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ABSTRACT. Marine mollusk shells have been extensively used to provide radiocarbon (14C)-based 
chronologies in paleoenvironmental and archaeological studies, however uncertainties in age 
measurements are introduced because secondary factors such as vital effects and diet may influence 
14C incorporation into these shells. Deep burrowing and deposit feeding mollusks, in particular, may 
incorporate “old” carbon resulting in apparently older ages than their contemporary environment. In 
this study, we present paired 14C and stable isotope (13C and 18O) measurements for nine species of 
known-age bivalves having different feeding strategies and collected in six localities around the NE 
Atlantic. We exclude potential “old” carbon contamination in these known-age mollusk shells, acquire 
a better understanding of local ecology and provide an improved context for the environmental 
interpretation of 14C ages. Our results indicate that, in the NE Atlantic, marine mollusk-derived 14C ages 
provide a reliable basis for environmental and archaeological investigation, independently of vital 
effects and differences in microhabitats, feeding strategies and sample location—all of which are 
apparent from stable isotopes.

KEYWORDS: diet, mollusks, paleoecology, radiocarbon.

INTRODUCTION

Marine mollusk shells can be a very useful source of palaeoarchives in coastal and continental shelf 
waters, particularly with regard to their stable isotopes (13C and 18O) (e.g. Simstich et al. 2005a, 
2005b; McConnaughey and Gillikin 2008; Mettam et al. 2014; Reich et al. 2015) and trace metal 
composition (Mg/Ca, Sr/Ca) (e.g. Batenburg et al. 2011; Warter et al. 2015). The shell composition of 
many mollusk species is likely to represent ambient seawater conditions and can be used to trace the 
physical and chemical properties of the surrounding waters. Furthermore, mollusk carbonate can 
provide a direct chronology of environmental change through radiocarbon (14C) dating.

The disequilibrium between marine and atmospheric 14C concentrations requires that the resulting 
marine reservoir age must be taken into account when using marine sourced samples to construct a 
chronology. Marine reservoir ages have been generated for a number of sites (Cage et al. 2006; Rick 
et al. 2012; Hadden and Cherkinsky 2015, 2017a, 2017b) but further uncertainty is introduced as 
mollusks inhabit a range of ecological niches. The usual assumption is that shell carbonate is 
precipitated from dissolved inorganic carbon in seawater; however, shell formation can be influenced 
by secondary factors such as metabolic processes (vital effect) and feeding strategies (DeNiro and 
Epstein 1978; Tanaka et al. 1986; Gillikin et al. 2006; McConnaughey and Gillikin 2008). This may be 
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of significance in the case of deep burrowing and deposit feeding mollusks, as they can incorporate in 
their shells carbon from old calcareous sediments resulting in apparently older ages than the true age 
of seawater dissolved inorganic carbon (e.g. Cage et al. 2006; Mangerud et al. 2006). Additionally, a 
recent study reported that old, but bioavailable organic matter found in arctic aquatic environments 
due to thawing of permafrost (yedoma) can be a source of old carbon in the diet of aquatic organisms, 
causing an overall “aging” effect (Guillemette et al. 2017). Several studies purport to find apparent 14C 
age differences between contemporaneous mollusk specimens (e.g. Forman and Polyak 1997; Hogg 
et al. 1998; Yoneda et al. 2000; Rick et al. 2012; England et al. 2013; Jull et al. 2013; Hadden and 
Cherkinsky 2015, 2017a, 2017b); whereas others claim that no significant age difference is observed 
between species from different ecological settings (Harkness 1983; Berkman and Forman 1996; 
Eiríksson et al. 2004; Ascough et al. 2005; Tisnérat-Laborde et al. 2010). 

Similarly, the impact of vital effects and feeding strategies on stable isotopes is still under debate. 
Some studies report high internal variability in marine mollusk stable isotopes that would prevent 
their use as robust environmental proxies (e.g. Gillikin et al. 2006); whereas others used stable 
isotopes to identify palaeoenvironments and ecological processes within these environments (e.g. 
Mettam et al. 2014; Reich et al. 2015). 

To assess the reliability of 14C ages and stable isotopes, we analyzed 9 species of known-age marine 
bivalves collected in 6 localities around the NE Atlantic coast (Figure 1). By comparing live-collected 
pre-bomb marine bivalve 14C ages and stable isotopes from (i) replicate samples of a single species 
from the same locality (ii) the same species at different localities and (iii) different species at the same 
locality, we examined in situ, intra-species and inter-species variability in a wider context than has 
been previously undertaken. 

