ethanol, w ith 

in troduction into the source as above.
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CHAPTER 7

CONCLUSION AND FUTURE WORK
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Figure 7.1 M S/M S acyl carnitine profile obtained w ith  a p recu rso r o f  m/z 85 scan 

function from a healthy new born (top) and the screen ing  card o f  a 

new born with M CA D D  [3]
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7.1 ADVANCES IN ESI-MS -  EXPLOSION IN TANDEM

In the tim e since the conclusion o f  the practical w ork  outlined in this thesis it is the a re a  o f  

electrospray m ass spectrom etry, particularly  w ith  th e  use o f  tandem  m ass spectrom etry , 

has con tinued  to  develop at the m ost rapid rate.

The purpose o f  any screening technique is to p rov ide  an early diagnosis, w hich  w ill enab le  

early m edical intervention and prevent or reduce clin ical sym ptom s such as m ental 

retardation. T he criteria to allow  for screening to b e  introduced are as fo llow s [1]. T h e  

disorder has to  have a relatively high incidence so that the cost per d iagnosis is reasonab le . 

The test m u st be relatively inexpensive and su itab le  for high volum e testing. The te s t m ust 

have bo th  h igh  sensitivity and selectivity.

The area  o f  screening and m etabolic profiling for b o th  am ino acids and acylcarn itines, 

using d iffering  scan functions on the m ass spectrom eter, has m eant that the  sa tisfac tion  o f  

ju s t som e o f  the  criteria above is no longer the a im  o f  a technique. To be both  

com m ercially  and m edically acceptable any techn ique m ust aim  to address all.

S ince early  w orkers in this field w ith success in th e  area o f  FA B-M S/M S reported  the  

d iagnosis o f  PK U  from  neonatal blood spots [2] advances have continued at a rap id  rate . 

This techn ique, also reported as static liquid secondary  ionisation (LSI) -  M S/M S, is now  

routinely  u sed  particularly in Pennsylvania and N orth  Carolina w here screening  has show n 

a disease frequency  o f  1 in 17,706 for M C A D  [3]. F igure 7.1 show s M S/M S acylcarn itine 

profiles ob tained  using this technique for norm al versus M CAD patients.

The use o f  ESI-M S/M S is also now  w idely reported  in the literature in m any cases also 

m aking use o f  advances in instrum ent autom ation such as auto-injection [4] and



Figure 7.2 lonspray-M S/M S spectrum  from  an M C A D  affected neonate (two 

low er spectra) and that o f  a control subject (top) using a precursor ion  

scan o f  m/z 85 [5]
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m icroplates w ith com puter flagging o f  abnorm al profiles o f  both am ino acids and 

acylcarnitines [5].

The M S/M S techniques available now have the facility to carry out m ore com plex 

scanning than previously. For exam ple, using ionspray (a form o f electrospray) coupled 

with M S/M S, a single test w ith an analysis tim e o f  approxim ately two m inutes can be used 

to determ ine levels o f  am ino acids and acylcarnitines from  a single blood [6]. By 

screening for precursors o f  m/z 85 and a neutral loss o f  102, alternating scan types, 

disorders o f  fatty acid m etabolism  can be determ ined. These are derived from  the butyl 

esters o f  acylcarnitines and free amino acids [2, 5]. U sing this technique quantitation o f  

am ino acid and acylcarnitine levels has been possible for know n indicators o f 

approxim ately 25 inherited m etabolic disorders in. Exam ples o f  som e o f  the data produced 

using this technique are illustrated in Figure 7.2 and Table 7.1 w ith the latter presenting the 

breadth o f  diagnoses possible in neonates [6].

Table 7.1 - Illustrates the breath o f  diagnoses possible in neonates using M S/M S [6]

M etabolic D isorder o f  ... D isease
Am ino A cids PKU

M SUD
O rganic A cids Propionic acidem ia

Isovaleric acidem ia
Fatty  Acids TCH A D

3-m ethyl crotonyl Co A Carboxylase deficiency

O ver a few  short years we have therefore seen the developm ent o f  this technique and other 

tandem  M S techniques becom e m ore viable for use as screening procedures. By the 

criteria outlined earlier this technique can provide a sensitive and selective analysis tool. 

The potential for the diagnosis o f  m ultiple disorders and the reported sam ple analysis tim e 

m akes the cost per sam ple viable despite the high cost o f  the instrum entation required.
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Overall electrospray coupled w ith m ass spectrom etry has becom e a bright light in the arena 

o f  m etabolic disorders.