MATERIAL AND METHODS

Area of Study

The Fishery Board of Scotland conducted a survey of bottom fauna in the northern part of the North 
Sea and to the north and west of Scotland during the years 1922–1925 (Stephen 1934). The current 
study focuses on six of these sites: Shetland (Gruting Voe), Cromarty Bay, Forth (St Andrews Bay), 
Minch (Loch Erisort), Hebrides (Loch Leurbost) and Faroes.

Grunting Voe is located in the southwest of Shetland (Figure 1). Two main types of soil are present in 
this catchment: peat and organic soils, both poorly draining. A few rivers and streams discharge in 
Grunting Voe, however freshwater influence in the voe is generally very low. This, together with an 
overall small tidal range, leads to wind-driven currents locally, with wind typically blowing from the 
south (Cefas 2010a).

Figure 1   Location map of samples analyzed in this study (stars), and circulation map representing major current 
pathways after Austin et al. (2012) and Baxter et al. (2011). Black arrows indicate North Atlantic current, green 
arrows indicate coastal currents. Sea surface salinity and temperature data are from GIN sea regional 
climatologies (Seidov et al. 2018). (Please see electronic version for color figures.)
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Cromarty Bay is a shallow, enclosed basin adjacent to the Moray Firth on the east coast of Scotland 
(Figure 1). Two types of soils are characteristic of the area: peaty soils and most predominantly humus 
iron podzols, the latter being freely draining and potentially reducing runoff. The catchment area 
includes one large river (River Conon) and smaller watercourses that seasonally supply freshwater to 
the Cromarty Bay. Predominant winds are from the north east and, in combination with density 
(freshwater) flows, can drive local currents. Tidal energy is strong in the Cromarty Firth, but tidal 
currents seems to slow down in proximity of the Bay where a sand bar is deposited (Cefas 2010b).

The Forth is situated on the eastern coast of Scotland bathing the city of St Andrews after which the 
Bay takes its name (Figure 1). Nowadays, this is an urbanized area and most of the land is arable, 
improved grassland. In proximity of the Forth Estuary, prevailing currents are tidal and freshwater 
inputs have a very marginal influence on local hydrography. Local currents are overall relatively weak 
and the Forth is more of a coastal/marine environment than an estuary (Cefas 2013). 

The Minch bathes the eastern coast of the Isle of Lewis in the Outer Hebrides (Figure 1). The catchment 
area of Loch Erisort is dominated by peaty soils with the sparse presence of organic and brown forest 
soils. Currents can be highly impacted by seasonal freshwater inputs from local streams resulting in 
density flows, but are generally quite weak. The rough topography of the seafloor may enhance local 
currents close to constrictions, and wind-driven currents usually prevail over tidal energy (Cefas 
2010c).

The Hebrides site, Loch Leurbost, is also situated on the eastern coast of the Isle of Lewis, just north 
of the Minch site (Figure 1). Two types of soils characterize this loch: brown forest soils (freely draining) 
on the northern coast and peaty soils (poorly draining) inland to the north of the loch and along the 
southern coastline. Currents are generally weak but can be channeled by changes in local bathymetry 
owing the presence of the island of Tannaraidh and other smaller islands at the mouth of loch as well 
as sills between the head, inner and outer basins. Additionally, density flows can occur seasonally 
following heavy rain periods and enhanced riverine inputs (Cefas 2011).

The Faroe Islands are situated between Iceland, Norway and Scotland (Figure 1), in a region where 
Atlantic Ocean waters enter the Nordic Seas. A persistent tidal flow encompasses Faroes’ shelf waters 
separating this coastal environment from the open ocean. Faroes coast is jagged by many fjords and 
consists of steep cliffs and mountainous plateaus, which are part of the North Atlantic basalt region 
that formed in the Tertiary during a period of intense volcanism (Gillespie and Clague 2009).

Overall, these six sites are either calm depositional fjordic environments (Shetland, Minch and 
Hebrides) or low energy enclosed coastal basins sheltered from the open ocean (Cromarty, Forth and 
Faroes), with relatively stable annual sea surface temperatures and salinities (Figure 1). With the 
exception of the Forth, there are no limestones in the area of study which means that we can exclude 
potential “old” carbon contaminations due to 14C-depleated dissolved inorganic carbon in all other 
sites. A fairly uniform water mass bathe the UK continental slope as its steepness limits the amount 
of deep North Atlantic waters entering the shelf (Inall et al. 2009; Baxter et al. 2011). To the west, the 
main water mass stems from the warm and saline Eastern North Atlantic Central Water, which travels 
northward along the west coast of Scotland (Inall et al. 2009). Similarly, the Scottish Coastal Current 
also travels northward carrying waters from the Irish and Clyde Seas and experiencing a slight 
freshening in proximity of the fjords peppering the coast of western Scotland (Inall et al. 2009; Baxter 
et al. 2011) (Figure 1). To the east, the circulation in the North Sea is typically anti-clockwise and fresh 
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and cool North Atlantic waters enter this region from Orkney and Shetland and along the Norwegian 
Trench (Baxter et al. 2011) (Figure 1). 