7.2 CONCLUSION

The work that has been presented in this thesis has built on the overall aim o f  providing a 

technique, which is within the reach o f the widest range o f  the paediatric medical profession 

possible. The hope is that with existing instrumentation a hospital m ight provide a facility, 

which could save lives. Perhaps, not through population screening, as is the aim o f  some o f 

the more expansive and expensive techniques, but through the screening o f siblings and other 

babies at risk. Preventing further distress to families or in providing an answer to the question 

o f w hy a child had unexpectedly died.

W hat we have succeeded in demonstrating are a num ber o f applications o f a basic method.

W e have shown (in Chapter 3) how  advances in more routine laboratories have enhanced the 

ability to characterise acylcarnitines in urine and through being able to confirm  the presence o f  

a wide variety o f  acylcarnitines a diagnosis may be aided. The value o f this extra level o f 

confidence cannot be underestimated in an area where the correct result is the only possible 

one and false positives or indeed negatives could cause so m uch damage.

In Chapter 4 we attempted to extend the method to the analysis o f  dicarboxylic acylcarnitines. 

Synthesis and analysis o f  these compounds has been possible though further work is required 

to understand at which point the lactonisation is failing further work and developm ent in this 

area is required to broaden the scope for diagnosis.

Other work, which broadens the application for this m ethod is outlined in Chapter 5 with the 

analysis o f blood spots from Guthrie cards. The fact that blood spots arc easily available and

190



long-term storage is not an issue, are important reasons to view this area as a huge 

advancem ent over urine analysis. There is also the feature that blood spots have traditionally 

been acquired, and are accepted, as a sample required from newborns. Approaching a m other 

for a further urine sample may beg the question as to why it is required and raise unnecessary 

anxiety. A method has been presented here and its development detailed. Also, a num ber o f 

clinical samples from a variety o f  fatty acid disorders have been analysed in order to test the 

method with ‘real’ samples.

W hile the limited amount o f  quantitative work suggests that the recovery from the extraction 

and lactonisation is low the clinical sample results suggest sufficient sensitivity is be present to 

allow diagnosis, due to the high levels o f  the marker acylcarnitines and their distinctive 

characterisation by mass spectrometry as lactones.

Finally, a foray was made into the world o f  electrospray. This proved very fruitful in 

demonstrating the powerful tool, which was at the time becoming more widely available to 

analysts. A review o f the literature today will quickly show applications for this technique in 

m any fields o f science. In the area o f neonatal metabolic disorders it has been shown that the 

initial very high cost, if  possible to obtain, can be offset by sample speed and throughput in the 

true neonatal screening situation as outlined in the final section o f  Chapter 6. Our work 

dem onstrated the ease o f  analysis without derivatization either to the lactone, which is 

unnecessary as volatility is not an issue, or to butyl esters which features in m any other 

literature methods discussed in Chapter 6.

7.3 FU TU R E W O R K

There are a num ber o f issues from the work outlined in this thesis which would merit a revisit 

if  further work were to be carried out in this area.
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The m ethod in place for the analysis o f  acylcarnitines in urine is a very robust one and in itself 

should rem ain as is. In this case technology, which continues to advance apace will no doubt 

increase the breadth o f  what we see and may further enhance the diagnoses possible. The 

analysis o f  dicarboxylic acylcarnitines would be an impressive weapon in our diagnostic 

arm oury if  it were achievable and this is possibly the area which would provide the greatest 

challenge to those willing to accept it.

As with the analysis o f  urine samples, technology will provide an improvement to our ability 

to confirm  disorders o f  fatty acid metabolism by GC-MS in blood spots as technology 

continues to advance. To return to the area o f recovery o f the acylcarnitine lactones from 

blood spots and to understand which point o f this procedure the recovery if  retarded could be 

another aim  o f  future work. Fine-tuning o f the method might improve the recovery, which 

w ould add an extra degree o f confidence to the diagnosis perhaps through the identification o f  

a greater num ber o f  diagnostic compounds in samples.

W ith a view  to the wider field o f diagnosis o f metabolic disorders in neonates areas such as 

immunoaffinity based screening show great potential. In this case a spot may be extracted 

with water and the supernatant added to a 96-well plate. The antibody-analyte is then eluted 

with methanol, derivatized and analysed by M S/MS. Pre-natal cell diagnosis is also under 

investigation, where fatty acids labelled with stable isotopes are administered. Fibroblasts 

grown from these can then be analysed i.e. for the presence o f labelled acylcarnitines [7]. 