Sampling Strategy

Samples were collected from both intertidal areas by hand-sampling a fixed volume (0.5 × 0.5 × 0.15 
m), or from below the low watermark using a Petersen grab (0.1 m3 volume). Material was washed 
through 2 mm (intertidal samples) and 1.5 mm (grab samples) mesh sieves, before counting and 
identification of the mollusk fauna. The collection now resides with the National Museum of Scotland 
(reg. no.: NMSZ 1951.19), and specimens are stored dry in airtight glass vials or sealed polyethylene 
bags. Table 1 lists the nine species analyzed in this study and their ecologies and habitats; Table 2 
includes the samples available for stable isotopes and 14C analysis. Five of the six sites contain more 
than one of these species, typically including a combination of suspension feeding, deposit feeding or 
mixed feeding species (Table 2). No records exist to conclusively indicate all specimens were live-
collected, although this was certainly the intent of the original project, and so the remote possibility 
exists for some of the material to be reworked and potentially diagenetically altered. To improve the 
likelihood of the samples being live on collection, all samples analyzed were articulated bivalves with 
intact pereostracum, and frequently with internal organic matter still present.

[Insert Tables 1 and 2 about here.]

Stable Isotopes and Radiocarbon Analyses

Samples were weighed and placed in a 0.2M HCl solution overnight to ensure dissolution of about 20% 
of the outer carbonate. This pre-treatment also loosened any pereostracum adhering to the outer 
shell, which was mechanically removed along with any other surficial organic material attached to the 
shell. Samples were washed repeatedly with distilled water to remove any remaining acid, then freeze-
dried and finally ground prior to analysis. Subsamples were taken for stable isotope mass 
spectrometry and 14C analyses. Stable isotopes measurements were performed at the University of St 
Andrews in a Gasbench autosampler coupled to a ThermoScientific Finnigan Delta plus mass 
spectrometer. Standard reference materials (IAEA C2 travertine and Iceland Spar calcite) were 
analyzed along with the samples for quality control with a calcite acid fractionation factor of 1.01025 
at 25ºC (Sharma and Clayton 1965) and internal precision (zero enrichment test) of ±0.05‰ for δ13C 
and ±0.1‰ for δ18O measurements. For accelerator mass spectrometry 14C (AMS 14C) analysis, samples 
were hydrolyzed to CO2 using 100% H3PO4 (phosphoric acid), and then gas cryogenically trapped into 
sealed quartz-glass tubes. Age measurements were made at the NERC Radiocarbon Laboratory, East 
Kilbride (SUERC). 

Statistical Treatment of Data

We subdivided our dataset in three subsets to investigate: in situ variability (same species—same 
locality), intra species variability (same species—different localities) and inter species variability 
(different species—same locality). Note that replicate samples used to discuss in situ variability refer 
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to individual samples, not repeat measurements on the same shell. We used the method detailed in 
Ward and Wilson (1978) to test for homogeneity within groups of 14C measurements. 

To understand whether ages are comparable and thus can be combined together, we determined the 
pool mean (Ap) of each subset of measurements 

Ap = Ai/Si
2)/(1/Si

2)

and then calculated 

T = (Ai-Ap)2/Si
2

where Ai is the measured 14C age and Si is the associated 1 error. When T was less than the critical 
value for =0.05, then 14C ages are not statistically different and can be combined together.

RESULTS AND DISCUSSIONS

In situ Variability: Same Species—Same Locality

For the Shetland dataset, we have replicate samples only of A. nitida (Table 3). Based on three 
measurements (5 shells were measured in total), δ13C varies from –0.1 to 0.1‰, δ18O varies between 
2.7 and 3.2‰ and 14C dates vary from 467 to 510 BP (Figures 2 and 3). 

[Insert Table 3 about here.]
Figure 2   Stable isotopes discriminate between different ecological settings. Circles mark mixed feeders, squares 
suspension feeders, triangles deposit feeders and diamonds symbiont bearers. Samples from Shetland are in 
blue, from Cromarty in pink, from Forth in yellow, from Minch in green, from Hebrides in red, and from Faroes 
in black. Error bars represent the instrumental errors on 18O and 13C. 

Figure 3   14C measurements. a) In situ variability. b) Spatial variability in Abra spp. c) Spatial variability in Nucula 
spp. d) Inter species variability; stars mark average 14C age at each location regardless of species. Red lines mark 
the average 14C age of each subset of data, empty symbols mean no replicate measurement was available. Error 
bars represent ± 1 error of 14C ages.