Other m ethods include the use o f nucleic acid probes [8] or the measurem ent o f  the rate o f 

CPT1 and from this the levels o f acylcarnitines [9]. A molecular diagnosis has also been 

investigated through amplification o f a genomic DNA segment containing known mutations 

and cleavage o f either normal or variant strands by endonucleases. In this way m icrogram  

quantities o f  DNA can be made available for analysis and even point mutations detected [10].
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Finally, with such great advances in mass spectrometry and other techniques it would be 

almost impossible not look around, as a child in a sweet shop, at the vast array of shiny 

new things available in the laboratory and to have a small taste of each ...........
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SUMMARY OF APPENDIX CONTENTS

A1 A cetylcarnitine lactone

A2 Propanoylcarnitine lactone

A3 Isobutanoylcam itine lactone

A4 2-M ethylbutanoylcam itine lactone

A5 Isovalerylcarnitine lactone

A6 H exanoylcarnitine lactone

A7 A n octenoylcarnitine lactone

A8 O ctanoylcam itine lactone

A 9 4-Phenylbutanoylcam itine lactone (Internal standard)
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Al MADD urine sample,
Acetylcarnitine lactone (scan number 331, Figure 3.3), El mode.
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Relative ion  
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A2 MADD urine sample,
Propanoylcarnitine lactone (scan number 401, Figure 3.3), El mode.
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A3 MADD urine sample,
Isobutanoylcamitine lactone (scan number 430, Figure 3.3), El mode.
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Relative ion  
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A4 MADD urine sample,
2-Methylbutanoylcarnitine lactone (scan number 503, Figure 3.3), El mode.
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Relative ion  
abundance

103

158
1f2128

i | i l l l | n i i | i l l i | l i l i | m i | i i i l | i l l i | i i i l | i i i i | i r

1 43 17 3
i M i | i i i i | i n i | i i i i | i n f

2-Methylbutanoylcamitine lactone, Cl mode.
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A5 MADD urine sample,
Isovalerylcarnitine lactone (scan number 511, Figure 3.3), El mode.

1 0 0 %

Relative ion  
abundance
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Isovalerylcarnitine lactone, C l mode.
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A6 MADD urine sample,
Hexanoylcarnitine lactone (scan number 626, Figure 3.3), El mode.
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Relative ion  
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A7 MADD urine sample,
An octenoylcarnitine lactone (scan number 745, Figure 3.3), El mode.
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A8 MADD urine sample,
Octanoylcamitine lactone (scan number 773, Figure 3.3), El mode.
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A9 MADD urine sample, (scan number 973, Figure 3.3)
4-Phenylbutanoylcamitine lactone (internal standard), El mode.
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SUMMARY OF APPENDIX CONTENTS

B 1 !H NMR spectrum of Malic Acid

B2 NMR spectrum of Cyclic Anhydride

B3 Infrared spectrum of the p-hydroxy lactone

B4 13C NMR spectrum of the p-hydroxy lactone

B5 El mass spectrum of isopropanol/diacid chloride reaction product

B6 Infrared spectrum of Propanol/diacid chloride reaction product

B7 Infra red spectrum of Cyclopentanol/diacid chloride reaction

B8 Infrared spectrum of the Succinyl lactone

B9 NMR spectrum of the Succinyl lactone

BIO FAB spectrum of Succinyl lactone

B 11 Infrared spectrum of the Adipyl lactone

B 12 !H NMR and 13C NMR spectra of the of Adipyl lactone

B 13 Positive and negative FAB spectra of the Adipyl lactone

B14 13C NMR spectrum of the Succinylcamitine

B15 Positive FAB spectrum of Adipylcamitine

B 16 NMR spectrum of Adipylcamitine
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B1 NMR spectrum of Malic Acid
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B2 NMR spectrum of Cyclic Anhydride



B3 Infrared spectrum of the p-hydroxy lactone
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B4 13C NMR spectrum of the p-hydroxy lactone



El mass spectrum of isopropanol/diacid chloride reaction product



B6 Infrared spectrum of Propanol/diacid chloride reaction product
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B7 Infrared spectrum of Cyclopentanol/diacid chloride reaction
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B8 Infrared spectrum of the Succinyl lactone
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BIO FAB spectrum of Succinyl lactone
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B11 Infrared spectrum of the Adipyl lactone
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B12 !H NMR and 13C NMR spectra of the of Adipyl lactone
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B 13 Positive and negative FAB spectra of the Adipyl lactone
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C NMR spectrum of the Succinylcamitine
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Positive FAB spectrum of Adipylcamitine
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APPENDIX C

GLOSSARY OF MEDICAL TERMS



Acidemia A decrease in the pH of the blood.

Acidosis

decrease

Apnoea

supplied

A condition in which there is either (i) production by the body of two 

abnormal acids - p -hydroxybutyric or acetoacetic acids or (ii) a

Stoppage of breathing, such as occurs when blood is artificially

with too much oxygen (i.e. taking several deep breaths in quick 

succession).