For the Forth dataset, duplicate samples of A. alba (5 shells), C. gallina (4 shells) and N. turgida (4 
shells) were analyzed (Table 3). For A. alba, δ13C varies between 0.1 and 0.3‰, δ18O varies from 2.1 
to 2.4‰ and 14C ages vary from 496 to 517 BP (Figures 2 and 3).
For C. gallina, δ13C varies between 0.1 and 0.2‰, δ18O varies from 0.4 to 0.8‰ and 14C dates vary 
between 417 and 464 BP (Figures 2 and 3). 
For N. turgida, δ13C varies between 0.3 and 1.3‰, δ18O varies between 2.0 and 3.0‰, and 14C ages 
vary between 447 and 462 BP (Figures 2 and 3)

For the Minch dataset, we have duplicate samples of A. alba (4 shells) and T. flexuosa (3 shells) (Table 
3). For A. alba, δ13C varies between –0.9 to –0.7‰, δ18O varies from 2.3 to 2.5‰, and 14C dates vary 
from 448 to 552 BP (Figures 2 and 3).
For T. flexuosa, δ13C varies between –5.5 and –5.4‰, δ18O varies from 1.4 to 1.5‰, and 14C ages vary 
between 506 and 532 BP (Figures 2 and 3).
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For the Faroes dataset, we have duplicate measurements only of N. nucleus (5 shells) (Table 3). δ13C 
varies between 1.3 and 1.7‰, δ18O varies around 2.8 ‰ (Figure 2) and no duplicate 14C date is 
available for this sample.

In general, in situ variability in stable isotope measurements is low due to the precision of the 
measurements, yet statistically significant (Figure 2). In Figure 2 we reported individual stable isotope 
measurements to show the overall variability of the dataset. Four groups can be identified based on 
mollusks’ feeding strategies and shells stable isotope composition: symbiont bearer, suspension 
feeders, mixed feeders and deposit feeders (Figure 2—different symbols shape). The highest in situ 
variability in δ13C measurements was found in N. turgida and N. nucleus possibly because they are 
deposit feeders that can incorporate into their shells carbon from different sources (Yonge 1939; 
Ruppert et al. 2004; Cage et al. 2006; Mangerud et al. 2006). Notably, terrestrial organic matter is 
enriched in 12C from soils resulting in lower 13C values than marine organic matter (e.g. Ficken et al. 
1998; Balasse et al. 2005; Schmidt and Gleixner 2005; Marconi et al. 2011; Schiener et al. 2014). 
Similarly, A. alba δ13C in situ variability is statistically significant albeit small (Figure 2). Most likely this 
is the result of A. alba being a mixed feeder that can process a large volume of sediments to feed on 
detritus when it does not suspension feed (Dame 1996). The presence of symbionts seems to drive 
the unique 13C of T. flexuosa (Mangerud et al. 2006), whereas no in situ variability is observed in the 
suspension feeder C. gallina 13C (Figure 2). In situ variability in δ18O is significant in A. alba, C. gallina 
and N. turgida from Forth and in A. nitida from Shetland. We suggest that in situ changes in δ18O could 
be either due to changes in microhabitats or to differences in time-averaging among individuals. These 
mollusks are infaunal burrowers able to move within the sediments depending on food availability 
and changes in environmental conditions. This implies that the measured δ18O possibly reflects 
microhabitat preferences. Additionally, five specimens of A. nitida (Shetland), four of C. gallina, five 
of A. alba and four of N. turgida (Forth) were ground together before being measured, which means 
that the observed variability could also relate to seasonal changes in sea water conditions over a 
number of years, depending on the individual specimen’s lifespan. While these are known to be short-
lived species, no information is available on shells’ lifespan, thus we have no means to check for 
differences in ontogenetic ages.
In contrast, no significant in situ variability is observed in 14C ages and all shells are the same age within 
the ± 1 error, with the exception of A. alba from Minch (Table 3). However, all shells are the same 
age when considering the ± 2 error on 14C ages, and no “old” carbon effect was observed in the Forth 
dataset suggesting lack of weathering of the Carboniferous limestone (Figure 3a). 

Intra-Species Variability: Same Species—Different Location

The mixed feeder Abra spp. (A. alba and A. nitida together) is present at five of the six locations: 
Shetland, Cromarty, Forth, Minch and Hebrides (Figure 1), thus enabling inter-locality comparison of 
stable isotope and 14C measurements. Based on all five localities, spatial variability is significant in 
Abra spp. stable isotopes (Figure 2—circles), whereas it does not affect 14C ages within the ± 1 level 
of uncertainty (Figure 3b; Table 4). 

[Insert Table 4 about here.]
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Nucula spp. is present at three of the six locations: Forth, Minch and Faroes (Figure 1), allowing to 
assess spatial variability of stable isotope and 14C measurements in deposit feeders. Considering all 
three localities together, spatial variability is significant in Nucula spp. δ13C and δ18O (Figure 2—
triangles), whereas it does not affect 14C ages within the ± 1 level of uncertainty (Figure 3c; Table 5). 

[Insert Table 5 about here.]

In summary, marine bivalve stable isotopes record seasonal changes in local environments and can be 
a useful source of palaeoarchives in coastal and continental shelf waters (Figure 2). The spread in δ18O 
measurements in Abra spp. seems to reflect the temperature gradient between the sites with colder 
temperature in Shetland (high δ18O) and warmer temperature at the Hebrides (low δ18O) (Figures 1 
and 2). The range of δ13C values most likely represent changes in local productivity often related with 
seasonal variations in freshwater and nutrient supplies (Figures 1 and 2). In contrast, 14C ages do not 
change significantly with location, and all measured bivalves (Abra spp. and Nucula spp.) are the same 
age within the ± 1 level of uncertainty (Figures 3b and 3c; Tables 4 and 5). 

Inter-Species Variability: Different Species—Same Location

To discuss inter-species variability, in Shetland, we measured stable isotopes and 14C ages in the shells 
of A. nitida (mixed feeder) and T. ovata (suspension feeder) (Table 6). Inter-species variability is 
significant in δ13C and δ18O measurements (Figure 2), whereas it does not affect 14C ages, as the two 
species of bivalves are the same age within the ± 1 level of uncertainty (Figure 3d; Table 6).

[Insert Table 6 about here.]

In Forth, we measured stable isotopes and 14C ages in the shells of A. alba (mixed feeder), C. gallina 
(suspension feeder) and N. turgida (deposit feeder) (Table 6). Considering all three species together, 
inter-species variability is significant in δ13C and δ18O measurements (Figure 2), whereas it does not 
affect 14C ages, as all samples are the same age within the ± 1  level of uncertainty (Figure 3d; Table 
6). 

In Minch, we measured stable isotopes and 14C in the shells of A. alba (mixed feeder), T. flexuosa 
(suspension feeder with chemosynthetic symbiont) and N. nucleus (deposit feeder) (Table 6). 
Considering all three species together, inter-species variability is significant in δ13C and δ18O 
measurements (Figure 2), whereas it does not affect 14C ages, and all samples are the same age within 
the ± 1  level of uncertainty (Figure 3d; Table 6).

In Faroes, we measured stable isotopes and 14C in the shells of Astarte borealis (suspension feeder), 
Astarte elliptica (suspension feeder) and N. nucleus (deposit feeder) (Table 6). In this particular case, 
combining data from all three species, inter-species variability is significant for both stable and 
radiogenic isotopes (Figures 2 and 3d; Table 6). 

In summary, stable isotopes in marine bivalve shells can be reliably used to identify feeding strategies 
and ecological settings (Figure 2). Only A. elliptica falls outside the corresponding “feeding box” (Figure 
2; black square in triangles group), perhaps suggesting a problem with the measurements performed 
in this shell or its identification. In contrast, 14C ages show no evidence of sensitivity to mollusk diets 
or microhabitats, as all analyzed shells are the same age within the ± 1 level of uncertainty (Figure 
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3d; Table 6). This includes the measurements from Faroes that locally showed significant interspecies 
variability (Table 6). Nevertheless, we acknowledge that with higher precision dates (± 1 < 35 yr) the 
difference in 14C ages between specimens with different ecologies and feeding strategies might 
become significant.

Does Diet Affect Radiocarbon Ages?

Previously published 14C ages, based on several species of mollusks and covering a range of 
environments, showed significant age differences between contemporaneous specimens (e.g. Forman 
and Polyak 1997; Hogg et al. 1998; Mangeroud et al. 2006; England et al. 2013; Petchey et al. 2013; 
Hadden and Cherkinsky 2017a; Rick et al. 2012; Rick and Henkes 2014). In these studies, older than 
expected 14C ages were consistently measured in deposit feeding mollusks, as these species were 
argued to be able to incorporate old carbon in their shells. This apparent ‘aging effect’ can be due to 
two sources of “old” carbon: inorganic carbon from old calcareous sediments and/or terrestrial inputs 
(Forman and Polyak 1997; England et al. 2013), and old organic matter (yedoma) from the underlying 
sediments in samples coming from arctic regions (Forman and Polyak 1997; Guillemette et al. 2017). 
The latter source of old carbon could potentially explain the older 14C ages reported in Mangeroud et 
al. (2006) and England et al. (2013) as their samples come from Svalbard, the Barents Sea and the 
Arctic Ocean. Additionally, high variability in 14C ages within and between shells was found in samples 
collected in estuarine and brackish environments due to the mixing of marine and 14C-depleted fresh 
waters and to carbon recycling (Hadden and Cherkinsky 2017a; Rick et al. 2012; Rick and Henkes 2014). 
As a consequence, several researchers have suggested to either (i) exclude deposit feeders from 
palaeoenvironmental reconstructions, (ii) recommended species-specific correction factors to 
calibrate 14C ages measured in deposit feeders, or (iii) advocated for the calculation of regional and 
sub-regional reservoir ages (Forman and Polyak 1997;Petchey et al. 2013; Hadden and Cherkinsky 
2017a; Rick et al. 2012; England et al. 2013; Rick and Henkes 2014).