A rrhythm ia Variation from the normal rhythm of heart beat.

Congenital Conditions that are present at, and usually before, birth regardless of

the

source of the disorder.

Epileptic

the

Paroxysmal transient disturbances of brain function which may be 

manifested as episodic impairment or loss of consciousness, abnormal 

motor phenomena, physic or sensory disturbances of perturbations of 

autonomic nervous system with symptoms due to disturbances o f  the 

electrical activity of the brain

Hyperammonaemia

Abnormally high levels of ammonia in the blood.

Hypoglycaemia Abnormally diminished glucose content in the blood. 
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Hypotonia Diminished skeletal muscle tone (weakness and floppiness in babies).

Inborn Errors of Metabolism

A genetically determined biochemical disorder in which a specific 

enzyme defect produces a metabolic block that may have pathological 

consequences at birth.

Ischemia Deficiency of blood in part due to functional constriction or actual

obstruction of a blood vessel.

Ketosis Abnormally elevated levels of ketone bodies in tissue and fluids.

Myopathy The wasting of certain muscles without any previous increase in

muscles. Post-mortem investigations have shown that the wasted 

muscle fibres have to a great extent been replaced with fatty and fibrous tissue

(also known as muscular dystrophy).

Riboflavin Heat stable factor of vitamin B complex (B2), 6,7-dimethyl-9-

[ 1 '-D-ribityl]-isoaloxazin (C ̂ ^ o ^ O g ) .

Steatosis Fatty degeneration.
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APPENDIX D

FATTY ACID PREFIXES/TRIVIAL NAMES FOR 

ACYLCARNITINES



FATTY ACID PREFIXES FOR 
ACYLCARNITINES

STRUCTURE(S)

(A )  M O N O C A R B O Y L 1C  
A C Y L C A R N IT IN E S

A cety lcarn itin e C H 3C O O  -

P ropanoyl Prop ionyl c h 3c h 2c o o  -

B utanoyl C H 3 (C H 2)2C O O  -

P entanoyl V aleryl C H 3 (C H 2)3C O O  -

H ex a n o y l C aproyl C H 3 (C H 2)4C O O  -

H eptanoyl C H 3 (C H 2) 5C O O  -

O ctan oyl C aprylyl C H 3 (C H 2) 6C O O  -

D eca n o y l C aprionyl C H 3 (C H 2) 8C O O  -

D o d eca n o y l Lauroyl c h 3 (C H 2) 10C O O -

T etradecanoyl M yristoy l c h 3 (C H 2) 12C O O -

H ex a d eca n o y l Palm itoy l c h 3 (C H 2) 14C O O  -

O ctad ecan oy l Stearyl C H 3 (C H 2) 16C O O -

(B )  B R A N C H -C H A IN E D  
M O N O C A R B O Y L IC  A C Y L C A R N IT IN E S ' '

2 -M eth y lb u ta n o y l C H 3C H 2C H (C H 3)C O O  -

3 -M eth y lb u tan oy l Isovaleryl (C H 3)2C H C H 2C O O  -

2 -M eth y lb u t-2 -en o y l T ig ly l C H 3C H C (C H 3)C O O  -

2 -P rop y lp en tan oy l V alproyl C H 3(C H 2)C H (C H 2C H 2C H 3)C O O  -

(C ) D IC A R B O X Y L IC  
A C Y L C A R N IT IN E S

B utan ed ioy l S u ccin y l H 0 2C (C H 2)2C 0 0  -

P en taned ioy l G lutaryl H 0 2C (C H 2)3C 0 0  -

H ex a n ed io y l A d ip y l H 0 2C (C H 2)4C 0 0  -

O ctan ed ioy l Suberyl H 0 2C (C H 2)6C 0 0  -

D eca n ed io y l Su bacyl H 0 2C (C H 2)gC O O  -

(D ) B R A N C H -C H A IN E D  D IC A R B O Y L IC  
A C Y L C A R N IT IN E S
2-M eth y lp ro p a n d io y l M eth y lm alon y l H 0 2C C H (C H 3) C 0 0  -
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SCANNING ELECTRON MICROGRAPHS
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E l Fresh/untreated blood spot 
x 5000 m agnification
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E2 Fresh blood spot, sonicated 
x 6500 m agnification
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E3 W hite blood cell ( 2 0 - 3 0  jam) 
x 2500 m agnification
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E4 Red blood cell ( 1 - 2  jam) 
x 22,000 m agnification
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Blood spot, 6 m onths after preparation 
x 8,000 m agnification