In this study, we combine stable isotopes and 14C measurements for a range of marine bivalves having 
different feeding strategies and inhabiting a variety of ecological niches in the NE Atlantic. By pairing 
stable isotopes and 14C measurements, we were able to better understand the mollusks’ ecology 
(Figure 2) and thus better assess the reliability of 14C ages (Figure 3). In situ variations of shell δ13C may 
reflect changes in carbon source, namely whether a mollusk is feeding on marine or terrestrial organic 
matter or switching between feeding strategies (Figure 2). Spatial changes in shell δ13C may indicate 
seasonal variations in marine productivity often related to freshwater input in fjordic and coastal 
systems (Figures 1 and 2). Similarly, in situ variations of δ18O values can be due to differences in 
microhabitats and/or in shells time-average due to possibly different ontogenetic ages of the analyzed 
specimens (Figure 2), whereas spatial changes in δ18O may relate to seasonal changes in seawater 
temperature and salinity (Figures 1 and 2). In contrast, no statistically significant variation in 14C 
measurements has been recorded in the compiled dataset (Figure 3d) and we would argue that all 
studied species can be used to provide a robust 14C chronology independently of their diet. We 
speculate that, given the oceanography and geology of these sites in the NE Atlantic, seawater 
dissolved inorganic carbon is fairly homogeneous and unaffected by “old” carbon derived from the 
weathering of older rocks, ultimately resulting in the robust 14C ages we measured (Figure 3). As 
already proposed by Petchey et al. (2013), pairing stable isotopes and 14C ages provides an opportunity 
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for a deeper understanding of environmental influences on 14C dates, ultimately enabling an improved 
resolution of 14C based chronologies. 

CONCLUSIONS

The main conclusion that can be drawn from these results is that marine bivalve shells from the NE 
Atlantic can be used not only as reliable proxies for environmental and ecological change, but also for 
dating such reconstructions. As previously described in the literature, stable isotopes record changes 
in local environment, circulation (water mass) and ecology, being useful sources of palaeoarchives in 
coastal and continental shelf waters. Additionally, our results highlight that, in the NE Atlantic, mollusk 
carbonate provides a reliable basis for building the chronology of marine environmental change 
through 14C dating, independently of vital effects and differences in microhabitats, feeding strategies 
and sample location. Reliable 14C dating may still be compromised by the unknown incorporation of 
“old” carbon in mollusk shells in regions with “old” limestones. We therefore recommend the routine 
pairing of 14C and stable isotopes (δ13C and δ18O) measurements to provide an improved ecological 
context for interpreting 14C ages.
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Table 1   Shells species, ecologies, and habitats.* 

Species Feeding strategy Substrate Depth habitat

Abra alba Mixed feeder
Muds, silty sands and 
soft muddy gravel

From extreme low 
watermark to about 65 m 
water depth

Abra nitida Mixed feeder
Muds, sandy muds, silty 
sands and muddy gravel

Offshore to depths of about 
180 m

Astarte borealis Suspension feeders Sandy muds and gravel Below 5 m water depth
Astarte elliptica Suspension feeders Sandy muds and gravel Below 5 m water depth

Chamelea gallina Suspension feeder
Clean sands and muddy 
sands—infaunal 
burrower

Above the low watermark 
to about 50 m water depth

Nucula nucleus Deposit feeder Coarse sediments
To about 140 m water 
depth

Nucula turgida Deposit feeder
Fine sediments—
infaunal

To 90 m water depth

Thyasira flexuosa
Symbiont barer and 
suspension feeder

Sandy muds
From 10 to 180 m water 
depth

Timoclea ovata Suspension feeder
Sands, muddy sands, 
shell gravel and gravel—
shallow burrower

From 4 to 180 m water 
depth

*Ecology and habitat information is from Tebble (1966).
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Table 2   Sample list.*

Lab 
Identifier

AMS publication 
code

Location Latitude (N) Longitude (W) Species
Feeding 
strategy

GR/7903 SUERC-11180 Shetland 60.2 1.51 SA1-Abra nitida (a)** Mixed 

GR/7904 SUERC-11181 Shetland 60.2 1.51 SA1-Abra nitida (b)** Mixed 

GR/7905 SUERC-11182 Shetland 60.2 1.51 SA1-Abra nitida (c)** Mixed 

GR/7906 SUERC-11183 Shetland 60.2 1.51 SA1-Timoclea ovata Suspension 

GR/7907 SUERC-11184 Cromarty 57.47 4.09 SA5-Abra nitida Mixed 

GR/7908 SUERC-11185 Forth 56.15 2.53 SA7-Chamelia gallina (a)** Suspension 

GR/7909 SUERC-11186 Forth 56.15 2.53 SA7-Chamelia gallina (b)** Suspension 

GR/7910 SUERC-11189 Forth 56.15 2.53 SA7-Abra alba (a)** Mixed 

GR/7911 SUERC-11191 Forth 56.15 2.53 SA7-Abra alba (b)** Mixed 

GR/7912R SUERC-11192 Forth 56.15 2.53 SA7-Abra alba (c) Mixed

GR/7913 SUERC-11193 Forth 56.15 2.53 SA7-Nucula turgida (a)** Deposit 

GR/7914 SUERC-11195 Forth 56.15 2.53 SA7-Nucula turgida (b)** Deposit 

GR/7915 SUERC-11196 Minch 58.18 6.13 SA30-Abra alba (a)** Mixed

GR/7916 SUERC-11199 Minch 58.18 6.13 SA30-Abra alba (b)** Mixed 

GR/7917 SUERC-11200 Minch 58.18 6.13 SA30-Thyasira flexuosa (a)** Suspension 

GR/7918 SUERC-11201 Minch 58.18 6.13 SA30-Thyasira flexuosa (b)** Suspension 

GR/7919 SUERC-11203 Minch 58.06 6.29 SA30-Nucula nucleus Deposit 

GR/7920 SUERC-11204 Hebrides 58.12 6.46 SA31-Abra nitida Mixed 

GR/7921 SUERC-11205 Hebrides 58.12 6.46 SA31-Abra alba Mixed 

GR/7922 SUERC-11206 Faeroes 62.2 6.29 SA48-Astarte borealis Suspension 

GR/7923 SUERC-11209 Faeroes 62.2 6.29 SA48-Astarte elliptica Suspension 

GR/7924 SUERC-11210 Faeroes 62.2 6.29 SA48-Nucula nucleus (a)** Deposit 

GR/7925 — Faeroes 62.2 6.29 SA48-Nucula nucleus (b)** Deposit 

* All samples come from coastal waters. Feeding strategies are largely based on the interpretations of Tebble (1966).
**Replicate analyses. Please note that replicates (a), (b), and (c) refer to individual samples, not repeat measurements on the 
same shell.
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Table 3   In situ variability.*

Lab Identifier
AMS publication 
code

Locality Species Feeding 14C age BP
1 14C age 
error

Year of 
Collection

GR/7903 SUERC-11180 Shetland SA1-Abra nitida (a) Mixed 498 37 1924

GR/7904 SUERC-11181 Shetland SA1-Abra nitida (b) Mixed 510 35 1924
GR/7905 SUERC-11182 Shetland SA1-Abra nitida (c) Mixed 467 35 1924

Ap = 491

T = 0.8

2
.05=6

GR/7908 SUERC-11185 Forth SA7-Chamelia gallina (a) Suspension 464 35 1925
GR/7909 SUERC-11186 Forth SA7-Chamelia gallina (b) Suspension 417 35 1925

Ap = 441
T = 0.9
2

.05=3.8
GR/7910 SUERC-11189 Forth SA7-Abra alba (a) Mixed 517 35 1924
GR/7911 SUERC-11191 Forth SA7-Abra alba (b) Mixed 496 35 1924
GR/7912R SUERC-11192 SA7-Abra alba (c) Mixed 467 35 1924

Ap = 493
T = 1.0
2

.05=6
GR/7913 SUERC-11193 Forth SA7-Nucula turgida (a) Deposit 462 35 1924
GR/7914 SUERC-11195 Forth SA7-Nucula turgida (b) Deposit 447 35 1924

Ap = 455
T = 0.1
2

.05=3.8
GR/7915 SUERC-11196 Minch SA30- Abra alba (a) Mixed 552 35 1924
GR/7916 SUERC-11199 Minch SA30- Abra alba (b) Mixed 448 35 1924

Ap = 500
T = 4.4
2

.05=3.8

GR/7917 SUERC-11200 Minch SA30-Thyasira flexuosa (a) Symbiont 532 35 1924

GR/7918 SUERC-11201 Minch SA30-Thyasira flexuosa (b) Symbiont 506
39

1924

Ap = 520
T = 0.2
2

.05=3.8
*Red numbers indicate when in situ variability is statistically significant for =0.05. (Please see electronic version for color.)
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Table 4   Abra spp. (mixed feeder) inter-locality variability.

Lab Identifier
AMS publication 
code

Locality Species 14C age BP 1 14C age error

GR/7903 SUERC-11180 Shetland SA1-Abra nitida (a) 498 37
GR/7904 SUERC-11181 Shetland SA1-Abra nitida (b) 510 35
GR/7905 SUERC-11182 Shetland SA1-Abra nitida (c ) 467 35
GR/7907 SUERC-11184 Cromarty SA5-Abra nitida 475 35
GR/7910 SUERC-11189 Forth SA7-Abra alba (a) 517 35
GR/7911 SUERC-11191 Forth SA7-Abra alba (b) 496 35
GR/7912R SUERC-11192 Forth SA7-Abra alba (c ) 467 35
GR/7915 SUERC-11196 Minch SA30- Abra alba (a) 552 35
GR/7916 SUERC-11199 Minch SA30-Abra alba (b) 448 35
GR/7920 SUERC-11204 Hebrides SA31-Abra nitida 476 35
GR/7921 SUERC-11205 Hebrides SA31-Abra alba 477 35

Ap = 489
T = 6.9
2

.05=18.3

Table 5   Nucula spp. (deposit feeder) inter-locality variability.

Lab Identifier
AMS publication 
Code

Locality Species 14C age BP 1 14C age error

GR/7913R SUERC-11193 Forth SA7- Nucula turgida (a) 462 35
GR/7914 SUERC-11195 Forth SA7- Nucula turgida (b) 447 35
GR/7919 SUERC-11203 Minch SA30-Nucula nucleus 452 35
GR/7924 SUERC-11210 Faroes SA48-Nucula nucleus (a) 554 35

Ap = 479
T = 6.2
2

.05=7.8
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Table 6   Inter-species variability.*

Lab Identifier AMS publication code Locality Species 14C age BP 1 14C age error
GR/7903 SUERC-11180 Shetland SA1-Abra nitida (a) 498 37
GR/7904 SUERC-11181 Shetland SA1-Abra nitida (b) 510 35
GR/7905 SUERC-11182 Shetland SA1-Abra nitida (c ) 467 35
GR/7906 SUERC-11183 Shetland SA1-Timoclea ovata 507 35

Ap = 495
T = 0.9
2

.05=7.8
GR/7908 SUERC-11185 Forth SA7-Chamelia gallina (a) 464 35
GR/7909A SUERC-11186 Forth SA7-Chamelia gallina (b) 417 35
GR/7910 SUERC-11189 Forth SA7-Abra alba (a) 517 35
GR/7911 SUERC-11191 Forth SA7-Abra alba (b) 496 35
GR/7912R SUERC-11192 Forth SA7-Abra alba (c ) 467 35
GR/7913R SUERC-11193 Forth SA7- Nucula turgida (a) 462 35
GR/7914 SUERC-11195 Forth SA7- Nucula turgida (b) 447 35

Ap = 467
T = 5.1
2

.05=12.6
GR/7915 SUERC-11196 Minch SA30- Abra alba (a) 552 35
GR/7916 SUERC-11199 Minch SA30-Abra alba (b) 448 35
GR/7917 SUERC-11200 Minch SA30-Thyasira flexuosa (a) 532 35
GR/7918 SUERC-11201 Minch SA30-Thyasira flexuosa (b) 506 39
GR/7919 SUERC-11203 Minch SA30-Nucula nucleus 452 35

Ap = 498
T = 7.1
2

.05=9.5
GR/7920 SUERC-11204 Hebrides SA31-Abra nitida 476 35
GR/7921 SUERC-11205 Hebrides SA31-Abra alba 477 35

Ap = 477
T = 0.0
2

.05=3.8
GR/7922 SUERC-11206 Faroes SA48-Astarte borealis 414 35
GR/7923 SUERC-11209 Faroes SA48-Tridonta elliptica 540 35
GR/7924 SUERC-11210 Faroes SA48-Nucula nucleus (a) 554 35

Ap = 503
T = 9.7
2

.05=6
GR/7907 SUERC-11184 Cromarty SA5-Abra nitida 475 35

All shells together Ap = 485
T = 26.7
2

.05=32.7

*Red numbers indicate when inter species variability is statistically significant for =0.05.
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